

Test specification:	Section 90.1215, Maximum output power			
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1			
Test mode:	Compliance	Verdiet: DACC		
Date(s):	26-Dec-23	- Verdict: PASS		
Temperature: 24 °C	Relative Humidity: 39 %	Air Pressure: 1018 hPa	Power: 48 VDC	
Remarks:				

Plot 7.1.18 Peak spectral power density at mid frequency

Test specification:	Section 90.1215, Maximum output power			
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1			
Test mode:	Compliance	Verdiet: DACC		
Date(s):	26-Dec-23	Verdict: PASS		
Temperature: 24 °C	Relative Humidity: 39 %	Air Pressure: 1018 hPa	Power: 48 VDC	
Remarks:				

Plot 7.1.19 Peak spectral power density at mid frequency

CHANNEL SF ANTENNA CF Modulation:					
	KEYSIGHT L Coupling: DC Align: Auto	Input Z: 50 Ω Corr Freq Ref: Int (S)		1 2 3 4 5 6 M M W W W W W <td< td=""><td></td></td<>	
	1 Spectrum Scale/Div 10 dB Log		Ref Lvi Offset 40.00 dB Ref Level 41.00 dBm	Mi	kr1 4.946 95 GHz 13.88 dBm
	31.0				
	21.0				TRIG LVL
	1.00				
	-9.00				
	-29.0				
	-39.0				
	-49.0 Center 4.96500 GHz		#Video BW 3.0 MHz*		Span 50.00 MHz
	#Res BW 1.0 MHz	Dec 26, 2023	WVIGED BY 3.0 MILE		Sweep 1.00 s (1001 pts) II

Test specification:	Section 90.1215, Maximum output power			
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1			
Test mode:	Compliance	Verdiet: DACC		
Date(s):	26-Dec-23	- Verdict: PASS		
Temperature: 24 °C	Relative Humidity: 39 %	Air Pressure: 1018 hPa	Power: 48 VDC	
Remarks:				

Plot 7.1.20 Peak spectral power density at mid frequency

CHANNEL SF ANTENNA CF Modulation:				50 MHz 1 256QAM		
	KEYSIGHT Input: RF L Coupling: DC Align: Auto		ten: 20 dB PNO: Fast burce: Off Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Power (RMS) 1 2 3 4 5 6 Avg Hold:>100/100 M W W W W Trig: RF Burst A P N N N		
	1 Spectrum v Scale/Div 10 dB		Ref Lvi Offset 4 Ref Level 41.00		Mkr1 4.950 70 GHz 13.86 dBm	
	31.0					
	21.0	• <u>1</u>			TRIG LVL	
	1.00					
	-9.00					
	-29.0					
	-49.0					
	Center 4.96500 GHz #Res BW 1.0 MHz	Pec 26, 2023	#Video BW 3.	0 MHz*	Span 50.00 MHz #Sweep 1.00 s (1001 pts)	

Test specification:	Section 90.1215, Maximum output power			
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1			
Test mode:	Compliance	Verdiet: DACC		
Date(s):	26-Dec-23	Verdict: PASS		
Temperature: 24 °C	Relative Humidity: 39 %	Air Pressure: 1018 hPa	Power: 48 VDC	
Remarks:				

Plot 7.1.21 Peak spectral power density at mid frequency

CHANNEL SP ANTENNA CH Modulation:			50 MHz 2 QPSK	
	KEYSIGHT Input: RF L Coupling: DC Align: Auto	Input Z: 50 Ω Atten: 20 dB Corr Source: Off Freq Ref: Int (S)	PNO: Fast Avg Type: Power (R Gate: Off Avg Hold:>100/100 IF Gain: Low Trig: RF Burst Sig Track: Off	MS) 1 2 3 4 5 6 M M W W W W A P N N N N
	1 Spectrum V Scale/Div 10 dB		Ref LvI Offset 40.00 dB Ref Level 41.00 dBm	Mkr1 4.947 30 GHz 13.96 dBm
	Log			
	21.0			
	11.0	1		TRIG LVL
	1.00			
	-9.00			
	-19.0			
	-29.0			
	-39.0			
	-49.0			
	Center 4.96500 GHz #Res BW 1.0 MHz		#Video BW 3.0 MHz*	Span 50.00 MHz #Sweep 1.00 s (1001 pts)
		? Dec 26, 2023		

Test specification:	Section 90.1215, Maximum output power			
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1			
Test mode:	Compliance	Verdiet: DACC		
Date(s):	26-Dec-23	- Verdict: PASS		
Temperature: 24 °C	Relative Humidity: 39 %	Air Pressure: 1018 hPa	Power: 48 VDC	
Remarks:				

Plot 7.1.22 Peak spectral power density at mid frequency

CHANNEL SF ANTENNA CH Modulation:			50 MHz 2 16QAM	
	KEYSIGHT Input: RF L Coupling: DC Align: Auto	Input Z: 50 Ω Atten: 20 dt Corr Source: Off Freq Ref: Int (S)	B PNO: Fast Avg Type: Power (F Gate: Off Avg Hold:>100/100 IF Gain: Low Trig: RF Burst Sig Track: Off	MSMS 1 2 3 4 5 6 M M W W W W A P N N N N N 1
	1 Spectrum V Scale/Div 10 dB		Ref Lvi Offset 40.00 dB Ref Level 41.00 dBm	Mkr1 4.946 95 GH 14.08 dB
	31.0			
	21.0			
	11.0			TRIG L'
	-9.00			
	-19.0			
	-39.0			
	-49.0			
	Center 4.96500 GHz #Res BW 1.0 MHz	Dec 26, 2023	#Video BW 3.0 MHz*	Span 50.00 Mi #Sweep 1.00 s (1001 pi
		Pec 26, 2023		

