

This report is in conformity with ISO/IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. **This test report must not be reproduced in any form except in full**

The test results relate only to the items tested. This test report must not be reproduced in any form except in full with the approval of Hermon Laboratories Ltd.

Contents

1	Project information	3
2	Summary of tests	4
3	EUT description	6
3.1 3.2 3.3		6
4	Test results	10
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Average time of hopping frequency occupancy according to § 15.247(a)(1), (F) Maximum peak output power test according to §15.247 (b)(1), (b)(2), (b)(3) Out of band conducted emissions test according to §15.247(c) Radiated emissions which fall in restricted bands test according to §15.247(c) and § 15.205, §15.209(a)	11 12 13 14 15
4.8 4.9		19
Appe	endix A Plots	
Appe	endix B Test setup photographs	132
Арре	endix C Example of hopping frequency	132
Appe	endix D Test equipment used for tests	134
Арре	endix E General information	136
Abe	ST FACILITY DESCRIPTION BREVIATIONS AND ACRONYMS ECIFICATION REFERENCES	.148

1 **Project information**

EUT attributes

Test item Type (Model) Software revision of radio unit Hardware revision of the unit Equipment FCC code Base station radio unit BSR 5.8 GHz TDD 2.59 A0 DSS

Applicant information

Applicant's responsible person Applicant/Manufacturer Address City Postal code Country Telephone number Telefax number

Test details

Project number Location Receipt date Test started Test completed Purpose of test Test specifications Mr. Zion Levi, compliance & testing engineer Airspan Networks (Israel) Ltd. 1, Hamelacha street Lod 71293 Israel +972 8 9777 046 +972 8 9777 080

15529 Hermon Laboratories June 15, 2003 June 15, 2003 July 8, 2003 Apparatus compliance verification in accordance with emission requirements 47CFR Part 15, §15.247 and subpart B

2 Summary of tests

The tests listed in the table below were performed. The EUT was found complying with the limits of 47CFR Part 15, §15.247 and subpart B.

Parameter	Subclause	Tested by	Date tested	Verdict	Remarks
Transmitter characteristics, §15.247					
Frequency hopping system					
Occupied bandwidth of hopping channel	(a)(1) (i – iii)	Mrs. E. Pitt, test engineer	June 15, 2003	Pass	
Hopping channels frequency separation	(a)(1)	Mrs. E. Pitt, test engineer	June 15, 2003	Pass	
Number of hopping channels	(a)(1) (i – iii)	Mrs. E. Pitt, test engineer	June 15, 2003	Pass	
Average time of occupancy	(a)(1) (i – iii)	Mrs. E. Pitt, test engineer	June 15, 2003	Pass	
Maximum peak output power	b(1), b(2), b(3)	Mrs. E. Pitt, test engineer	June 15, 2003	Pass	
Spurious emissions (conducted)	с	Mrs. E. Pitt, test engineer	June 15, 2003	Pass	
Spurious emissions (radiated) in restricted bands	15.209, 15.205(a, c)	Mrs. E. Pitt, test engineer	June 16, 2003	Pass	
Conducted emission on AC power line	15.207	Mrs. E. Pitt, test engineer	July 1, 2003	Pass	
Hybrid system					
Peak power spectral density at frequency hopping operation turned off	f	Mrs. E. Pitt, test engineer	July 8, 2003	Pass	
Average time of occupancy at frequency hopping operation turned on	f	Mrs. E. Pitt, test engineer	July 8, 2003	Pass	
Maximum peak output power at frequency hopping operation turned off		Mrs. E. Pitt, test engineer	July 8, 2003	Pass	
Minimum channel separation		Mrs. E. Pitt, test engineer	July 8, 2003	Pass	

Parameter	Subclause	Tested by	Date tested	Verdict	Remarks			
Spurious emissions (conducted)	с	Mrs. E. Pitt, test engineer	July 8, 2003	Pass				
Spurious emissions (radiated) in restricted bands	15.209, 15.205(a, c)	Mrs. E. Pitt, test engineer	June 16, 2003	Pass	Tested in hopping mode (worst case)			
Unintentional radiation, §15.107, §15.109								
Conducted emissions	15.107	Mrs. E. Pitt, test engineer	July 1, 2003	Pass	Tested in Tx mode			
Radiated emissions	15.109	Mrs. E. Pitt, test engineer	June 16, 2003	Pass	Tested in Tx mode			

Test report prepared by:Ms. N. Averin, certification engineerTest report approved by:Mr. M. Nikishin, MSc, EMC group leader

Mr. E. Usoskin, PhD, C.E.O.

3 EUT description

3.1 General description

A base station radio, BSR 5.8 GHz TDD, is a part of a broadband fixed cellular wireless access system WipLL. The system provides a radio link between an end-user (a subscriber) and a network itself to give high-speed data access. The EUT is an outdoor unit comprising two modes of operation:

frequency hopping:

ÓR

2) hybrid system (digital modulation with frequency hopping).

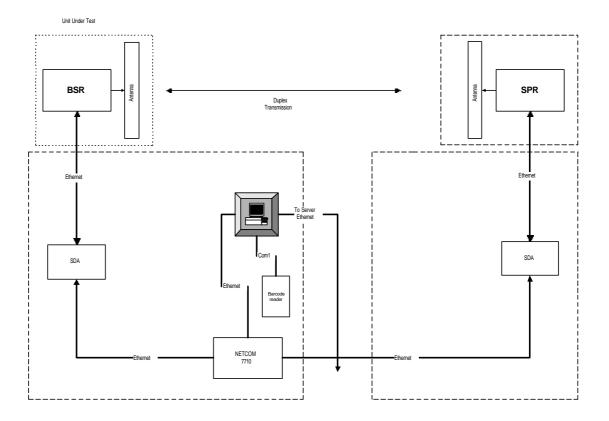
The transceiver operates in 5726 MHz to 5849 MHz range and is equipped with an 11 dBi gain flat plane internal antenna.

The BSR is connected to a subscriber data adapter (SDA), which provides also 48 V DC power.

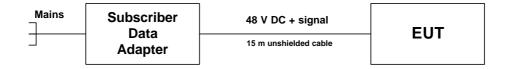
3.2 EUT test configuration

EUT operating frequencies generated by clocks and oscillators are provided in Table 3.2.1 and system/test configuration is shown in Figures 3.2.1, 3.2.2.

Table 3.2.1


EUT operating frequencies

Frequency	Description					
	BSR / SPR RF board	BSR / SPR digital board				
5726 MHz to 5849 MHz -operating frequency						
20 MHz - clock						
5376 MHz to 5499 MHz - LO						
350 MHz - IF						
48 MHz - clock						
356 MHz – LO						
6 MHz - IF						


Figure 3.2.1

General WipLL system configuration

EUT test configuration for conducted emission at AC line measurements

3.3 Transmitter description

a) Frequency hopping mode

Туре	Type of equipment								
Х	Stand-alone (Equipment with or without its own control provisions)								
	Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)								
	Plug-in card (Equipment intended for a v	variety of h	ost system	ns)					
	Other:								
Oper	ating frequency range	5726	- 5849 M	Hz					
	ad spectrum technique used								
Х	Frequency hopping (FHSS)								
	Digitally modulated								
	Combined								
	ad spectrum parameters								
Dig.	chip sequence length (bits)								
Mod.	spectrum width (MHz)								
FHSS		79							
	dwell time (milliseconds)	350							
	bandwidth per hop (MHz)	1							
	max. separation of hops (MHz)	1							
Tran	smitter aggregate data rate (bits pe	er second))			1, 2,	3 Mbit/s		
Norn	nal test signal					PRB	S		
Maxi	mum rated output power								
At trar	smitter permanent external 50 Ω rf output co	onnector	(dBm)		25				
Effecti	ve radiated power (for equipment with integi	ral antenr	na) (dBm)						
Is tran	smitter output power X No								
variab	le? Yes								
			stepped variable						
				stepsize (dB): minimum RF power (dBm):					
								<u> </u>	
_					ma	aximu	m RF power	(dBm)	
Tran	smitter power source								
		minal rat	ed voltag	ge (VD	C)				
	Nickel Cadmium								
	Lithium								
Х	Other DC Nor	minal rat	ed volta		C)			48	
~	X DC Nominal rated voltage (VDC) 48 AC mains Nominal rated voltage (VAC) 48								
Is the	Is there common power source for transmitter and receiver X yes no								
Anter	nna technical characteristics						1		
		Т	уре		acture		Model num	ber	Gain
Integra			lat	Airspa	n OEM		NA		11
	without temporary RF connected	or p	anel						
Extern									
Exter	nal antenna connection - NA								
	standard connector unique coupling								

b) Hybrid mode

Туре	Type of equipment											
X	Stand-alone (Equipment with or without its own control provisions)											
	Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)											
	Plug-in card (Equipment intended for a variety of host systems)											
		Other:										
Ope	ratir	ng fred	quency range		572	6 - 5849 N	1Hz					
			rum technique (used								
•			cy hopping (FHSS)									
	D	igitally	modulated									
Х		Combine										
Spre	ad	specti	rum parameters	;								
Dig.		chip :	sequence length (bi	ts)								
Mod.		spec	trum width (MHz)									
FHSS	\$		number of hops (un	its)	62							
			time (milliseconds)		380							
			width per hop (MHz		1.5							
			separation of hops		2							
Tran	smi	itter ag	ggregate data ra	ate (bits	per secor	nd)			1.33	and 4 Mbit	/s	
-		test si							PR	BS		
Max	imu	m rate	ed output power	r								
			nanent external 50 Ω					18				
Effect	ive ra	adiated	power (for equipmer			enna) (dBm	1)					
Is trar	nsmit	tter outp	out power	X No								
variat	ole?			Ye	S		continuous variable					
							stepped variable					
							stepsize (dB): minimum RF power (dBm):					
							F			m RF power		
Trop	- m	ttor p						11	aximu	In KF powe	а (артт)	
Tran		attery	ower source		laminal	ated volta			1			
		ckel Ca	dmium		ominal i		ige (VDC)				
	-	thium	umum									
		ther										
Х	D			N	lominal r	ated volta	age (VDC)			48 V	
	A	C mains	6	N	lominal r	ated volta	ige (VAC)				
Is the	re co	ommon	power source for tra				• .		Х	yes		no
Ante	nna	techni	cal characteristic	s								
					Туре		nufactur		Model nur	nber	Gain	
Integr	al	Х	with temporary RF			Flat	Airs	span OEN	Λ	NA		11
			without temporary I	RF conne	ector	panel						
Exterr												
Exte	rnal	antenr	na connection - N	A								
	standard connector unique coupling											

4 Test results

4.1 Occupied bandwidth of hopping channels and channel carrier frequencies separation according to § 15.247(a)(1)

METHOD OF MEASUREMENTS: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: AIR PRESSURE: OPERATING FREQUENCY RANGE: MODULATION TECHNIQUE: ANSI 63.4 §13.1.7 June 15, July 8, 2003 44 % 23 °C 1012 hPa 5725-5850 MHz FHSS/hybrid

Hopping mode, data rate 1 Mbit/s; 2 Mbit/s; 3 Mbit/s

Carrier frequency, MHz	Measured 20 dB bandwidth, kHz	Reference to Plots in Appendix A		
5.726	985	A1		
5.800	980	A2		
5.849	990	A3		
Measurement uncertainty, dB	± 2.3			

Frequency, MHz	Channel carrier frequency separation, MHz	Reference to Plots in Appendix A
Near to the upper band edge	1.007	A4
Measurement uncertainty, dB	± 2.3	

Hybrid

Carrier frequency, MHz	Data rate, Mbit/s	Measured 20 dB bandwidth, MHz	Reference to Plots in Appendix A			
5.726	4	1.533	A5			
5.726	1.33	1.500	A6			
Measurement uncertainty, dB	3 ± 2.3					

Frequency, MHz	Channel carrier frequency separation, MHz	Reference to Plots in Appendix A		
In the middle of the band	2.00	A7		
Measurement uncertainty, dB	± 2.3			

TEST EQUIPMENT USED:

HL 1424	HL 1650	HL 1651	HL 2254				

LIMIT

Operating frequency range, MHz	Allowed bandwidth	Channel carrier frequency separation (minimum)
902-928, hopping	≤ 500 kHz @ 20 dBc	25 kHz or 20 dB bandwidth, which is
2400-2483.5; 5725-5850, hopping	≤ 1 MHz @ 20 dBc	greater
2400-2483.5, hopping	> 1 MHz @ 20 dBc]
Hybrid	any admissible	

TEST PROCEDURE

4.2 Number of hopping channels according to § 15.247(a)(1)

METHOD OF MEASUREMENT: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: AIR PRESSURE: OPERATING FREQUENCY RANGE: MODULATION TECHNIQUE: ANSI 63.4 §13.1.7 June 15, July 8, 2003 44 % 23 °C 1012 hPa 5725-5850 MHz FHSS/hybrid

Hopping mode

Occupied frequency	Measured 20 dB bandwidth,	Number of channels	Reference to Plots in
range	kHz		Appendix A
5726 - 5849	990	124*	A8 to A12

* According to customer declaration, only 79 channels (randomly chosen and factory programmed for each particular system) will be used for transmission.

Hybrid mode

Occupied frequency	Measured 20 dB bandwidth,	Number of channels	Reference to Plots in
range	kHz		Appendix A
5726 - 5849	1500	62	A13

TEST EQUIPMENT USED:

HL 1424	HL 1650	HL 1651	HL 2254		

LIMIT

Operating frequency range, MHz	20 dB bandwidth	Number of frequencies	
902-928, hopping	< 250 kHz	≥ 50	
	≥ 250 kHz	≥ 25	
2400-2483.5; 5725-5850, hopping	≤ 1 MHz	≥ 75	
2400-2483.5, hopping	> 1 MHz	≥ 15 non-overlapping channels with total	
		span ≥ 75 MHz	
Hybrid	No requirements		

TEST PROCEDURE

4.3 Average time of hopping frequency occupancy according to § 15.247(a)(1), (f)

METHOD OF MEASUREMENT: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: AIR PRESSURE: OPERATING FREQUENCY RANGE: MODULATION TECHNIQUE: ANSI 63.4 §13.1.7 June 15, July 8, 2003 44 % 23 °C 1012 hPa 5725-5850 MHz FHSS/hybrid

Hopping mode

Carrier frequency, MHz	Total time of 1 transmission at one frequency	Tx ON of 1 transmission at one frequency	Average time of occupancy during 30 s period	Reference to Plots in Appendix A
5800	22.5 ms	20.5 ms	346 ms	A14, A15
Measurement uncertainty, ppm		± 0.21		

Hybrid mode

Carrier frequency, MHz	Total time of 1 transmission at one frequency	Tx ON of 1 transmission at one frequency	Average time of occupancy during 24.4 s period	Reference to Plots in Appendix A
5800	52 ms	49.8 ms	383 ms	A16, A17
Measurement uncertainty, ppm		±0.21		

TEST EQUIPMENT USED:

HL 1424	HL 1650	HL 1651	HL 2254		

LIMIT

Operating frequency range, MHz	Number of frequencies	Average time of occupancy		
902-928, hopping	≥ 50	\leq 0.4 s within 20 s period		
	≥ 25	\leq 0.4 s within 10 s period		
2400-2483.5; 5725-5850, hopping	≥ 75	\leq 0.4 s within 30 s period		
2400-2483.5, hopping	≥ 15 non-overlapping channels with total	\leq 0.4 s within the time required to hop		
	span ≥ 75 MHz	through all channels		
Hybrid	with the hopping system operation turned on, an average time of occupancy on a			
		time period in seconds equal to the number employed multiplied by 0.4.		

TEST PROCEDURE

4.4 Maximum peak output power test according to §15.247 (b)(1), (b)(2), (b)(3)

METHOD OF MEASUREMENTS: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: AIR PRESSURE: OPERATING FREQUENCY RANGE: MODULATION TECHNIQUE: ANSI 63.4 §13.1.4 June 15, July 8, 2003 44 % 23 °C 1012 hPa 5725-5850 MHz FHSS/hybrid

Hopping mode, data rate 1 Mbit/s; 2 Mbit/s; 3 Mbit/s

Carrier frequency, MHz	Peak output power, dBm	Limit, dBm	Margin, dB	Reference to Plots in Appendix A
5800	24.2	25.0	0.8	A18
5726	24.3	25.0	07	A19
5849	23.8	25.0	1.2	A20
Measurement uncerta		± 2.3		

Hybrid mode

Carrier frequency, MHz	Data rate, Mbit/s	Peak output power, dBm	Limit, dBm	Margin, dB	Reference to Plots in Appendix A
5726	1.33	18.0	18.0	0	A21
5726	4	18.0	18.0	0	A22
5800	1.33	17.7	18.0	0.3	A23
5800	4	17.7	18.0	0.3	A24
5849	1.33	17.5	18.0	0.5	A25
5849	4	17.5	18.0	0.5	A26
Measurement uncerta			± 2.3		

TEST EQUIPMENT USED:

HL 1424	HL 1650	HL 1651	HL 2254		
112 1424	TIL 1050		TIL 2234		

LIMIT

Operating frequency range, MHz	Number of hopping channels	Maximum peak output power*, W
902-928 (hopping)	≥ 50	1
	< 50	0.25
2400-2483.5 (hopping)	≥ 75	1
	other admissible	0.125
5725-5850 (hopping)	any admissible	1
902-928; 2400-2483.5;	NA	1
5725-5850 (direct sequence)		
Hybrid	any admissible	1

* For more details see 15.247 (b)(3).

TEST PROCEDURE

4.5 Out of band conducted emissions test according to §15.247(c)

METHOD OF MEASUREMENTS: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: AIR PRESSURE: RATED RF OUTPUT POWER: OPERATING FREQUENCY RANGE: MODULATION TECHNIQUE: FREQUENCY RANGE: ANSI 63.4 §13.1.5 June 15 and July 8, 2003 44 % 23 °C 1012 hPa 25 dBm (hopping), 18 dBm (hybrid) 5725-5850 MHz FHSS/hybrid 9 kHz – 40 GHz

Hopping mode

Spurious emission measurements were performed at the lowest (5.726 GHz), the highest (5.849 GHz) and one of the middle (5.800 GHz) frequencies. Test results are shown in Plots A27 to A51. No spurious emissions were found throughout the testing. No effect of the data rate was observed therefore only 3 Mbit/s rate was used for measurements.

Hybrid mode

The output power was decreased by 7 dB for this mode. Spurious emission testing in hopping mode at 25 dBm output power was considered the worst case, therefore the measurements in hybrid mode in the whole range were not performed, as the hardware is exactly the same. Emissions at the lower band edge (see Plots A56 to A59) and at the higher band edge (see Plots A52 to A55) were examined.

TEST EQUIPMENT USED:

HL 1424 HL 1650 HL 1651	HL 2254	
-------------------------	---------	--

LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

TEST PROCEDURE

4.6 Radiated emissions which fall in restricted bands test according to §15.247(c) and § 15.205, §15.209(a)

METHOD OF MEASUREMENTS: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: AIR PRESSURE: RATED RF OUTPUT POWER: ANTENNA GAIN: TEST DISTANCE OPERATING FREQUENCY RANGE: MODULATION TECHNIQUE: FREQUENCY RANGE: ANSI 63.4 §13.1.4/ §13.1.5 June 16, 2003 44 % 23 °C 1011 hPa 25 dBm (hopping); 18 dBm (hybrid) 11 dBi (hopping); 11 dBi (hybrid) 3 m 5725-5850 MHz FHSS/hybrid 9 kHz to 40 GHz

Hopping mode

Spurious emission measurements were performed at the lowest (5.726 GHz), the highest (5.849 GHz) and one of the middle (5.800 GHz) frequencies. Test results are shown in Plots A61 to A104.

Hybrid mode

The output power was decreased by 7 dB for this mode. Spurious emission testing in hopping mode at 25 dBm output power was considered the worst case, therefore the measurements in hybrid mode were not performed, as the hardware is exactly the same.

Hopping mode

a) F carrier: 5.726 GHz

Peak detector, RBW = VBW = 1 MHz

Frequency, MHz	Antenna type	Radiated emission, dB(mi ∕/m)	Average limit, dB(ml //m)	Margin, dB	Reference to Plots in Appendix A
1234	Double ridged guide	44.0	54.0	10.0	A64
22903	Horn	45.0	54.0	9.0	A74
Measurement u	Measurement uncertainty, dB		± 4	.5	

Notes to table:

Table abbreviations:Margin= dB below (negative if above) specification limit.RBW = resolution bandwidth;VBW = video bandwidth.

The test results recorded in the table were obtained throughout the measurements with antennas in vertical polarization at 1 m height.

b) F carrier: 5.800 GHz

Peak detector

Frequency,	RBW,	VBW,	Antenna type	Radiated emission,	Limit,	Margin,	Reference to Plots in Appendix A
MHz	MHz	MHz	21.1	dB(mi //m)	dB(m) //m)	dB	
125	0.12	0.30	Biconilog	28.9	43.5*	14.6	A63
128	0.12	0.30	Biconilog	31.9	43.5*	11.6	A63
150	0.12	0.30	Biconilog	32.9	43.5*	10.6	A63
240	0.12	0.30	Biconilog	28.5	46.0*	17.5	A63
960	0.12	0.30	Biconilog	43.3	54.0*	10.7	A63
1723	1	1	Double ridged guide	44.5	54.0**	9.5	A78
23200	1	1	Horn	48.5	74.0***	25.5	A87
Measuremen	Measurement uncertainty, dB				±·	4.5	

* quasi-peak limit

** average limit

*** peak limit

Average detector

Frequency,	RBW,	VBW,	Antenna type	Radiated emission,	Average limit,	Margin,	Reference to Plots in Appendix A
MHz	MHz	Hz		dB(ml //m)	dB(m) //m)	dB	
23200	1	10	Horn	43.7	54.0	10.3	A88
Measurement	Measurement uncertainty, dB				± 4	4.5	

Notes to tables:

Margin = dB below (negative if above) specification limit. RBW = resolution bandwidth; VBW = video bandwidth.

The test results recorded in the tables were obtained throughout the measurements with antennas in vertical polarization at 1 m height.

c) F carrier: 5.849 GHz

Peak detector, RBW = VBW = 1 MHz

Frequency,	Antenna type	Radiated emission,	Average limit,	Margin,	Reference to Plots in Appendix A
MHz		dB(m) //m)	dB(m) //m)	dB	
1152	Double ridged guide	45.3	54.0	8.7	A91
1248	Double ridged guide	44.8	54.0	9.2	A91
1775	Double ridged guide	47.4	54.0	6.6	A91
23396	Horn	51.5	54.0	2.5	A101
Measurement un	certainty, dB		± 4.5		

Notes to tables:

Margin = dB below (negative if above) specification limit. RBW = resolution bandwidth; VBW = video bandwidth.

The test results recorded in the tables were obtained throughout the measurements with antennas in vertical polarization at 1 m height.

TEST EQUIPMENT USED:

HL 0041	HL 0446	HL 0465	HL 0521	HL 0589	HL 0604	HL 0768
HL 0769	HL 1004	HL 1200	HL 1424	HL 1566	HL 1940	HL 1942
HL 2009	HL 2259	HL 2260	HL 2261	HL 2273	HL 2274	HL 2387

LIMIT

Radiated emissions, which fall in the restricted bands, must comply with §15.209(a) limits.

TEST PROCEDURE

9 kHz – 30 MHz frequency range. The EUT was placed on a wooden 80 cm height turntable. The loop antenna was positioned with its plane vertical. The loop center was 1 meter above the ground plane. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated about its vertical axis.

30 MHz – 40 GHz frequency range. The EUT was placed on a wooden 80 cm height turntable. To find maximum radiation the turntable was rotated 360° , measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

4.7 Peak power spectral density of a hybrid systems according to § 15.247(d)

DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: AIR PRESSURE: RATED OUTPUT POWER: OPERATING FREQUENCY RANGE: MODULATION TECHNIQUE: July 8, 2003 45 % 23 °C 1012 hPa 18 dBm 5725-5850 MHz Hybrid

Carrier frequency, GHz	Data transmission rate, Mbit/s	Measured peak power spectral density, MHz	Reference to Plots in Appendix A
GHZ	INDIU'S	MITZ	
5.726	1.33	7.3	A104
5.726	4	7.2	A105
5.800	1.33	6.8	A106
5.800	4	6.5	A107
5.849	1.33	6.7	A108
5.849	4	6.5	A109
Measurement uncertainty	/, dB	± 2.3	

TEST EQUIPMENT USED:

_						
	HL 1424	HL 1650	HL 1651	HL 2254		

LIMIT

The peak power spectral density shall be not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The EUT RF output was connected via attenuator to the spectrum analyzer; the settings are shown in the plots. Spectrum analyzer readings were corrected for external attenuation and cable loss. The measurements were performed in continuous transmission mode of operation for carrier (channel) frequency modulated with PRBS at low and high edges and at the middle of the range.

