

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask					
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance						
Date(s):	19-Jul-20	verdict.	FA33				
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.9 Emission outside the fundamental test results in 3575 - 3675 GHz range at mid carrier frequency

ANTENNA CHAIN: #3 Control IN: #3 Spectrum 2 Spectrum 2 Ref Level 20.00 dbm Offset 40.00 db RBW 100 kHz std. 64:EVT TOF SUL 64:EVT TOF SUL 64:EVT TOF 10 dBm-0 dBm--10 dBm -20 dBm--30 dBm -40 dBm 50.dBr -60 dBm--70 dBm-Span 100.0 MHz CF 3.625 GHz 2001 pts Channel Power Channel TX1 (Ref) Tx Total Channel adi Power 29.94 dBm 29.94 dBm Lower -56.85 dB -66.23 dB -69.02 dB Offset Bandwidth 10.000 MH Offset 5.500 MHz 15.500 MHz 25.500 MHz Upper -56.04 dB -67.53 dB -68.78 dB Bandwidth

Adj Alt1

1.000 MH 1.000 MH 1.000 MH

Spectrum	Spectr	um 2 🛛 🖾	Spectrum 3	X	
Ref Level 20 Att SGL GAT:EXT	0.00 dBm 5 dB 👄 1 TDF	Offset 40.00 SWT 500	dB RBW 100 kHz ms VBW 1 MHz	Mode Sweep	
👴 1Rm Cirw					
10 dBm	A	Alt M2	AC margina		2
-10 d8m					
-20 dBm					
-30 d8m					
-40 dBm		NERLANDER-MART	when the set	Standard Barborn and Advisor and Advisor	Addition
-60 dBm					
-70 dBm					
CF 3.625 GHz			2001 pts		Span 100.0 MHz
Channel Powe	r				
Channel	Bar	ndwidth	Offset	Power	
TX1 (Ref)		10.000 MHz		29.95 dBm	
Channel	Bar	ndwidth	Offset	Lower	Upper
Adj		1.000 MHz	5.500 MHz	-56.96 dB	-56.36 dB
Alt1		1.000 MHz	15.500 MHz	-67.87 dB	-66.91 dB
Alt2		1.000 MHz	25.500 MHz	-69.52 dB	-68.80 dB

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask					
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict: PASS					
Date(s):	19-Jul-20						
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.10 Emission outside the fundamental test results in 3675 - 3720 GHz range at mid carrier frequency

ANTENNA CHAIN: #	# 3	_
Spectrum 2 X Spectr	rum 3 🗵	
Ref Level -10.00 dBm Offset 40.00 dB RBW Att 0 dB SWT 2.1 ms VBW Count 100/100 GAT:EXT TDF	V 1 MHz V 10 MHz Mode Sweep	(
●1Rm AvgPwr		
	M1[1]	-43.30 dBm 3.6756180 GHz
-20 dBm		
-30 dBm 01 -28.000 dBm		
1410 dBm		
-50 dBm		
-40 d9m		
-oo talii		
-70 d8m		
-80 dBm		
-90 d8m		
-100 dBm		

64QAM 10 MHz ANTENNA CHAIN: #2

Spectrum 2 💌	Spectrum 3 🛛 🗶	III ▼
Ref Level -10.00 dBm Offset 40.00 dB	e RBW 1 MHz	
Att UDB SWI 2.1 ms	S VEW TUMHZ Mode Sweep	
1Pm AvgDwr		
A UL AVGI WI	M1[1]	-42 12 dBn
	(MAEA)	3.6778220 GH
-20 dBm		
01 -28.000 d8m		
-30 dBm		
-40 dBM		
White the second s	and a sublight and where the start wall want	
-50 d8m		
<0.40m		
-60 (4511)		
-70 dBm		
-80 dBm		
-mah ne-		
100 10		
-100 GBM		
Start 2 675 CHz	2001 ptc	Stop 2 72 CHz

Spectrun	n Sp	ectrum 2	X Sp	ectrum 3	X				Ē
Ref Leve Att	-10.00 dBi 0 d	m Offset B SWT	40.00 dB	RBW 1 N VBW 10 N	HZ HZ Mode	Sweep			
Count 100,	/100	GAT:EXT TL	11						
M1[1] -4 3,675							43.00 dBm 59780 GHz		
-20 dBm									
-30 dBm	01 -28.000	dBm							
40 dBm									
-50 dBm	naise Makipakatanga	and a state of the second s	9,487, ¹ 8,5,598,149,791,149	***********	hannan an a	an a	ndajishtin dinaka	genesseries	contraction and a grant of the
-60 dBm									
-70 d8m									
-80 dBm									
-90 dBm									
-100 dBm—									
Start 3.67	5 GHz			2001	pts			Stop	3.72 GHz

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask					
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict: PASS					
Date(s):	19-Jul-20						
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.11 Emission outside the fundamental test results in 3530 - 3645 GHz range at high carrier frequency

А	NTEN	INA C	HAIN	l: #3					_
Spectrun	n Sp	ectrum 2	X S	oectrum 3	×				l
Ref Leve Att Count 100	I -10.00 dB 0 c ∕100	m Offset IB SWT GAT: EXT TO	40.00 dB 2.1 ms OF	RBW 1 N VBW 10 N	Hz Hz Mode	Sweep			
⊖1Rm AvgP	wr								
					M	1[1]		3.61	41.34 dBm 58680 GHz
-20 dBm—									
-30 dBm	01 -28.000	dBm							
-40 dBm							M1		
- Alasana and	allist and some		have been and		-		and the second second second	Lawrence and	
-50 d8m									
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
-100 dBm—									
Start 9 59	CH2			2001	ntc			Stop 2	645 CHz