Test specification:	Section 90.1215, Maximum output power			
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1			
Test mode:	Compliance	Verdiet: DACC		
Date(s):	26-Dec-23	Verdict: PASS		
Temperature: 24 °C	Relative Humidity: 39 %	Air Pressure: 1018 hPa	Power: 48 VDC	
Remarks:				

Plot 7.1.23 Peak spectral power density at mid frequency

CHANNEL SP ANTENNA CH Modulation:					
	KEYSIGHT Input: RF L Coupling: DC Align: Auto	Input Ζ: 50 Ω Atten: 20 dB Corr Source: Off Freq Ref: Int (S)	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	AS) 1 2 3 4 5 6 M M W W W W A P N N N N	
	1 Spectrum V Scale/Div 10 dB		Ref Lvi Offset 40.00 dB Ref Level 41.00 dBm	Mk	r1 4.946 95 GHz 14.20 dBm
	31.0				
	21.0				
	11.0				TRIG LVL
	-9.00				
	-19.0				Laurenser
	-39.0				
	-49.0				
	Center 4.96500 GHz #Res BW 1.0 MHz		#Video BW 3.0 MHz*	#\$	Span 50.00 MHz Sweep 1.00 s (1001 pts)
		Dec 26, 2023			

Test specification:	Section 90.1215, Maximum output power			
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1			
Test mode:	Compliance	Verdiet: DACC		
Date(s):	26-Dec-23	Verdict: PASS		
Temperature: 24 °C	Relative Humidity: 39 %	Air Pressure: 1018 hPa	Power: 48 VDC	
Remarks:				

Plot 7.1.24 Peak spectral power density at mid frequency

CHANNEL SP ANTENNA CH Modulation:			50 MHz 2 256QAM	2				
	KEYSIGHT Input: RF L Coupling: DC Align: Auto	Input Z: 50 Ω Atten: 20 dB Corr Source: Off Freq Ref: Int (S)	PNO: Fast Avg Type: Power (RI Gate: Off Avg Hold:>100/100 IF Gain: Low Trig: RF Burst Sig Track: Off	MS) 1 2 3 4 5 6 M M W W W W A P N N N N				
	1 Spectrum V Scale/Div 10 dB		Ref LvI Offset 40.00 dB Ref Level 41.00 dBm	Mł	(r1 4.950 05 GHz 14.06 dBm			
	31.0							
	21.0	1						
	1.00				TRIG LVL			
	-9.00							
	-19.0				· · · · · · · · · · · · · · · · · · ·			
	-39.0							
	-49.0							
	Center 4.96500 GHz #Res BW 1.0 MHz	Dec 26, 2023	#Video BW 3.0 MHz*		Span 50.00 MHz Sweep 1.00 s (1001 pts)			
	4 7 7 1	P Dec 26, 2023		B H				

Test specification:	Section 90.209, Occupied bandwidth								
Test procedure:	47 CFR, Section 2.1049								
Test mode:	Compliance	Verdict:	PASS						
Date(s):	28-Dec-23	verdict:	PASS						
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC						
Remarks:									

7.2 Occupied bandwidth test

7.2.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.2.1. The test results are provided in Table 7.2.2 and the associated plots.

Table 7.2.1 Occupied bandwidth limits

Assigned frequency,	Modulation envelope reference points*,	Maximum allowed bandwidth,
MHz	%	MHz
4940.0 - 4990.0	99	10, 20, 40 MHz

* - Modulation envelope reference points are provided in terms of attenuation below the unmodulated carrier.

7.2.2 Test procedure

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- 7.2.2.2 The EUT was set to transmit the unmodulated carrier and the reference peak power level was measured.
- 7.2.2.3 The EUT was set to transmit the normally modulated carrier.
- **7.2.2.4** The transmitter occupied bandwidth was measured with spectrum analyzer as a frequency delta between the reference points on modulation envelope and provided in Table 7.2.2 and the associated plots.

Figure 7.2.1 Occupied bandwidth test setup

Test specification:	Section 90.209, Occupied	Section 90.209, Occupied bandwidth									
Test procedure:	47 CFR, Section 2.1049										
Test mode:	Compliance	Verdict:	PASS								
Date(s):	28-Dec-23	verdict:	PASS								
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC								
Remarks:											

Table 7.2.2 Occupied bandwidth test results

DETECTOR USED: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH: MODULATION ENVELOPE RE	FERENCE POINTS:	Peak hold 1 – 5% of the OBW > RBW 99%		
Carrier frequency, MHz	Occupied bandwidth, MHz	Limit, MHz	Margin, MHz	Verdict
Channel spacing 10 MHz				
Modulation QPSK				
4945.0	8.623	NA	NA	Pass
4965.0	8.628	NA	NA	Pass
4985.0	8.638	NA	NA	Pass
Modulation 16QAM				
4945.0	8.643	NA	NA	Pass
4965.0	8.640	NA	NA	Pass
4985.0	8.645	NA	NA	Pass
Modulation 64QAM				
4945.0	8.639	NA	NA	Pass
4965.0	8.645	NA	NA	Pass
4985.0	8.643	NA	NA	Pass
Modulation 256QAM				
4945.0	8.627	NA	NA	Pass
4965.0	8.624	NA	NA	Pass
4985.0	8.626	NA	NA	Pass