4.8 Conducted emissions test according to §15.107, 15.207

METHOD OF MEASUREMENTS: DATE: RELATIVE HUMIDITY: AMBIENT TEMPERATURE: AIR PRESSURE: DETECTOR USED: FREQUECNY RANGE: OPERATION MODE: RESOLUTION BANDWIDTH: ANSI 63.4 §13.1.3 July 1, 2003 44 % 24 °C 1011 hPa QUASI-PEAK, AVERAGE 150 kHz – 30 MHz TRANSMITTING 9 kHz

Quasi-peak detector

Frequency, MHz	Line identification	Measured emissions, dB (mi/)	Specification limit, dB (m/)	Margin, dB	Reference to Plots in Appendix A
0.180670	Phase	55.1	64.5	9.4	A110
0.181025	Neutral	54.8	64.5	9.7	A111
4.192390	Neutral	43.9	56.0	12.1	A111
4.197543	Phase	44.8	56.0	11.2	A110
4.579390	Phase	43.0	56.0	13.0	A110
4.960468	Phase	42.1	56.0	13.9	A110
Conducted emiss HP 8542E/HP854		9 kHz to 150 k 150 kHz to 30 M			

Average detector

Frequency, MHz	Line identification	Measured emissions, dB (ml/)	Specification limit, dB (m/)	Margin, dB	Reference to Plots in Appendix A
0.180670	Phase	43.5	54.5	11.0	A110
0.181025	Neutral	43.8	54.5	10.7	A111
4.192390	Neutral	43.6	46.0	2.4	A111
4.197543	Phase	44.7	46.0	1.3	A110
4.579390	Phase	42.1	46.0	3.9	A110
4.960468	Phase	41.9	46.0	4.1	A110
Conducted emissions with HP 8542E/HP8546A receiver		9 kHz to 150 k 150 kHz to 30 M			•

TEST EQUIPMENT USED:

HL 0163 HL 0672 HL 0787	HL 1430 H	IL 1502 HL 1510	
-------------------------	-----------	-----------------	--

LIMIT

Frequency, MHz	Class B e dB	quipment, (m/)
	Quasi-peak	Average
0.15 – 0.5	66 to 56 *	56 to 46 *
0.5 – 5	56	46
5-30	60	50

* Decreases with the logarithm of frequency

TEST PROCEDURE

The measurements were performed at mains terminals by means of LISN, connected to spectrum analyzer in the frequency range as referred to in the table above. The unused coaxial connector of the LISN was terminated with 50 Ω . The measurements were made with quasi-peak and average detectors as referred to in the table. The position of the EUT cables was varied to determine maximum emission level.

4.9 Unintentional radiated emissions test according to §15.109

METHOD OF MEASUREMENT: TEST PERFROMED IN: DATE: RELATIVE HUMIDITY AMBIENT TEMPERATURE: AIR PRESSURE DISTANCE BETWEEN ANTENNA AND EUT: THE EUT WAS TESTED AS: FREQUECNY RANGE: DETECTOR TYPE: RESOLUTION BANDWIDTH: ANSI 63.4 §11.6 / ANSI 63.4 §12.1.4 ANECHOIC CHAMBER June 16, 2003 44 % 23° 1011 hPa 3 m TABLE-TOP 30 – 1000 MHz QUASI-PEAK 120 kHz

	The EUT highest used frequency (not including operating frequency),	Upper frequency of measurement range,		
	MHz	MHz		
	Below 1.705	30		
Х	1.705 – 108	1000		
	108 – 500	2000		
	500 - 1000	5000		
	Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower		

The emission measurements were performed in transmitting mode. All emissions were found below the specified 15.109 class B limit, refer to § 4.6 and Plot A63.

TEST EQUIPMENT USED:

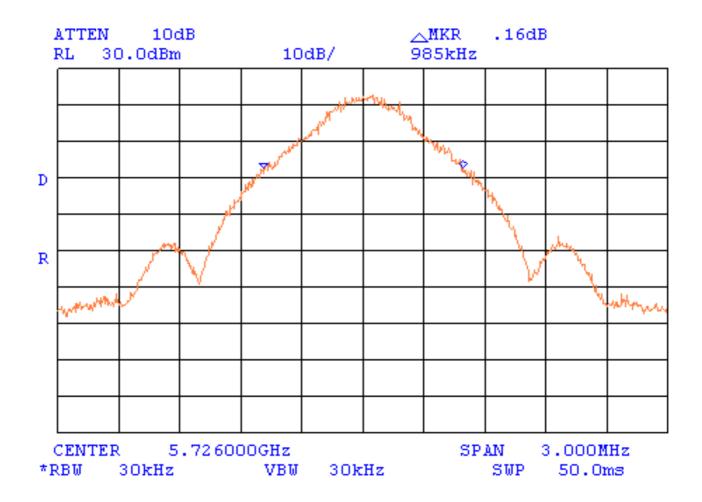
HL 0465	HL 0521	HL 0589	HL 0604	HL 1004	HL 2009	

LIMIT (§ 15.109)

Frequency, MHz	Class A equipment @ 10 m dB(m)/m)	Class B equipment @ 3 m dB(ml/m)
30 - 88	39.0	40
88 - 216	43.5	43.5
216 - 960	46.4	46
960 - 5000	49.5	54

TEST PROCEDURE

30 MHz – 1 GHz frequency range. The EUT was placed on a wooden 80 cm height turntable. To find maximum radiation the turntable was rotated 360° , measuring antenna height was changed from 1 to 4 m, and the antenna polarization was changed from vertical to horizontal.

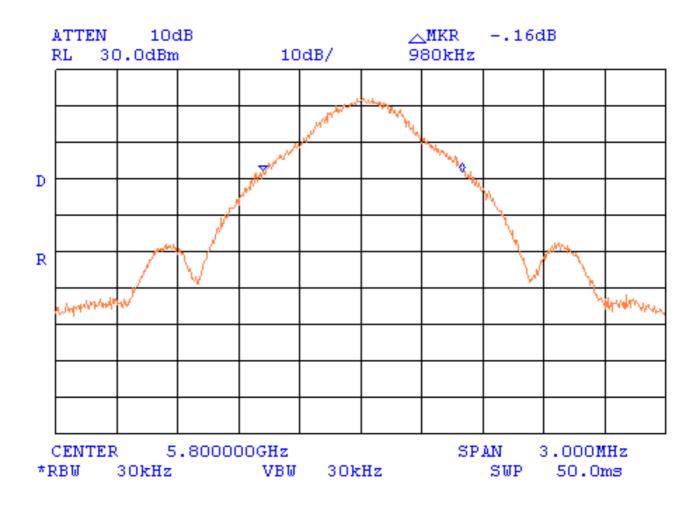


Appendix A Plots

Plot A1

20 dB bandwidth

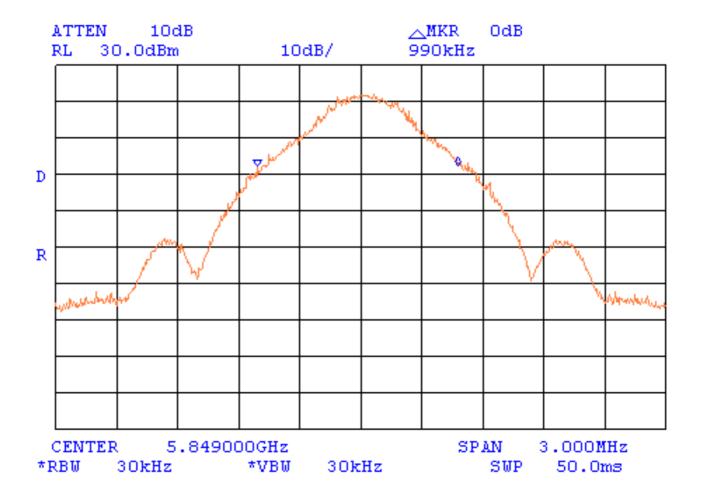
Mode: F_{LOW}: Bit rate: Hopping 5.726 GHz 3 Mbit/s



Plot A2

20 dB bandwidth

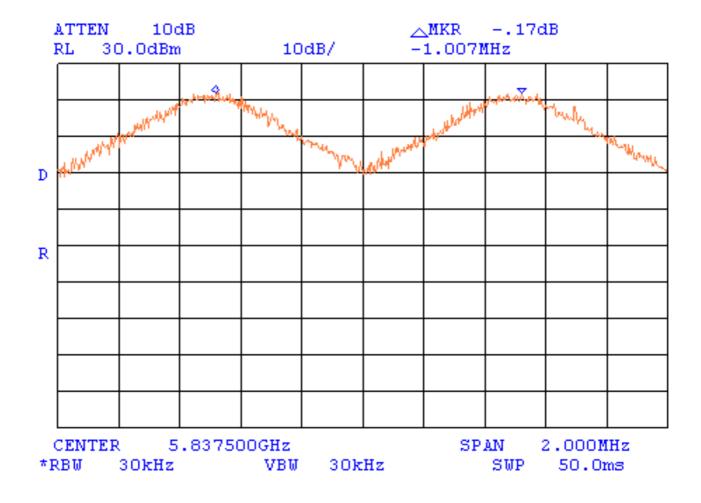
Mode: F_{MIDDLE}: Bit rate: Hopping 5.8 GHz 3 Mbit/s



Plot A3

20 dB bandwidth

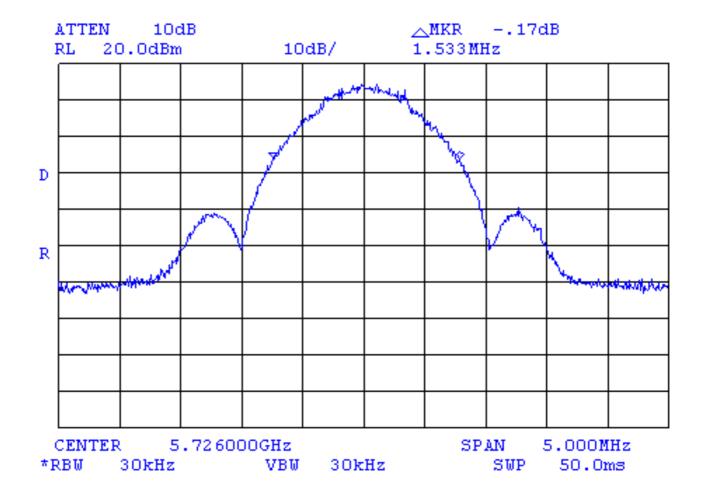
Mode: F_{ніGн}: Bit rate: Hopping 5.849 GHz 3 Mbit/s



Plot A4

Channel carrier frequencies separation

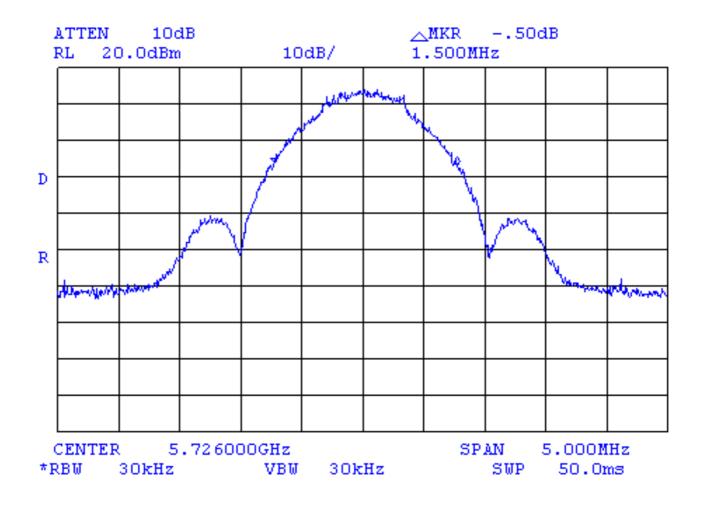
Mode:



Plot A5

20 dB bandwidth

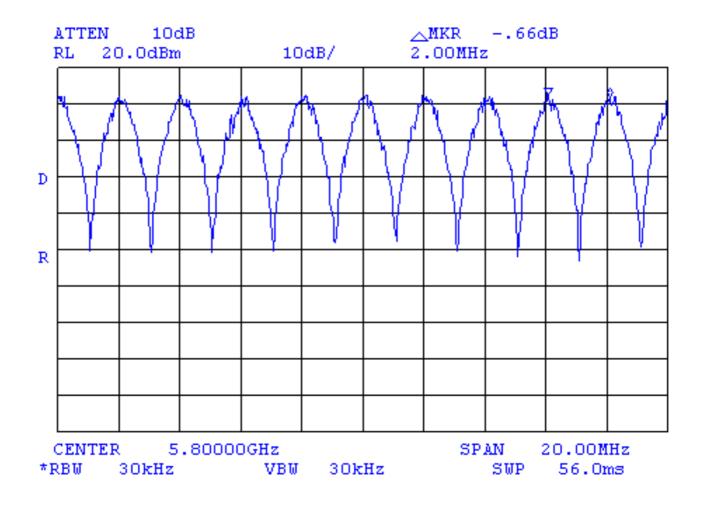
Mode: Bit rate: Hybrid 4 Mbit/s



Plot A6

20 dB bandwidth

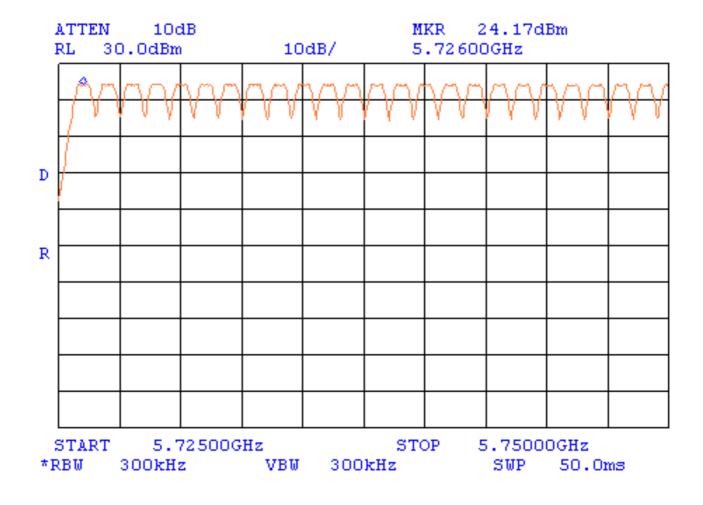
Mode: Bit rate: Hybrid 1.33 Mbit/s



Plot A7

Channel carrier frequencies separation

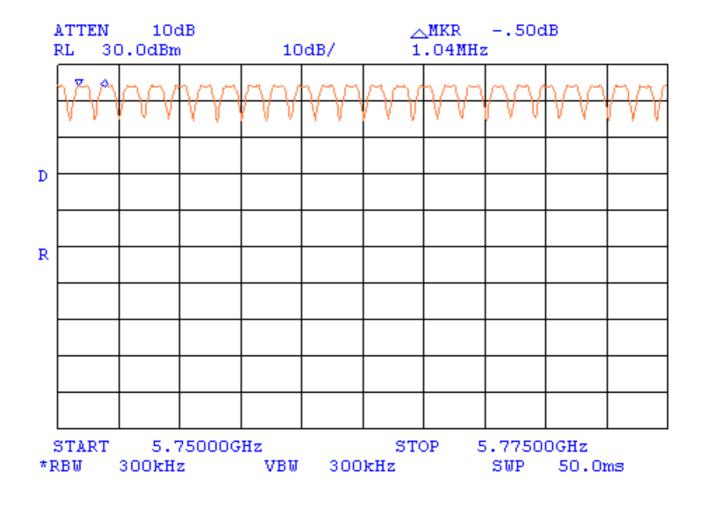
Mode: Bit rate: Hybrid 4 Mbit/s



Plot A8

Number of hopping channels

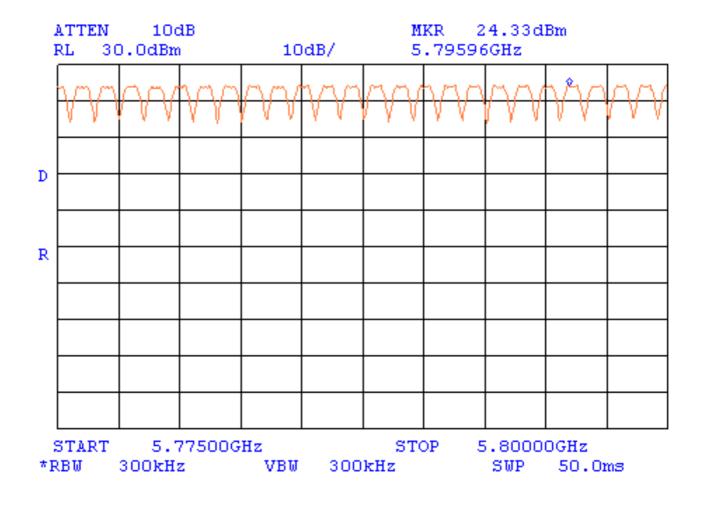
Mode:



Plot A9

Number of hopping channels (continued)

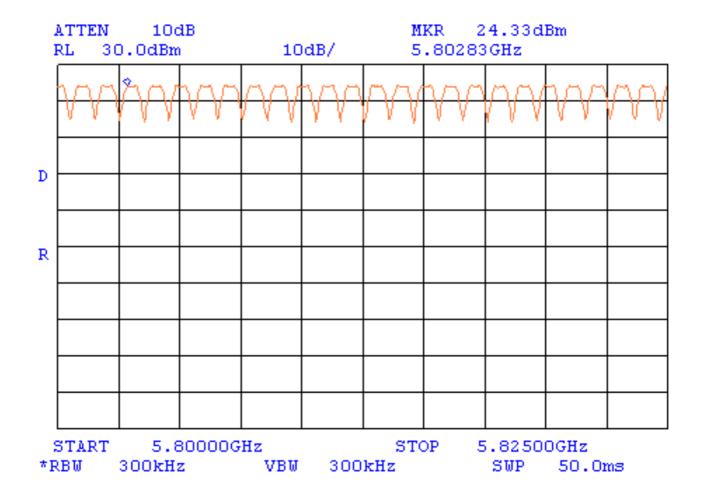
Mode:



Plot A10

Number of hopping channels (continued)

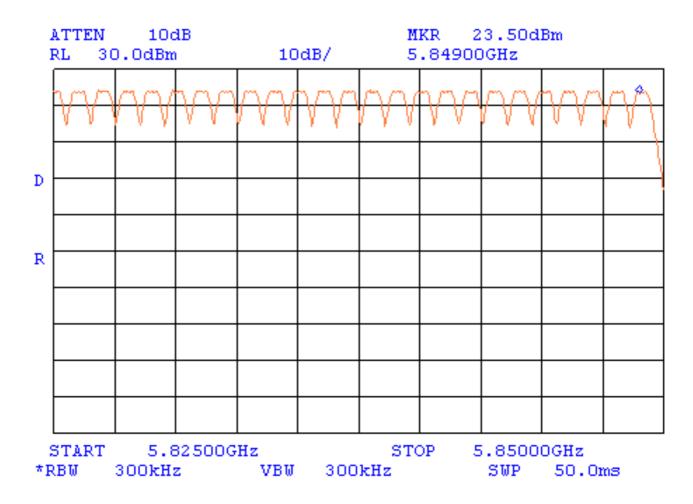
Mode:



Plot A11

Number of hopping channels (continued)

Mode:



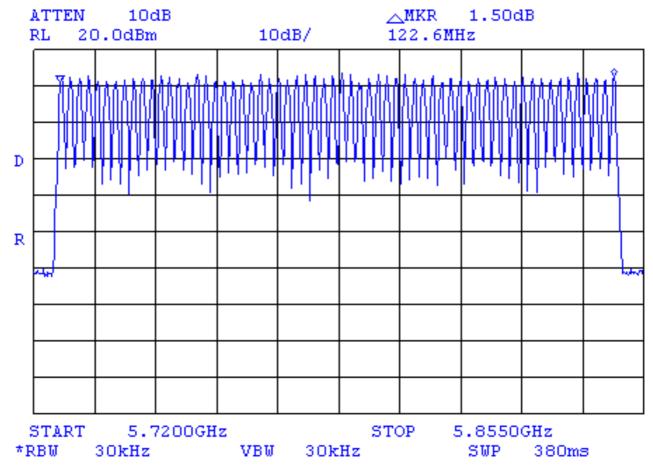
Plot A12

Number of hopping channels (continued)

Mode:

Hopping

124 channels

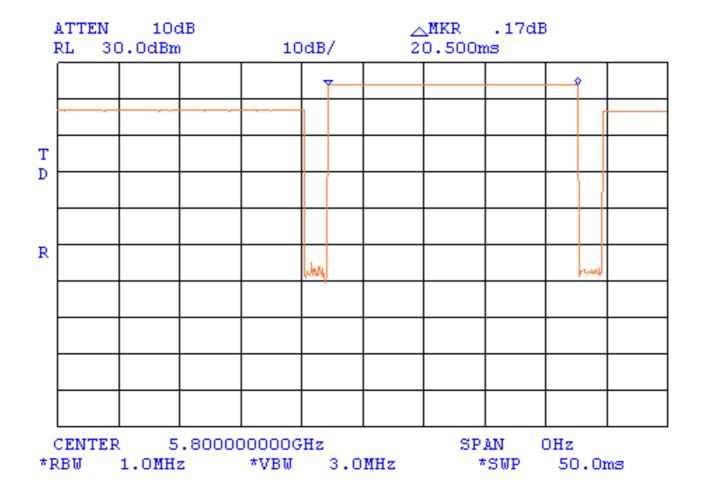


Plot A13

Number of hopping channels

Mode:

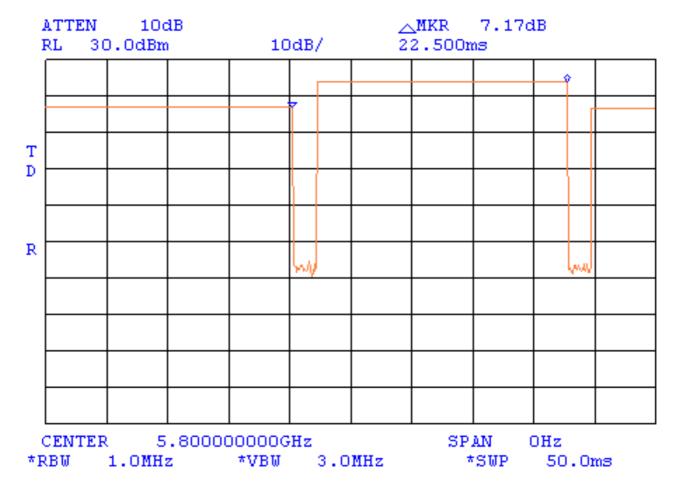
Hybrid


61 channels

Plot A14

Average time of occupancy

Mode:



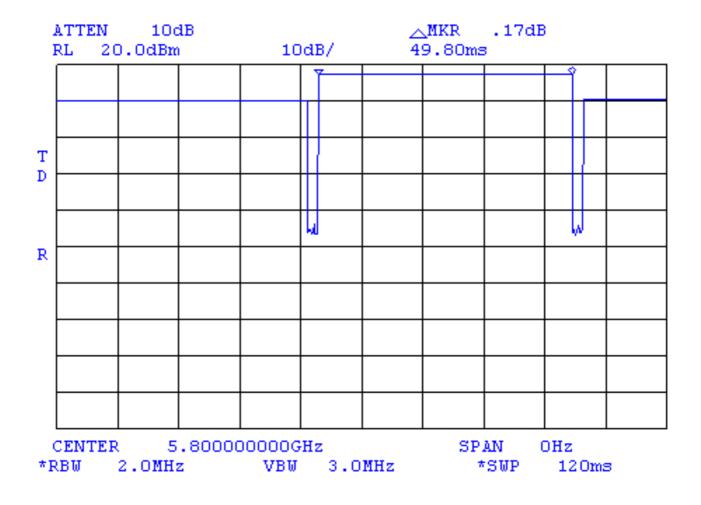
Plot A15

Average time of occupancy

Mode:

Hopping

Average time of occupancy calculation: $(30000 / 79 / 22.5) \times 20.5 = 346 \text{ (ms)}$

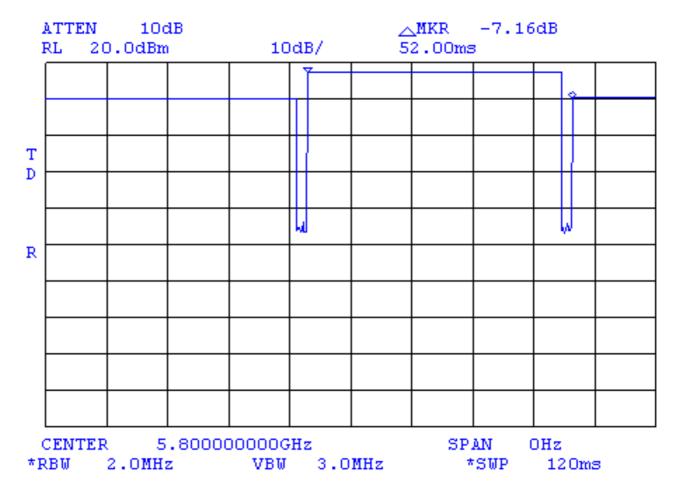


Plot A16

Average time of occupancy

Mode:

Hybrid

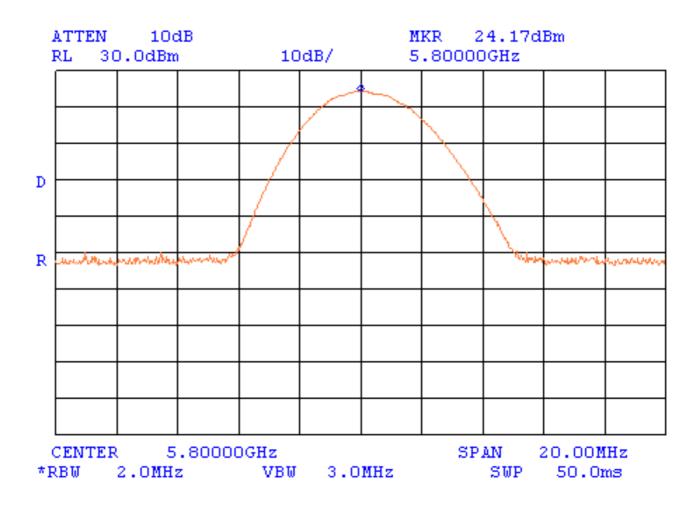


Plot A17

Average time of occupancy

Mode:

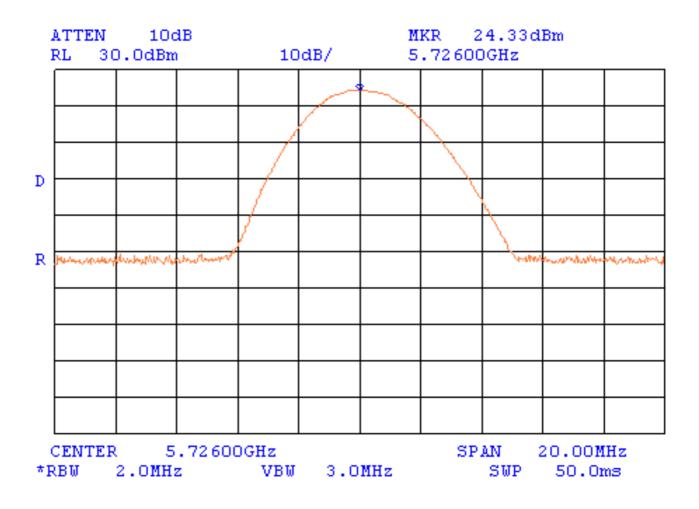
Hybrid


Average time of occupancy calculation: $((61 \times 0.4) / 61 / 52) \times 49.8 = 383 \text{ (ms)}$

Plot A18

Peak output power

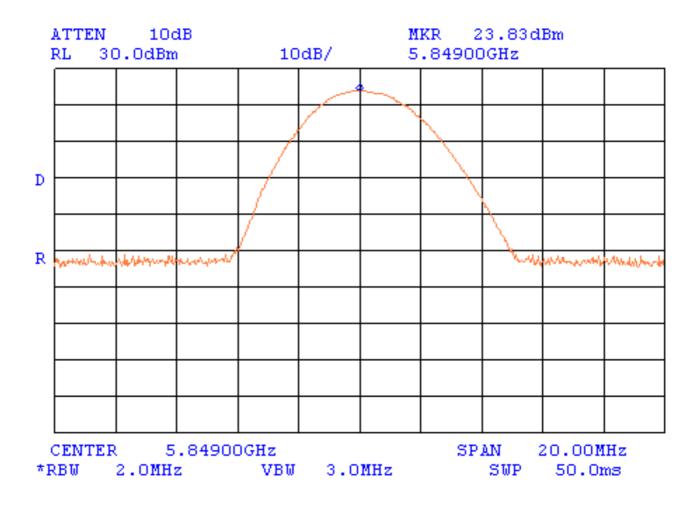
Mode: F_{MIDDLE}: Bit rate: Hopping 5.8 GHz 3 Mbit/s



Plot A19

Peak output power

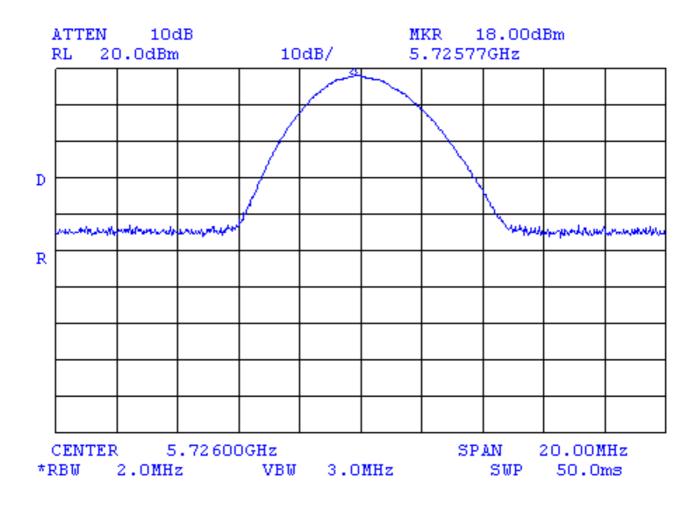
Mode: F_{LOW}: Bit rate: Hopping 5.726 GHz 3 Mbit/s



Plot A20

Peak output power

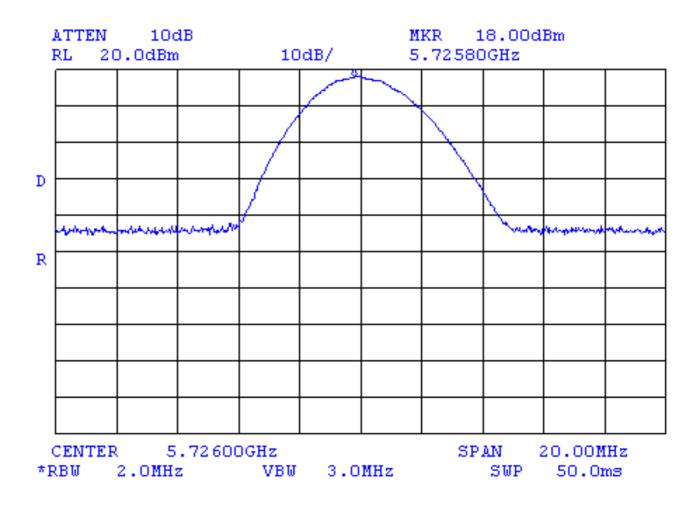
Mode: F_{ніGн}: Bit rate: Hopping 5.849 GHz 3 Mbit/s



Plot A21

Peak output power

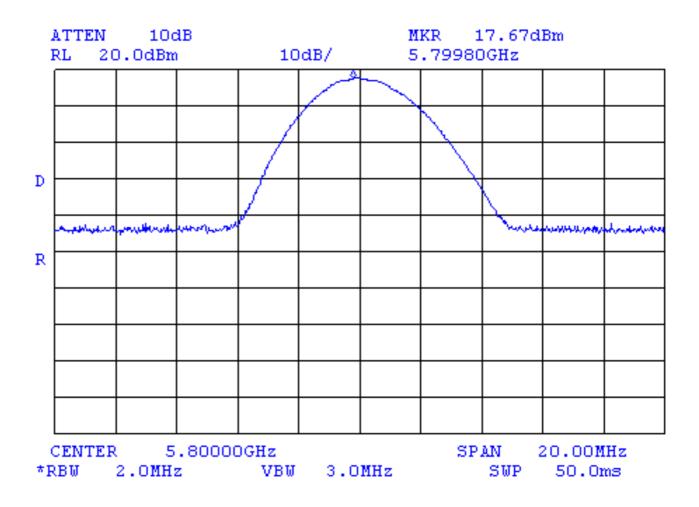
Mode: F_{LOW}: Bit rate: Hybrid 5.726 GHz 1.33 Mbit/s



Plot A22

Peak output power

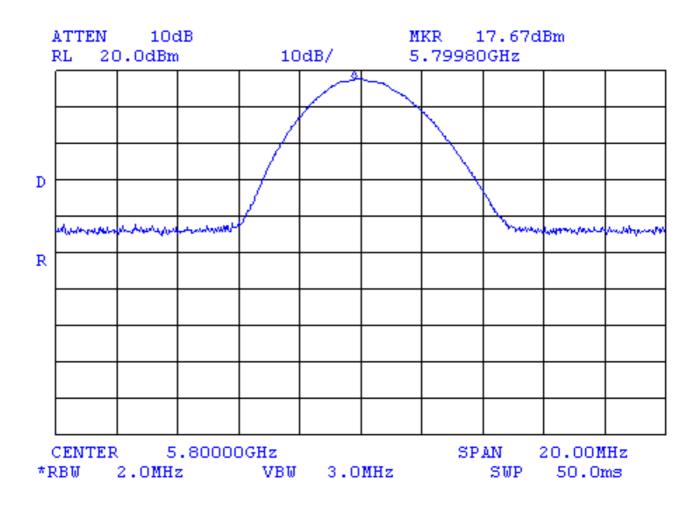
Mode: F_{LOW}: Bit rate: Hybrid 5.726 GHz 4 Mbit/s



Plot A23

Peak output power

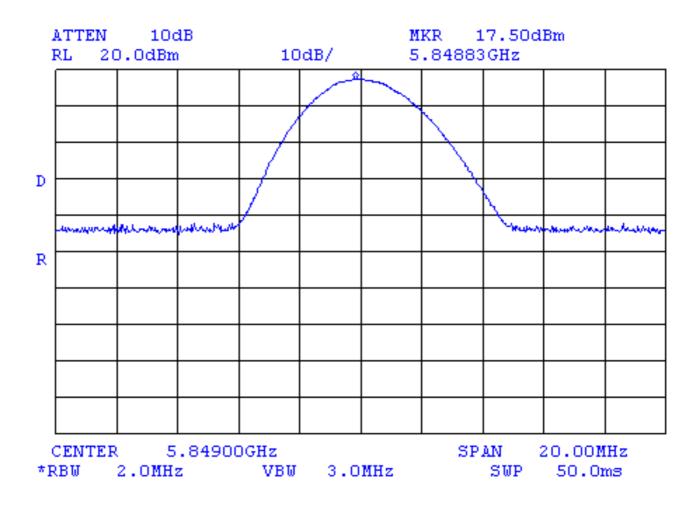
Mode: F_{MIDDLE}: Bit rate: Hybrid 5.8 GHz 1.33 Mbit/s



Plot A24

Peak output power

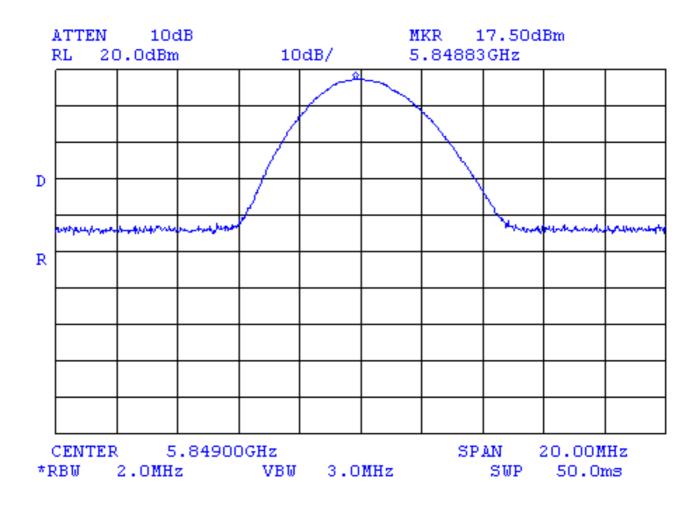
Mode: F_{MIDDLE}: Bit rate: Hybrid 5.8 GHz 4 Mbit/s



Plot A25

Peak output power

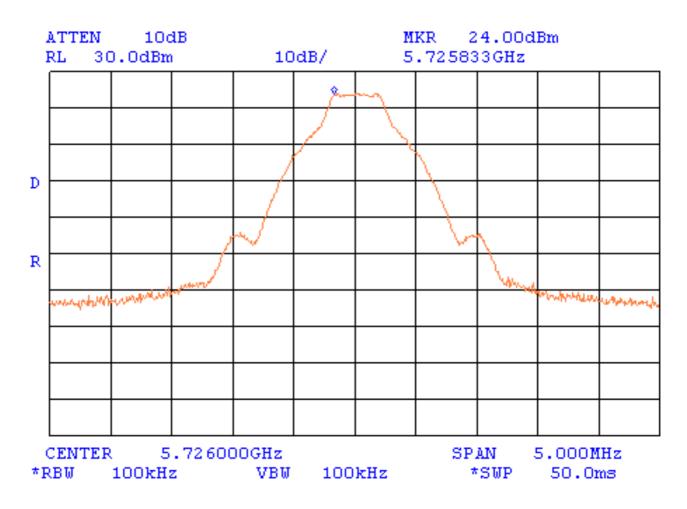
Mode: F_{ніGн}: Bit rate: Hybrid 5.849 GHz 1.33 Mbit/s



Plot A26

Peak output power

Mode: F_{ніGн}: Bit rate: Hybrid 5.849 GHz 4 Mbit/s

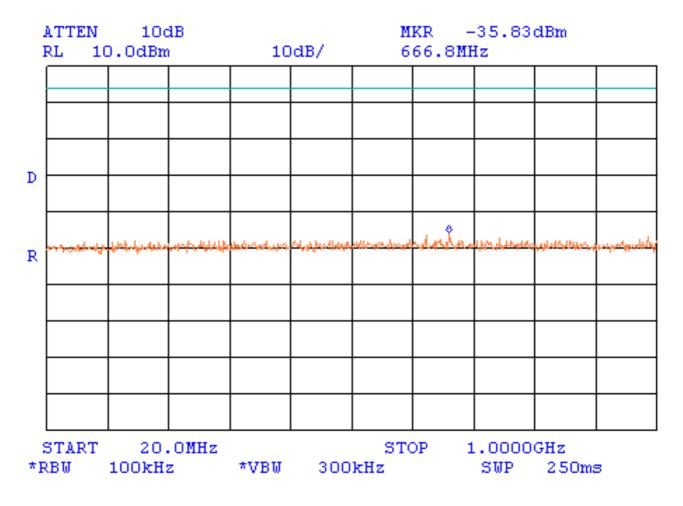


Plot A27

Conducted spurious emission measurements

Mode: F_{LOW}: Bit rate: Hopping 5.726 GHz 3 Mbit/s

Limit for spurious emissions = 24 dBm - 20 dB = 4 dBm

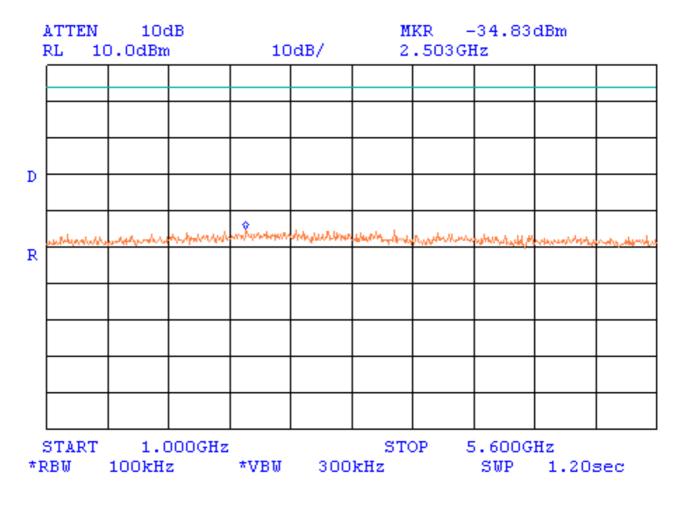


Plot A28

Conducted spurious emission measurements

Mode: F_{LOW} : Bit rate: Frequency range:

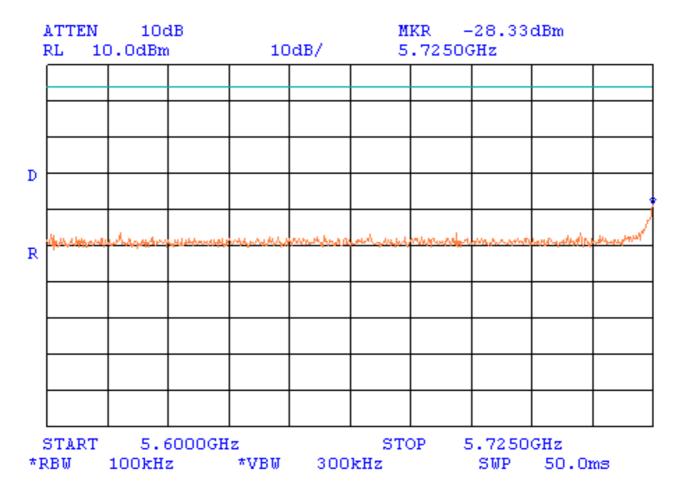
Hopping 5.726 GHz 3 Mbit/s 20 MHz – 1 GHz



Plot A29

Conducted spurious emission measurements

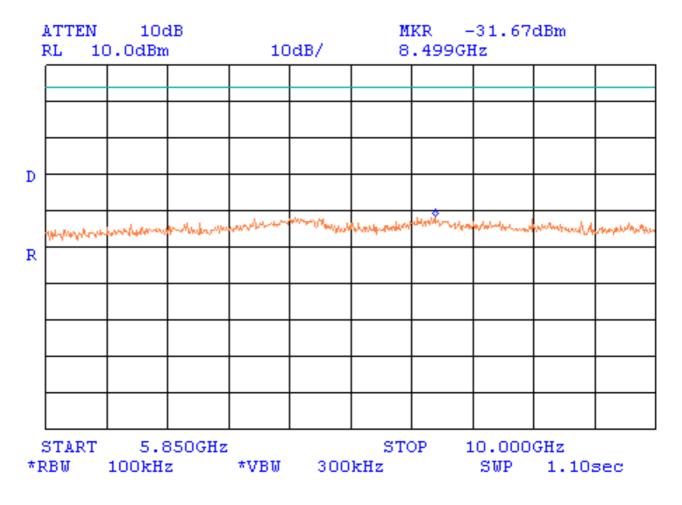
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 1 – 5.6 GHz



Plot A30

Conducted spurious emission measurements

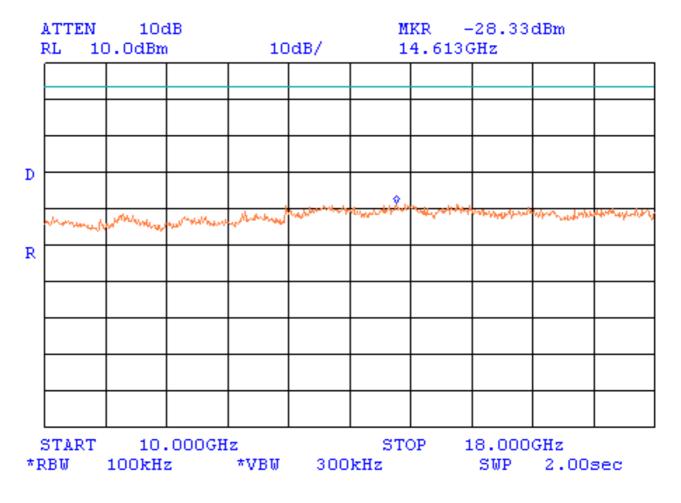
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 5.6 – 5.725 GHz



Plot A31

Conducted spurious emission measurements

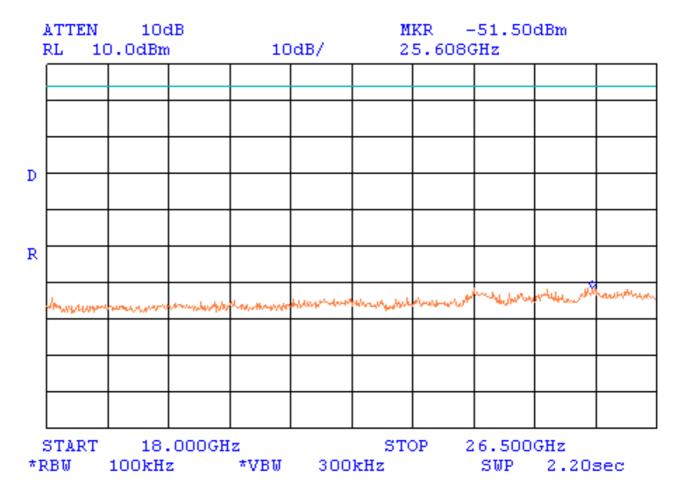
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 5.85 – 10 GHz



Plot A32

Conducted spurious emission measurements

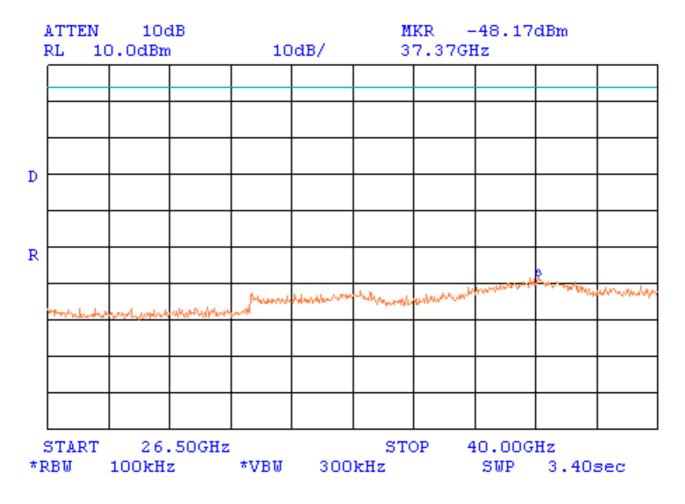
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 10 – 18 GHz



Plot A33

Conducted spurious emission measurements

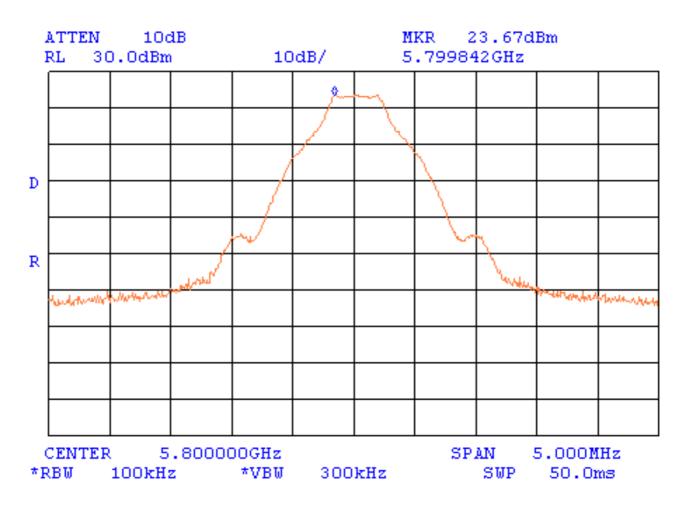
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 18 – 26.5 GHz