Spectrun	n Sp	ectrum 2	X S	oectrum 3	X				P
Ref Leve	-10.00 dB	m Offset	40.00 dB 🖷	RBW 1 N	Hz L				
Att	0 d	B SWT	2.1 ms	VBW 10 N	Hz Mode	Sweep			
Count 100	/100	GAT: EXT TO)F						
🖯 1Rm AvgP	wr								
					M	1[1]		-	42.80 dBm
								3.61	43970 GHz
-20 dBm									
-30 dBm-	D1 -28.000	dBm							
-40 dBm							T.		
and the second	and an internet			-	المحلبة ويوجع	torstan prace	1	horasterne	manpathena
-50 dBm-									
60 d0m									
-00 ubiii									
-70 dBm									
-80 dBm									
0.0 -0									
-90 dBM									
-100 dBm-									
Start 3.53	GHz			2001	. pts			Stop :	3.645 GHz

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask					
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance						
Date(s):	19-Jul-20	verdict: PASS					
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.12 Emission outside the fundamental test results in 3645 - 3745 GHz range at high carrier frequency

ANTENNA CHAIN: #3 Control IN: #3 Spectrum 2 Spectrum 2 Ref Level 20.00 dbm Offset 40.00 db RBW 100 kHz std. 64:EVT TOF SUL 64:EVT TOF SUL 64:EVT TOF _TX1 10 dBm-Alt1 0 dBm--10 dBm -20 dBm--30 dBm-40 dBm 60 dBm--70 dBm-Span 100.0 MHz CF 3.695 GH: 2001 pts Channel Power Channel TX1 (Ref) Tx Total Channel Power 30.31 dBm 30.31 dBm Lower -57.29 dB -68.12 dB -69.70 dB Offset Bandwidth 10.000 MH Offset 5.500 MHz 15.500 MHz 25.500 MHz Bandwidth Upper -56.04 dB -58.84 dB -71.75 dB Adj Alt1 1.000 MH 1.000 MH 1.000 MH

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask					
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	- Verdict: PASS					
Date(s):	19-Jul-20						
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.13 Emission outside the fundamental test results in 3530 - 3645 GHz range at high carrier frequency

A	NTEN	INA C	HAIN	I: #3					
Spectrur	n Sp	ectrum 2	X Sp	ectrum 3	×				
Ref Leve	l -10.00 dB	m Offset	40.00 dB 👄	RBW 1 N	Hz				
Att Count 100	0.0	B SWT	2.1 ms	VBW 10 N	Hz Mode	Sweep			
1Rm AvaP	y 100 Wr	GALEAT IL	/r						
					м	1[1]		3.61	40.50 dBm 89940 GHz
-20 dBm—									
-30 d8m	D1 -28.000	dBm							
-40 dBm							M1		
بالمجاجب والماليس	+hellingdown		and the second					Manunutation	martheresters
-50 dBm									
-60 d8m									
-70 dBm									
-80 dBm									
-90 d8m-									
-100 dBm—									
Start 2 52	CH2	1		2001	nte			Stop 1	2 645 CHz

64QAM 10 MHz ANTENNA CHAIN: #2

Spectrun	n Sp	ectrum 2	X S	oectrum 3	X				₩
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1 N	Hz				
Att	0 d	B SWT	2.1 ms	VBW 10 N	Hz Mode	Sweep			
Count 100	/100	GAT: EXT TE	(F						
⊖1Rm AvgP	wr		1						
					IN I	1[1]		2.61	41.84 UBM 61210 CH2
-20 d9m								0.01	ore to drie
-20 0011									
	01 -28.000	dBm							
-30 dBm									
-40 dBm							T		
	manna	-		-	her ward a start of the start o			-	and my and the
-50 dBm									
-60 d8m									
20.000									
-/0 usiii									
-80 dBm									
-90 dBm									
-100 dBm-									
Start 3.53	GHz			2001	pts			Stop :	8.645 GHz

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)							
Test mode:	Compliance	- Verdict: PASS						
Date(s):	19-Jul-20							
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC					
Remarks:								

Plot 7.4.14 Emission outside the fundamental test results in 3645 - 3745 GHz range at high carrier frequency

ANTENNA CHAIN: #3 Control IN: #3 Spectrum 2 Spectrum 2 Ref Level 20.00 dbm Offset 40.00 db RBW 100 kHz std. 64:EVT TOF SUL 64:EVT TOF SUL 64:EVT TOF 10 dBm-0 dBm--10 dBm -20 dBm--30 dBm--40 dBm 59 dBm 60 dBm--70 dBm-Span 100.0 MHz CF 3.695 GH: 2001 pts Channel Power Channel TX1 (Ref) Tx Total Channel Power 30.31 dBm 30.31 dBm Lower -56.06 dB -67.16 dB -68.29 dB Offset Bandwidth 10.000 MH Offset 5.500 MHz 15.500 MHz 25.500 MHz Bandwidth Upper -55.15 dB -68.79 dB -71.88 dB Adj Alt1 1.000 MH 1.000 MH 1.000 MH

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)							
Test mode:	Compliance	- Verdict: PASS						
Date(s):	19-Jul-20							
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC					
Remarks:								

Plot 7.4.15 Emission outside the fundamental test results in 3510 - 3610 GHz range at low carrier frequency

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)							
Test mode:	Compliance	- Verdict: PASS						
Date(s):	19-Jul-20							
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC					
Remarks:								

Plot 7.4.16 Emission outside the fundamental test results in 3610 - 3720 GHz range at low carrier frequency

M Cł AN	ODUI HANN NTEN	LATIC NEL S INA C	DN: PACI	ING: I: #1					_	
Spectrum	Spectrum Spectrum 2 Spectrum 3 X									
Att	0 d	B SWT	2.1 ms	VBW 10 M	Hz Mode	Sweep				
Count 100/	100 vr	GAT: EXT TD	F							
	M1[1] -31.70 dBm									
-20 dBm								3.62	17920 GHz	
-30 dBm	01 -28.000	d8m								
Mille	ubiatan	الله ال	1							
na linn die latelik	WHANNIA MIA A	ANALIKAN NYA	allelized and all	enteropy through the de		transment of		*****	and water many sea	
-30 UBIII										
-60 dBm										
-70 dBm										
-80 dBm										
-90 dBm										
-100 dBm										
Start 3.61	GHz			2001	. pts			Stop	3.72 GHz	