Carrier frequency, MHz	Occupied bandwidth, MHz	Limit, MHz	Margin, MHz	Verdict
Channel spacing 25 MHz	· · · · · · · · · · · · · · · · · · ·			
Modulation QPSK				
4952.5	18.390	NA	NA	Pass
4967.5	18.382	NA	NA	Pass
4977.5	18.371	NA	NA	Pass
Modulation 16QAM				
4952.5	18.432	NA	NA	Pass
4967.5	18.434	NA	NA	Pass
4977.5	18.416	NA	NA	Pass
Modulation 64QAM	· · · · · · · · · · · · · · · · · · ·			
4952.5	18.439	NA	NA	Pass
4967.5	18.429	NA	NA	Pass
4977.5	18.430	NA	NA	Pass
Modulation 256QAM	· · · · · · · · · · · · · · · · · · ·			
4952.5	18.393	NA	NA	Pass
4967.5	18.384	NA	NA	Pass
4977.5	18.378	NA	NA	Pass

Test specification:	Section 90.209, Occupied	Section 90.209, Occupied bandwidth								
Test procedure:	47 CFR, Section 2.1049									
Test mode:	Compliance	Verdict:	PASS							
Date(s):	28-Dec-23	verdict:	PASS							
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC							
Remarks:	-									

Table 1.1.7.2.3 Occupied bandwidth test results (continuation)

DETECTOR USED:	Peak hold
RESOLUTION BANDWIDTH:	1 – 5% of the OBW
VIDEO BANDWIDTH:	> RBW
MODULATION ENVELOPE REFERENCE POINTS:	99%

Carrier frequency, MHz	Occupied bandwidth, MHz	Limit, MHz	Margin, MHz	Verdict
Channel spacing 50 MHz				
Modulation QPSK				
4965.0	38.277	NA	NA	Pass
Modulation 16QAM				
4965.0	38.331	NA	NA	Pass
Modulation 64QAM				
4965.0	38.327	NA	NA	Pass
Modulation 256QAM				
4965.0	38.302	NA	NA	Pass

Reference numbers of test equipment used

	HL 5376	HL 5933									
_ E	Full description is given in Appendix A										

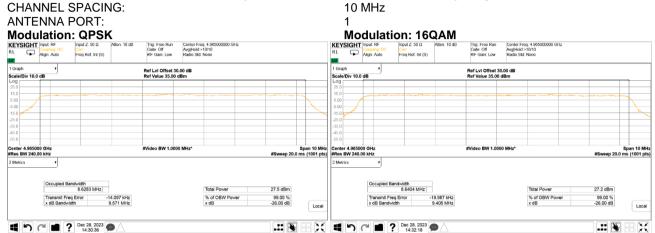
Full description is given in Appendix A

Test specification:	Section 90.209, Occupied	Section 90.209, Occupied bandwidth									
Test procedure:	47 CFR, Section 2.1049										
Test mode:	Compliance	Verdict:	PASS								
Date(s):	28-Dec-23	verdict:	PASS								
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC								
Remarks:	-										

Plot 7.2.1 Occupied bandwidth test result at low frequency

		NEL S NNA P	PACIN ORT:	G:							10 1	МH	lz									
Мс	du	ation:	QPSK								Мо	du	latio	n: 160	2AM							
RL N	0	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr Freq Ref: Int (S)	Alten: 10 dB	Trig: Free Run Cate: Off #IF Gain: Low	Center Freq: 4.94 Avg Hold>10/10 Radio Std: None	45000000 GHz				REYSIGH			Input Z: 50 Ω Corr Freq Ref: Int (S)	Allen: 10 dB	Trig: Free Run Gete: Off #IF Gain: Low	Center Fre Avg Hold Radio Std		Hz			
	e/Div 10.0	dB			Ref Lvi Offset 3 Ref Value 30.00						1 Graph Scale/Div 1	.0 dB	•			Ref Lvi Offset Ref Value 30.0						
20.0											20.0	1										
10.0			anna a ann 1997 a 📖 1977 a		a contract of the state of the						10.0		1. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		· · · · · · · · · · · · · · · · · · ·					~	、
-10.0	1										-10.0											\mathbf{i}
-20.0											-20.0											
-40.0											-40.0											
-50.0											-50.0											
Cent	er 4.9450				#Video BW 1.00	00 MHz*				0 MHz	Center 4.94					#Video BW 1.0	000 MHz*				Spar	n 10 MHz
	BW 240.	00 kHz						#Sweep 20	.0 ms (100		#Res BW 24	0.00 kH:	z							#Sweep 20.0) ms (1	1001 pts)
2 Me	trics	Occupied Ba Transmit Free x dB Bandwide	8.6232 MHz	28.634 kHz 9.439 MHz			il Power f OBW Power 3	27.1 dBm 99.00 % -26.00 dB	L	Local	2 Metrics	Tr	ccupied Band ansmit Freq dB Bandwidt	8.6430 MHz Error	34.361 kHz 9.362 MHz			Total Power % of OBW Pov x dB	ver	27.1 dBm 99.00 % -26.00 dB		Local
4	5	ମ 🔳 ?	Dec 28, 2023	DA				.# 8	6 88 (X	4 N	C	2	Dec 28, 2023 14:25:33	\square					.# 🗎) 88	X