Plot A34

Conducted spurious emission measurements

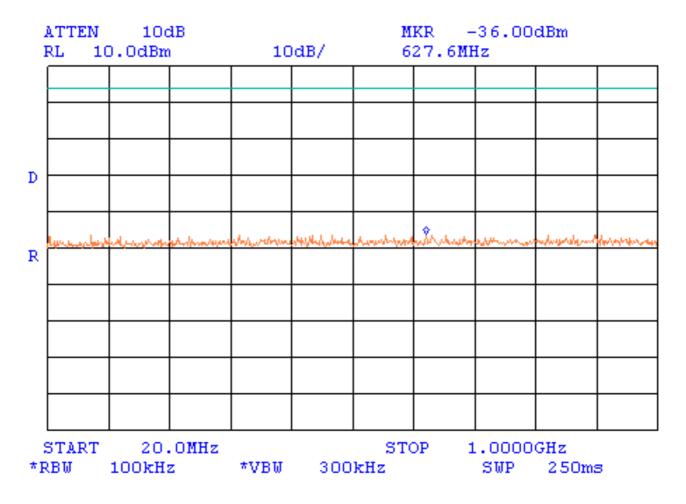
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 26.5 – 40 GHz



Plot A35

Conducted spurious emission measurements

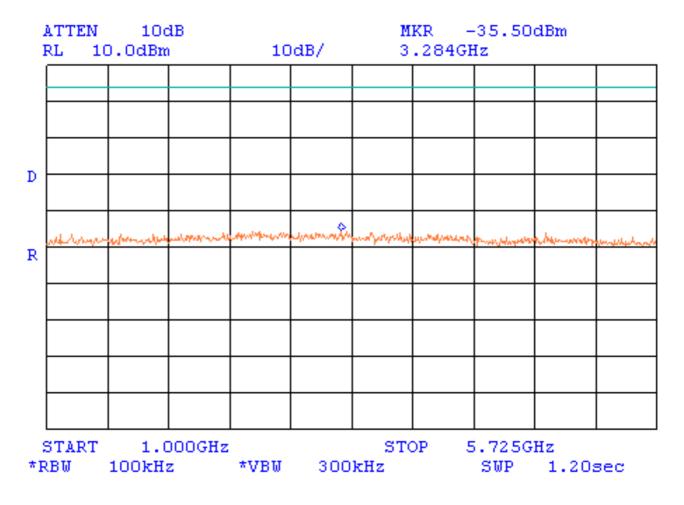
Mode: F_{MIDDLE}: Bit rate: Hopping 5.8 GHz 3 Mbit/s


Limit for spurious emissions =23.67 dBm – 20 dB = 3.67 dBm

Plot A36

Conducted spurious emission measurements

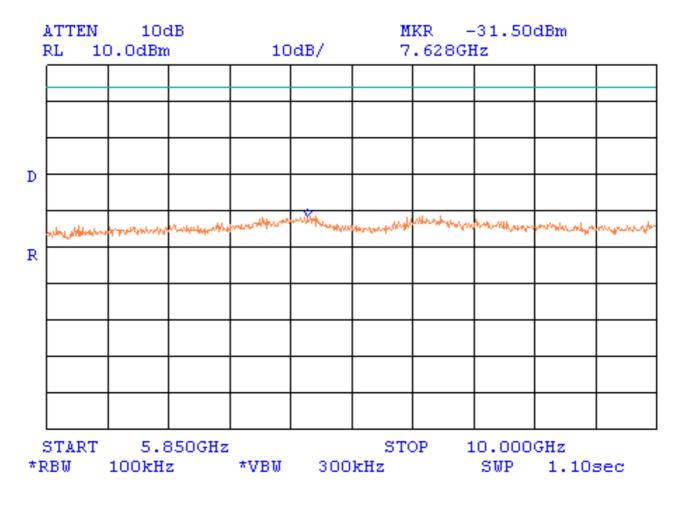
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 20 MHz – 1 GHz



Plot A37

Conducted spurious emission measurements

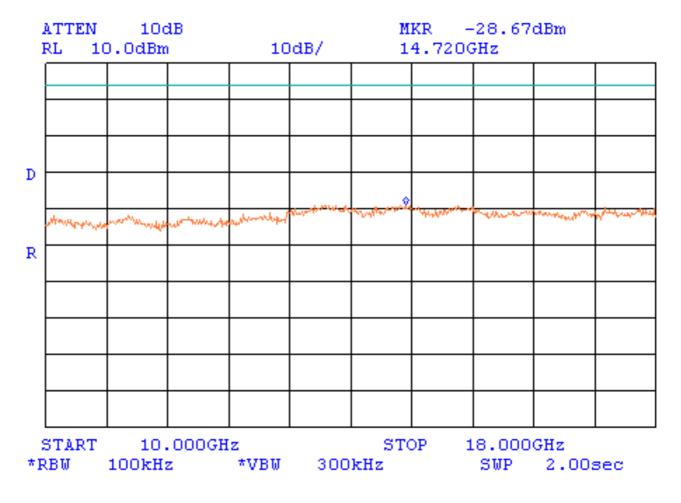
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 1 – 5.725 GHz



Plot A38

Conducted spurious emission measurements

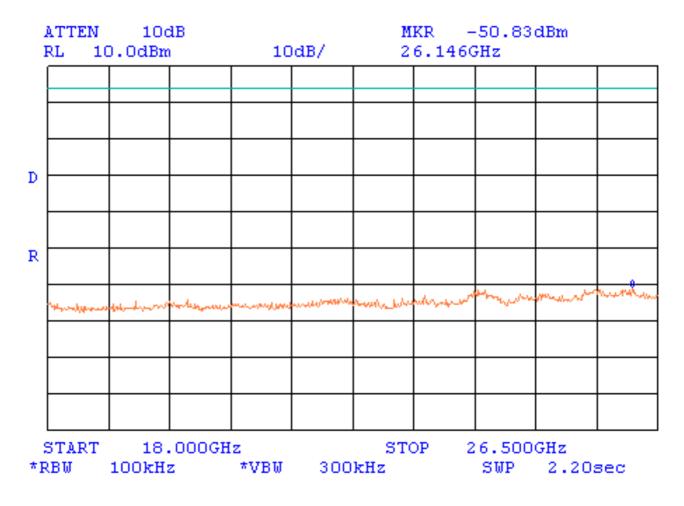
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 5.85 – 10 GHz



Plot A39

Conducted spurious emission measurements

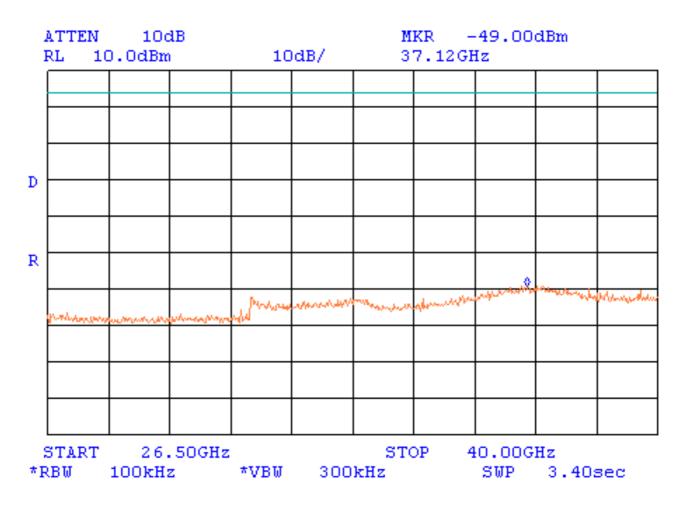
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 10 – 18 GHz



Plot A40

Conducted spurious emission measurements

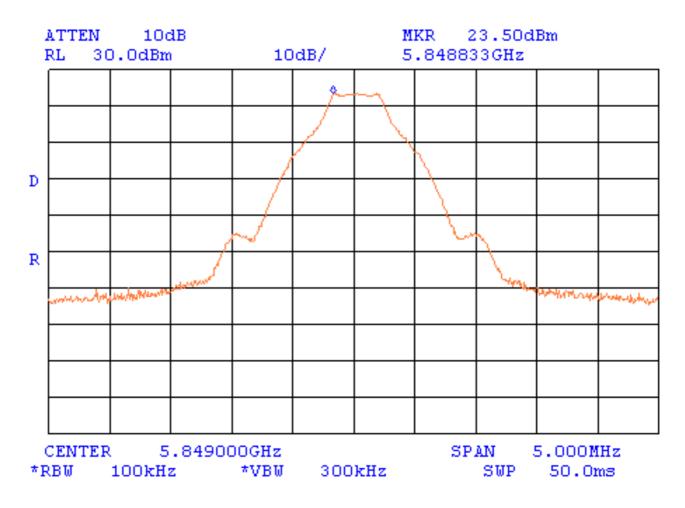
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 18 – 26.5 GHz



Plot A41

Conducted spurious emission measurements

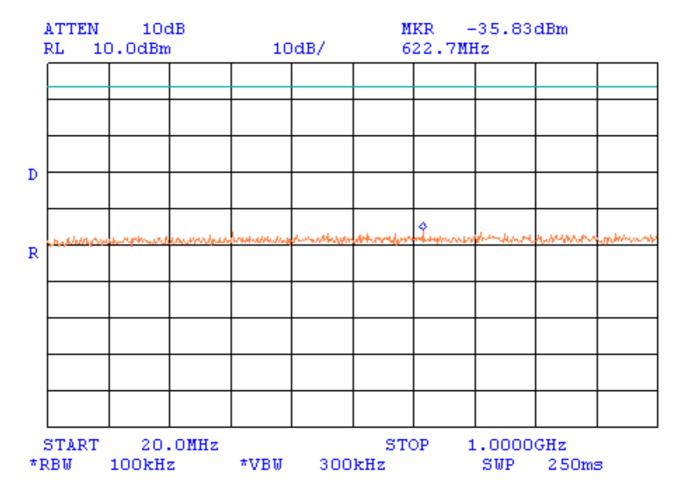
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 26.5 – 40 GHz



Plot A42

Conducted spurious emission measurements

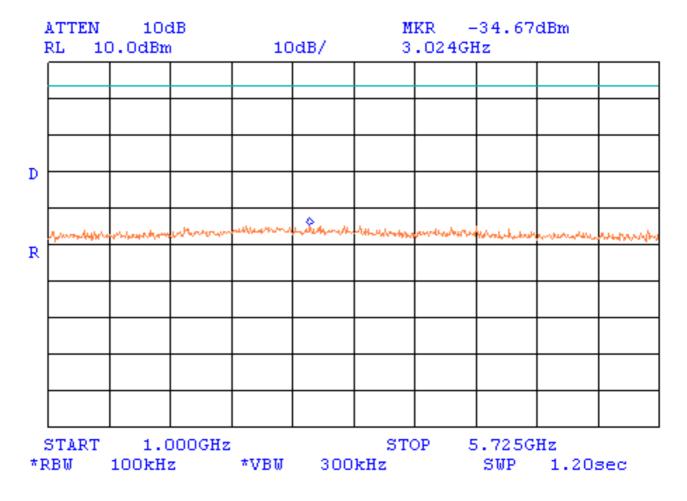
Mode: F_{HIGH}: Bit rate: Hopping 5.849 GHz 3 Mbit/s


Limit for spurious emissions = 23.5 dBm – 20 dB = 3.5 dBm

Plot A43

Conducted spurious emission measurements

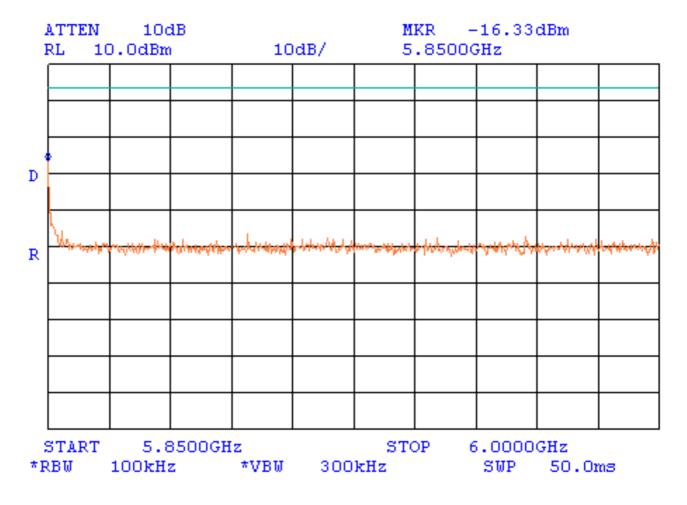
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 20 MHz – 1 GHz



Plot A44

Conducted spurious emission measurements

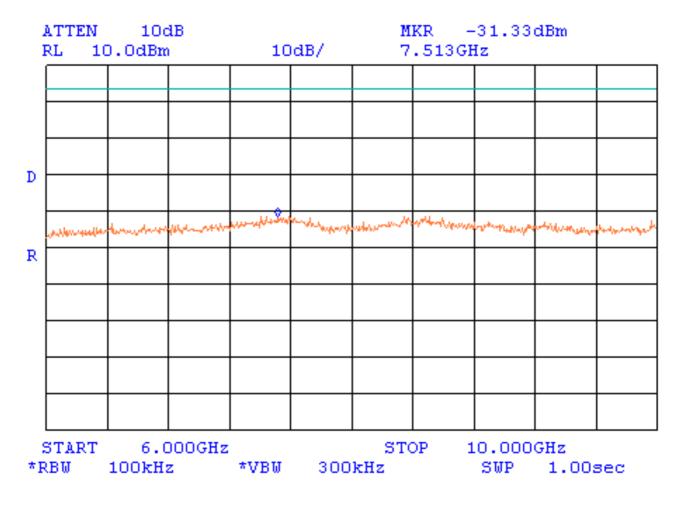
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 1 – 5.725 GHz



Plot A45

Conducted spurious emission measurements

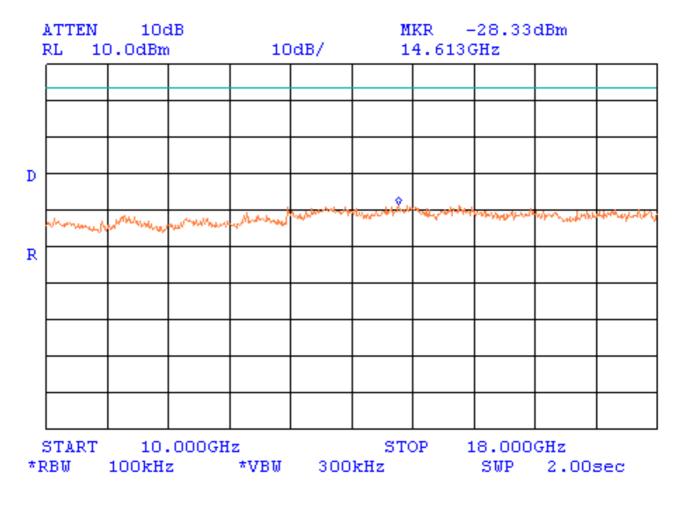
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 5.85 – 6 GHz



Plot A46

Conducted spurious emission measurements

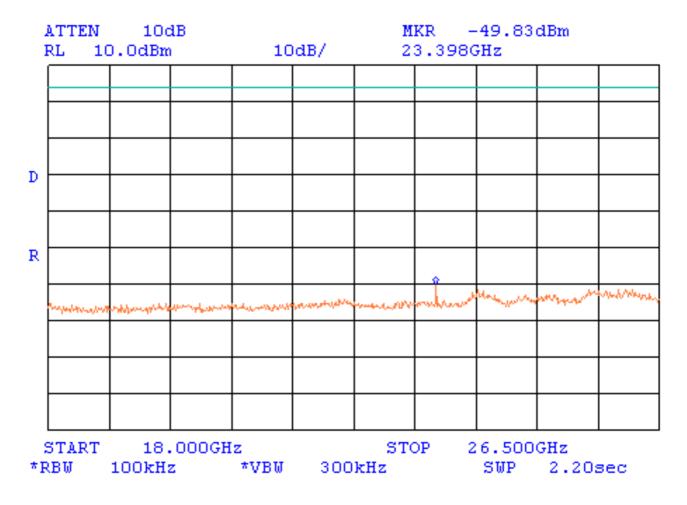
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 6 – 10 GHz



Plot A47

Conducted spurious emission measurements

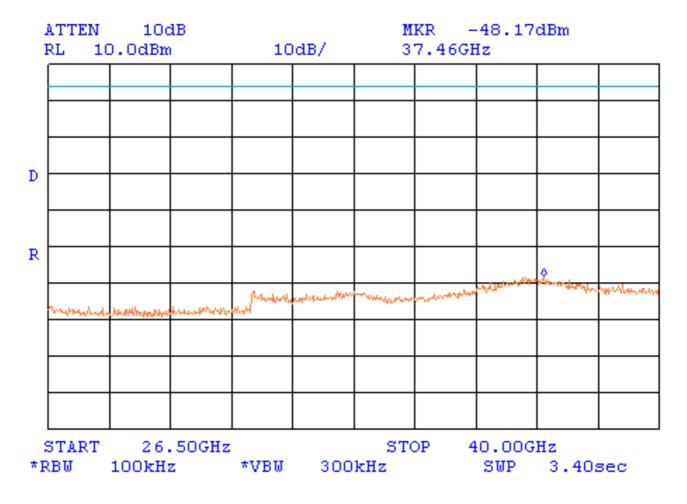
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 10 – 18 GHz



Plot A48

Conducted spurious emission measurements

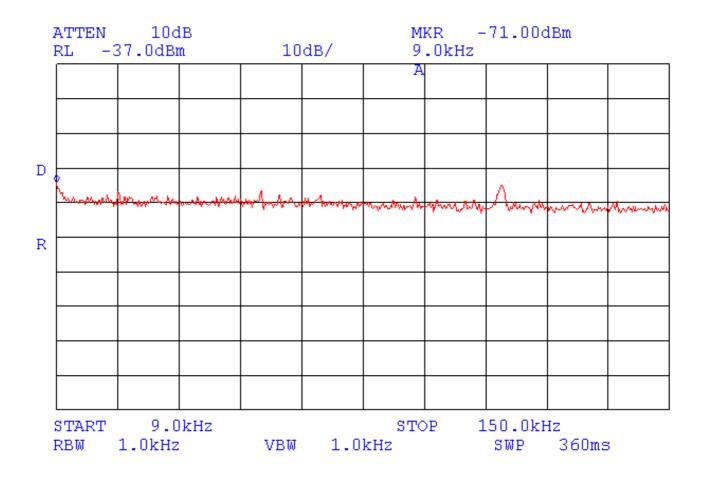
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 18 – 26.5 GHz


Limit for spurious emissions = 3.5 dBm No spurious emissions were found except 4th harmonic of fundamental

Plot A49

Conducted spurious emission measurements

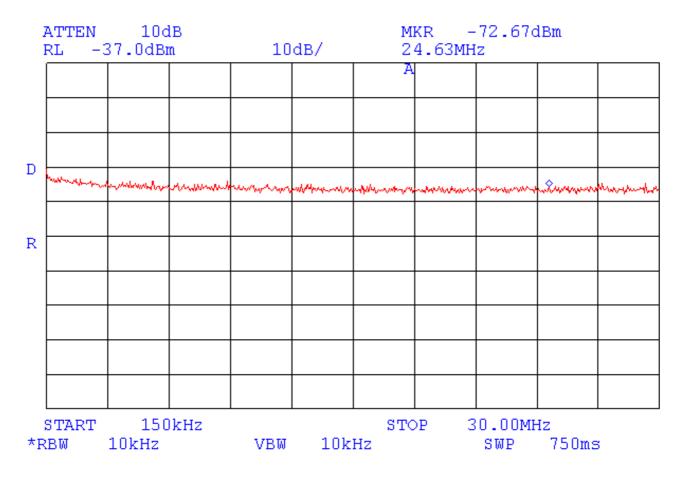
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 26.5 – 40 GHz



Plot A50

Conducted spurious emission measurements

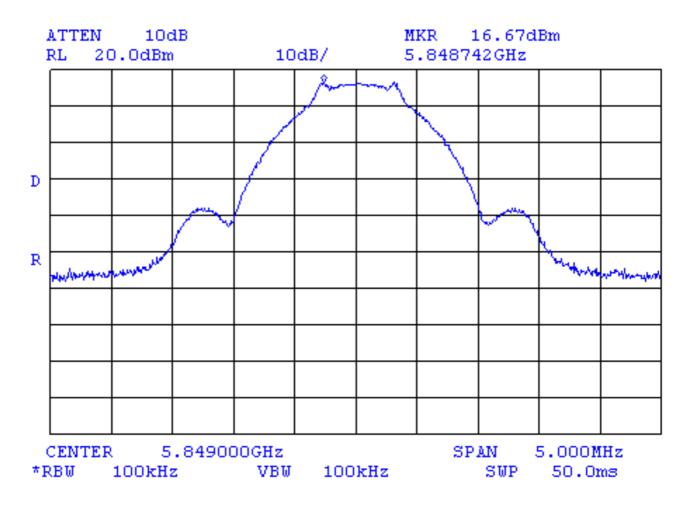
Mode:	Hopping
Carrier frequencies:	5.726 GHz (low), 5.8 GHz (middle); 5.849 GHz (high)
Bit rate:	3 Mbit/s
Frequency range:	9 – 150 kHz



Plot A51

Conducted spurious emission measurements

Mode:	Hopping
Carrier frequencies:	5.726 GHz (low), 5.8 GHz (middle); 5.849 GHz (high)
Bit rate:	3 Mbit/s
Frequency range:	150 kHz – 30 MHz



Plot A52

Conducted spurious emission measurements

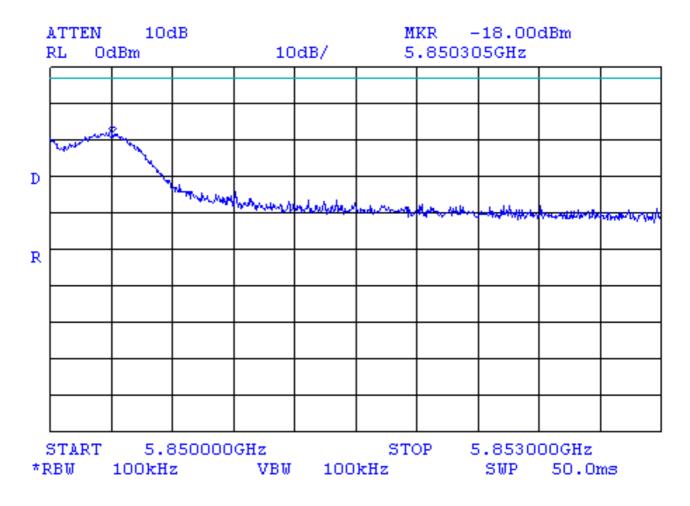
Mode: F_{ніGн}: Bit rate: Hybrid 5.849 GHz 4 Mbit/s

Limit for spurious emissions = 16.67 dBm – 20 dB = – 3.33 dBm

Plot A53

Conducted spurious emission measurements

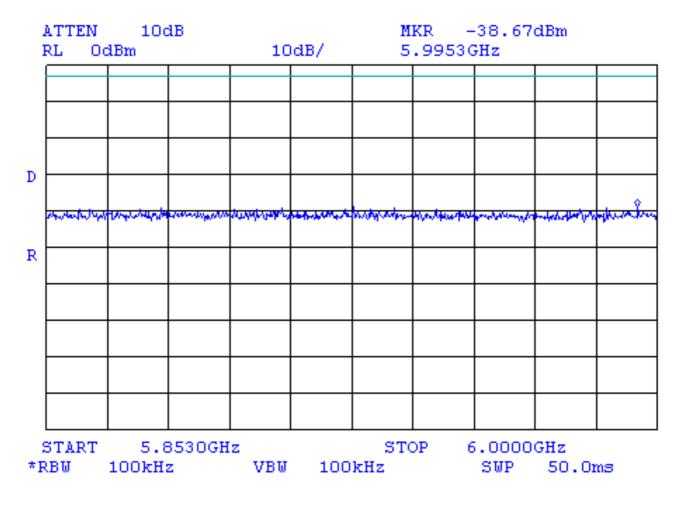
Mode: F_{HIGH}: Bit rate: Frequency range: Hybrid 5.849 GHz 4 Mbit/s 5.850 – 5.853 GHz