ANTENNA CHAIN: #3

Spectrur	n Sp	ectrum 3	🛛 🖾 SI	ectrum 2	×				₩
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1 M	Hz				
Att	0 d	IB SWT	2.1 ms	VBW 10 M	Hz Mode	Sweep			
Count 100	/100	GAT: EXT TO	F						
⊖1Rm AvgF	wr								
					M	1[1]		-	34.56 dBm
								3.61	07970 GHz
-20 dBm									
130 dBm-	01 -28.000	dem							
Julia I.									
A HIS MAR	day and the								
1	kala santa Alabi	MAN THAT WAS NOT	ALLANA LAND						
E0 d0m						and the second second second		atter for spin states	MAND/Enclose
-30 ubiii-									
-60 dBm									
-70 dBm									
-80 d8m-									
00 001									
-90 asm									
-100 dBm-									
Start 3.61	GH7			2001	nts		1	Ston	3.72 GHz

QPSK 20 MHz ANTENNA CHAIN: #2

Spectrum S	pectrum 2 🛛 🗶 S	pectrum 3 🛛 🕅]		
Ref Level -10.00 c	iBm Offset 40.00 dB 🖷	RBW 1 MHz			
Att 0	dB SWT 2.1 ms	VBW 10 MHz Mc	ode Sweep		
Billen AvgPwr	GALEAT TUP				
			M1[1]		32.74 dB
				3.61	49200 Gł
-20 dBm					
-30 08m 01 -28.00	10 d8m-		_		
վեր մինավերու վեր					
Helds In the Lot of the	the later of the second				
a Maanaa da Jaarda Mahadi Mah	MILENA MANAGERANIA AND AND AND AND AND AND AND AND AND AN	1 all the almost intermedian		and a second	
-50 d8m					
-60 dBm					
-70 d8m					
-80 d8m					
-90 d8m					
-100 dBm					
Start 3.61 GHz		2001 pts		Stop	3.72 GH

Spectrun	n Sp	ectrum 3	X SI	ectrum 2	×				l Ţ
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1 N	Hz				
Att	0 0	B SWT	2.1 ms	VBW 10 N	Hz Mode	Sweep			
Count 100,	/100	GAT: EXT TE	F						
●1Rm AvgP	wr				-				
					M	1[1]			33.30 dBm
								3.61	74490 GHz
-20 dBm									
-30 dBm1	01 -28.000	dBm							
the state of									
AMARIAN	A start	d au							
hall demote		MMMM	uldar, dr						
		. AN IL SALENNE	wanter the	and the second	monorm	and the second sec	of my decidence while	meneninte	Moon marked
-50 dBm									
-60 dBm									
20.000									
-/U asm									
-80 dBm									
-90 d8m-									
-100 dBm-									
Start 2.61	CH7	1	1	2001	nte		1	Stor	2 72 647

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)							
Test mode:	Compliance	Verdict: PASS						
Date(s):	19-Jul-20							
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC					
Remarks:								

Plot 7.4.17 Emission outside the fundamental test results in 3510 - 3610 GHz range at low carrier frequency

Test specification:	Section 96.41(e), Emission	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)							
Test mode:	Compliance	- Verdict: PASS						
Date(s):	19-Jul-20							
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC					
Remarks:								

Plot 7.4.18 Emission outside the fundamental test results in 3610 - 3720 GHz range at low carrier frequency

Spectrum Spectrum 2 Spectrum 3 Spectrum	M C Al	ODUI HANN NTEN	LATIC NEL S INA C	DN: PACI	ING: I: #1					
91Pm AvgPwr -20 dEm -20 dEm -20 dEm -30 dEm	Spectrun Ref Leve Att Count 100	n Sp I -10.00 dB/ 0 d /100	ectrum 2 m Offset IB SWT GAT:EXT TD	X S; 40.00 dB = 2.1 ms F	RBW 1 M VBW 10 M	Hz Hz Mode	Sweep			₹
-20 dbm -33.27 dbm -33.27 dbm -20 dbm -30.0 dbm -35.0 dbm -35.0 dbm -50 dbm -35.0 dbm -35.0 dbm -35.0 dbm -60 dbm -35.0 dbm -35.0 dbm -35.0 dbm -60 dbm -35.0 dbm -35.0 dbm -35.0 dbm -60 dbm -35.0 dbm -35.0 dbm -35.0 dbm -90 dbm -35.0 dbm -35.0 dbm -35.0 dbm -100 dbm -35.0 dbm -35.0 dbm -35.0 dbm	●1Rm AvgP	wr								
30 dbm C1 - 28.000 dbm Image: C1 - 28.000 dbm Image: C1 - 28.000 dbm Image: C1 - 28.000 dbm 40 dbm Image: C1 - 28.000 dbm -50 dbm Image: C1 - 28.000 dbm -50 dbm Image: C1 - 28.000 dbm -70 dbm Image: C1 - 28.000 dbm -70 dbm Image: C1 - 28.000 dbm -90 dbm Image: C1 - 28.000 dbm I	-20 dBm					м	1[1]		3.61	33.32 dBm 12370 GHz
-50 dbm	430 d8m	01 -28.000	d8m							
-50 dBm		MANNALA		يو بين الم						
-60 dbm - - - - - - - -70 dbm - - - - - - - -80 dbm - - - - - - - -90 dbm - - - - - - - -90 dbm - - - - - - - -100 dbm - - - - - - - 1-100 dbm - - - - - - - Start 3.61 GHz 2001 ats Start 3.62 GHz - - - -	-50 dBm	1911 A.S. 11	da net model	an hùn chailach	frifne Hockelson in de	الماهوها والمرور والمراج	lensesperson en en en el en	*****	*****	*****
-70 d8m	-60 dBm									
-80 d8m	-70 dBm									
-100 d8m	-80 dBm									
Start 3.61 GHz 2001 pts Stop 3.72 GHz	-100 dBm-									
	Start 3.61	GHz			2001	nts			Stop	3.72 GHz