Modulation: 64QAM


Modulation: 256QAM

RL G	Cour	L RF pling: DC L Auto	Input Ζ: 50 Ω Corr Freq Ref: Int (S)	Alten: 10 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold⇒ Radio Std		lz.			RL	eysigh" F	Input RF Coupling Align: Au		Input Z: 50 Ω Corr Freq Ref: Int (S)	Alten: 10 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold Radio Std		Hz			
1 Graph Scale/Div 1	0.0 dB	•			Ref Lvi Offset Ref Value 30.0						Sc	Scale/Div 10.0 dB Re					Ref Lvi Offset 30.00 dB Ref Value 30.00 dBm						
20.0 10.0 -10.0 -2	_					**************************************					Lo 20 10 -10 -20 -30 -40 -50 -60			W - Mid Leonard									
Center 4.94 #Res BW 2					#Video BW 1.0	100 MHz*			#Sweep 20.0	Span 10 M ms (1001 p		nter 4.945 s BW 240					#Video BW 1.0	000 MHz*			#Sweep 20.0	Span ms (10	10 MHz 001 pts)
2 Metrics	T	Transmit Freq dB Bandwidt	8.6385 MHz Error th	-33.880 kHz 9.392 MHz			Total Power % of OBW Pow x dB	ver	26.9 dBm 99.00 % -26.00 dB	Loca		letrics	Trans	pied Band smit Freq I Bandwidth	8.6265 MHz Error	-25.642 kHz 9.461 MHz			Total Power % of OBW Pov x dB	ver	27.0 dBm 99.00 % -26.00 dB		Local
1	C	1 ?	Dec 28, 2023 14:26:34	\square					.:: 🖌	88 🍃	(1	C .	■ ?	Dec 28, 2023 14:27:46	\mathbf{P}							X

Test specification:	Test specification: Section 90.209, Occupied bandwidth										
Test procedure:	47 CFR, Section 2.1049										
Test mode:	Compliance	Verdict:	PASS								
Date(s):	28-Dec-23	verdict:	PA33								
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC								
Remarks:											

Plot 7.2.2 Occupied bandwidth test result at mid frequency

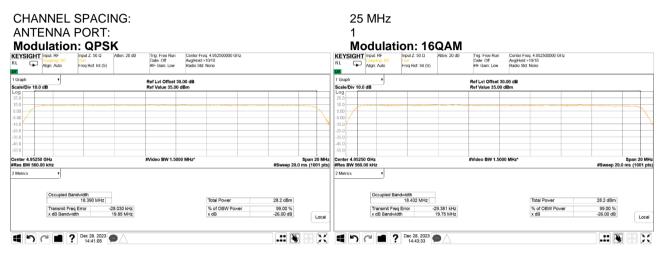
Modulation: 64QAM

Modulation: 256QAM

				ulatio	·II. ∠JU	Q AIN				
EYSIGHT Input. RF Input Z: 50 Ω Atten: 10 dB Coupling: DC Corr Algn: Auto Freq Ref: Int (S)	Trig: Free Run Center Freq: 4.96500000 GHz Celer: Off AvgHeidr>10/10 #F Gain: Low Radio Std: None		RL	Input RF Couping: DC Align: Auto	Input Z: 50 Ω Corr Freq Ref: Int (S)	Atten: 10 dB	Trig. Free Run Gate: Off #IF Gain: Low	Center Freq: 4.965000000 GHz Avg Hold>10/10 Radio Std: None		
Raph v ale/Div 10.0 dB	Ref Lvi Offset 30.00 dB Ref Value 35.00 dBm		1 Graph Scale/Div 10.0	dB		.00 dB IBm		_		
			25.0 15.0 5.00		and the state of the			determine an entry plane and a product of	· · · · · · · · · · · · · · · · · · ·	
			-15.0 -25.0 -35.0 -45.0 -55.0							
	#Video BW 1.0000 MHz* #Sweep 20	Span 10 MHz 0.0 ms (1001 pts)	Center 4.96500 #Res BW 240.0				#Video BW 1.0000) MHz*	#Sweep 20.0	Span 10) ms (1001
Occupied Bandwidth 8.6449 MHz	Total Power 27.4 dBm		2 Metrics	Occupied Ban	dwidth 8.6240 MHz]		Total Power	27.3 dBm	
Transmit Freq Error -24.369 kHz x dB Bandwidth 9.328 MHz	% of OBW Power 99.00 % x dB -26.00 dB			Transmit Freq x dB Bandwid	Error -	13.796 kHz 9.467 MHz		% of OBW Power x dB	99.00 % -26.00 dB	L
			4 n	₽∎?	Dec 28, 2023 14:34:23				.:: 🖲] 88 (

Test specification:	Test specification: Section 90.209, Occupied bandwidth										
Test procedure:	47 CFR, Section 2.1049										
Test mode:	Compliance	Verdict:	PASS								
Date(s):	28-Dec-23	verdict:	PA33								
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC								
Remarks:											

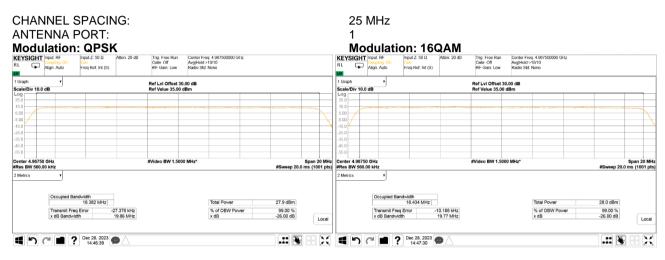
Plot 7.2.3 Occupied bandwidth test result at high frequency