Limit for spurious emissions = -3.33 dBm

Plot A54

Conducted spurious emission measurements

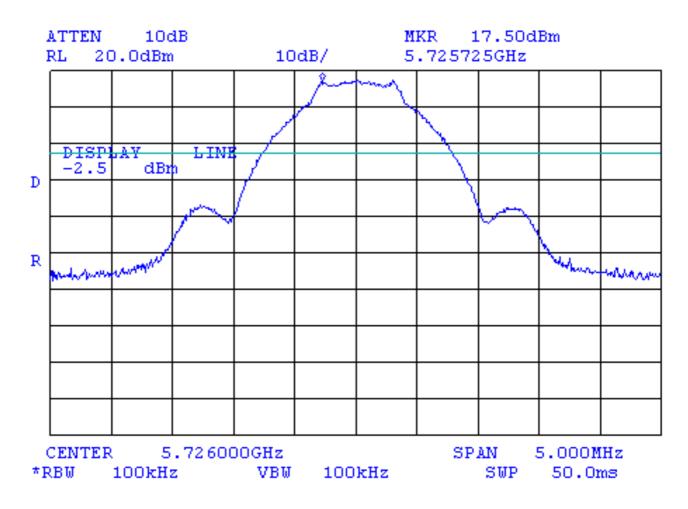
Mode: F_{HIGH}: Bit rate: Frequency range: Hybrid 5.849 GHz 1.33 Mbit/s 5.850 – 5.853 GHz


Limit for spurious emissions = -3.33 dBm

Plot A55

Conducted spurious emission measurements

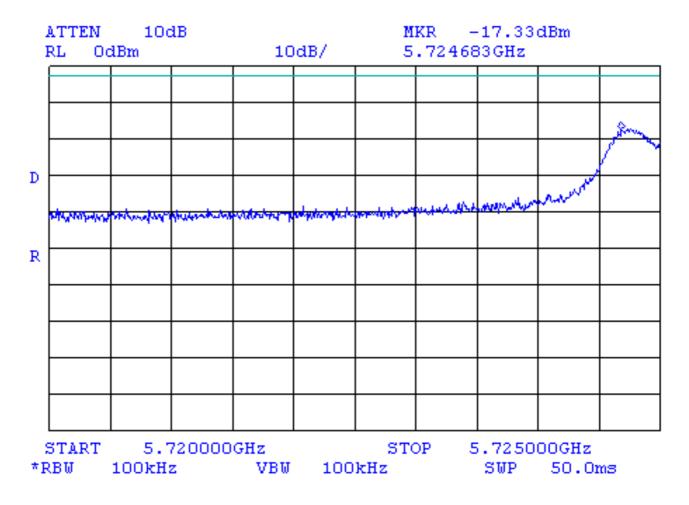
Mode: F_{HIGH}: Bit rate: Frequency range: Hybrid 5.849 GHz 4 Mbit/s 5.853 – 6.000 GHz


Limit for spurious emissions = -3.33 dBm No spurious emissions were found

Plot A56

Conducted spurious emission measurements

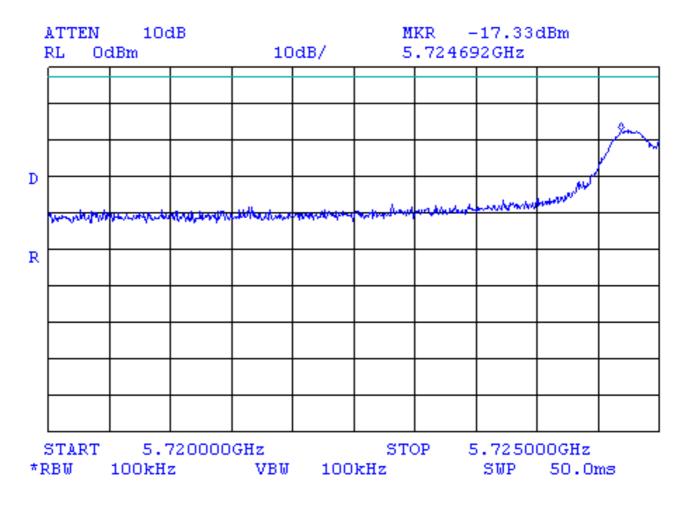
Mode: F_{LOW}: Bit rate: Hybrid 5.726 GHz 1.33 Mbit/s


Limit for spurious emissions = 17.5 dBm - 20 dB = -2.5 dBm

Plot A57

Conducted spurious emission measurements

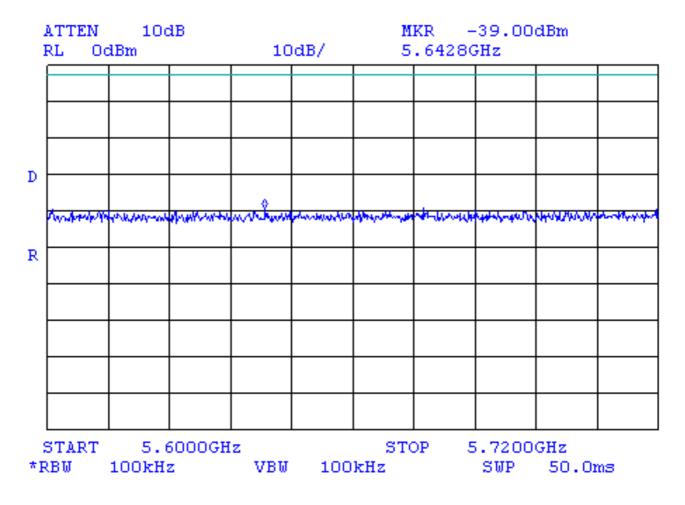
Mode: F_{LOW}: Bit rate: Frequency range: Hybrid 5.726 GHz 1.33 Mbit/s 5.720 – 5.725 GHz


Limit for spurious emissions = -2.5 dBm

Plot A58

Conducted spurious emission measurements

Mode: F_{LOW}: Bit rate: Frequency range: Hybrid 5.726 GHz 4 Mbit/s 5.720 – 5.725 GHz

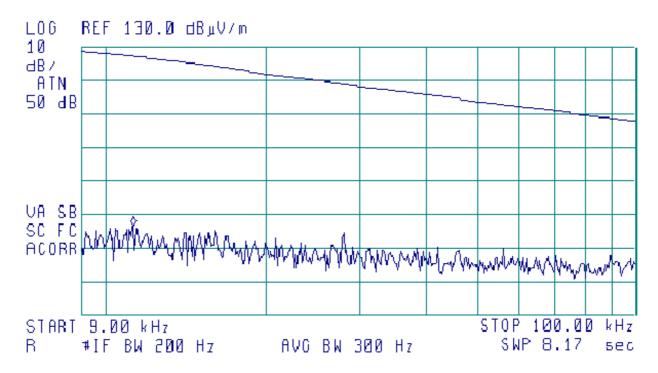

Limit for spurious emissions = -2.5 dBm

Plot A59

Conducted spurious emission measurements

Mode: F_{LOW}: Bit rate: Frequency range: Hybrid 5.726 GHz 4 Mbit/s 5.600 – 5.720 GHz

Limit for spurious emissions = -2.5 dBm No spurious emissions were found


Plot A60

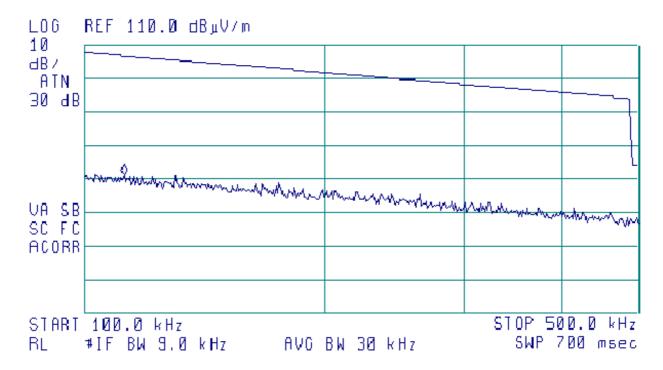
Radiated spurious emission measurements

Mode:	Hopping
Carrier frequencies:	5.726 GHz (low), 5.8 GHz (middle); 5.849 GHz (high)
Bit rate:	3 Mbit/s
Frequency range:	9 – 100 kHz

Ø

 DET: DET:	PEAK Peak op avg
	MKR 11.28 kHz 76.53 dBµV∕m

No spurious emissions were found


Plot A61

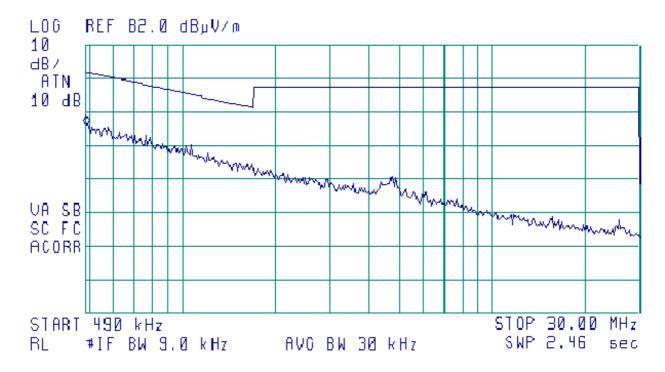
Radiated spurious emission measurements

Mode:	Hopping
Carrier frequencies:	5.726 GHz (low), 5.8 GHz (middle); 5.849 GHz (high)
Bit rate:	3 Mbit/s
Frequency range:	100 – 500 kHz

Ø

 DET: DET:	PEAK PEAK OP AVG
	MKB 112.2 kHz 71.25 dBµV/m

No spurious emissions were found


Plot A62

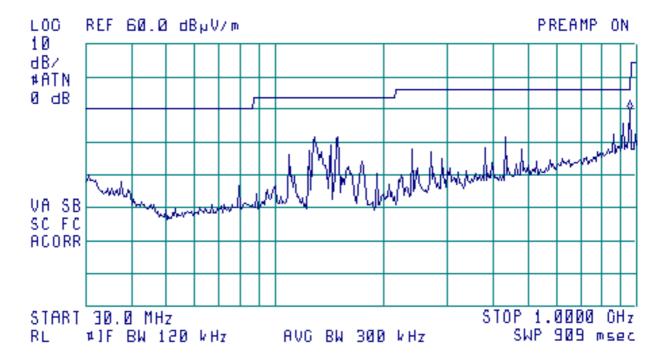
Radiated spurious emission measurements

Mode:	Hopping
Carrier frequencies:	5.726 GHz (low), 5.8 GHz (middle); 5.849 GHz (high)
Bit rate:	3 Mbit/s
Frequency range:	490 kHz – 30 MHz

Ø

ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 490 kHz 58.09 dBµV/m

No spurious emissions were found


Plot A63

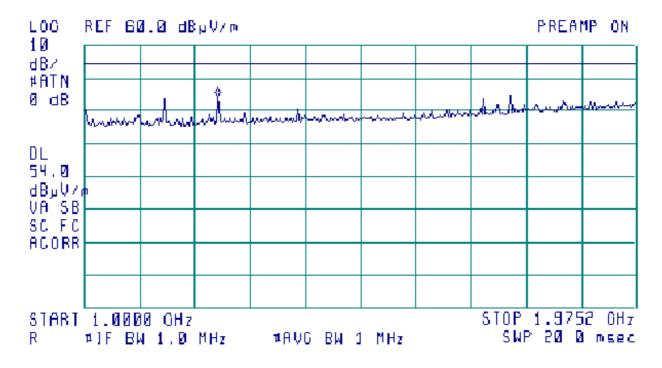
Radiated spurious emission measurements

Mode:	Hopping
Carrier frequencies:	5.726 GHz (low), 5.8 GHz (middle); 5.849 GHz (high)
Bit rate:	3 Mbit/s
Frequency range:	30 MHz– 1 GHz

[@ð] 16·33:12 - 16 JUN 2003

 DET: DET:		0P	AV	0
	MKR 39	952 74		

Plot A64

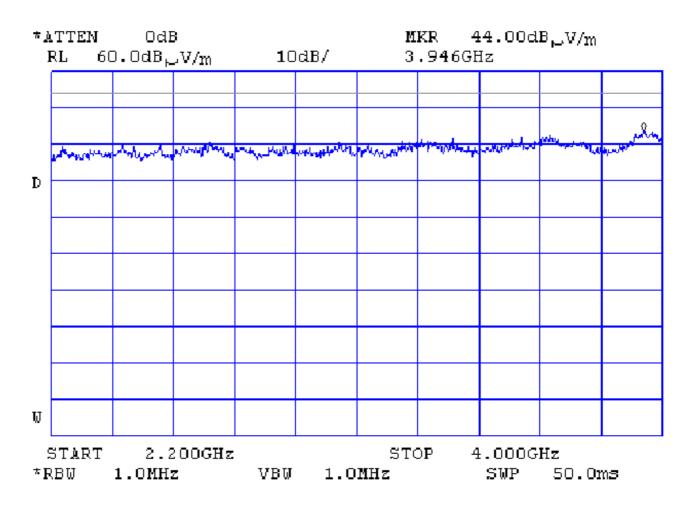

Radiated spurious emission measurements in restricted bands

Mode: F_{LOW} : Bit rate: Frequency range:

Hopping 5.726 GHz 3 Mbit/s 1 – 1.97 GHz

「⑦②」14・30:41 16 JUN 2003

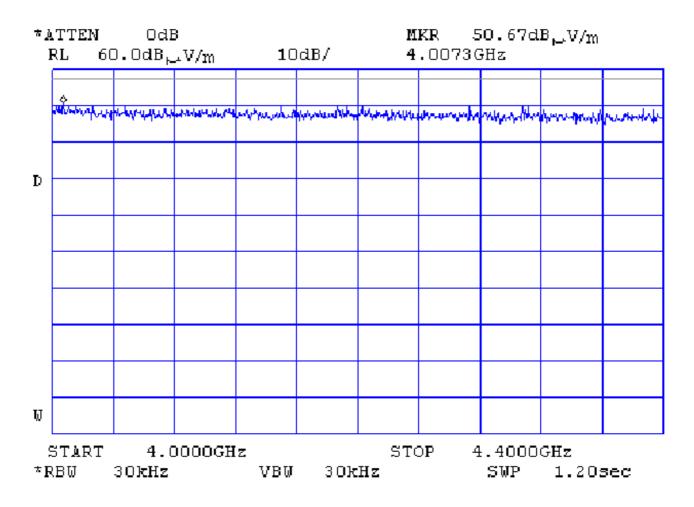
ACTV DET: PEAK MEAS DET: PEAK OP AVC MKR 1.2340 OHz 44 01 dBµV/m


Limit (average) for radiated spurious emissions in restricted bands is 54 dB(μ V/m)

Plot A65

Radiated spurious emission measurements in restricted bands

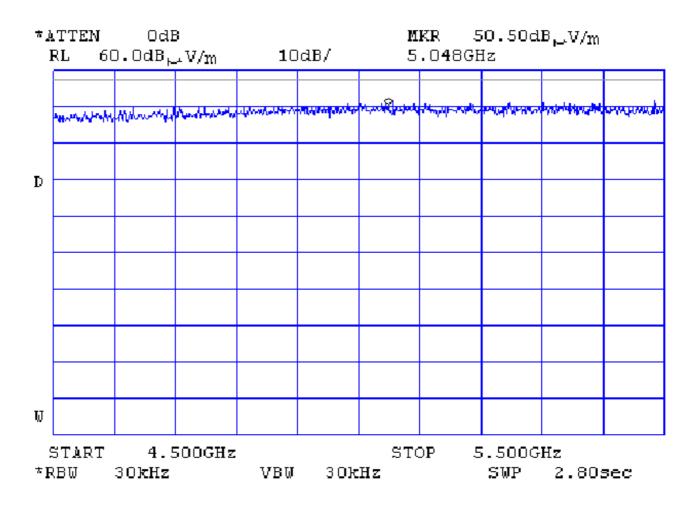
- Mode: F_{LOW}: Bit rate: Frequency range:
- Hopping 5.726 GHz 3 Mbit/s 2.2 – 4 GHz



Plot A66

Radiated spurious emission measurements in restricted bands

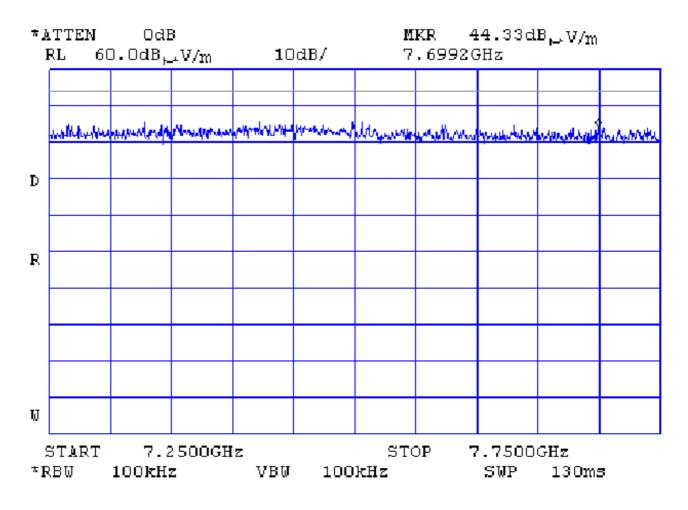
- Mode: F_{LOW}: Bit rate: Frequency range:
- Hopping 5.726 GHz 3 Mbit/s 4 – 4.4 GHz



Limit (average) for radiated spurious emissions in restricted bands is 57.5 dB(μ V/m) at 2 m test distance No spurious emissions were found

Plot A67

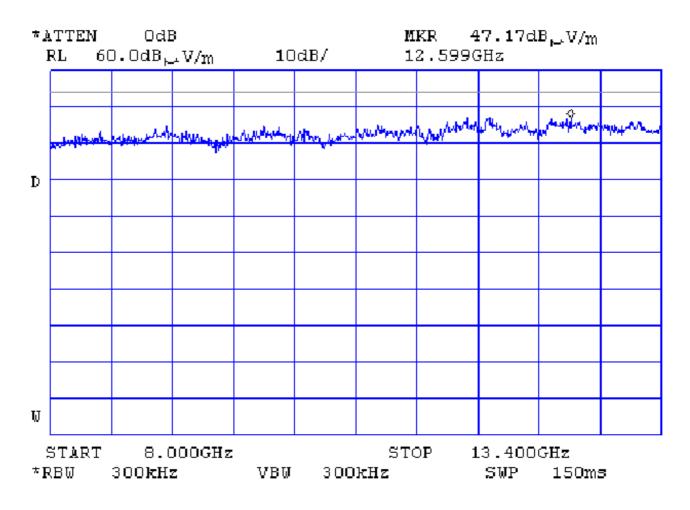
Radiated spurious emission measurements in restricted bands


Limit (average) for radiated spurious emissions in restricted bands is 57.5 dB(μ V/m) at 2 m test distance No spurious emissions were found

Plot A68

Radiated spurious emission measurements in restricted bands

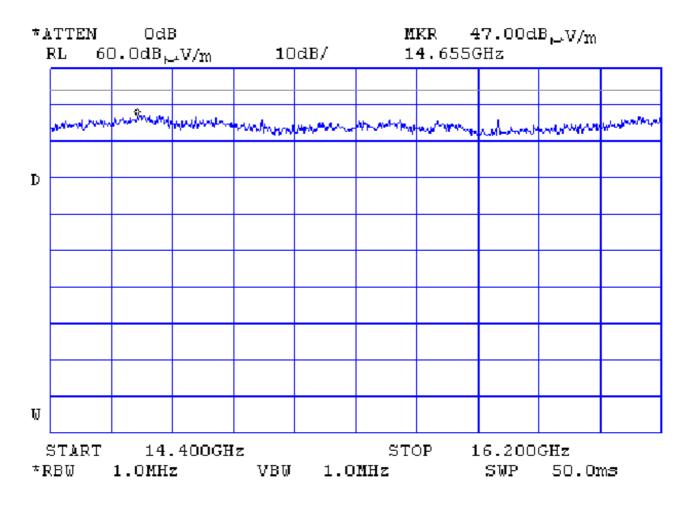
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 7.25 – 7.75 GHz



Plot A69

Radiated spurious emission measurements in restricted bands

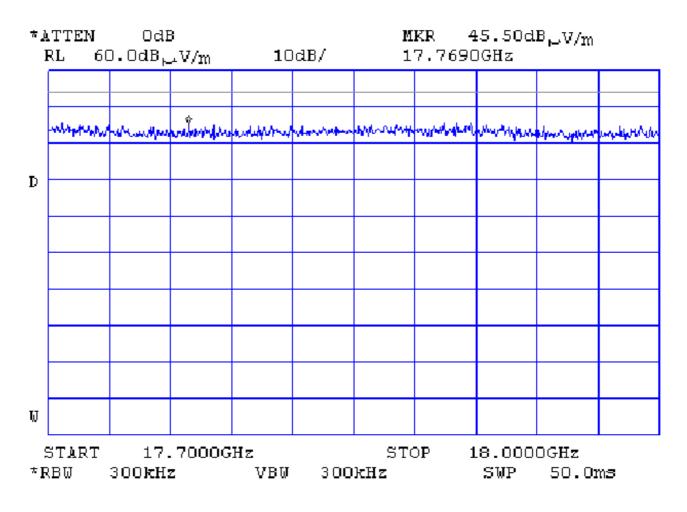
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 8 – 13.4 GHz



Plot A70

Radiated spurious emission measurements in restricted bands

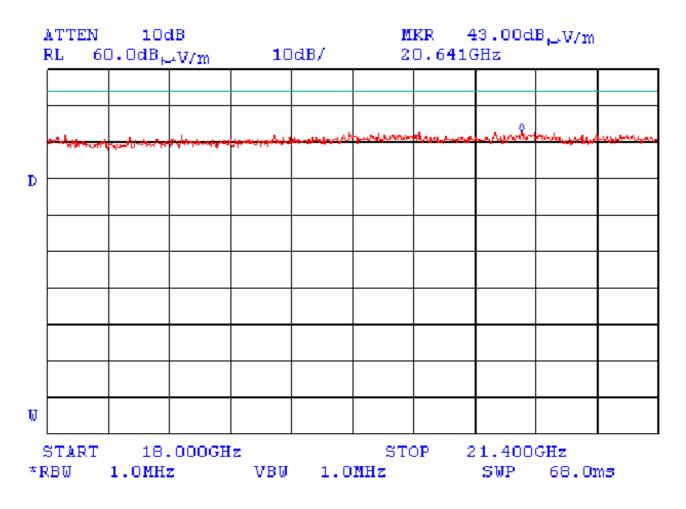
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 14.4 – 16.2 GHz



Plot A71

Radiated spurious emission measurements in restricted bands

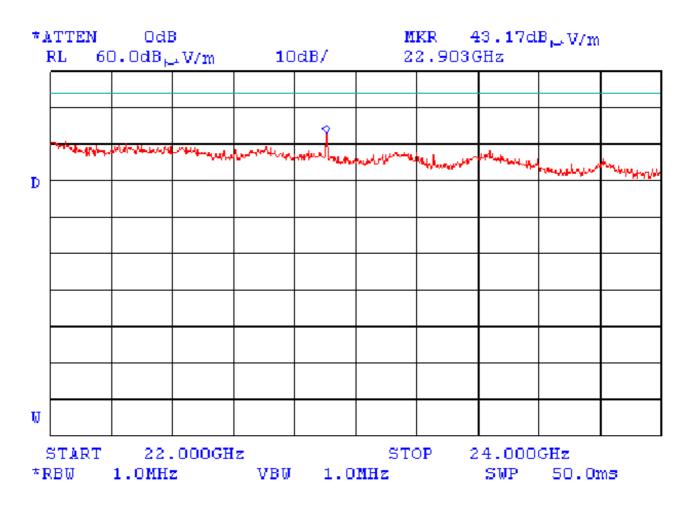
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 17.7 – 18 GHz