ANTENNA CHAIN: #3

Spectrun	n Sp	ectrum 3	X SI	ectrum 2	×			₩
Ref Leve	-10.00 dB	m Offset	40.00 dB 🕳	RBW 1 M	Hz			
🗕 Att	0 d	B SWT	2.1 ms	VBW 10 M	Hz Mode	Sweep		
Count 100	/100	GAT: EXT TD	F					
⊖1Rm AvgP	wr							
					M	1[1]	-	32.68 dBm
							3.61	78340 GHz
-20 dBm								
-30 dBM	01 -28.000	dem						
Nahili hili ku a	altara							
10 Marth		alite bishe it	k na sin					
1.0.04	no lin tea ci	u, tau da da MMA	mentaline	Holderman	and the second	-	 ليداديه ومرجز بدوجون	and the second second
-50 dBm								
-60 dBm								
70 -0								
-70 ubiii-								
-80 dBm								
-90 dBm								
-100 dBm-								
100 00/11								
Start 3.61	GHz			2001	pts		Stop	3.72 GHz

64QAM 20 MHz ANTENNA CHAIN: #2

Spectrum	Spectrum 2 🛛 🗶	Spectrum 3 🛛 🕅			\
Ref Level -10.00	dBm Offset 40.00 dB	RBW 1 MHz			
e Att	0 dB SWT 2.1 ms	VBW 10 MHz Mod	le Sweep		
Count 100/100	GAT: EXT TDF				
●1Rm AvgPwr					
			M1[1]		32.60 dBr
00.40			1 1	3.013	33280 GH
-20 UBIII					
01 -28 0	100 d8m				
-30 dBm					
un a li la mate	1				
化化物物物品和物物	Marina Lat				
, dier als er in der Massachelle	the law of the second strength of the second s	hundre were mander man			and all sectors of a
-50 dBm					
-60 dBm					
70 d8m					
-70 ubiii					
-80 dBm					
-90 dBm					
-100 dBm					
Start 3.61 GHz		2001 pts		Stop	3.72 GHz

Spectrun	n Sp	ectrum 3	X SI	ectrum 2	X				₽	
Ref Leve Att Count 100	RefLevel 1.0.00 /B m Offset 40.00 /B m RBW 1 MHz vAtt 0 /B SWT 2.1 ms VBW 10 MHz Mode Sweep Count 100/100 GATEXT TOF GATEXT TOF GATEXT TOF									
●1Rm AvgPwr										
					м	1[1]		3.61	32.13 dBm 20610 GHz	
-20 dBm										
-30 dBm	D1 -28.000	dBm								
the who have	Abha dhe e .	r da.								
ana na	A HARAPATA AND A HARAPATA	MANAMANA	Alderskielderer,	de los de				circlestrate the standard stan		
-50 dBm										
-60 dBm										
-70 dBm										
-80 d6m										
-90 d8m-										
55 0011										
-100 dBm—										
Pt-set 9.61	CHA			2001	ntc			Pton	2 72 647	

Test specification:	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vardiat: DASS					
Date(s):	19-Jul-20	Verdict: PASS					
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.19 Emission outside the fundamental test results in 3530 - 3575 GHz range at mid carrier frequency

ANTENNA CHAIN: #3

Spectrun	n Šp	ectrum 3	X SI	ectrum 2	×				
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1 N	Hz				
Att	0 d	B SWT	2.1 ms	VBW 10 N	Hz Mode	Sweep			
Count 100/100 GAT: EXT TDF									
IRm AvgPwr									
					M	1[1]		-	31.22 dBm
								3.56	07980 GHz
-20 dBm									
-30 dBm	01 -28.000	dBm				M1			
								here to t	
40 d0m				an a f	tak dutarta	n a li ta chall t	and to the	AL AND	RUIALOAD
-40 ubin	ti des	. duula	n di Dala da da	a shall be	ALL MARKED		DAY WALKER	A WEIGHTAN	A BULLER A
-	المالين مراساتين م	MrcAumh drau	A Decision Man	KAN-JAN USA ORA	True And	i water i	1.000.00		· · 1
-50 dBm									
									i I
-60 dBm									
									i I
70 -0									i I
-/0 usiii									
									i I
-80 dBm									
-90 dBm									
-100 d8m-									
-100 08/11-									
Start 3.53	GHz		1	2001	. pts	1	1	Stop :	3.575 GHz

QPSK 20 MHz ANTENNA CHAIN: #2

Spectrun	n Sp	ectrum 3	X SI	ectrum 2	X				E
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1 M	Hz				
Att Count 100	0 d /100	GAT: EXT TO	2.1 ms	VBW 10 M	Hz Mode	Sweep			
1Rm AvqP	wr								
					M	1[1]		-	31.86 dBm
								3.56	28220 GHz
-20 dBm									
	01 -28 000	dBm							
-30 dBm	01 20,000				1		ά.	I In	1.1.1.1.
			Г. I.	1	diad dia	actual chie	All ALLA DA	la de Millo	Alex Hiller and
-40 dBm	der	. utblock.	hilldulk		ANNIA M		THE REAL PROPERTY OF	aster Media in	A. 61 14
himmindiana	بالمغدا الماليها ويسار	Man, ann a' a'	and the dated	C With Dates.	6 1 H H	1. T. 1. 16. 1	and and		
-50 dBm-									
-60 dBm									
70.00.0									
-70 usin-									
00 d0m									
-60 ubiii									
-90 dBm									
20 0011									
-100 dBm-									
Start 3.53	GHZ			2001	pts			Stop :	3.575 GHz