Modulation: 64QAM

EYSIGHT Input: RF Input Z: 50 Ω Atten: 10 dB L Corr Atten: Auto Freq Ret. Int (S)	Trig: Free Run Center Freq: 4.985000000 GHz Gate: Off Avg Held:>10/10 #IF Gain: Low Radio Std: None	KE RL	YSIGHT Input RF Input Z: 50 Ω Coupling: DC Align: Auto Freq Ref: Int (S)	Cate: Off Avg Hol	Freg: 4.985000000 GHz Id:>10/10 Id: None
araph v ate/Div 10.0 dB	Ref Lvi Offset 30.00 dB Ref Value 35.00 dBm		le/Div 10.0 dB	Ref Lvi Offset 30.00 dB Ref Value 35.00 dBm	
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		25.0 15.0		and the second of the second sector of the s	
		5.00 -5.00 -15.0			
		-25.0 -35.0 -45.0	0		
nter 4.985000 GHz es BW 240.00 kHz	#Video BW 1.0000 MHz*	Span 10 MHz Cent #Sweep 20.0 ms (1001 pts) #Ret		#Video BW 1.0000 MHz*	Span #Sweep 20.0 ms (10
etrics T		2 M	trics 🔻		
Occupied Bandwidth 8.6432 MHz	Total Power	27.4 dBm	Occupied Bandwidth 8.6255 MHz		Total Power 27.5 dBm
Transmit Freq Error -9.547 kHz x dB Bandwidth 9.407 MHz	% of OBW Power x dB	99.00 % -26.00 dB	Transmit Freq Error x dB Bandwidth 9	-616 Hz 9.397 MHz	% of OBW Power 99.00 % x dB -26.00 dB
[∽ ┍ ■ ? Dec 28, 2023			الم الع	•	

Test specification:	Test specification: Section 90.209, Occupied bandwidth										
Test procedure:	47 CFR, Section 2.1049										
Test mode:	Compliance	Verdict:	PASS								
Date(s):	28-Dec-23	verdict:	PA33								
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC								
Remarks:											

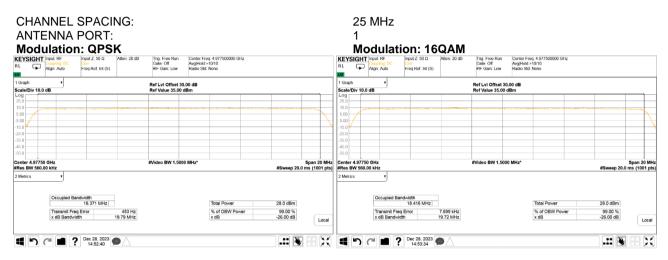
Plot 7.2.4 Occupied bandwidth test result at low frequency


Modulation: 64QAM

YSIGHT Input RF Input Z 50 Ω Atten: 20 d Coupling: DC Corr Align: Auto Freq Ref: Int (S)	B Trig. Free Run Center Freq. 4.952500000 GHz Ceter Off Avg[Hold:>10/10 #IF Gain: Low Radio Std: None		Coupling: DC Align: Auto	Input Z: 50 Ω Alten: 20 dB Corr Freq Ref: Int (S)	Trig: Free Run Center F Cate: Off Avg Hol #IF Gain: Low Radio S	Freq: 4.952500000 GHz d:>10/10 fdt None	
aph v le/Div 10.0 dB	Ref Lvi Offset 30.00 dB Ref Value 35.00 dBm	s	Graph v icale/Div 10.0 dB		Ref Lvi Offset 30.00 dB Ref Value 35.00 dBm		
			-09 25.0				\rightarrow
			15.0				
			15.0				
			35.0				_
			45.0				
4.95250 GHz W 560.00 kHz	#Video BW 1.5000 MHz*		enter 4.95250 GHz Res BW 560.00 kHz		#Video BW 1.5000 MHz*	#Sweep 20	Span 20 0.0 ms (100
Occupied Bandwidth 18.439 MHz	Total Power	28.2 dBm	Metrics v	ndwidth 18.393 MHz		Total Power 28.0 dBm	
Transmit Freq Error -25.965 kHz x dB Bandwidth 19.74 MHz	% of OBW Power x dB	99.00 % -26.00 dB	Transmit Free x dB Bandwid	Error -27.684 kHz		% of OBW Power 99.00 % x dB -26.00 dB	L
			th?)			