Plot A72

Radiated spurious emission measurements in restricted bands

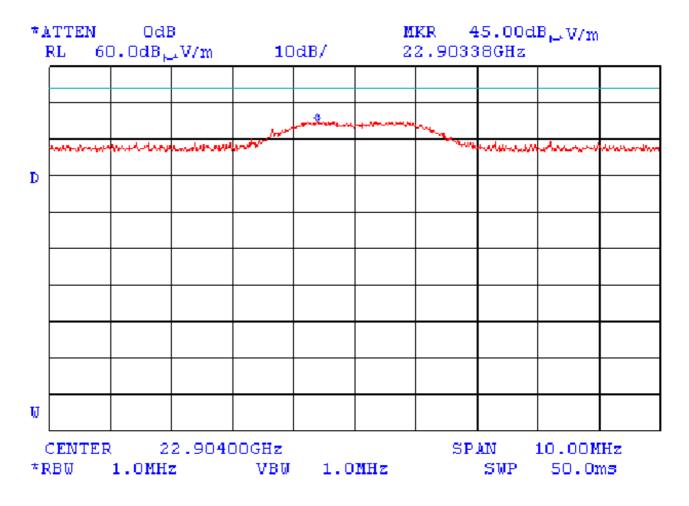
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 18 – 21.4 GHz



Plot A73

Radiated spurious emission measurements in restricted bands

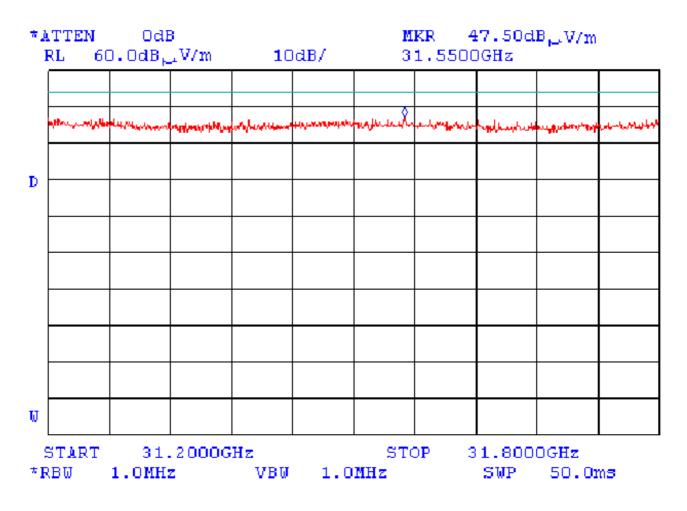
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 22 – 24 GHz


Limit (average) for radiated spurious emissions in restricted bands is 54 dB(μ V/m) No spurious emissions except 4th harmonic were found

Plot A74

Radiated spurious emission measurements in restricted bands

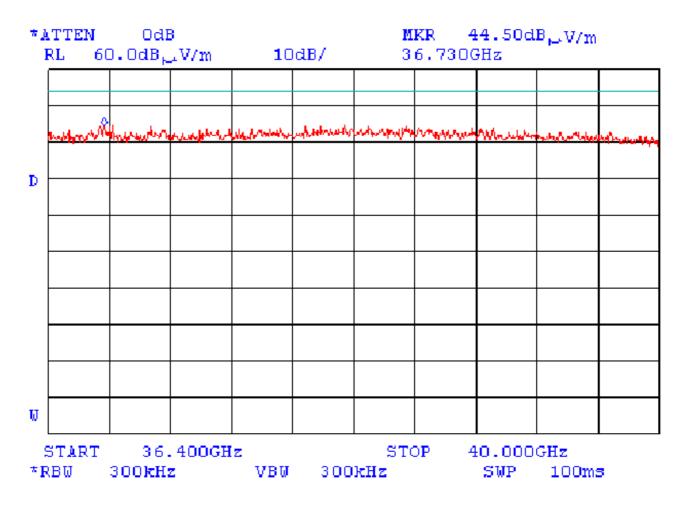
Mode: F_{LOW}: Bit rate: Center frequency: Hopping 5.726 GHz 3 Mbit/s 22.904 GHz


Peak limit for radiated emission is 74 dB(μ V/m) E_{peak} = 45 dB(μ V/m)

Plot A75

Radiated spurious emission measurements in restricted bands

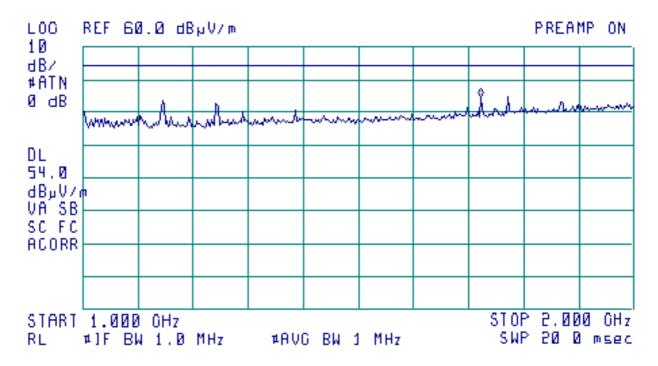
Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 31.2 – 31.8 GHz



Plot A76

Radiated spurious emission measurements in restricted bands

Mode: F_{LOW}: Bit rate: Frequency range: Hopping 5.726 GHz 3 Mbit/s 36.4 – 40 GHz

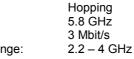

Plot A77

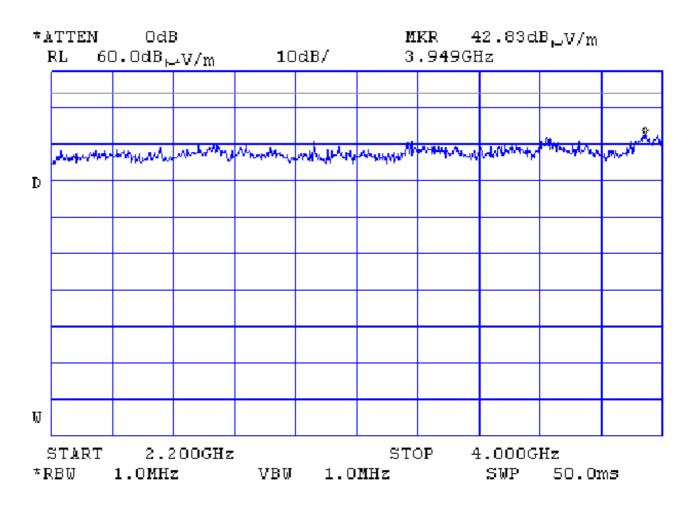
Radiated spurious emission measurements in restricted bands

Mode:	Hopping
F _{MIDDLE} :	5.8 GHz
Bit rate:	3 Mbit/s
Frequency range:	1 – 2 GHz

[@ð] 14·27:02 16 JUN 2003

 DET: DET:		ΩP	AU	6
 	MKB	1.7	53	-

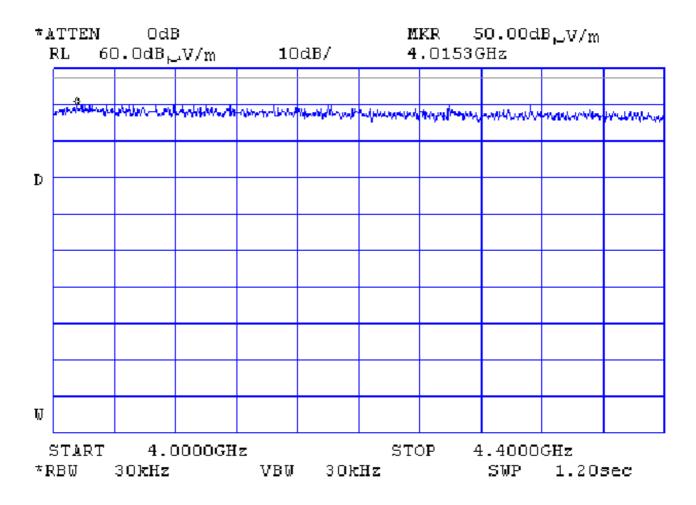

Limit (average) for radiated spurious emissions in restricted bands is 54 dB(μ V/m)



Plot A78

Radiated spurious emission measurements in restricted bands

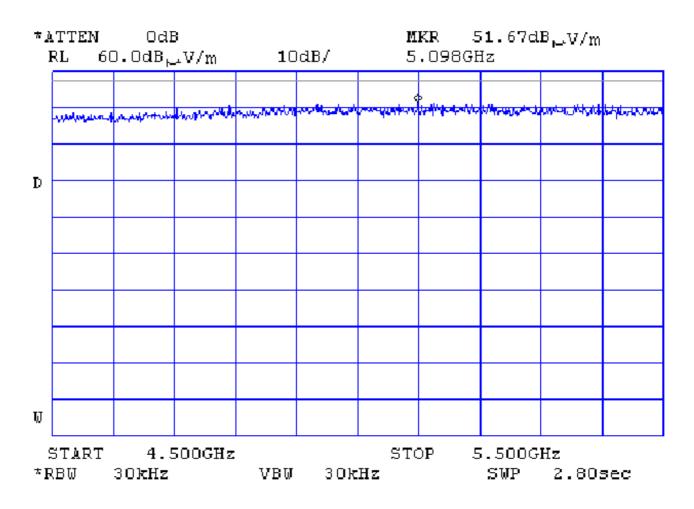
Mode: F_{MIDDLE}: Bit rate: Frequency range:



Plot A79

Radiated spurious emission measurements in restricted bands

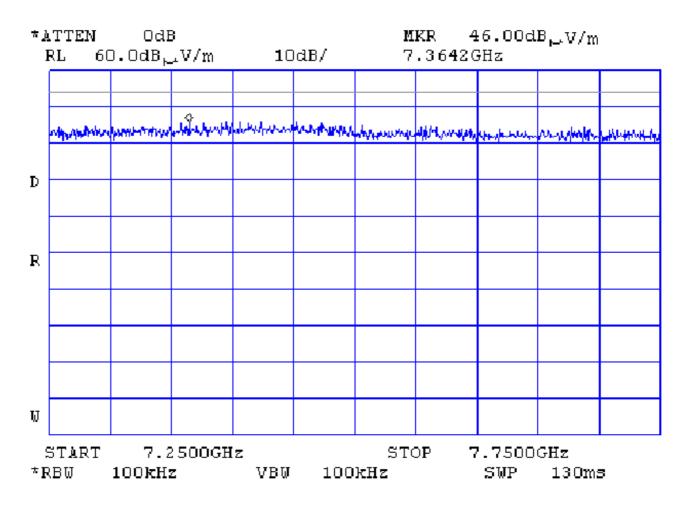
- Mode: F_{MIDDLE}: Bit rate: Frequency range:
- Hopping 5.8 GHz 3 Mbit/s 4 – 4.4 GHz



Limit (average) for radiated spurious emissions in restricted bands is 57.5 dB(μ V/m) at 2 m test distance No spurious emissions were found

Plot A80

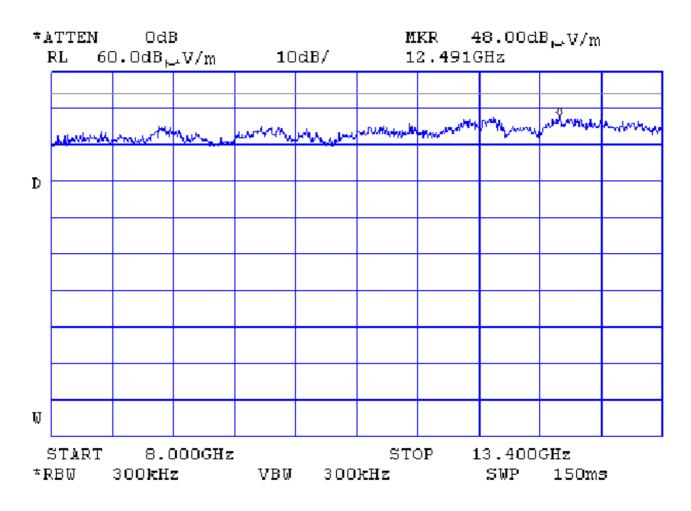
Radiated spurious emission measurements in restricted bands


Limit (average) for radiated spurious emissions in restricted bands is 57.5 dB(μ V/m) at 2 m test distance No spurious emissions were found

Plot A81

Radiated spurious emission measurements in restricted bands

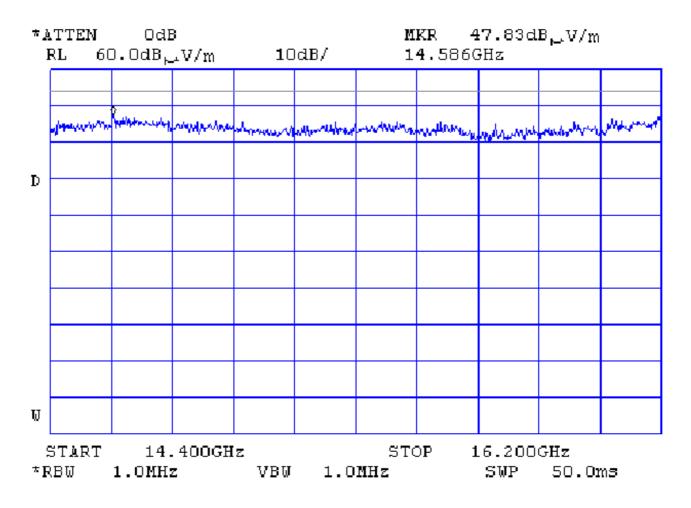
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 7.25 – 7.75 GHz



Plot A82

Radiated spurious emission measurements in restricted bands

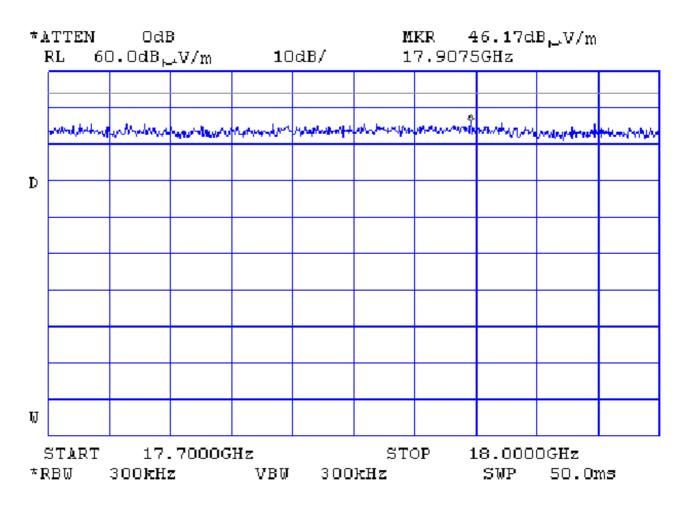
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 8 – 13.4 GHz



Plot A83

Radiated spurious emission measurements in restricted bands

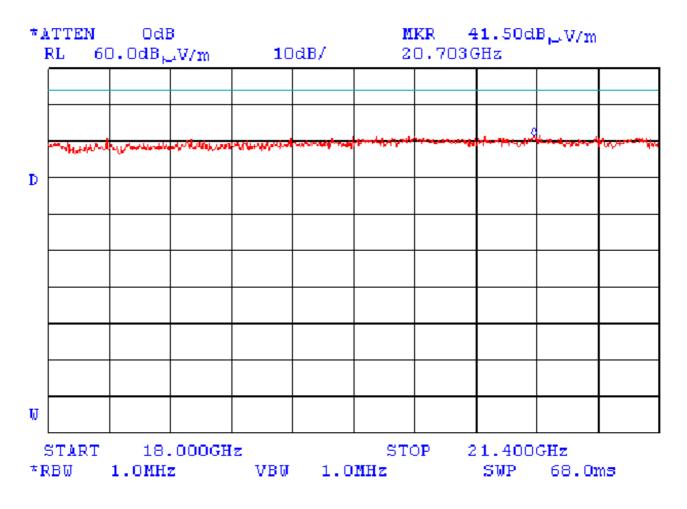
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 14.4 – 16.2 GHz



Plot A84

Radiated spurious emission measurements in restricted bands

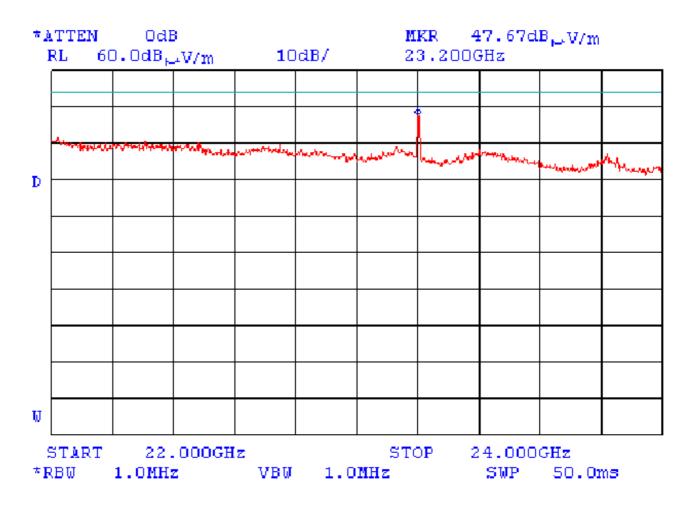
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 17.7 – 18 GHz



Plot A85

Radiated spurious emission measurements in restricted bands

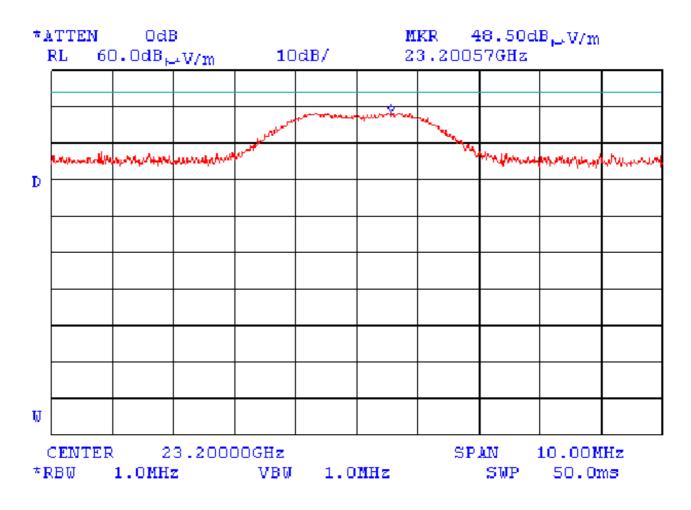
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 18 – 21.4 GHz



Plot A86

Radiated spurious emission measurements in restricted bands

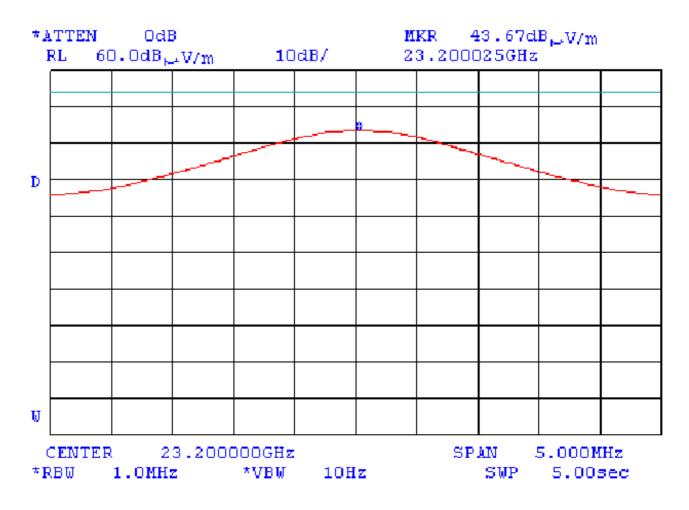
- Mode: F_{MIDDLE}: Bit rate: Frequency range:
- Hopping 5.8 GHz 3 Mbit/s 22 – 24 GHz


Limit (average) for radiated spurious emissions in restricted bands is 54 dB(μ V/m) No spurious emissions except 4th harmonic were found

Plot A87

Radiated spurious emission measurements in restricted bands

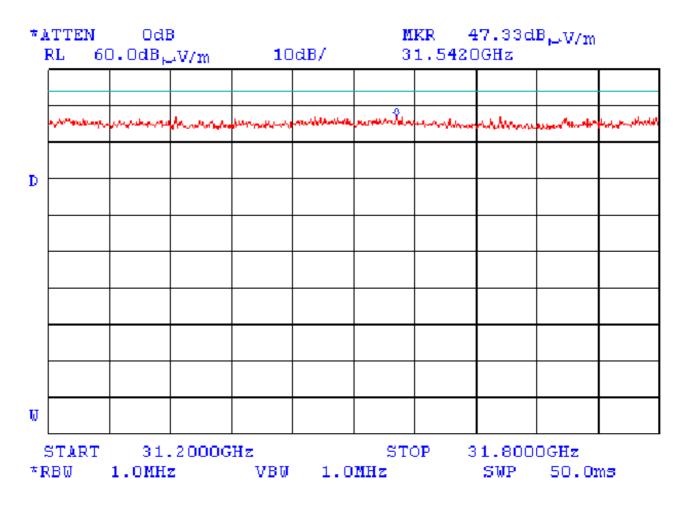
- Mode: F_{MIDDLE}: Bit rate: Center frequency:
- Hopping 5.8 GHz 3 Mbit/s 23.2 GHz


Limit (average) for radiated spurious emissions in restricted bands is 54 dB(μ V/m) E_{peak} = 48.5 dB(μ V/m)

Plot A88

Radiated spurious emission measurements in restricted bands

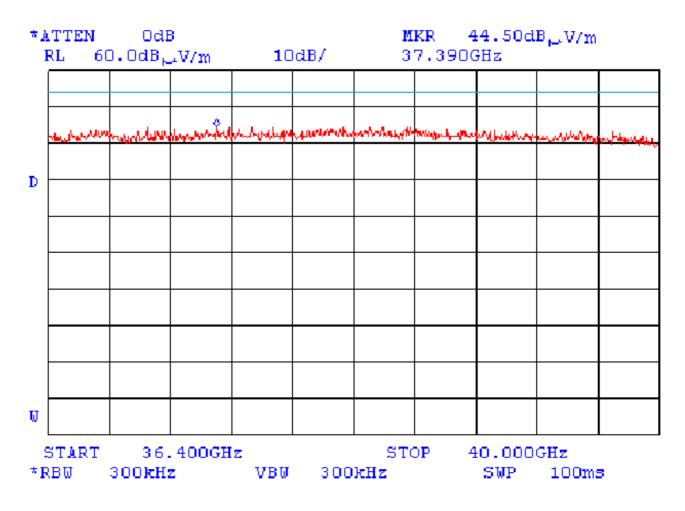
- Mode: F_{LOW}: Bit rate: Center frequency:
- Hopping 5.8 GHz 3 Mbit/s 23.2 GHz


Limit (average) for radiated spurious emissions in restricted bands is 54 dB(μ V/m) E_{aver} = 43.67 dB(μ V/m)

Plot A89

Radiated spurious emission measurements in restricted bands

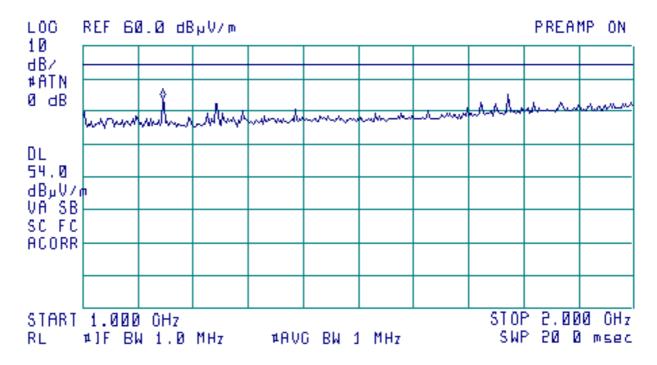
Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 31.2 – 31.8 GHz



Plot A90

Radiated spurious emission measurements in restricted bands

Mode: F_{MIDDLE}: Bit rate: Frequency range: Hopping 5.8 GHz 3 Mbit/s 36.4 – 40 GHz

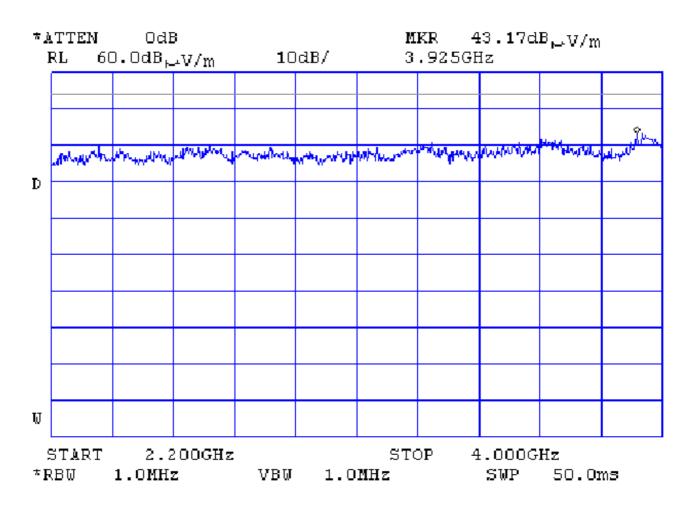

Plot A91

Radiated spurious emission measurements in restricted bands

- Mode: F_{HIGH}: Bit rate: Frequency range:
- Hopping 5.849 GHz 3 Mbit/s 1 – 2 GHz