Test specification:	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vardiaty DASS					
Date(s):	19-Jul-20	verdict.	FA33				
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.20 Emission outside the fundamental test results in 3575 - 3675 GHz range at mid carrier frequency

Test specification:	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vardiat: DASS					
Date(s):	19-Jul-20	Verdict: PASS					
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.21 Emission outside the fundamental test results in 3675 - 3720 GHz range at mid carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1									
Spectrum Spectrum 2 S Spectrum 3 S									
Att 0 dB SWT 2.1 ms VBW 10 MHz Mode Sweep									
Councilloyiou GAREATTOP									
M1[1] -32.62 dBm 2 6921400 CHz									
20 dBm									
01 -28,000 d8m									
-30 dBm									
er in ein erstenne hen den einen eine einen e									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
-100 dBm									
Start 3.675 GHz 2001 pts Stop 3.72 GHz									

ANTENNA CHAIN: #3

Spectrun	n Sp	ectrum 3	X SI	ectrum 2	×				
Ref Leve	-10.00 dB	m Offset	40.00 dB 🕳	RBW 1N	Hz				
🖷 Att	0 0	B SWT	2.1 ms	VBW 10 N	Hz Mode	Sweep			
Count 100,	/100	GAT: EXT TO	F						
😑 1Rm AvgP	wr								
					M	1[1]			36.48 dBm
								3.68	22300 GHz
-20 dBm									
-30 dBm	01 -28.000	dem							
	MI								
ANALYBRAN	und with talls	All the second	didd of the	when the second					
Lateria de 1 dadi	an as chuirde dh	AN ALL FURNIN	many universit	WWWWWWWWWWW	HAN Markey	WWW. WWW. HARK	diam'r		
50 d9m							a construction of the second	made-shade-see	altrent near prints
-50 0011									
-60 dBm									
-70 dBm									
-80 dBm									
-90 rbm-									
20 0011									
-100 dBm-									
Start 3.67	5 GHz	1		2001	pts		1	Stop	3.72 GHz

QPSK 20 MHz ANTENNA CHAIN: #2

Spectrun	n Sp	ectrum 2	X S	ectrum 3	×				\ ▽
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1 N	HZ L				
👄 Att	0 0	B SWT	2.1 ms	VBW 10 N	Hz Mode	Sweep			
Count 100	/100	GAT: EXT TE	F						
⊖1Rm AvgP	-wr								
					M	1[1]			32.04 dBm
						I	1	3.68	20730 GH2
-20 dBm									
		dom							
-30 dBm	TUI -201000	uom							
tad m.	ի տեղել վ	ي بالمعالية ال							
144 celi - L		li tilaa	a da di ta di		barrel bar	h			
umphotology	Mala di Postali da	u tiku lihitu dika	amothal a	Man Ann	haalaha ka	All Arthur Islam	hadliniali	alexander of	
-50 d8m-						1000 010	and a standard		in an Aristan an Anna Anna Anna Anna Anna Anna Anna Anna
50 0011									
-60 dBm									
-70 dBm									
-80 dBm									
0.0 dBm									
-90 0011									
-100 dBm—									
Start 3.67	5 GHz			2001	nts			Ston	3.72 GHz
				1001	P			otop	

Spectrun	n Sp	ectrum 3	X SI	ectrum 2	×				E
Ref Leve Att	-10.00 dBi 0 d	m Offset IB SWT	40.00 dB 👄 2.1 ms	RBW 1 N VBW 10 N	Hz Hz Mode	Sweep			
Count 100	/100	GAT: EXT TO	F						
●1Rm AvgPwr									
					м	1[1]		3.67	33.01 dBm 91940 GHz
-20 dBm									
-30 dBm-4	01 -28.000	d8m							
Mandau	hilling	Hallin	the states						
di ba sun dud	latin da dal	ali. Anu ndaadhe	(Andon Alikul And	NAMAN AND AND	MUMALYAA	hlikullinuusiusu	antipel. Addition	handreamar	an a
-50 dBm									
-60 dBm									
-70 d8m									
-80 d8m									
-90 agm									
-100 dBm—									
Start 2.67	5 CH2			2001	nte			Stor	3 72 647

Test specification:	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vardiaty DASS					
Date(s):	19-Jul-20	verdict.	FA33				
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.22 Emission outside the fundamental test results in 3530 - 3575 GHz range at mid carrier frequency

_

ANTENNA CHAIN: #3

Spectrun	n Sp	ectrum 3	X SI	ectrum 2	×				
Ref Leve	-10.00 dB	m Offset	40.00 dB 🕳	RBW 1 N	Hz				
🗕 Att	0 0	B SWT	2.1 ms	VBW 10 M	Hz Mode	Sweep			
Count 100	/100	GAT: EXT TE	F						
⊖1Rm AvgP	•wr								
					M	1[1]			32.25 dBm
								3.56	60830 GHz
-20 dBm									
-30 dBm	01 -28.000	dBm					h	1	
								I	
-40 dBm					di du la	بالألب فالبطاء		Little Milling	all addited the
		1 Martin	A HAR CHARTER	Ald the Adult	ANNA MARA	WWARPP	NUME AND LODAL	1.1.2.4	ide Address field
unstation of the states	fam, dama to faither	Mehronal, is only use	COLUMN STORY COLUMN	a alte enfil der en	Contract of the	that a come of	1.1.1		
-50 dBm-									
-60 dBm									
-70 dBm									
0.0 - 10									
100 ubili									
-90 dBm									
-100 dBm-									
Start 3.53	GHz			2001	. pts			Stop 3	3.575 GHz