Test specification:	Test specification: Section 90.209, Occupied bandwidth											
Test procedure:	47 CFR, Section 2.1049											
Test mode:	Compliance	Verdict:	PASS									
Date(s):	28-Dec-23	verdict:	PA33									
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC									
Remarks:	•											

Plot 7.2.5 Occupied bandwidth test result at mid frequency

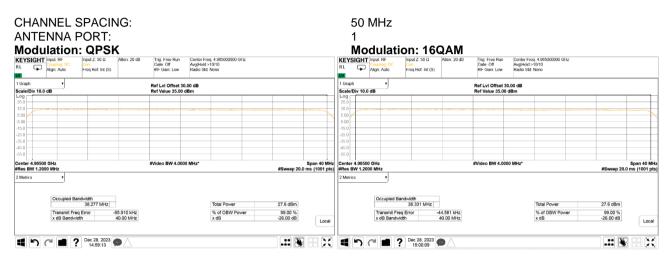

Modulation: 64QAM

YSIGHT Input. RF Coupling: DC Align: Auto	Input Z: 50 Ω Atten: 2 Corr Freq Ref: Int (S)	Cate: Off	Center Freq: 4.967500000 GHz Avg Hold⇒10/10 Radio Std: None			RL	GIGHT Input	ling DC Co	out Z: 50 Ω rr aq Ref: Int (S)	Atten: 20 dB	Trig: Free Run Gete: Off #IF Gain: Low	Center Freq. 4 Avg Hold>10/ Radio Std. Nor			
aph v le/Div 10.0 dB		Ref Lvi Offset 30.0 Ref Value 35.00 dB					h Div 10.0 dB	•			Ref Lvi Offset : Ref Value 35.00				
						Log 25.0 - 15.0 - 5.00 - -5.00 - -5.00 - -5.00 - -5.00 - -35.0 - -35.0 - -45.0 -									
er 4.96750 GHz BW 560.00 kHz trics		#Video BW 1.5000 #	NHz*	S #Sweep 20.0 m	Span 20 MH Is (1001 pt		4.96750 GHz 3W 560.00 kH				#Video BW 1.50	00 MHz*		#Sweep 20.0	Span 20 ms (1001
Occupied E Transmit Fr x dB Bandy	18.429 MHz eq Error -15.326 k		Total Power % of OBW Power x dB	27.9 dBm 99.00 % -26.00 dB	Local	2 1001	C Ti	ccupied Bandwid 1i ransmit Freq Erro dB Bandwidth	8.384 MHz	15.538 kHz 19.86 MHz			otal Power of OBW Power dB	27.8 dBm 99.00 % -26.00 dB	Le
	Pec 28, 2023			.: 😽				1 ? [•]		- ^				.:: 🛯	1001

Test specification:											
Test procedure:	47 CFR, Section 2.1049										
Test mode:	Compliance	Verdict:	PASS								
Date(s):	28-Dec-23	verdict:	PASS								
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC								
Remarks:											

Plot 7.2.6 Occupied bandwidth test result at high frequency

Modulation: 64QAM


Modulation: 256QAM

Test specification: Section 90.209, Occupied bandwidth											
Test procedure:	47 CFR, Section 2.1049										
Test mode:	Compliance	Verdict:	PASS								
Date(s):	28-Dec-23	verdict:	PASS								
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1016 hPa	Power: 48 VDC								
Remarks:	-										

Plot 7.2.7 Occupied bandwidth test result at mid frequency

Modulation: 64QAM

Modulation: 256QAM

RL F								RL	SIGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr Freq Ref: Int (S)	Alten: 20 dB	Trig: Free Run Cate: Off #IF Gain: Low	Center Fre Avg[Hold⊃ Radio Std		łż.		
1 Graph Scale/Div 10.0 d	r iB			Ref Lvi Offset 3 Ref Value 35.00					Graph									
Log 25.0 15.0 5.00 -5.00 -15.0								25.0 15.0 5.00 -5.00	_									
-25.0 -35.0 -45.0 -55.0 Center 4.96500 #Res BW 1.2000				#Video BW 4.00	00 MHz*	#Sweep 20.0	Span 40 MHz ms (1001 pts	-25.0 -35.0 -45.0 -55.0 Cente #Res	4.96500 BW 1.200	GHz 0 MHz			#Video BW 4.00	DO MHz*			#Sweep 20.0	Span 40 MHz ms (1001 pts)
2 Metrics	Occupied Ban Transmit Freq x dB Bandwidt	38.327 MHz	36.519 kHz 40.00 MHz		Total Power % of OBW Power x dB	27.6 dBm 99.00 % -26.00 dB	Local	2 Metr		Occupied Ban Transmit Freq x dB Bandwidt	38.302 MHz Error	27.085 kHz 40.00 MHz			Total Power % of OBW Pow x dB	er	27.5 dBm 99.00 % -26.00 dB	Local
470	∍ ∎ ?	Dec 28, 2023 15:01:12						4	5	⊲∎?	Dec 28, 2023 15:02:09							

Test specification:	Section 90.210, Emission mask			
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)			
Test mode:	Compliance	Verdict: PASS		
Date(s):	27-Dec-23	verdict:	PASS	
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC	
Remarks:				

7.3 Emission mask test

7.3.1 General

This test was performed to measure emission mask at RF antenna connector. Specification test limits are given in Table 7.3.1 and Table 7.3.2 and Table 7.3.3.

