

Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: TO: FCC 47CFR part 96

FOR:

Airspan Networks Inc. LTE Base Station Radio Model: AirHarmony 4200 3550-3700MHz (B48) FCC ID:PIDAH4200

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Ports and lines	5
6.3	Support and test equipment	5
6.4	Changes made in the EUT	5
6.5	Test configuration	6
6.6	Transmitter characteristics	7
7	Transmitter tests according to 47CFR part 96	8
7.1	Maximum EIRP and maximum power spectral density	8
7.2	Peak-to-average power ratio (PAPR) test	
7.3	Occupied bandwidth test	
7.4	Emission outside the fundamental test	
7.5	Radiated spurious emission measurements	70
7.6	Spurious emissions at RF antenna connector test	81
7.7	Frequency stability test	98
8	APPENDIX A Test equipment and ancillaries used for tests	
9	APPENDIX B Measurement uncertainties	102
10	APPENDIX C Test facility description	103
11	APPENDIX D Specification references	103
12	APPENDIX E Test equipment correction factors	
13	APPENDIX F Abbreviations and acronyms	112

1 Applicant information

Client name:	Airspan Networks Inc.
Address:	777 Yamato, Road Suite 310 Boca Raton, FL 33431, USA
Telephone:	+1 561 893 8670
Fax:	+1 561 893 8671
E-mail:	zlevi@airspan.com
Contact name:	Mr. Zion Levi

2 Equipment under test attributes

Product name:	LTE Base Station Radio
Product type:	Transceiver
Model(s):	AirHarmony 4200 3550-3700MHz (B48)
Serial number:	D5EF25CED5BC
Hardware version:	C2
Software release:	SR 16.00
Receipt date	16-Dec-18

3 Manufacturer information

Manufacturer name:	Airspan Networks Inc.
Address:	777 Yamato, Road Suite 310 Boca Raton, FL 33431, USA
Telephone:	+1 561 893 8670
Fax:	+1 561 893 8671
E-Mail:	zlevi@airspan.com
Contact name:	Mr. Zion Levi

4 Test details

Project ID:	31875
Location:	Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel
Test started:	16-Dec-18
Test completed:	01-Feb-19
Test specification(s):	FCC 47CFR part 96

5 Tests summary

Test	Status
Transmitter characteristics	
Section 96.41(b), Maximum EIRP and maximum power spectral density	Pass
Section 96.41(g), Peak-to- average power ratio	Pass
Section 2.1049, Occupied bandwidth	Pass
Section 96.41(e), Emission mask	Pass
Section 96.41(e)(2), Radiated spurious emissions	Pass
Section 96.41(e)(3), Conducted spurious emissions	Pass
Section 2.1055, Frequency stability	Pass

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

This test report supersedes the previously issued test report identified by Doc ID:AIRRAD_FCC.31875_rev2.

	Name and Title	Date	Signature
Tested by:	Mr. S. Samokha, test engineer Mrs. E. Pitt, test engineer Mr. A. Morozov, test engineer	February 1, 2019	Can BHL
Reviewed by:	Mrs. S Peysahov Sheynin test engineer EMC & Radio	October 31, 2019	-
Approved by:	Mr. M. Nikishin, EMC and Radio group manager	October 31, 2019	54 °

6 EUT description

6.1 General information

The EUT, Mobile Digital station, AirHarmony 4200 3550-3700MHz (B48), is part of a LTE broadband fixed cellular wireless access system. The system provides a radio link between an end-user (a subscriber) and a network to give high-speed data access. The AirHarmony's transceiver/receiver (Up to 64 QAM modulation, data rate up to 95 Mbps) equipped with a 9.5 dBi external antenna. Advanced Antenna Techniques 2x2 MIMO are supported. The maximum RF output power (not including antenna gain) is 36.9 dBm for 9.5 dBi and it can be reduced by software.

The AirHarmony is installed outdoors. The Subscriber transmits and receives traffic to and from the base station respectively. The transceiver provides subscribers with "always-on" Internet, high speed data only, or data and voice (VoIP) services and is configured with a unique base station reference number, preventing the LTE UE from relocating to another subscriber premises without authorization.

