

Hermon Laboratories Ltd. P.O.Box 23, Binyamina 30500, Israel Tel. +972 4628 8001 Fax. +972 4628 8277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC part 15 subpart C, §15.247

FOR:

Airspan Networks (Israel) Ltd. Base station hybrid transceiver Model: BSR-2.4

This report is in conformity with ISO/ IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
7	Measurements	6
7.1	Peak spectral power density	6
7.2	Conducted emissions	18
8	APPENDIX A Test equipment and ancillaries used for tests	21
9	APPENDIX B Measurement uncertainties	21
10	APPENDIX C Test facility description	22
11	APPENDIX D Specification references	22
12	APPENDIX E Abbreviations and acronyms	23
13	APPENDIX F Test equipment correction factors	24

1 Applicant information

Client name:	Airspan Networks (Israel) Ltd.
Address:	1, Harava street, "Unitronics" building, POB 199, Airport City, 70100, Israel
Telephone:	+972 3977 7444
Fax:	+972 3977 7400
E-mail:	zlevi@Airspan.com
Contact name:	Mr. Zion Levi

2 Equipment under test attributes

Product name:	Base station hybrid transceiver
Product type:	2.4 GHz
Model(s):	BSR-2.4
Serial number:	026C430090
Receipt date	7/5/2004 10:04:00 AM

3 Manufacturer information

Manufacturer name:	Airspan Networks (Israel) Ltd.
Address:	1, Harava street, "Unitronics" building, POB 199, Airport City, 70100, Israel
Telephone:	+972 3977 7444
Fax:	+972 3977 7400
E-Mail:	zlevi@Airspan.com
Contact name:	Mr. Zion Levi

4 Test details

Project ID:	14551
Location:	Hermon Laboratories Ltd. P.O.Box 23, Binyamina 30500, Israel
Test started:	7/5/2004
Test completed:	7/5/2004
Test specification(s):	FCC part 15 subpart C, §15.247(d); subpart B, , §15.207, §15.107
Test suite:	FCC_15.247_DTS_with_RF_connector (5/4/2004 10:53:46 AM, modified)

5 Tests summary

Test	Status
Transmitter characteristics	
Section 15.247(a)2, 6 dB bandwidth	Provided in MARRAD_FCC.14551
Section 15.247(b)3, Peak output power	Provided in MARRAD_FCC.14551
Section 15.247(b)5, RF exposure	Provided in MARRAD_FCC.14551
Section 15.247(c), Conducted spurious emissions	Provided in MARRAD_FCC.14551
Section 15.247(c), Radiated spurious emissions	Provided in MARRAD_FCC.14551
Section 15.247(d), Peak power density	Pass
Section 15.207(a), Conducted emission	Pass
Section 15.203, Antenna requirement	Not required (permanently attached antenna)
Unintentional emissions	
Section 15.107, Conducted emission at AC power port	Pass
Section 15.109, Radiated emission	Provided in MARRAD_FCC.14551
Section 15.111, Conducted emission at receiver antenna port	Not required

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. M. Nikishin, test engineer	August 3, 2004	546
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	September 13, 2004	Chur
	Mr. M. Nikishin, EMC group leader	September 13, 2004	546
Approved by:	Mr. A. Usoskin, C.E.O.	September 14, 2004	A.

6 EUT description

6.1 General information

A base station radio, BSR-2.4, is a part of a broadband fixed cellular wireless access system WipLL. The system provides a radio link between an end-user of the telecom network (a subscriber) and a network itself to give high-speed data access. The EUT is an outdoor unit comprising a hybrid system transceiver (8FSK digital modulation with frequency hopping, data rate 1, 2, 3 Mbps and 1.33, 4 Mbps) that controls the WipLL sector and has several roles. The transceiver operates in 2402 MHz to 2480 MHz frequency range and is equipped with an 11 dBi gain flat plane internal antenna.

Each BSR is a controller of the PPMA (Pre-emptive Polling Multiple Access) protocol within its sector. It polls SPRs according to requirements that are determined by applications, availability of resources and pre-defined policy. Policy is based on defining allowed delays and maximum bandwidth according to packet types, determination of priorities between applications and mode of polling mechanism – preemptive or time bounded.