64QAM 20 MHz ANTENNA CHAIN: #2

Spectrum Spectrum	2 🛛 🗴 Spectrum 3	3 🛛	
Ref Level -10.00 dBm Offse	t 40.00 dB 👄 RBW 1 M	dHz	
Att 0 dB SWT	2.1 ms VBW 10 M	Hz Mode Sweep	
Count 100/10D GAT:EXT	TDF		
●1Rm AvgPwr			
		M1[1]	-29.14 dBm
		1	3.5707160 GHz
-20 dBm			
			N11
-30 d8m 01 -28.000 d8m			11
			ե վել երի իրեսվից է է է
-40 d8m		ի անվերի հինի հինին	NEAR AND A STRACT REPORT AND A STRACT AND A
والعلوا للمعر والمراد مرار المرار	and the second states of the	化合金属 化原金因 法法	film á siladí bill de san áile bl. All in the e All indexed a b
Internal and Alice and And and a second s			
-50 08m			
-60 dBm			
-70 dBm			
00.45.0			
-60 dbm			
-90 dBm			
-100 dBm			
Start 3.53 GHz	200	1 pts	Stop 3.575 GHz

Spectrum	n Sp	ectrum 3	X SI	ectrum 2	×				
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1 N	Hz				
Att Count 100	0 d /100	GATIENT TO	2.1 ms	VBW 10 N	Hz Mode	Sweep			
1Rm AvaP	wr	differit to							
. ,					M	1[1]		-	30.44 dBm
								3.55	40740 GHz
-20 dBm									
	01 28 000	dam			M1				
-30 dBm	01 -20.000	ubiii			1			1	
			1		- Jan Li	الألب المرار	tana Diducati n	փոխելել	llo mu
-40 dBm		1 11 14		the state					And Martin
فأولا مطموسا	بالأسلين القيار	AND MARKING AND	nia, animi ny firitr'i An	nin halinderi.	Aliallia kusida ada	a a Missia	n triantik a	and the stated in	data a i
-50 dBm									
-60 dBm									
-70 d8m-									
-80 d8m-									
-90 dBm-									
10 3011									
-100 dBm-									
-100 0011									
Start 3.53	GHz			2001	pts		•	Stop :	3.575 GHz

₩

Test specification:	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vordict	DV66				
Date(s):	19-Jul-20	verdict.	FA33				
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.23 Emission outside the fundamental test results in 3575 - 3675 GHz range at mid carrier frequency

ANT	ENNA CHA	AIN: #3		
Spectrum	Spectrum 3 🛛 🛛 🗴	Spectrum 2	X	l T T T T T T
Ref Level 20.00	dBm Offset 40.00	dB 👄 RBW 100 kHz	· · · · · · · · · · · · · · · · · · ·	
Att	5 dB 👄 SWT 500	ms 👄 VBW 1 MHz	Mode Sweep	
SGL GAT:EXT TDP				
• 1Rm Cirw]
10 dBm				
-70 dBm				_
CF 3.625 GHz		2001 pts		Span 100.0 MHz
Channel Power				
Channel	Bandwidth	Offset	Power	
TX1 (Ref)	20.000 MHz		31.99 dBm	
Tx Total			31.99 dBm	
Channel	Bandwidth	Offset	Lower	Upper
Adj	1.000 MHz	10.500 MHz	-57.75 dB	-56.85 dB
Alt1	1.000 MHz	20.500 MHz	-68.38 dB	-66.70 dB
Alt2	1.000 MHz	30.500 MHz	-68.25 dB	-67.94 dB

64QAM 20 MHz ANTENNA CHAIN: #2 Spectrum Spectrum 2 Spectrum 3 Ref Level 20.00 dm Offset 40.00 d8 • R8W 100 KHz sci. Caf.Ext ToF • IRm Cirw

Test specification:	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vordict	DV66				
Date(s):	19-Jul-20	verdict.	FA33				
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.24 Emission outside the fundamental test results in 3675 - 3720 GHz range at mid carrier frequency

MODULATION: CHANNEL SPACING: ANTENNA CHAIN: #1									
Spectrum Spectrum 3 Spectrum 3 Tmm Ref Level -10.00 dBm Offset 40.00 dB • RBW 1 MHz Tmm									
Att 0 dB SWT 2.1 ms VBW 10 MHz Mode Sweep									
Count 100/100 GATEXT TOP									
M1[1] -34.56 dBm									
3.6868850 GHz									
-20 dam-									
-30 dBm 01 -28.000 dBm									
Lette issertion in this work with the state of the test of the state of the									
an under sind a fait and all search as an addition and destroyed and the search of the									
-50 dBm									
-60 dBm									
-70 dBm									
-50 dbm									
-90 dBm									
-100 d8m									
Start 3.675 GHz 2001 pts Stop 3.72 GHz									

ANTENNA CHAIN: #3

Spectrun	n Šp	ectrum 3	🗶 🕄	ectrum 2	X				
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1 M	Hz				
Att	0 d	B SWT	2.1 ms	VBW 10 M	Hz Mode	Sweep			
Count 100,	/100	GAT: EXT TE	F						
⊖1Rm AvgP	wr	1			-				
					M	1[1]			34.43 dBm
-20 d9m						1	1	3.07	01810 GHZ
*20 UBIII-									
	01 -28 000	dBm							
-30 d8m									
անու Ու	and all	and he							
出情礼			Late Martin	Addutiation to	he true of	Indiana and	1		
Mar Land	64. A.S. 46.0	Ana Ast Web	and an and a state of the	ua Maida Militika	naaannaaa	وبالمرابل المراجلية	Highlywillow	-	nindi Mulluchi
-50 dBm									
-60 dBm									
-70 d8m									
-70 00111									
0.0.10.1									
-80 dam									
-90 dBm									
-100 dBm—									
Start 3.67	5 GHz			2001	nts		l	Ston	3.72 GHz