Table 7.3.1 Emission mask limits for 10 MHz channel bandwidth

Frequency displacement from carrier	Attenuation below carrier, dBc		
Emission mask M (Occupied bandwidth 10 MHz)			
0 – 4.5 MHz	0***		
4.5 – 5.0 MHz	568log(F*/4.5)		
5.0 – 5.5 MHz	26+145log(F*/5.0)		
5.5 – 10.0 MHz	32+31log(F*/5.5)		
10.0 – 15.0 MHz	40+57log(F*/10.0)		
More than** 15.0 MHz	50		

* - F – frequency in MHz removed from center

** - emission mask includes carrier modulation envelope within ± 150 % of the authorized bandwidth; the frequency range removed beyond ± 150 % of the authorized bandwidth from carrier was investigated as spurious emission
 *** - Zero dB reference measured relative to the highest average power of the fundamental emission measured across designated channel bandwidth

Frequency displacement from carrier	Attenuation below carrier, dBc		
Emission mask M (Occupied bandwidth 20 MHz)			
0 – 11.25 MHz	0***		
11.25 – 12.50 MHz	568log(F*/4.5)		
12.50 – 13.75 MHz	26+145log(F*/5.0)		
13.75 – 25.00 MHz	32+31log(F*/5.5)		
25.00 – 37.50 MHz	40+57log(F*/10.0)		
More than** 37.50 MHz	50		

* - F - frequency in MHz removed from center

** - emission mask includes carrier modulation envelope within \pm 150 % of the authorized bandwidth; the frequency range removed beyond \pm 150 % of the authorized bandwidth from carrier was investigated as spurious emission *** - Zero dB reference measured relative to the highest average power of the fundamental emission measured across designated channel bandwidth

Test specification:	Section 90.210, Emission mask			
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	27-Dec-23	verdict:	PASS	
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC	
Remarks:				

Table 7.3.3 Emission mask limits for 50 MHz channel bandwidth

Frequency displacement from carrier	Attenuation below carrier, dBc		
Emission mask M (Occupied bandwidth 40 MHz)			
0 – 22.50 MHz	0***		
22.50 – 25.00 MHz	568log(F*/4.5)		
25.00 – 27.50 MHz	26+145log(F*/5.0)		
27.50 – 50.00 MHz	32+31log(F*/5.5)		
50.00 – 75.00 MHz	40+57log(F*/10.0)		
More than** 75.00 MHz	50		

* - F – frequency in MHz removed from center

** - emission mask includes carrier modulation envelope within \pm 150 % of the authorized bandwidth; the frequency range removed beyond \pm 150 % of the authorized bandwidth from carrier was investigated as spurious emission *** - Zero dB reference measured relative to the highest average power of the fundamental emission measured across designated channel bandwidth

7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.
- **7.3.2.2** The emission mask was measured with spectrum analyzer with RBW set to 1% of emission bandwidth and VBW = 30 kHz as provided in the associated plots. The test results are provided in the associated plots.

Figure 7.3.1 Emission mask test setup

Test specification:	Section 90.210, Emission mask				
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)				
Test mode:	Compliance	- Verdict: PASS			
Date(s):	27-Dec-23				
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC		
Remarks:					

Table 7.3.4 Emission mask test results at 10 MHz channel bandwidth

Carrier frequency, MHz	Limit	Verdict	
4945.0			
4965.0	Emission mask M	Pass	
4985.0			

Table 7.3.5 Emission mask test results at 25 MHz channel bandwidth

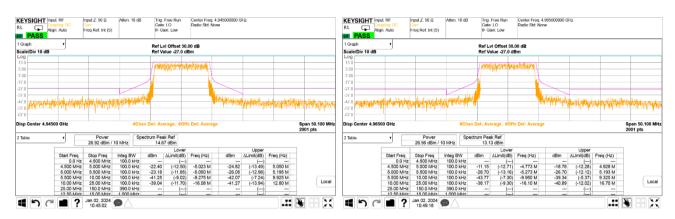
Carrier frequency, MHz	Limit	Verdict
4952.5		
4967.5	Emission mask M	Pass
4977.5		

Table 7.3.6 Emission mask test results at 50 MHz channel bandwidth

Carrier frequency, MHz	Limit	Verdict
4965.0	Emission mask M	Pass

Reference numbers of test equipment used

Coron office manning	6616 61 1661 6qui	pinione acca					
HL 5637	HL 5376	HL 5933					
Full description is given in Appendix A							

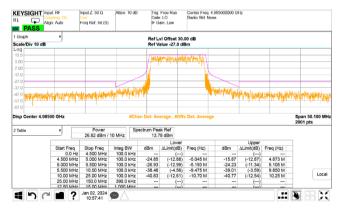

Full description is given in Appendix A.

Test specification:	Section 90.210, Emission mask			
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	27-Dec-23	verdict.	PASS	
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC	
Remarks:	•			

Plot 7.3.1 Emission mask test results at low, mid, high carrier frequency, 10 MHz CBW

OPERATING FREQUENCY RANGE: DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS: ANTENA CHAIN 4945.0 – 4985.0 MHz Peak QPSK PRBS Maximum 1