Each BSR is optionally physically connected to a base station distribution unit, which provides 48 V DC power, data connectivity and local switching functionality as well synchronization between the BSRs. A BSDU can serve up to six BSRs, each BSR capacity is up to 3 Mbps, therefore a 6-BSR base-station-site capacity is about 18 Mbps. Throughout testing the BSR was connected to a subscriber data adapter (SDA), provided 48 V DC power.

6.2 Test configuration

Test specification:	Section 15.247(d), Peak p	ower density	
Test procedure:	FR Vol. 62, page 26243, Secti	on 15.247(d)	
Test mode:	Compliance	Verdict	DASS
Date & Time:	7/5/2004 4:03:01 PM	verdict.	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

7 Measurements

7.1 Peak spectral power density

7.1.1 General

This test was performed to measure the peak spectral power density at the transmitter RF antenna connector. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Peak spectral power density limits

Assigned frequency range,	Measurement bandwidth,	Peak spectral power density,
MHz	kHz	dBm
2400.0 - 2483.5	3.0	8.0

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.1.2.3** The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in peak hold mode with resolution bandwidth set to 3.0 kHz, video bandwidth wider than resolution bandwidth, auto sweep time and sufficient number of sweeps was allowed for trace stabilization. The spectrum lines spacing was verified to be wider than 3 kHz. Otherwise the resolution bandwidth was reduced until individual spectrum lines were resolved and the power of individual spectrum lines was integrated over 3 kHz band.
- **7.1.2.4** The peak of emission was zoomed with span set just wide enough to capture the emission peak area and sweep time was set equal to span width divided by resolution bandwidth. Spectrum analyzer was set in peak hold mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 7.1.2 and associated plots.

Figure 7.1.1 Peak spectral power density test setup

Test specification:	Section 15.247(d), Peak p	ower density	
Test procedure:	FR Vol. 62, page 26243, Secti	on 15.247(d)	
Test mode:	Compliance	Verdict	DASS
Date & Time:	7/5/2004 4:03:01 PM	verdict.	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Photograph 7.1.1 Peak spectral power density test setup

Test specification:	Section 15.247(d), Peak p	ower density	
Test procedure:	FR Vol. 62, page 26243, Secti	on 15.247(d)	
Test mode:	Compliance	Vordict	DAGG
Date & Time:	7/5/2004 4:03:01 PM	verdict.	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Table 7.1.2 Peak spectral power density test results

23.3 dBm at high carrier frequency For 1.33 Mbps: 23.2 dBm at low carrier frequency 23.2 dBm at mid carrier frequency 23.2 dBm at high carrier frequency
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 3 kHz
VIDEO BANDWIDTH: 10 kHz
Carrier frequency, MHz Spectrum analyzer reading, dBm External attenuation, dB Cable loss, dB Peak power density, dB(mW/3 kHz) Limit, dBm Margin*, dB
3.0 Mbps data rate (the worst case from 1.0, 2.0 and 3.0 Mbps which correspond to 1.0 Msymbol per second)
2402.0 5.0 Included Included 5.0 8.0 -3.0 Pass
2441.0 5.3 Included Included 5.3 8.0 -2.7 Pass
2480.0 5.0 Included Included 5.0 8.0 -3.0 Pass
1.33 Mbps data rate(the worst case from 1.33, and 4.0 Mbps which correspond to 1.33 Msymbol per second)
2403.0 2.0 Included Included 2.0 8.0 -6.0 Pass
2441.0 1.3 Included Included 1.3 8.0 -6.7 Pass
2477.0 1.3 Included Included 1.3 8.0 -6.7 Pass

* - Margin = Peak power density – specification limit.

Reference numbers of test equipment used

HL 1424	HL 1651	HL 2254	HL 2524		

Full description is given in Appendix A.

Test specification:	Section 15.247(d), Peak power density		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(d)		
Test mode:	Compliance	Verdict	DASS
Date & Time:	7/5/2004 4:03:01 PM	Verdict: PASS	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Plot 7.1.1 Peak spectral power density at low frequency within 6 dB band. 3.0 Mbps data rate.

Plot 7.1.2 Peak spectral power density at low frequency zoomed at the peak. 3.0 Mbps data rate.

Test specification:	Section 15.247(d), Peak power density		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(d)		
Test mode:	Compliance	Verdict	DASS
Date & Time:	7/5/2004 4:03:01 PM	Verdict: PASS	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Plot 7.1.3 Peak spectral power density at mid frequency within 6 dB band. 1.0 Mbps data rate.