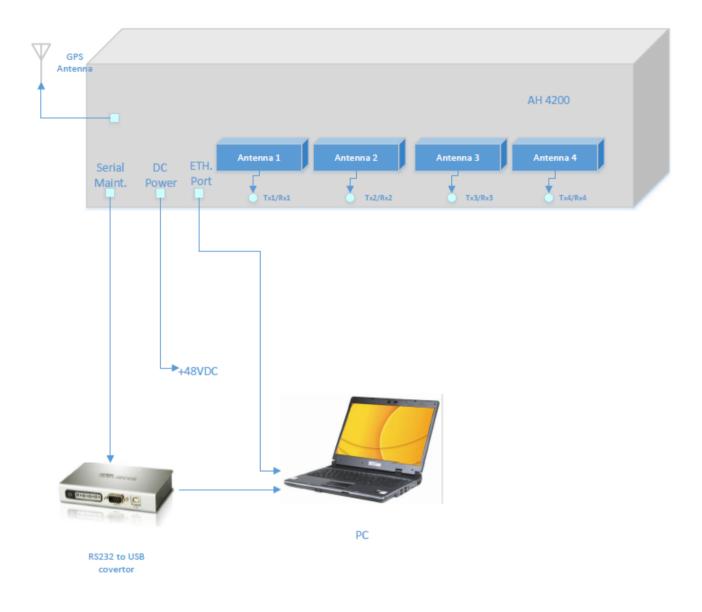
Note: The AH4200 equipment defined as Category B CBSD (Citizens Broadband Radio Service Device). The transmitter output signal are completely uncorrelated, antennas 1/2 is one sector and antennas 3/4 is another sector. The sectors are not working on the same frequency, each sector has the different frequency.

6.2 Ports and lines

Port type	Port description	Connected from	Connected to	Qty.	Cable type	Cable length, m
Power	DC power	EUT	AC/DC adapter	1	Unshielded	20
Signal	Ethernet	EUT	Laptop	1	Shielded	20
Signal*	Serial*	Not connected	Not connected	1	NA	NA

*for maintenance only

6.3 Support and test equipment


Description	Manufacturer	Model number	Serial number
Laptop	Dell	E7450	8TYRP32
USB to RS-232 convertor	ATEN	UC2324	NA
AC/DC adapter	DVE	DSA-96PFB-12 1 120750	P/N DSA-96PFB-12 1 120750-W25

6.4 Changes made in the EUT

No changes were implemented in the EUT during testing.