64QAM 20 MHz ANTENNA CHAIN: #2

Spectrum Spectrum 2	Spectrum 3	\times				
Ref Level -10.00 dBm Offset	40.00 dB 👄 RBW 1 N	Hz				
Att 0 dB SWT	2.1 ms VBW 10 N	Hz Mode	Sweep			
Count 100/100 GAT: EXT TD	F					
1Rm AvgPwr						
		M	1[1]		3	31.20 dBm
					3.68	69980 GHz
-20 dBm						
-30 d8m 01 -28.000 d8m M1						
n a tu kanada dha aha hadha kabar na kaka in	n bildidi na ba ba ba					
AND 你们我们就是这些你的。"	AND MARANA AND AND THE	added at	dati dir	JULL DO		
data Managa da kana da kana da kana da kana Mila	, talki filiti ili beli , heride findefeksis	elation in the second second	nna hidden an the	ANNALAN ANNA	ما بالحمامة الما الم	Salara Anna an
-50 d8m						
-60 dBm						
-70 dBm						
90 d0m						
-60 ubin						
-90 dBm						
-100 dBm						
Start 3.675 GHz	2001	pts			Stop	3.72 GHz

Spectrum	Spectrum 3	(X) Spectrum	2 🛛	
Ref Level -1 Att	0 dB SWT	40.00 dB • RBW 1 2.1 ms VBW 10	MHz MHz Mode Sweep	x
18m AvgPwr	GALEAT I	r.		
			M1[1]	-32.17 dBm 3.6758660 GHz
-20 dBm				
-30 dBm 01	-28.000 dBm			
NY EX MANY AND ANY	Halt House Hill And Lat	dachtikhument	a taladila se ta di ta se t	
-50 d8m	a na a na a na Alf	ahad anadhan didak dhali M	an many magnetic dated in the	44194194944944494444444444444444444444
(0. b)				
-60 dBm				
-70 dBm				
-80 dBm				
-90 dBm				
-100 dBm				

Test specification:	Section 96.41(e), Emission mask						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vordict	DV66				
Date(s):	19-Jul-20	verdict.	FA33				
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

Plot 7.4.25 Emission outside the fundamental test results in 3530 - 3640 GHz range at high carrier frequency

ANTENNA CHAIN: #3

Spectrun	n Sp	ectrum 3	🗶 🕅	ectrum 2	X				
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1N	Hz				
🗕 Att	0 0	B SWT	2.1 ms	VBW 10 N	Hz Mode	Sweep			
Count 100	/100	GAT: EXT TO)F						
🖯 1Rm AvgP	wr								
					M	1[1]		-	33.25 dBm
								3.63	70590 GHz
-20 dBm									
-30 dBm	01 -28.000	dBm							M1
									n n Ta
40.d0m							العادية وا	hour à brailean	NI/I'WAUZYA
-40 ubiii-						Walt A March	CINE A HARBAN	h Wie Mar an	al contra de
mor allowed	and the second s		******************	and the second and the second and the second se	adagt to post the West and	ALCONTRACTOR .			
-50 dBm									
-60 dBm									
70 -0									
-70 ubiii-									
-80 dBm									
-90 dBm									
100 d8m									
-100 UBIII-									
Start 3.53	GHz	1		2001	pts		1	Stop	3.64 GHz

QPSK 20 MHz ANTENNA CHAIN: #2

Spectrun	n Sp	ectrum 3	X SI	ectrum 2	X			
Ref Leve Att	1 -10.00 dBi 0 d	m Offset IB SWT	40.00 dB 👄 2.1 ms	RBW 1 N VBW 10 N	Hz Hz Mode	Sweep		
1Rm AvgP	γ100 hwr	GATIENT TE	1				 	
					м	1[1]	3.63	30.35 dBm 34860 GHz
-20 dBm—								
-30 dBm	01 -28.000	d8m						M1
-40 dBm			. 1	Le nul		1. March		
-50 dBm	andrij- nine dina andrij		pagi agan dara (Agapatan	hartinanin phart	and the second	a de como de co		
-60 dBm								
-70 d8m								
-80 d6m								
-90 d8m								
-100 dBm—								
Start 3.53	GHz			2001	nts		Ston	3.64 GHz

Test specification:	Section 96.41(e), Emission	mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Vordict	DV66
Date(s):	19-Jul-20	verdict.	FA33
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

Plot 7.4.26 Emission outside the fundamental test results in 3640 - 3740 GHz range at high carrier frequency

Test specification:	Section 96.41(e), Emission	mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Vordict	DV66
Date(s):	19-Jul-20	verdict.	FA33
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

Plot 7.4.27 Emission outside the fundamental test results in 3530 - 3640 GHz range at high carrier frequency

ANTENNA CHAIN: #3

Spectrur	n Sp	ectrum 3	X SI	ectrum 2	X				[₩]
Ref Leve	-10.00 dB	m Offset	40.00 dB 👄	RBW 1 N	Hz				
🗕 Att	0 0	B SWT	2.1 ms	VBW 10 N	Hz Mode	Sweep			
Count 100	/100	GAT: EXT TO	DF						
😑 1Rm Ávg P	wr			_					
					M	1[1]		-	29.95 dBm
								3.63	49700 GHz
-20 dBm									
		10-0							M1
-30 d8m-	01 -28.000	dem							
								ն, ին է վ	ուներին
-40 dBm							h halland de		ADD AU
	. Indu			فالمراملات	فأسطعا عادي	المأتقارية المطاريا	Manufation	DIG A ANDRALLA I	M. Miran
and the state of the state of	a second s		****	1.9.9.9.9 1.9 .9.9.9.9.9.9	al and a second s				
-50 asm-									
-60 dBm									
-70 d8m-									
-90 d9m-									
-00 ubiii									
-90 dBm									
-100 dBm-									
Start 3.53	GHz			2001	pts			Stop	3.64 GHz