👩 14·20:50 16 JUN 2003

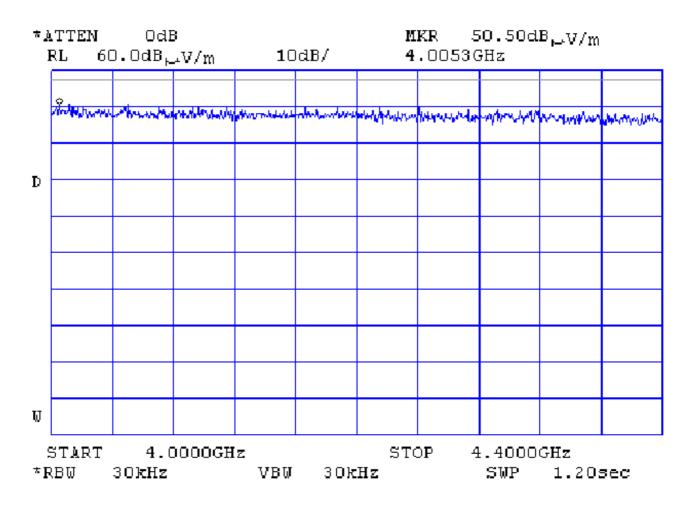
ACTV DET: PEAK MEAS DET: PEAK OP AVC MKR 1.145 OHz 43 98 dBµV/m


Limit (average) for radiated spurious emissions in restricted bands is 54 dB(µV/m)

Plot A92

Radiated spurious emission measurements in restricted bands

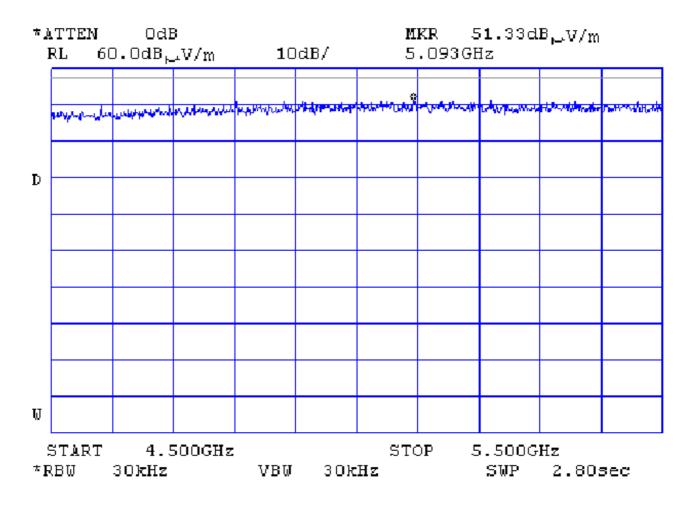
- Mode: F_{HIGH}: Bit rate: Frequency range:
- Hopping 5.849 GHz 3 Mbit/s 2.2 – 4 GHz



Plot A93

Radiated spurious emission measurements in restricted bands

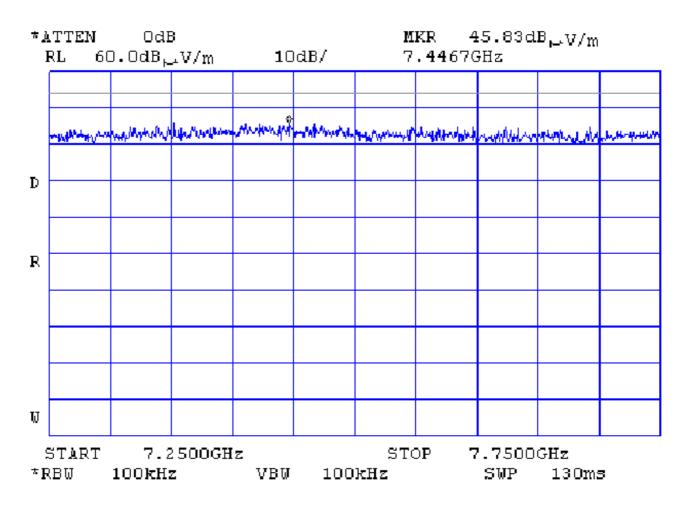
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 4 – 4.4 GHz


Limit (average) for radiated spurious emissions in restricted bands is 57.5 dB(μ V/m) at 2 m test distance No spurious emissions were found

Plot A94

Radiated spurious emission measurements in restricted bands

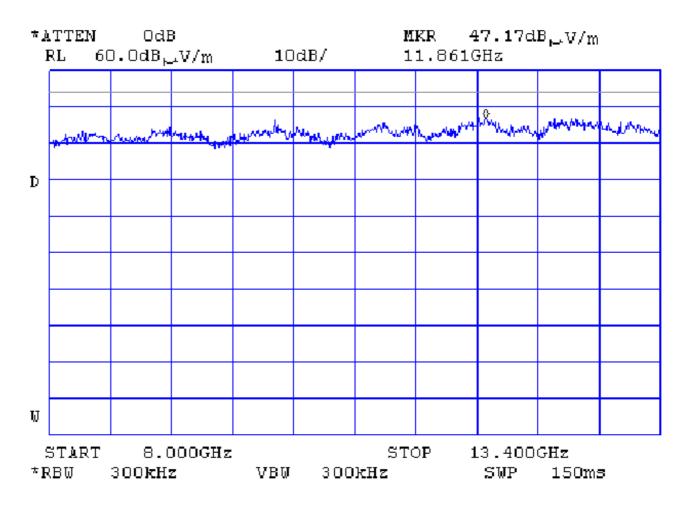
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 4.5 – 5.5 GHz


Limit (average) for radiated spurious emissions in restricted bands is 57.5 dB(μ V/m) at 2 m test distance No spurious emissions were found

Plot A95

Radiated spurious emission measurements in restricted bands

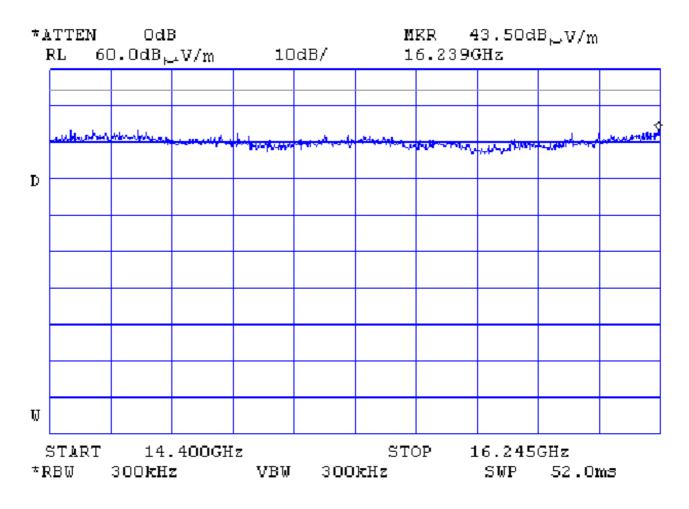
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 7.25 – 7.75 GHz



Plot A96

Radiated spurious emission measurements in restricted bands

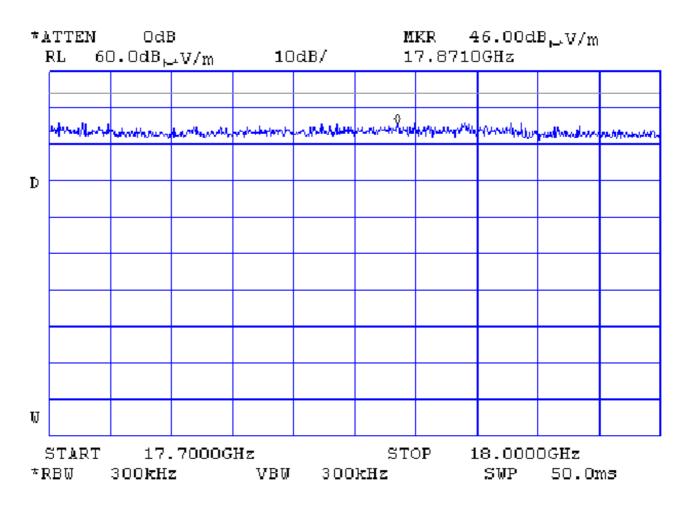
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 8 – 13.4 GHz



Plot A97

Radiated spurious emission measurements in restricted bands

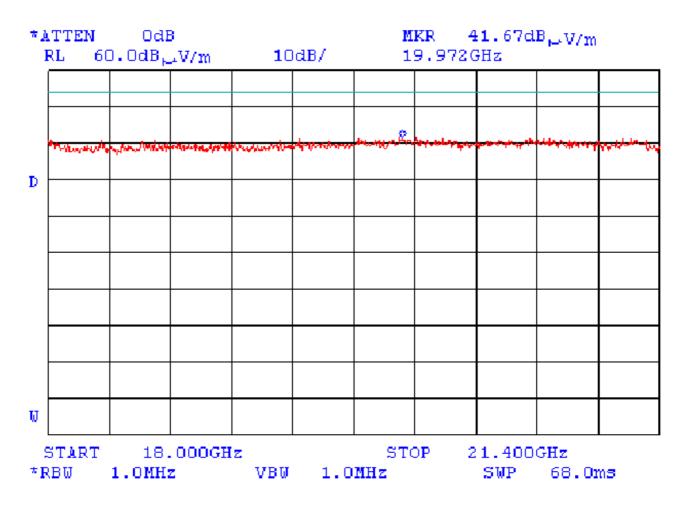
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 14.4 – 16.245 GHz



Plot A98

Radiated spurious emission measurements in restricted bands

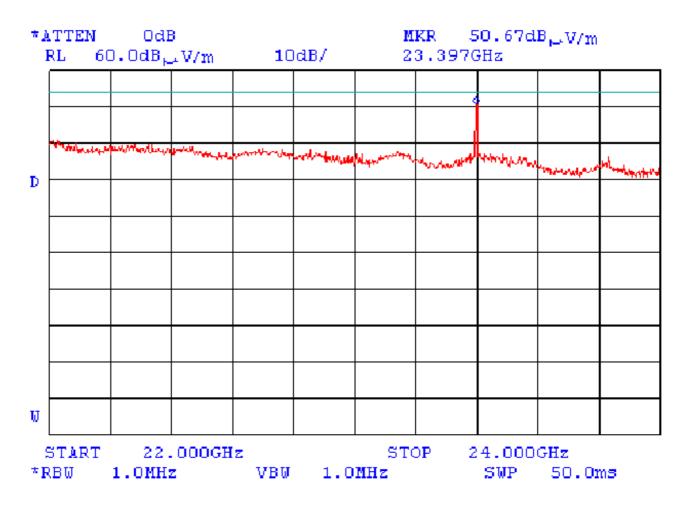
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 17.7 – 18 GHz



Plot A99

Radiated spurious emission measurements in restricted bands

Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 18 – 21.4 GHz

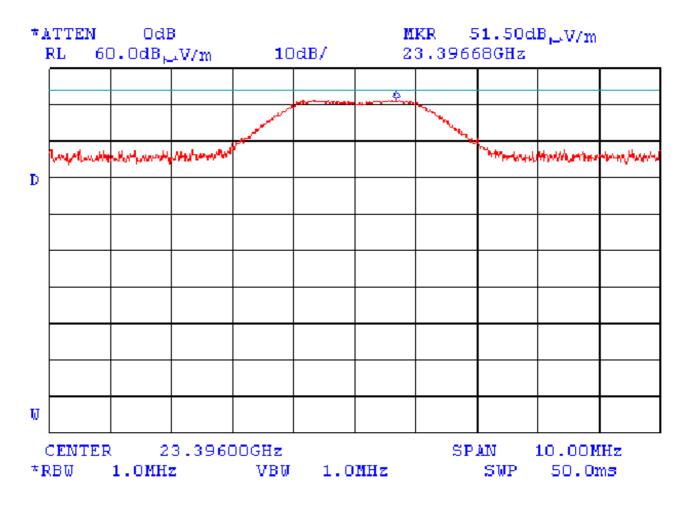


Plot A100

Radiated spurious emission measurements in restricted bands

Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 22 – 24 GHz

Limit (average) for radiated spurious emissions in restricted bands is 54 dB(μ V/m) No spurious emissions except 4th harmonic were found

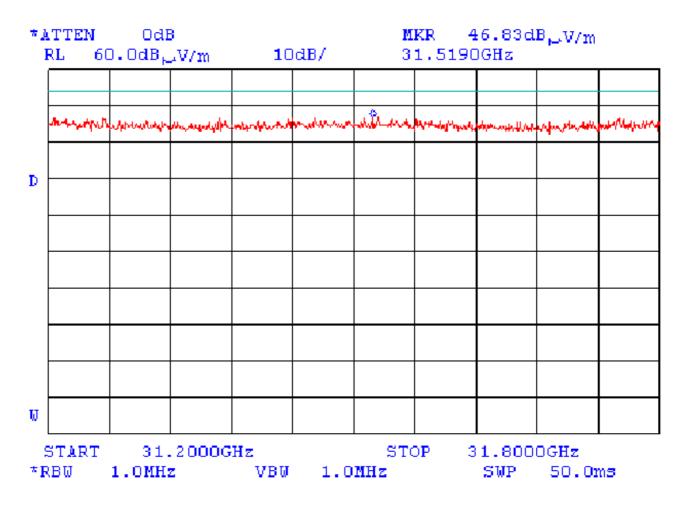


Plot A101

Radiated spurious emission measurements in restricted bands

Mode: F_{HIGH} : Bit rate: Center frequency:

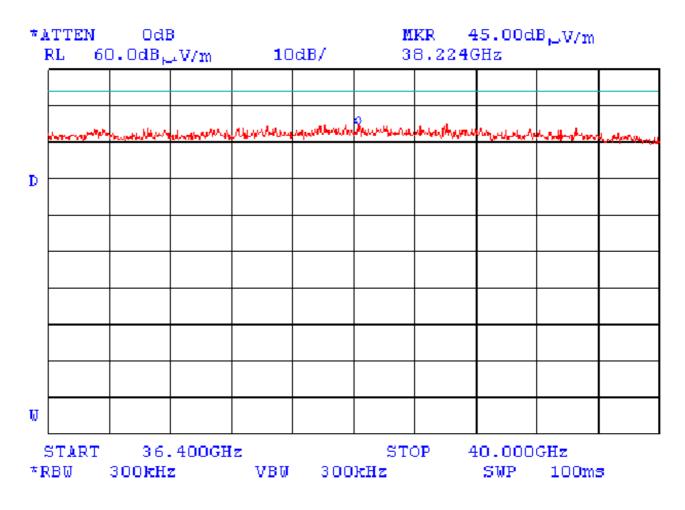
Hopping 5.849 GHz 3 Mbit/s 23.396 GHz


Limit (average) for radiated spurious emissions in restricted bands is 54 dB($\mu V/m)$ E_{peak} = 51.5 dB($\mu V/m)$

Plot A102

Radiated spurious emission measurements in restricted bands

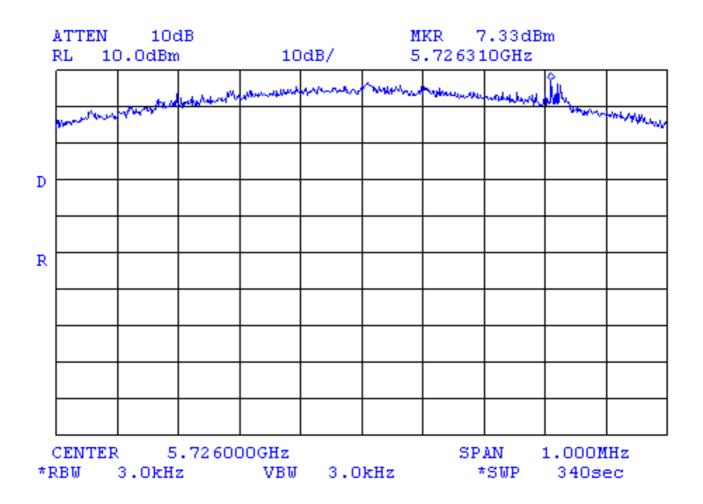
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 31.2 – 31.8 GHz



Plot A103

Radiated spurious emission measurements in restricted bands

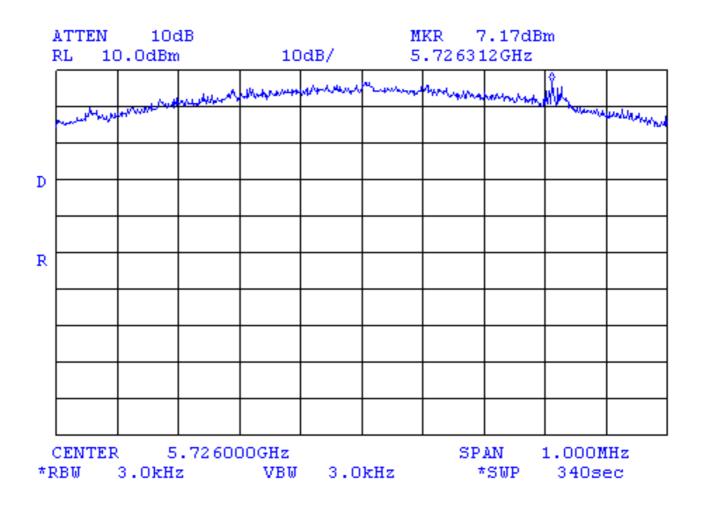
Mode: F_{HIGH}: Bit rate: Frequency range: Hopping 5.849 GHz 3 Mbit/s 36.4 – 40 GHz



Plot A104

Power density measurements

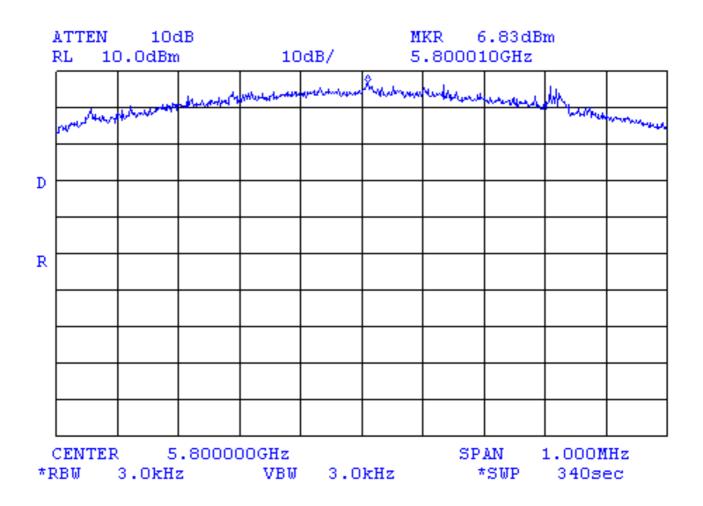
Mode: F_{LOW}: Bit rate: Hybrid (hopping turned off) 5.726 GHz 1.33 Mbit/s



Plot A105

Power density measurements

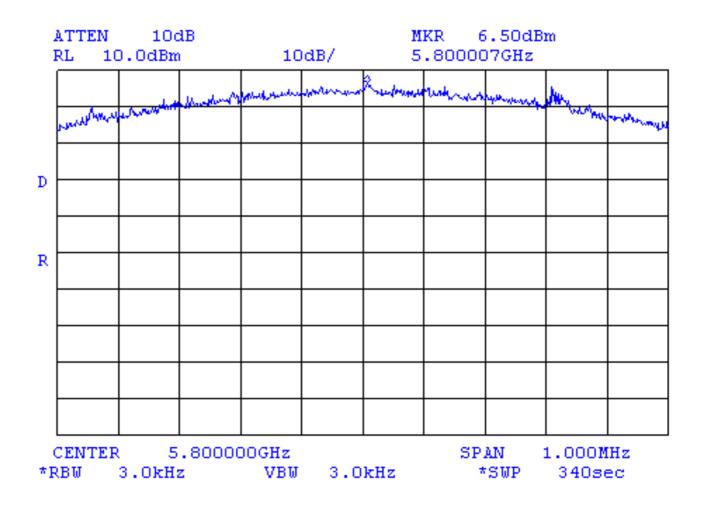
Mode: F_{LOW}: Bit rate: Hybrid (hopping turned off) 5.726 GHz 4 Mbit/s



Plot A106

Power density measurements

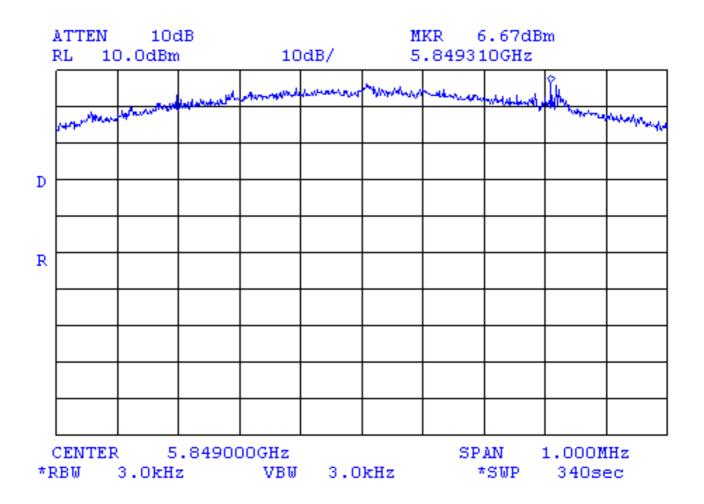
Mode: F_{MIDDLE}: Bit rate: Hybrid (hopping turned off) 5.8 GHz 1.33 Mbit/s



Plot A107

Power density measurements

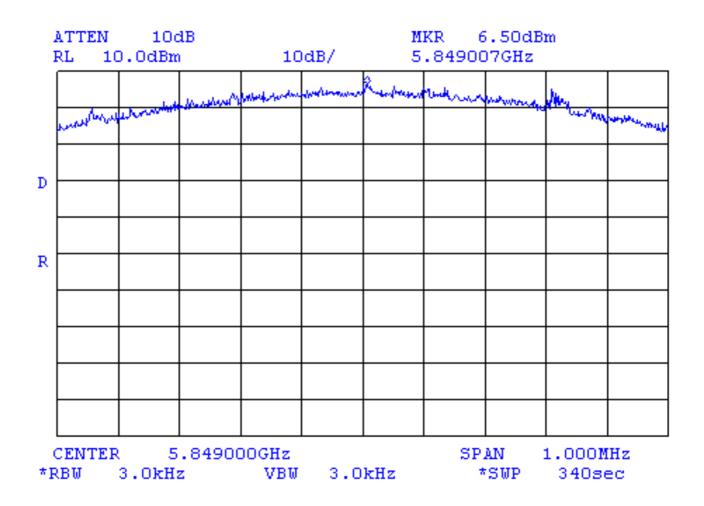
Mode: F_{MIDDLE}: Bit rate: Hybrid (hopping turned off) 5.8 GHz 4 Mbit/s



Plot A108

Power density measurements

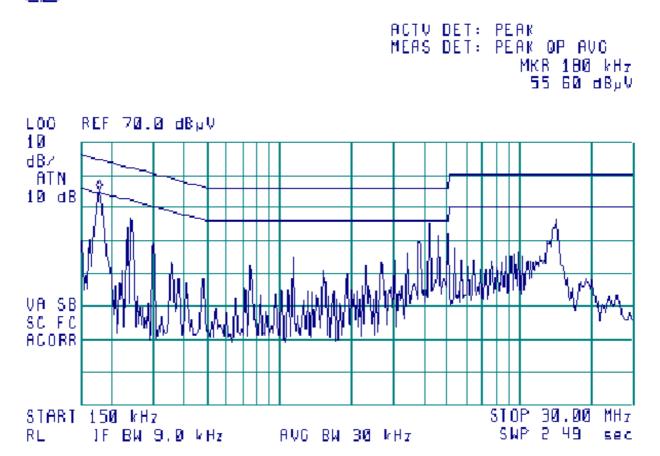
Mode: F_{HIGH}: Bit rate: Hybrid (hopping turned off) 5.849 GHz 1.33 Mbit/s



Plot A109

Power density measurements

Mode: F_{HIGH}: Bit rate: Hybrid (hopping turned off) 5.849 GHz 4 Mbit/s

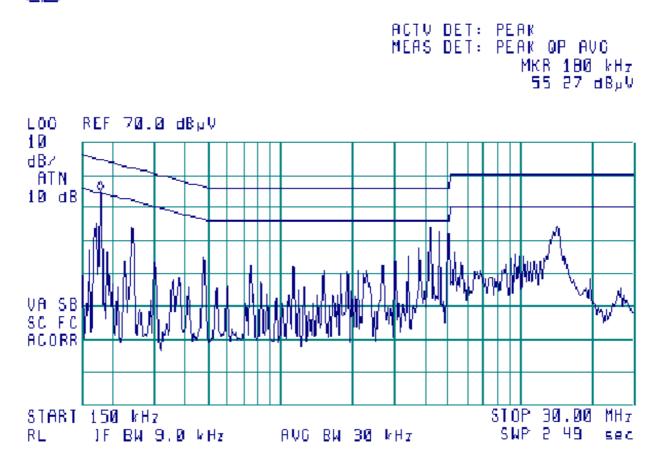


Plot A110

Conducted emission measurements at AC power line

Line identification: Limit: Detector used: Phase Quasi-peak, average Peak

[⑦〗] 14·27:09 JUL 01, 2003.