Test specification:	Section 15.247(d), Peak power density		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(d)		
Test mode:	Compliance	Vordict	DV66
Date & Time:	7/5/2004 4:03:01 PM	Verdict: PASS	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Plot 7.1.5 Peak spectral power density at mid frequency within 6 dB band. 2.0 Mbps data rate.

Test specification:	Section 15.247(d), Peak power density		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(d)		
Test mode:	Compliance	Vordict	DV66
Date & Time:	7/5/2004 4:03:01 PM	Verdict: PASS	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Plot 7.1.7 Peak spectral power density at mid frequency within 6 dB band. 3.0 Mbps data rate.

Test specification:	Section 15.247(d), Peak power density		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(d)		
Test mode:	Compliance	Verdict	DAGG
Date & Time:	7/5/2004 4:03:01 PM	Verdict: PASS	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Plot 7.1.9 Peak spectral power density at high frequency within 6 dB band. 3.0 Mbps data rate.

Plot 7.1.10 Peak spectral power density at high frequency zoomed at the peak. 3.0 Mbps data rate.

Test specification:	Section 15.247(d), Peak power density		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(d)		
Test mode:	Compliance	Verdict	DASS
Date & Time:	7/5/2004 4:03:01 PM	Verdict: PASS	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Plot 7.1.11 Peak spectral power density at low frequency within 6 dB band. 1.33 Mbps data rate.

Plot 7.1.12 Peak spectral power density at low frequency zoomed at the peak. 1.33 Mbps data rate.

Test specification:	Section 15.247(d), Peak power density		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(d)		
Test mode:	Compliance	Verdict	DASS
Date & Time:	7/5/2004 4:03:01 PM	Verdict: PASS	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Plot 7.1.13 Peak spectral power density at mid frequency within 6 dB band. 1.33 Mbps data rate.

Plot 7.1.14 Peak spectral power density at mid frequency zoomed at the peak. 1.33 Mbps data rate.

Test specification:	Section 15.247(d), Peak power density		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(d)		
Test mode:	Compliance	Verdict	DASS
Date & Time:	7/5/2004 4:03:01 PM	Verdict: PASS	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Plot 7.1.15 Peak spectral power density at mid frequency within 6 dB band. 4.0 Mbps data rate.

Plot 7.1.16 Peak spectral power density at mid frequency zoomed at the peak. 4.0 Mbps data rate.

Test specification:	Section 15.247(d), Peak power density		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(d)		
Test mode:	Compliance	Verdict	DASS
Date & Time:	7/5/2004 4:03:01 PM	Verdict: PASS	FA33
Temperature: 25,4 °C	Air Pressure: 1006 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks:			

Plot 7.1.17 Peak spectral power density at high frequency within 6 dB band. 1.33 Mbps data rate.

Plot 7.1.18 Peak spectral power density at high frequency zoomed at the peak. 1.33 Mbps data rate.

7.2 Conducted emissions

7.2.1 General

This test was performed to measure common mode conducted emissions at the power ports. The EUT antenna connector was terminated with 50 Ohm dummy load. Specification test limits are given in Table 7.2.1. The worst test results (the lowest margins) were recorded in Table 7.2.2 and shown in the associated plots.

Table 7.2.1

Limits for conducted emissions

Frequency,	Class B limit, dB(µV)		
MHz	QP	AVRG	
0.15 - 0.5	66 - 56*	56 - 46*	
0.5 - 5.0	56	46	
5.0 - 30	60	50	

The limit decreases linearly with the logarithm of frequency.

7.2.2 Test procedure

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized and the performance check was conducted.
- **7.2.2.2** The measurements were performed at SDA power terminals of BSR unit with the LISN, connected to a spectrum analyzer in the frequency range referred to in Table 7.2.2. Unused coaxial connector of the LISN was terminated with 50 Ohm. Quasi-peak and average detectors were used throughout the testing.
- 7.2.2.3 The position of the device cables was varied to determine maximum emission level.