6.5 Test configuration

6.6 Transmitter characteristics

Type of equipment									
V Stand-alone (Equipment with or without its own control provisions)									
	Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)								
Plug-in card (Equipment intended for a variety of host systems)									
Intended use		dition of							
V fixed					m from all peop				
mobile portable	Always at a distance more than 20 cm from all people								
portable May operate at a distance closer than 20 cm to human body Assigned frequency range 3550.0 – 3700.0 MHz									
Operating frequency (full				0 – 3695.0 N					
RF channel spacing				Hz, 20 MHz					
Maximum rated output po	wer		-		2 RF output con	nector (per	port)		36.9 dBm
				No	•		. ,		
					continu	uous variat	ole		
Is transmitter output powe	er variab	ole?	v	Yes	/ steppe	d variable	with step siz	e	0.25 dB
			v	1	minimum RF pov				-30 dBm
				1	maximum RF po	wer at ante	enna connec	tor	dBm
Antenna connection									
unique coupling V standa		ndard connector		Integral		V with			
unique coupling	v	star	ndard c	onnector	Inte	gral			y RF connector rary RF connector
unique coupling Antenna/s technical chara			ndard c	onnector	Inte	gral			y RF connector rary RF connector
Antenna/s technical chara		cs		onnector		-	with	nout tempo	
			cturer		Inte Model number AW3089	-	with		
Antenna/s technical chara	cteristic	cs Manufac ALPHA	cturer		Model number	-	with	nout tempo Gain	
Antenna/s technical chara Type External Transmitter aggregate dat	a rate/s,	Manufac ALPHA	cturer	ss Ltd.	Model number AW3089	-	of modulatic	Gain 9.5 dBi	rary RF connector
Antenna/s technical chara Type External Transmitter aggregate dat Transmitter 26dBc p	a rate/s,	Manufac ALPHA	cturer	ss Ltd.	Model number AW3089	-	of modulatic 16QAM	Gain 9.5 dBi	rary RF connector
Antenna/s technical chara Type External Transmitter aggregate dat Transmitter 26dBc p 10 MH	a rate/s, ower bar	Manufac ALPHA	cturer	ss Ltd.	Model number AW3089 PSK 10.7	-	of modulatic 16QAM 22.7	Gain 9.5 dBi	64QAM 47.3
Antenna/s technical chara Type External Transmitter aggregate dat Transmitter 26dBc p 10 MH 20 MH	a rate/s, ower bar	Manufac ALPHA	cturer	ss Ltd.	Model number AW3089	-	of modulatic 16QAM	Gain 9.5 dBi	rary RF connector
Antenna/s technical chara Type External Transmitter aggregate dat Transmitter 26dBc p 10 MH	a rate/s, ower ban lz	Manufac ALPHA Mbps ndwidth	cturer	ss Ltd.	Model number AW3089 PSK 10.7 23.4	-	of modulatic 16QAM 22.7	Gain 9.5 dBi	64QAM 47.3
Antenna/s technical chara Type External Transmitter aggregate dat Transmitter 26dBc p 10 MH 20 MH	a rate/s, ower bar iz iz seband	Manufac ALPHA Mbps ndwidth	cturer Wireles	ss Ltd. C	Model number AW3089 PSK 10.7 23.4	-	of modulatic 16QAM 22.7	Gain 9.5 dBi	64QAM 47.3
Antenna/s technical chara Type External Transmitter aggregate dat Transmitter 26dBc p 10 MH 20 MH Type of multiplexing Modulating test signal (ba	a rate/s, ower bar iz iz seband r cycle i	Manufac ALPHA Mbps ndwidth	cturer Wireles	ss Ltd. C TDD PRBS	Model number AW3089 PSK 10.7 23.4	-	of modulatic 16QAM 22.7	Gain 9.5 dBi	64QAM 47.3
Antenna/s technical chara Type External Transmitter aggregate dat Transmitter 26dBc p 10 MH 20 MH Type of multiplexing Modulating test signal (ba Maximum transmitter duty Transmitter power source N	a rate/s, ower baa iz iz seband v cycle in ominal	Manufac ALPHA Mbps ndwidth	turer Wireles use	SS Ltd.	Model number AW3089 PSK 10.7 23.4 S Bat	-	of modulatic 16QAM 22.7	Gain 9.5 dBi	64QAM 47.3
Antenna/s technical chara Type External Transmitter aggregate dat Transmitter 26dBc p 10 MH 20 MH 20 MH Type of multiplexing Modulating test signal (ba Maximum transmitter duty Transmitter power source N V DC N	a rate/s, ower baa iz iz seband v cycle in ominal ominal	Manufac ALPHA Mbps ndwidth ndwidth	turer Wireles use tage tage	ss Ltd. C TDD PRBS	Model number AW3089 PSK 10.7 23.4 S Bat DC	Type tery type	of modulatic 16QAM 22.7	Gain 9.5 dBi	64QAM 47.3
Antenna/s technical chara Type External Transmitter aggregate dat Transmitter 26dBc p 10 MH 20 MH 20 MH Type of multiplexing Modulating test signal (ba Maximum transmitter duty Transmitter power source N V DC N	a rate/s, ower bar iz iz seband, cycle in ominal ominal ominal	Manufac ALPHA Mbps ndwidth) n normal rated vol rated vol	use tage tage	SS Ltd. TDD PRBS 0.74 48 VI	Model number AW3089 PSK 10.7 23.4 S Bat DC	Туре	of modulatic 16QAM 22.7	Gain 9.5 dBi	64QAM 47.3

Test specification: Section 96.41(b), Maximum EIRP and maximum power spectral density							
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33				
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC				
Remarks:							

7 Transmitter tests according to 47CFR part 96

7.1 Maximum EIRP and maximum power spectral density

7.1.1 General

This test was performed to measure the maximum EIRP and maximum spectral power density at the transmitter RF antenna connector. Specification test limits are given in Table 7.1.1, Table 7.1.2.