64QAM 20 MHz ANTENNA CHAIN: #2

Spectrum	n Sp	ectrum 3	X SI	pectrum 2	X				
Ref Leve Att	l -10.00 dB 0 c	m Offset IB SWT	40.00 dB e	RBW 1N VBW 10N	Hz Hz Mode	Sweep			
Count 100	/100 bwr	GAT: EXT TI	DF						
and avg					м	1[1]		3.62	-31.44 dBm
-20 dBm—									
-30 dBm	D1 -28.000	dBm							ų <u>.</u>
-40 dBm—							relation	ALLA	
-50 dBm	an a		energen an gesten besternen.	had the constraint of the	,	annean ann an thair an th		i and i a	
-60 dBm									
-70 d8m									
-80 dBm									
-90 dBm									
-100 dBm—									
Start 2 52	GHZ			2001	nts			Stor	3.64.0Hz

Ē

Test specification:	Section 96.41(e), Emission	mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Vordict	DV66
Date(s):	19-Jul-20	verdict.	FA33
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

Plot 7.4.28 Emission outside the fundamental test results in 3640 - 3740 GHz range at high carrier frequency

ANTENNA CHAIN: #3

64QAM 20 MHz ANTENNA CHAIN: #2 Spectrum Spectrum 2 Spectrum 3 RefLevel 20.00 dm Offset 40.00 dB & RBW 100 kH2 SdL GATENT DF 91Bm Cirw

Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Vordict	DAGG
Date(s):	20-Apr-20	verdict.	FA33
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1011 hPa	Power: 48 VDC
Remarks:			

7.5 Radiated spurious emission measurements

7.5.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.5.1.

Table 7.5.1 Radiated spuriou	s emission test limits
------------------------------	------------------------

Frequency, MHz	EIRP of spurious, dBm	Equivalent field strength limit @ 3m, dB(μV/m)***
0.09 - below 3530.0	-40.0	55.2
3720.0 – 10th harmonic*	-40.0	55.2

*** - Equivalent field strength limit was calculated from maximum allowed ERP of spurious as follows: E=sqrt(30xPx1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.5.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and the performance check was conducted.
- **7.5.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- 7.5.2.3 The worst test results (the lowest margins) were recorded in Table 7.5.2 and shown in the associated plots.

7.5.3 Test procedure for spurious emission field strength measurements above 30 MHz

- **7.5.3.1** The EUT was set up as shown in Figure 7.5.2, energized and the performance check was conducted.
- **7.5.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360^o and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- 7.5.3.3 The worst test results (the lowest margins) were recorded in Table 7.5.2 and shown in the associated plots.

Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Vordict	DAGG
Date(s):	20-Apr-20	veruict.	FA33
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1011 hPa	Power: 48 VDC
Remarks:			

Figure 7.5.1 Setup for spurious emission field strength measurements in 9 kHz to 30 MHz band

MODULATION:

Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Vordict	DV66
Date(s):	20-Apr-20	verdict.	FA33
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1011 hPa	Power: 48 VDC
Remarks:			

Table 7.5.2 Spurious emission field strength test results

ASSIGNED FREQUENCY RANGE: TEST DISTANCE: TEST SITE: INVESTIGATED FREQUENCY RANGE: DETECTOR USED: VIDEO BANDWIDTH: TEST ANTENNA TYPE: 3550 - 3700 MHz 3 m Semi anechoic chamber 0.009 – 1000 MHz Peak > Resolution bandwidth Active loop (9 kHz – 30 MHz) Biconilog (30 MHz – 1000 MHz) QPSK PRBS

MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS:

PRBS
Maximum

Frequency, MHz	Field strength, dB(μV/m)	Limit, dB(µV/m)	Margin, dB*	RBW, kHz	Antenna polarization	Antenna height, m	Turn-table position**, degrees
113.084	46.85	55.20	-8.35	100	V	1.02	-55.0
127.536	50.33	55.20	-4.87	100	V	1.04	12.0
140.511	32.49	55.20	-22.71	100	V	1.00	59.0
168.888	38.80	55.20	-16.40	100	Н	1.75	-171.0
325.013	32.91	55.20	-22.29	100	V	1.75	-166.0
374.982	46.85	55.20	-8.35	100	V	1.02	-55.0

*- Margin = Field strength of spurious – calculated field strength limit.

**- EUT front panel refers to 0 degrees position of turntable.

Test specification:	Section 96.41(e)(2), Radiate	ed spurious emissions		
Test procedure:	Section 96.41(e)(3)			
Test mode:	Compliance	Verdict: DASS		
Date(s):	20-Apr-20	veraici.	FA35	
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1011 hPa	Power: 48 VDC	
Remarks:				

Table 7.5.3 Field strength of spurious emissions above 1 GHz within restricted bands

ASSIGNED FREQUENCY RANGE: TEST DISTANCE: TEST SITE: INVESTIGATED FREQUENCY RANGE: DETECTOR USED: VIDEO BANDWIDTH: TEST ANTENNA TYPE: MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS:						3550 - 3700 MHz 3 m Semi anechoic chamber 0.009 – 1000 MHz Peak > Resolution bandwidth Double ridged guide (above 1000 MHz) QPSK PRBS Maximum					
Frequency	Antenna		Peak field stre		trength(VE	3W=3 MHz)	Average field strength(VBW=10 Hz)				
MHz	Polarization	Height, m	degrees*	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB***	Verdict	
Low carrier frequency											
14223.612	V	2.55	119	61.17	75.2	-14.03	52.00	55.20	-13.20	Pass	
Mid carrier frequency											
No emissions were found.										Pass	
High carrier frequency											
	No emissions were found.										

Reference numbers of test equipment used

		=					
HL 0030	HL 0446	HL 0614	HL 0661	HL 3903	HL 4278	HL 4360	HL 4933
HL 4956	HL 5111	HL 5288					

Full description is given in Appendix A.

Test specification: Section 96.41(e)(2), Radiated spurious emissions							
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Vardiate DASS					
Date(s):	20-Apr-20	verdict.	FA33				
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1011 hPa	Power: 48 VDC				
Remarks:							

Plot 7.5.2 Radiated emission measurements in 9 kHz - 30 MHz range