Table 7.2.2

Conducted emission test results at the BSR power terminal

DATE of TEST:
AMBIENT TEMPERATURE:
RELATIVE HUMIDITY:
AIR PRESSURE:
LINE:
EUT OPERATING MODE:
EUT SET UP:
TEST SITE:
DETECTORS USED:
FREQUENCY RANGE:
RESOLUTION BANDWIDTH:

March 22, 2004 23°C 34 % 1020 hPa AC mains Transmit, receive TABLE-TOP SHIELDED ROOM PEAK / QUASI-PEAK / AVERAGE 150 kHz - 30 MHz 9 kHz

	Poak	Quasi-peak		Average					
Frequency , MHz	emission, dB(μV)	Measured emission, dB(µV)	Limit, dB(µV)	Margin, dB*	Measured emission, dB(μV)	Limit, dB(µV)	Margin, dB*	Line ID	Verdict
0.185950	38.44	36.47	64.25	27.78	34.48	54.25	19.77	L2	
0.231496	38.58	37.08	62.44	25.36	36.88	52.44	15.56	L1	
0.278177	36.83	35.79	60.93	25.14	31.33	50.93	19.60	L1	Pass
0.604375	34.30	32.78	56.00	23.22	29.94	46.00	16.06	L1	1 435
0.652115	34.16	32.69	56.00	23.31	29.10	46.00	16.90	L1	
0.882063	33.66	32.04	56.00	23.96	28.52	46.00	17.48	L1	

*- Margin = Specification limit - measured emission.

Reference numbers of test equipment used

HL 0163	HL 0672	HL 0787	HL 1204	HL 1430	HL 1502	HL 1510	
---------	---------	---------	---------	---------	---------	---------	--

Full description is given in Appendix A.

Plot 7.2.1 Conducted emission measurements at the BSR power terminal

LINE:	L1
EUT OPERATING MODE:	Transmit, receive
LIMIT:	QUASI-PEAK, AVERAGE
DETECTOR:	PEAK

👩 15:02:34 MAR 22, 2004

Plot 7.2.2 Conducted emission measurements at the BSR power terminal

LINE:	L2
EUT OPERATING MODE:	Transmit, receive
LIMIT:	QUASI-PEAK, AVERAGE
DETECTOR:	PEAK

🛞 15:09:35 MAR 22, 2004

8 APPENDIX A Test equipment and ancillaries used for tests

HL	Description	Manufac	Due calibr.		
No.	Description	Name	Model No.	Serial No.	Month/Year
0163	LISN FCC/VDE/MIL -STD	Electro-Metrics	ANS-25/2	1314	10/04
0447	LISN, 16/2, 300 V RMS	Hermon Labs	LISN 16-1	0447	11/04
0672	Shielded room	Hermon Labs	SR-3	027	11/04
	4.6(L) x 4.2(W) x 2.4(H) m				check
0787	Transient limiter	Hewlett Packard	11947A-8ZE	3107A01877	11/04
1204	One phase voltage regulator, 2kVA, 0-250V	Hermon Labs	TDGC-2	99	6/05 check
1424	Spectrum analyzer, 30 Hz - 40 GHz	Agilent Technologies	8564EC	3946A00219	8/05
1430	EMI receiver system, 9 kHz - 2.9 GHz	Agilent Technologies	8542E	3807A00262	9/05
1502	Cable RF, 6 m	Belden	M17/167 MIL- C-17	1502	12/04 check
1510	Cable RF, 8 m	Belden	M17/167 MIL- C-17	1510	12/04 check
1651	Attenuators set (2, 3, 5, 20 dB), DC – 18 GHz	M/A –COM	2082	1651	3/05
2254	Cable 40 GHz, 0.8 m, blue	Rhophase Microwave Ltd.	KPS-1503A- 800-KPS	W4907	11/04
2524	Attenuator, 10 dB, DC-18 GHz	Midwest Microwave	263-10	2524	3/05

9 APPENDIX B Measurement uncertainties

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error. The standards and instruments used in the calibration system conform to the present requirements of ISO/IEC 17025 (or alternately ANSI/NCSL Z540-1).

The laboratory calibrates its measurement standards by a third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements. The Hermon Labs EMC measurements uncertainty is given in the table above.

10 APPENDIX C Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, telecommunications, environmental, safety standards, and by AMTAC (UK) for safety of medical devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01).