Table 7.1.1 Peak output power limits

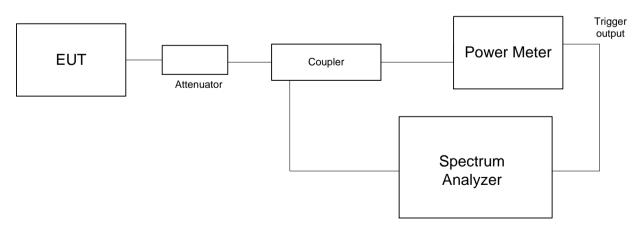

Accienced from the new reason Mills	E	IRP
Assigned frequency range, MHz	W/10 MHz	dBm/10 MHz
3550 - 3700	17.0	47.0

Table 7.1.2 Peak spectral power density limits

Assigned frequency range,	Measurement bandwidth,	Peak spectral power density,
MHz	MHz	dBm
3550 - 3700	1.0	37.0

- 7.1.2 Test procedure
- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.1.2.3** The peak output power was measured with power meter as provided in Table 7.1.3.
- **7.1.2.4** Spectrum analyzer was set in average mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 7.1.4 to Table 7.1.7 and the associated plots.

Figure 7.1.1 Peak output power and spectral power density test setup

Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA35		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC		
Remarks:	-				

Table 7.1.3 Maximum EIRP test results

ASSIGNED FREQUENCY RANGE: DETECTOR USED: VIDEO BANDWIDTH: CHANNEL SPACING:

3550.0 - 3700.0 MHz Average (gated) ≥ Resolution bandwidth 10 MHz

_		RF Output	power		Antenna				
Frequency, MHz	Chain RF#1, dBm	Chain RF#2, dBm	Chain RF#3, dBm	Chain RF#4, dBm	gain, dBi	EIRP*, dBm/10 MHz	Limit, dBm/10 MHz	Margin, dB**	Verdic t
Modulation C	PSK					_			
3555.0	35.76	35.87	35.73	35.79	9.5	45.37	47.0	-1.63	Pass
3625.0	35.55	35.58	35.62	35.93	9.5	45.43	47.0	-1.57	Pass
3695.0	35.78	35.43	35.56	35.63	9.5	45.28	47.0	-1.72	Pass
Modulation 1	6QAM								
3555.0	36.13	36.79	35.82	35.77	9.5	46.29	47.0	-0.71	Pass
3625.0	36.17	36.90	35.88	35.82	9.5	46.40	47.0	-0.60	Pass
3695.0	36.23	36.57	35.79	35.45	9.5	46.07	47.0	-0.93	Pass
Modulation 6	4QAM				-	-			
3555.0	36.03	35.87	35.96	35.78	9.5	45.53	47.0	-1.47	Pass
3625.0	35.72	35.84	35.78	35.82	9.5	45.34	47.0	-1.66	Pass
3695.0	35.83	36.05	35.53	35.73	9.5	45.55	47.0	-1.45	Pass

* - EIRP = Max SA reading (Chains #1&2 and #3&4) + Antenna gain

** - Margin = EIRP, dBm – specification limit.

CHANNEL SPACING

CHANNEL SPA	ACING:			20 N	1Hz				
		RF Output	power	-	Antenna				
Frequency, MHz	Chain RF#1, dBm	Chain RF#2, dBm	Chain RF#3, dBm	Chain RF#4, dBm	gain, dBi	EIRP*, dBm/10 MHz	Limit, dBm/10 MHz	Margin, dB**	Verdict
Modulation (QPSK								
3560.0	37.53	37.65	37.44	37.46	9.5	44.70	47.0	-2.30	Pass
3625.0	37.22	38.11	38.01	37.38	9.5	45.16	47.0	-1.84	Pass
3690.0	36.76	37.75	37.62	36.88	9.5	44.80	47.0	-2.20	Pass
Modulation 1	16QAM								
3560.0	37.52	37.66	37.39	37.43	9.5	44.71	47.0	-2.29	Pass
3625.0	37.35	37.87	37.33	37.29	9.5	44.92	47.0	-2.08	Pass
3690.0	37.41	37.84	37.29	37.23	9.5	44.89	47.0	-2.11	Pass
Modulation 6	64QAM								
3560.0	37.45	37.36	37.65	37.66	9.5	44.71	47.0	-2.29	Pass
3625.0	37.32	37.92	37.51	37.62	9.5	44.97	47.0	-2.03	Pass
3690.0	37.12	37.61	37.28	37.57	9.5	44.66	47.0	-2.34	Pass

* - EIRP = Max SA reading (Chains #1&2 and #3&4) - 10*log[OBW(MHz) / 10 MHz]] + Antenna gain =

= Max SA reading – 2.45 dB + Antenna gain ** - Margin = EIRP, dBm – specification limit.