Plot A111

Conducted emission measurements at AC power line

Line identification: Limit: Detector used: Neutral Quasi-peak, average Peak

[⑦⑦] 14·36∶49 JUL 01, 2003

Frequency assignment

F1 F2

F3 F4

F5

F6

F7

F8 F9

F10

F11 F12

F13

F14

F15 F16

F17

F18 F19

F20

F21

F22 F23

F24

F25

F26 F27

F28 F29

F30 F31

F32

F33 F34

Appendix B Example of hopping frequency

Frequency, MHz	Frequency assignment	Frequency, MHz
5726	F35	5760
5727	F36	5761
5728	F37	5762
5729	F38	5763
5730	F39	5764
5731	F40	5765
5732	F41	5766
5733	F42	5767
5734	F43	5768
5735	F44	5769
5736	F45	5770
5737	F46	5771
5738	F47	5772
5739	F48	5773
5740	F49	5774
5741	F50	5775
5742	F51	5776
5743	F52	5777
5744	F53	5778
5745	F54	5779
5746	F55	5780
5747	F56	5781
5748	F57	5782
5749	F58	5783
5750	F59	5784
5751	F60	5785
5752	F61	5786
5753	F62	5787
5754	F63	5788
5755	F64	5789
5756	F65	5790
5757	F66	5791
5758	F67	5792
5759	F68	5793

Table 1: Example of frequency hopping mode

Frequency assignment	Frequency, MHz
F69	5794
F70	5795
F71	5796
F72	5797
F73	5798
F74	5799
F75	5800
F76	5801
F77	5802
F78	5803
F79	5804

Frequency assignment	Frequency, MHz	Frequency assignment	Frequency, MHz
F1	5726	F32	5788
F2	5728	F33	5790
F3	5730	F34	5792
F4	5732	F35	5794
F5	5734	F36	5796
F6	5736	F37	5798
F7	5738	F38	5800
F8	5740	F39	5802
F9	5742	F40	5804
F10	5744	F41	5806
F11	5746	F42	5808
F12	5748	F43	5810
F13	5750	F44	5812
F14	5752	F45	5814
F15	5754	F46	5816
F16	5756	F47	5818
F17	5758	F48	5820
F18	5760	F49	5822
F19	5762	F50	5824
F20	5764	F51	5826
F21	5766	F52	5828
F22	5768	F53	5830
F23	5770	F54	5832
F24	5772	F55	5834
F25	5774	F56	5836
F26	5776	F57	5838
F27	5778	F58	5840
F28	5780	F59	5842
F29	5782	F60	5844
F30	5784	F61	5846
F31	5786	F62	5848

Table 2: Example of a frequency hybrid mode

Appendix C Test equipment used for tests

HL Serial	Description	n	Due calibration		
No.		Name	Model No.	Serial No.	Month/ year
0041	Double ridged guide antenna, 1-18 GHz	Electro-Metrics	RGA 50/60	2811	8/03
0163	LISN FCC/VDE/MIL -STD	Electro-Metrics	ANS-25/2	1314	10/03
0446	Active loop antenna 10 kHz-30 MHz	Electro-Mechanics	6502	2857	10/03
0465	Anechoic chamber 9 (L) x 6.5 (W) x 5.5 (H) m	Hermon Labs	AC-1	023	10/05
0521	Spectrum analyzer with RF filter section (EMI receiver 9 kHz - 6.5 GHz)	Hewlett Packard	8546A	0319	7/04
0589	Cable coaxial, GORE A2POL118.2, 3m	Hermon Labs	GORE-3	589	11/03
0604	Antenna biconilog log-periodic/T bow- tie, 26 - 2000 MHz	EMCO	3141	9611-1011	01/04
0672	Shielded room 4.6(L) x 4.2(W) x 2.4(H) m	Hermon Labs	SR-3	027	11/03 Check
0768	Antenna standard gain horn 18-26.5 GHz, WR-42, K-band, gain – 25 dB	Quinstar Technology	QWH-4200- BA	110	7/04 Check
0769	Antenna standard gain horn 26.5 - 40GHz, WR-42, K-band, gain – 25 dB	Quinstar Technology	QWH-2800- BA	112	7/04 Check
0787	Transient limiter	Hewlett Packard	11947A-8ZE	3107A01877	11/03
1004	Cable coaxial, ANDREW PSWJ4, 6 m	Hermon Labs	ANDREW-6	163	12/03
1200	Quadruplexer	Electronica	UE 84	0240	4/04 Check
1424	Spectrum analyzer, 30 Hz - 40 GHz	Agilent Technologies	8564EC	3946A00219	8/03
1430	EMI receiver system, 9 kHz - 2.9 GHz	Agilent Technologies	8542E	3807A00262	9/03

HL Serial	Description	Manufacturer information			Due calibration
No.		Name	Model No.	Serial No.	Month/ year
1502	Cable RF, 6 m	Belden	M17/167 MIL-C-17	1502	12/03 Check
1510	Cable RF, 8 m	Belden	M17/167 MIL-C-17	1510	12/03
1566	Cable RF, 2 m	Huber-Suhner	Sucoflex 104PE	13094/4PE	12/03
1650	Attenuators set (2, 3, 5, 20 dB), DC – 18 GHz	M/A –COM	2082	1650	3/04
1651	Attenuators set (2, 3, 5, 20 dB), DC – 18 GHz	M/A –COM	2082	1651	3/04
1940	Cable 40 GHz, 1.5 m, blue	Rhophase Microwave Ltd.	KPS-1503A- 1500-KPS	T4663	10/03
1942	Cable 18 GHz, 4 m, blue	Rhophase Microwave Ltd	SPS-1803A- 4000-NPS	T4658	10/03
2009	Cable RF, 8 m	Alpha Wire	RG-214	2009	12/03
2254	Cable 40GHz, 0.8 m, blue	Rhophase Microwave Limited	KPS-1503A- 800-KPS	W4907	11/03
2259	Amplifier low noise 2-20 GHz	Sophia Wireless	LNA0220-C	0223	11/03
2260	Amplifier low noise 14-33 GHz	Sophia Wireless	LNA28-B	0233	11/03
2261	Amplifier low noise 33-40 GHz	Sophia Wireless	LNA38-B	0234	11/03
2273	Power supply 11V for HL2258, HL2259, HL2260	Hermon Labs	S-11	2273	12/03
2274	Power supply 11V for HL2258, HL2259, HL2260, HL2261	Hermon Labs	S-11	2274	12/03 Check
2387	Filter bandpass, 8-14 GHz	Hermon Labs	FBP8-14	2387	6/04

Appendix D Test equipment correction factors

Antenna factor, active loop antenna, model 6502, serial number 2857 (HL 0446)

Frequency, MHz	Antenna factor, dB
0.009	-32.8
0.010	-33.8
0.020	-38.3
0.050	-41.1
0.075	-41.3
0.100	-41.6
0.150	-41.7
0.250	-41.6
0.500	-41.8
0.750	-41.9
1.000	-41.4
2.000	-41.5
3.000	-41.4
4.000	-41.4
5.000	-41.5
10.000	-41.9
15.000	-41.9
20.000	-42.2
25.000	-42.8
30.000	-44.0

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor, biconilog antenna EMCO, model 3141, serial number1011 (HL 0604)

Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)
26	7.8	940	24.0
28	7.8	960	24.1
30	7.8	980	24.5
40	7.2	1000	24.9
60	7.1	1020	25.0
70	8.5	1040	25.2
80	9.4	1060	25.4
90	9.8	1080	25.6
100	9.7	1100	25.7
110	9.3	1120	26.0
120	8.8	1140	26.4
130	8.7	1160	27.0
140	9.2	1180	27.0
150	9.8	1200	26.7
160	10.2	1220	26.5
170	10.4	1240	26.5
180	10.4	1260	26.5
190	10.3	1280	26.6
200	10.6	1300	27.0
220	11.6	1320	27.8
240	12.4	1340	28.3
260	12.8	1360	28.2
280	13.7	1380	27.9
300	14.7	1400	27.9
320	15.2	1420	27.9
340	15.4	1440	27.8
360	16.1	1460	27.8
380	16.4	1480	28.0
400	16.6	1500	28.5
420	16.7	1520	28.9
440	17.0	1540	29.6
460	17.7	1560	29.8
480	18.1	1580	29.6
500	18.5	1600	29.5
520	19.1	1620	29.3
540	19.1	1640	29.2
560	19.8	1660	29.4
580	20.6	1680	29.6
600	20.0	1700	29.8
620	21.5	1720	30.3
640	21.3		30.8
660	21.2	<u> </u>	30.8
		1	
680	21.9	1780	31.0
700	22.2	1800	30.9
720	22.2	1820	30.7
740	22.1	1840	30.6
760	22.3	1860	30.6
780	22.6	1880	30.6
800	22.7	1900	30.6
820	22.9	1920	30.7
840	23.1	1940	30.9
860	23.4	1960	31.2
880	23.8	1980	31.6
900	24.1	2000	32.0
920	24.1	L	

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor, double ridged guide antenna, model RGA50/60, serial number 2811 (HL 0041)

Frequency, MHz	Antenna factor, dB
1000	24.3
1500	25.4
2000	28.4
2500	29.2
3000	30.5
3500	31.6
4000	33.7
4500	32.2
5000	34.5
5500	34.5
6000	34.6
6500	35.3
7000	35.5
7500	35.9
8000	36.6
8500	37.3
9000	37.7
9500	37.7
10000	38.2
10500	38.5
11000	39.0
11500	40.1
12000	40.2
12500	39.3
13000	39.9
13500	40.6
14000	41.1
14500	40.5
15000	39.9
15500	37.8
16000	39.1
16500	41.1
17000	41.7
17500	45.1
18000	44.3

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Correction factor, line impedance stabilization network, model ANS-25/2, serial number 1314 (HL 0163)

Frequency, kHz	Correction factor, dB
10	4.9
15	2.86
20	1.83
25	1.25
30	0.91
35	0.69
40	0.53
50	0.35
60	0.25
70	0.18
80	0.14
90	0.11
100	0.09
125	0.06
150	0.04

The correction factor in dB is to be added to meter readings of an interference analyzer or a spectrum analyzer.

Cable coaxial, GORE A2P01POL118, 2.3 m, model:GORE-3, serial number 176 (HL 0589) + Cable coaxial, ANDREW PSWJ4, 6m, model: ANDREW-6, serial number 163 (HL 1004) Calibration data

		Set,	Measured,	Deviation,	Tolerance	Meas. Uncert.,
No.	Parameter			15	(Specification),	
		MHz	dB	dB	dB	dB
1	Insertion	30	0.33	-		
2	Loss	50	0.40	-		
3		100	0.57	-		
4		300	0.97	-		
5		500	1.25	-		
6		800	1.59	-		
7		1000	1.81	-		
8		1200	1.97	-	6.5	±0.12
9		1400	2.15	-		
10		1600	2.28	-		
11		1800	2.43	-		
12		2000	2.61	-		
13		2200	2.75	-		
14		2400	2.89	-		
15		2600	2.97	-		
16	Insertion	2800	3.21	-	6.5	±0.12
17	Loss	3000	3.32	-		
18		3300	3.47	-		
19		3600	3.62	-		
20		3900	3.84	-		
21		4200	3.92	-		±0.17
22		4500	4.07	-		
23		4800	4.36	-		
24		5100	4.62	-		
25		5400	4.78	-		
26		5700	5.16	-		
27		6000	5.67	-		
28		6500	5.99	-		

Cable RF, 6 m, model: M17/167 MIL-C-17, serial number 1502 (HL 1502) Calibration data

No.	Parameter	Set,	Measured,	Meas. Uncert.
NO.	Farameter	MHz	dB	dB
1		0.1	0.02	
2		1	0.07	
3		3	0.15	
4		5	0.17	
5		10	0.26	
6		30	0.43	
7	Attenuation	50	0.57	±0.12
8		80	0.72	
9		100	0.81	
10		300	1.48	
11		500	2.00	
12		800	2.70	
13		1000	3.09	

Cable RF, 8m, model: M17/167 MIL-C-17, serial number 1510 (HL 1510) Calibration data

No.	Parameter	Set,	Measured,	Meas. Uncert.
NO.	vo. Farameter	MHz	dB	dB
1		0.1	0.05	
2		1	0.09	
3		3	0.16	
4		5	0.18	
5		10	0.27	
6		30	0.44	
7	Attenuation	50	0.58	±0.12
8		80	0.69	
9		100	0.82	
10		300	1.48	
11		500	2.01	
12		800	2.65	
13		1000	3.12	

No.	Parameter	Set, MHz	Measured, dB	Deviation, dB	Tolerance (Specification), dB	Meas. Uncert., dB
1	Insertion	30	0.10	-		
2	loss	50	0.13	-		
3		100	0.20	-		
4		300	0.33	-		
5	-	500	0.45	-]	
6		800	0.60	-		
7		1000	0.65	-	5.0	±0.12
8		1500	0.91	-		
9		2000	1.08	-		
10		2500	1.19	-		
11		3000	1.28	-		
12		3500	1.49	-		
13		4000	1.63	-		
14	Insertion	4500	1.63	-		
15	loss	5000	1.66	-		
16	_	5500	1.88	-		
17	-	6000	1.96	-		
18	-	6500	1.93	-		
19	-	7000	2.07	-		
20	-	7500	2.37	-		
21	-	8000	2.34	-	5.0	±0.17
22	-	8500	2.64	-	0.0	20111
23	-	9000	2.68	-		
24	-	9500	2.64	-		
25	-	10000	2.70	-		
26	-	10500	2.84	-		
27	-	11000	2.88	-		
28	-	11500	3.19	-		
29		12000	3.15			
30	Insertion	12500	3.20		-	
31	Loss	13000	3.22		-	
32	-	13500	3.47		-	
33	-	14000	3.41		-	
34	-	14500	3.59		-	
35		15000	3.79		5.0	±0.26
36		15500	4.24		4	
37		16000	4.12		4	
38		16500	4.46		4	
39		17000	4.50		4	
40		17500	4.49		4	
41		18000	4.45			

Cable RF, 2m, model: Sucoflex 104PE, serial number 13094/4PE (HL 1566) Calibration data

Frequency, GHz	Cable loss, dB	Frequency, GHz	Cable loss, dB	Frequency, GHz	Cable loss, dB
0.03	0.13	5.10	1.33	15.00	2.27
0.05	0.14	5.30	1.33	15.50	2.32
0.10	0.19	5.50	1.38	16.00	2.39
0.20	0.25	5.70	1.41	16.50	2.41
0.30	0.31	5.90	1.43	17.00	2.36
0.40	0.37	6.10	1.50	17.50	2.42
0.50	0.41	6.30	1.47	18.00	2.50
0.60	0.46	6.50	1.56	18.50	2.89
0.70	0.49	6.70	1.50	19.00	2.86
0.80	0.53	6.90	1.53	19.50	2.84
0.90	0.56	7.10	1.53	20.00	2.77
1.00	0.59	7.30	1.56	20.50	2.73
1.10	0.62	7.50	1.59	21.00	3.05
1.20	0.65	7.70	1.62	21.50	3.07
1.30	0.68	7.90	1.68	22.00	2.97
1.40	0.70	8.10	1.67	22.50	2.91
1.50	0.73	8.30	1.70	23.00	3.02
1.60	0.76	8.50	1.69	23.50	3.29
1.70	0.77	8.70	1.70	24.00	3.31
1.80	0.80	8.90	1.68	24.50	3.49
1.90	0.82	9.10	1.70	25.00	3.37
2.00	0.84	9.30	1.70	25.50	3.56
2.10	0.85	9.50	1.77	26.00	3.56
2.20	0.87	9.70	1.80	26.50	3.33
2.30	0.88	9.90	1.88	27.00	3.52
2.40	0.90	10.10	1.93	28.00	3.38
2.50	0.91	10.30	1.94	29.00	3.34
2.60	0.93	10.50	1.99	30.00	3.33
2.70	0.95	10.70	1.91	31.00	3.48
2.80	0.97	10.90	2.00	32.00	3.63
2.90	0.98	11.10	1.92	33.00	3.69
3.10	1.02	11.30	1.97	34.00	3.79
3.30	1.05	11.50	1.98	35.00	3.77
3.50	1.09	11.70	1.99	36.00	3.92
3.70	1.12	11.90	2.06	37.00	3.94
3.90	1.15	12.10	2.01	38.00	3.80
4.10	1.18	12.40	2.08	39.00	4.15
4.30	1.21	13.00	2.05	40.00	4.03
4.50	1.24	13.50	2.15		
4.70	1.29	14.00	2.25		
4.90	1.27	14.50	2.26		

Cable 40 GHz, 1.5 m, blue, model: KPS-1503A-1500-KPS, serial number T4663 (HL 1940) Calibration data

1

Frequency, GHz	Insertion loss, dB
0.03	0.21
0.05	0.26
0.10	0.36
0.20	0.50
0.30	0.61
0.40	0.70
0.50	0.78
0.60	0.85
0.70	0.93
0.80	0.99
0.90	1.04
1.00	1.10
1.10	1.16
1.20	1.22
1.30	1.26
1.40	1.31
1.50	1.35
1.60	1.41
1.70	1.45
1.80	1.49
1.90	1.53
2.00	1.57
2.10	1.61
2.20	1.65
2.30	1.69
2.40	1.72
2.50	1.76
2.60	1.79
2.70	1.83
2.80	1.87
2.90	1.90
3.10	1.97
3.30	2.04
3.50	2.11
3.70	2.18
3.90	2.24
4.10	2.31
4.30	2.38
4.50	2.43
4.70	2.53
4.90	2.53
5.10	2.63
5.30	2.65
5.50	2.00
5.70	2.72
5.90	2.79
0.90	2.19

Cable 18GHz, 4 m, blue, model: SPS-1803A-4000-NPS, serial number T4658 (HL 1942)
Calibration data

٦

Frequency, GHz	Insertion loss, dB
6.10	2.88
6.30	2.90
6.50	2.97
6.70	3.02
6.90	3.04
7.10	3.07
7.30	3.12
7.50	3.13
7.70	3.19
7.90	3.24
8.10	3.30
8.30	3.36
8.50	3.45
8.70	3.41
8.90	3.45
9.10	3.42
9.30	3.55
9.50	3.48
9.70	3.58
9.90	3.61
10.10	3.66
10.30	3.68
10.50	3.70
10.70	3.70
10.90	3.75
11.10	3.78
11.30	3.86
11.50	3.98
11.70	4.10
11.90	4.12
12.10	4.09
12.40	4.13
13.00	4.23
13.50	4.35
14.00	4.40
14.50	4.44
15.00	4.57
15.50	4.66
16.00	4.64
16.50	4.66
17.00	4.75
17.50	4.85
18.00	4.93

No.	Parameter	Set, MHz	Measured, dB	Meas. Uncert., dB
1		1	0.10	
2		10	0.14	
3		30	0.25	
4		50	0.34	
5		100	0.53	
6		300	0.99	
7		500	1.31	
8		800	1.73	
9		1000	1.98	
10	Insertion loss	1100	2.11	±0.12
11		1200	2.21	
12		1300	2.35	
13		1400	2.46	
14		1500	2.55	
15		1600	2.68	
16		1700	2.78	
17		1800	2.88	
18		1900	2.98	
19	F	2000	3.09	

Cable RF, 8 m, model:RG-214, serial number C-56 (HL 2009) Calibration data

Cable loss
Cable 40 GHz, 0.8 m, blue, model: KPS-1503A-800-KPS, serial number W4907 (HL 2254)

Frequency, GHz	Cable loss, dB	Frequency, GHz	Cable loss, dB	Frequency, GHz	Cable loss, dB
0.03	0.04	5.10	0.80	15.00	1.49
0.05	0.07	5.30	0.83	15.50	1.49
0.10	0.09	5.50	0.83	16.00	1.46
0.20	0.15	5.70	0.84	16.50	1.47
0.30	0.19	5.90	0.87	17.00	1.50
0.40	0.25	6.10	0.86	17.50	1.57
0.50	0.29	6.30	0.89	18.00	1.63
0.60	0.33	6.50	0.90	18.50	1.57
0.70	0.37	6.70	0.89	19.00	1.63
0.80	0.41	6.90	0.93	19.50	1.65
0.90	0.44	7.10	0.92	20.00	1.64
1.00	0.45	7.30	0.95	20.50	1.75
1.10	0.48	7.50	0.96	21.00	1.72
1.20	0.51	7.70	0.97	21.50	1.78
1.30	0.53	7.90	1.01	22.00	1.76
1.40	0.54	8.10	1.00	22.50	1.72
1.50	0.57	8.30	1.05	23.00	1.83
1.60	0.59	8.50	1.04	23.50	1.80
1.70	0.04	8.70	1.07	24.00	1.90
1.80	0.07	8.90	1.11	24.50	1.81
1.90	0.09	9.10	1.09	25.00	1.98
2.00	0.15	9.30	1.14	25.50	1.91
2.10	0.19	9.50	1.12	26.00	2.02
2.20	0.25	9.70	1.15	26.50	1.92
2.30	0.29	9.90	1.16	27.00	1.97
2.40	0.33	10.10	1.16	28.00	2.02
2.50	0.37	10.30	1.19	29.00	1.95
2.60	0.41	10.50	1.14	30.00	1.94
2.70	0.44	10.70	1.19	31.00	2.11
2.80	0.45	10.90	1.17	32.00	2.17
2.90	0.48	11.10	1.13	33.00	2.27
3.10	0.61	11.30	1.20	34.00	2.27
3.30	0.64	11.50	1.13	35.00	2.29
3.50	0.65	11.70	1.20	36.00	2.35
3.70	0.68	11.90	1.18	37.00	2.37
3.90	0.69	12.10	1.14	38.00	2.40
4.10	0.71	12.40	1.19	39.00	2.57
4.30	0.73	13.00	1.34	40.00	2.36
4.50	0.75	13.50	1.33		
4.70	0.77	14.00	1.48		
4.90	0.79	14.50	1.45		

Appendix E General information

Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, telecommunications, environmental, safety standards, and by AMTAC (UK) for safety of medical devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01).

Address:	PO Box 23, Binyamina 30500, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, QA manager.

Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

AC	alternating current
cm	centimeter
dB	decibel
dBm	decibel referred to one milliwatt
dB(μV)	decibel referred to one microvolt
dB(µV/m)	decibel referred to one microvolt per meter
DSS	Part 15 spread spectrum transmitter
EMC	electromagnetic compatibility
EUT	equipment under test
GHz	gigahertz
Н	height
Hz	hertz
kHz	kilohertz
kV	kilovolt
L	length
LISN	line impedance stabilization network
m	meter
MHz	megahertz
NA	not applicable
QP	quasi-peak
RF	radio frequency
RE	radiated emission
rms	root mean square
S	second
V	volt
W	width

Specification references

47CFR part 15: 2003	Radio Frequency Devices
ANSI C63.2: 1996	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4: 1992	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.