	input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr Freq Ref: Int (S)	Alten: 10 dB	Cate	Free Run E LO ain: Low	Center Freq. 4 Radio Std: No	4.985000000 G one	iHz		
Graph				Ref L	vi Offset 30.	00 dB				
cale/Div 10 dB					alue -27.0 di					
_og										
13.0				1000	No la constante	AND REPORTED IN		-	-	
8.00				(/ ₩	MULT + ALINE	italiaitaita 🖌 🔶				
.00										
7.0				1		\ \				
7.0										
17.0				_						
	and the state of	فتقارب بفاته الماني	فالالفتاديدا ريدريا	nu			AN MARINE	Ushr u.s.	الحادث والمتحاد	الالمحام القاصفان
								THE PARTY OF THE P	No. of Concession, Name	THE REPORT OF THE
	ALCONOMIC PROPERTY AND	AMO AM AMAL	state a state of the state of t							
57.0 1 1 1 1 1 1 1 1	and the second bear	And Michigan	and the film is	-			ti fort	to submit	a she jara a 1.4.	a statu ta ata
	alaha hada antika	Abur an Solution	anada n Lina h				hi lini	to subout	n din lata a 1.5	and the strength
57.0 10 10 10 10 10 57.0	SEOD CITY	Ada a state	and a later la				hi tari	er orfold	, strinitate a 1.8.	42.11.11
57.0 TAY MIL	8500 GHz	alian ang sa	#Chi	in Det: Av	erage , #Off:	's Det: Averag	le True True I	er og frod	, stolates of	Span 50.100 M
57.0 14 19 10 57.0 isp Center 4.98						's Det: Averag	ie In Lee I		, alla lata i fi	dis it wh
57.0 14 19 10 57.0 isp Center 4.98	8500 GHz	Power	Spi	ectrum Pea	ak Ref	's Det: Averag	be Trian Level 1	a seland		Span 50.100 M
57.0 14 19 10 57.0 isp Center 4.98		Power 26.90 dBm /	Spi	ectrum Pea	ak Ref 85 dBm	's Det: Averag	1 0			Span 50.100 M
57.0 14 19 10 57.0 isp Center 4.98		26.90 dBm /	10 MHz	ectrum Pea 12.8	ak Ref 35 dBm Lower			Upper		Span 50.100 M
7.0 7.0 sp Center 4.98	T Start Freq	26.90 dBm / Stop Freq	10 MHz Spi	ectrum Pea	ak Ref 85 dBm	s Det: Averag	dBm		Freq (Hz)	Span 50.100 M
57.0 14 19 10 57.0 isp Center 4.98	Start Freq	26.90 dBm / Stop Freq 4.500 MHz	10 MHz Spi Integ BW 100.0 kHz	ectrum Pea 12.8 dBm 	ak Ref 85 dBm Lower ∆Limit(dB) ()	Freq (Hz)	dBm	Upper ∆Limit(dB) ()	Freq (Hz)	Span 50.100 M
57.0 14 19 10 57.0 isp Center 4.98	Start Freq 0.0 Hz 4.500 MHz	26.90 dBm / Stop Freq 4.500 MHz 5.000 MHz	10 MHz Integ BW 100.0 kHz 100.0 kHz	ectrum Pea 12.8 dBm -10.81	ak Ref 85 dBm ∆Limit(dB) () (-11.84)	Freq (Hz) 	dBm 	Upper ΔLimit(dB) (1)	Freq (Hz) 	Span 50.100 M
7.0 7.0 sp Center 4.98	Start Freq 0.0 Hz 4.500 MHz 5.000 MHz	26.90 dBm / Stop Freq 4.500 MHz 5.000 MHz 5.500 MHz	10 MHz Integ BW 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Pea 12.8 dBm -10.81 -27.77	ak Ref 85 dBm ∆Limit(dB) () (-11.84) (-11.89)	Freq (Hz) 	dBm 	Upper ΔLimit(dB) (-11.48) (-11.54)	Freq (Hz) 	Span 50.100 M
57.0 14 19 10 57.0 isp Center 4.98	Start Freq 0.0 Hiz 5.500 MHz	26.90 dBm / Stop Freq 4.500 MHz 5.000 MHz 5.500 MHz 10.00 MHz	10 MHz Integ BW 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	dBm 	ak Ref 55 dBm △Limit(dB) (-11.84) (-11.89) (-4.11)	Freq (Hz) 	dBm 	Upper ΔLimit(dB) (-11.48) (-11.54) (-3.31)	Freq (Hz) 	Span 50,100 M 2001 pts
57.0 10 10 10 10 10 57.0	Start Freq 0.0 Hz 4.500 MHz 5.000 MHz 10.00 MHz	26.90 dBm / Stop Freq 4.500 MHz 5.000 MHz 5.500 MHz 10.00 MHz 25.00 MHz	Integ BW 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	ectrum Pea 12.8 dBm -10.81 -27.77	ak Ref 55 dBm ΔLower ΔLimit(dB) (-11.84) (-11.89) (-4.11) (-9.72)	Freq (Hz) 	dBm 	Upper ΔLimit(dB) (-11.48) (-11.54) (-13.31) (-10.99)	Freq (Hz) 	Span 50.100 M
57.0 14 19 10 57.0 isp Center 4.98	Start Freq 0.0 Hiz 5.500 MHz	26.90 dBm / Stop Freq 4.500 MHz 5.000 MHz 5.500 MHz 10.00 MHz 25.00 MHz 150.0 MHz	10 MHz Integ BW 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	dBm 	ak Ref 55 dBm △Limit(dB) (-11.84) (-11.89) (-4.11)	Freq (Hz) -4.778 M -5.278 M -9.325 M -16.13 M	dBm 	Upper ΔLimit(dB) (-11.48) (-11.54) (-3.31)	Freq (Hz) 	Span 50,100 M 2001 pts



Test specification:	Section 90.210, Emission mask						
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(m)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	27-Dec-23	verdict:	PASS				
Temperature: 23 °C	Relative Humidity: 47 %	Air Pressure: 1014 hPa	Power: 48 VDC				
Remarks:							

Plot 7.3.2 Emission mask test results at low, mid, high carrier frequency, 10 MHz CBW

OPERATING FREQUENCY RANGE: DETECTOR USED: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS: ANTENA CHAIN 4945.0 – 4985.0 MHz Peak 16QAM PRBS Maximum 1