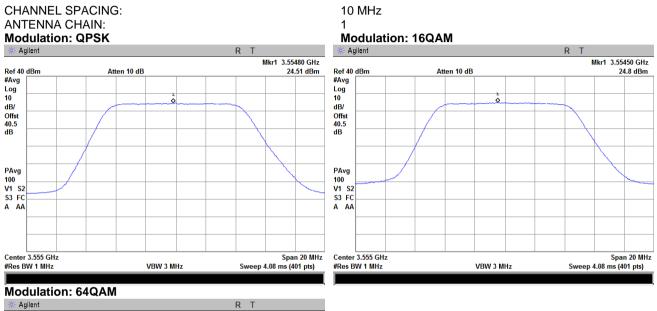
Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC		
Remarks:	-				

Table 7.1.4 Peak spectral power density test results

ASSIGNED FRI DETECTOR US VIDEO BANDW NUMBER OF C	IDTH:	GE:			3550.0 – 370 Average (ga ≥ Resolution 4	ted)		
Frequency,		RF Outpu	t power		Total PSD*,	Limit,	Margin,	
MHz	Chain RF#1, dBm	Chain RF#2, dBm	Chain RF#3, dBm	Chain RF#4, dBm	dBm/MHz	dBm/MHz	dB	Verdict
Channel Sp	acing 10 MHz							-
Modulation	QPSK							
3555.0	24.51	24.64	24.76	24.60	36.70	37.0	-0.30	Pass
3625.0	23.80	23.80	23.78	24.48	36.42	37.0	-0.58	Pass
3695.0	24.70	24.22	24.24	24.08	36.64	37.0	-0.36	Pass
Modulation	16QAM							
3555.0	24.80	24.42	24.76	24.44	36.74	37.0	-0.26	Pass
3625.0	24.69	24.99	24.40	24.45	36.93	37.0	-0.07	Pass
3695.0	24.28	24.09	24.57	24.07	36.51	37.0	-0.49	Pass
Modulation	64QAM	-						-
3555.0	24.93	24.88	24.75	24.41	36.87	37.0	-0.13	Pass
3625.0	24.48	24.03	24.49	24.23	36.43	37.0	-0.57	Pass
3695.0	24.73	24.60	23.89	24.47	36.93	37.0	-0.07	Pass
Channel Sp	acing 20 MHz							
Modulation	QPSK							
3560.0	23.88	23.89	23.78	23.79	35.83	37.0	-1.17	Pass
3625.0	23.10	23.82	24.31	23.41	36.25	37.0	-0.75	Pass
3690.0	22.74	23.74	23.41	22.95	35.68	37.0	-1.32	Pass
Modulation	16QAM							
3560.0	24.32	23.51	23.92	23.35	36.26	37.0	-0.74	Pass
3625.0	23.27	24.07	23.13	22.95	36.01	37.0	-0.99	Pass
3690.0	22.88	23.91	23.55	23.25	35.85	37.0	-1.15	Pass
Modulation	64QAM							
3560.0	23.66	23.55	23.86	24.21	36.15	37.0	-0.85	Pass
3625.0	23.17	23.99	23.65	23.74	35.93	37.0	-1.07	Pass
3690.0	23.07	23.94	23.41	23.78	35.88	37.0	-1.12	Pass

* - Total PSD = Max SA reading (Chains #1&2 or chains #3&4) + Antenna Gain + Duty Cycle Factor ** - Margin = Total PSD, dBm – specification limit.