Address:	P.O. Box 23, Binyamina 30500, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

47CFR part 15: 2004	Radio Frequency Devices.
FR Vol.62	Federal Register, Volume 62, May 13, 1997
ANSI C63.2: 1996	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4: 2001	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

12 APPENDIX E

Abbreviations and acronyms

۸	
A	ampere
AC	alternating current
A/m	ampere per meter
AM	amplitude modulation
AVRG	average (detector)
cm	centimeter
dB	decibel
dBm	decibel referred to one milliwatt
dB(μV)	decibel referred to one microvolt
dB(µV/m)	decibel referred to one microvolt per meter
dB(uA)	decibel referred to one microampere
DC	direct current
DTS	digital transmission system
FIRP	equivalent isotropically radiated power
FRP	effective radiated power
FUT	equipment under test
F	frequency
GHz	ajaahertz
GND	around
Н	height
н	Hermon laboratories
Hz	hertz
k	kilo
kHz	kilohertz
10	local oscillator
m	meter
MHz	megahertz
min	minute
mm	millimeter
ms	millisecond
us	microsecond
NA	not applicable
NT	not tested
OATS	open area test site
0	Ohm
0P	guasi-neak
RF	radiated emission
RE	radio frequency
rms	root mean square
Rx	receive
s	second
Ť	temperature
Tx t	ransmit
V	volt
•	

Frequency, GHz	Cable loss, dB	Frequency, GHz	Cable loss, dB	Frequency, GHz	Cable loss, dB
0.03	0.04	5.10	0.80	15.00	1.49
0.05	0.07	5.30	0.83	15.50	1.49
0.10	0.09	5.50	0.83	16.00	1.46
0.20	0.15	5.70	0.84	16.50	1.47
0.30	0.19	5.90	0.87	17.00	1.50
0.40	0.25	6.10	0.86	17.50	1.57
0.50	0.29	6.30	0.89	18.00	1.63
0.60	0.33	6.50	0.90	18.50	1.57
0.70	0.37	6.70	0.89	19.00	1.63
0.80	0.41	6.90	0.93	19.50	1.65
0.90	0.44	7.10	0.92	20.00	1.64
1.00	0.45	7.30	0.95	20.50	1.75
1.10	0.48	7.50	0.96	21.00	1.72
1.20	0.51	7.70	0.97	21.50	1.78
1.30	0.53	7.90	1.01	22.00	1.76
1.40	0.54	8.10	1.00	22.50	1.72
1.50	0.57	8.30	1.05	23.00	1.83
1.60	0.59	8.50	1.04	23.50	1.80
1.70	0.04	8.70	1.07	24.00	1.90
1.80	0.07	8.90	1.11	24.50	1.81
1.90	0.09	9.10	1.09	25.00	1.98
2.00	0.15	9.30	1.14	25.50	1.91
2.10	0.19	9.50	1.12	26.00	2.02
2.20	0.25	9.70	1.15	26.50	1.92
2.30	0.29	9.90	1.16	27.00	1.97
2.40	0.33	10.10	1.16	28.00	2.02
2.50	0.37	10.30	1.19	29.00	1.95
2.60	0.41	10.50	1.14	30.00	1.94
2.70	0.44	10.70	1.19	31.00	2.11
2.80	0.45	10.90	1.17	32.00	2.17
2.90	0.48	11.10	1.13	33.00	2.27
3.10	0.61	11.30	1.20	34.00	2.27
3.30	0.64	11.50	1.13	35.00	2.29
3.50	0.65	11.70	1.20	36.00	2.35
3.70	0.68	11.90	1.18	37.00	2.37
3.90	0.69	12.10	1.14	38.00	2.40
4.10	0.71	12.40	1.19	39.00	2.57
4.30	0.73	13.00	1.34	40.00	2.36
4.50	0.75	13.50	1.33		
4.70	0.77	14.00	1.48		
4.90	0.79	14.50	1.45		

13 APPENDIX F Test equipment correction factors Cable loss of cable 40 GHz, 0.8 m, blue, model: KPS-1503A-800-KPS, S/N W4907, HL 2254

Correction factor Line impedance stabilization network Model ANS-25/2 Electro-Metrics

Frequency, kHz	Correction factor, dB
10	4.9
15	2.86
20	1.83
25	1.25
30	0.91
35	0.69
40	0.53
50	0.35
60	0.25
70	0.18
80	0.14
90	0.11
100	0.09
125	0.06
150	0.04

Correction factor Line impedance stabilization network Model LISN 16 - 1 Hermon Laboratories

Frequency, kHz	Correction factor, dB
10	4.9
15	2.86
20	1.83
25	1.25
30	0.91
35	0.69
40	0.53
50	0.35
60	0.25
70	0.18
80	0.14
90	0.11
100	0.09
125	0.06
150	0.04

The correction factor in dB is to be added to meter readings of an interference analyzer or a spectrum analyzer.