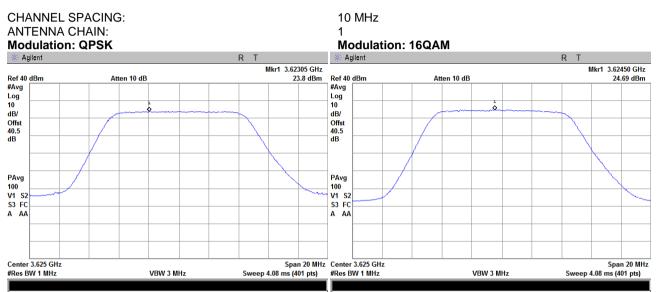
Reference numbers of test equipment used

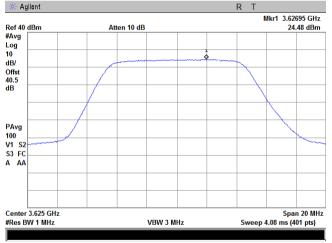

	HL 2909	HL 3301	HL 3433	HL 5409		
_						


Full description is given in Appendix A.

Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC		
Remarks:					

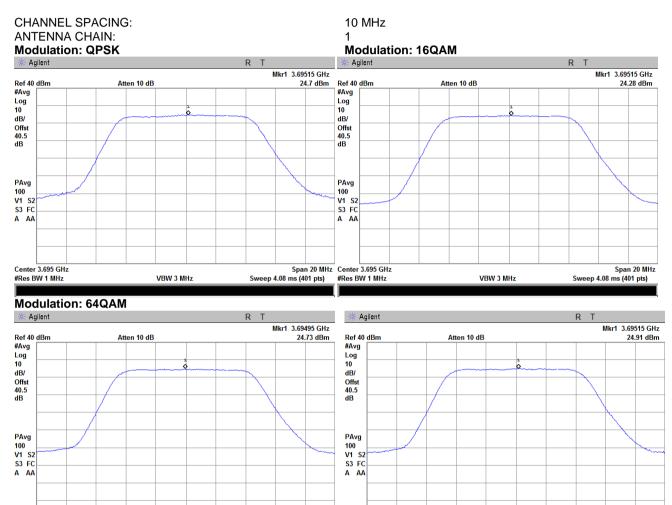
Plot 7.1.1 Peak spectral power density at low frequency





Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC		
Remarks:					

Plot 7.1.2 Peak spectral power density at mid frequency

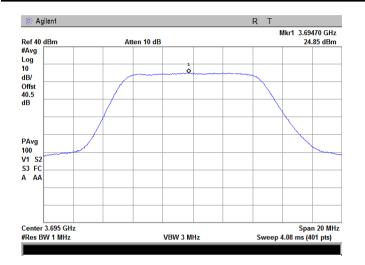


Center 3.695 GHz #Res BW 1 MHz

Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA00		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC		
Remarks:	•	· · · · · · · · · · · · · · · · · · ·			

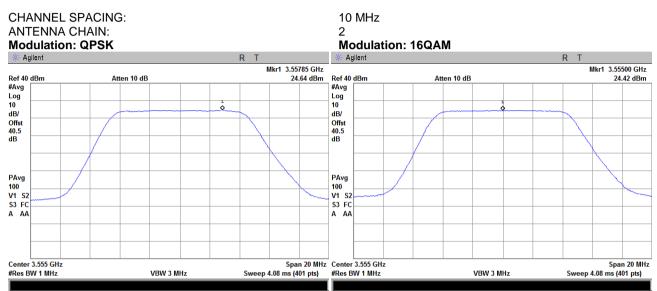
Plot 7.1.3 Peak spectral power density at high frequency

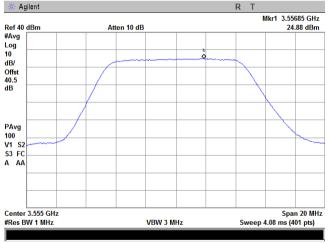
Span 20 MHz Sweep 4.08 ms (401 pts)


VBW 3 MHz

Center 3.695 GHz #Res BW 1 MHz Span 20 MHz Sweep 4.08 ms (401 pts)

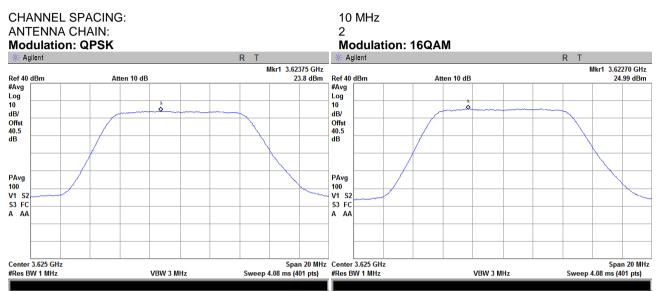
VBW 3 MHz

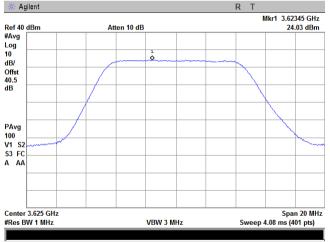

Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC		
Remarks:			·		



Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Dec-18 - 17-Dec-18	veraict.	FA33			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC			
Remarks:						

Plot 7.1.4 Peak spectral power density at low frequency

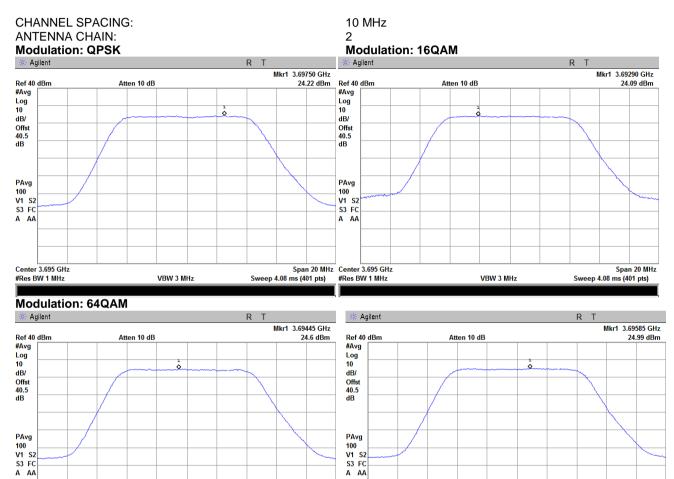




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

Plot 7.1.5 Peak spectral power density at mid frequency

Modulation: 64QAM ** Agilent



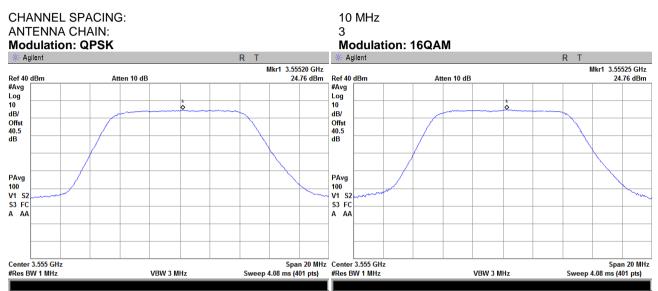
Center 3.695 GHz #Res BW 1 MHz

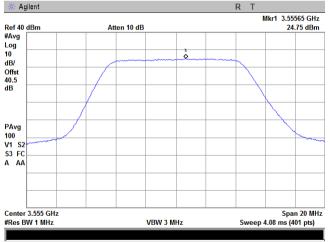
Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA00
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	•	· · · · · · · · · · · · · · · · · · ·	

Plot 7.1.6 Peak spectral power density at high frequency

Span 20 MHz Sweep 4.08 ms (401 pts)

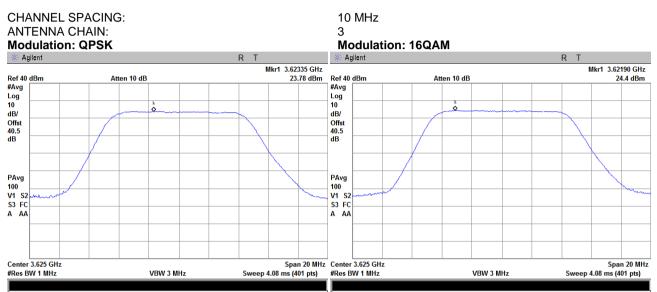
VBW 3 MHz

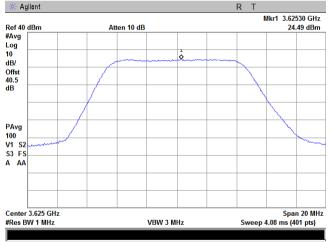

Center 3.695 GHz #Res BW 1 MHz Span 20 MHz Sweep 4.08 ms (401 pts)


VBW 3 MHz

Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18		FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	-		

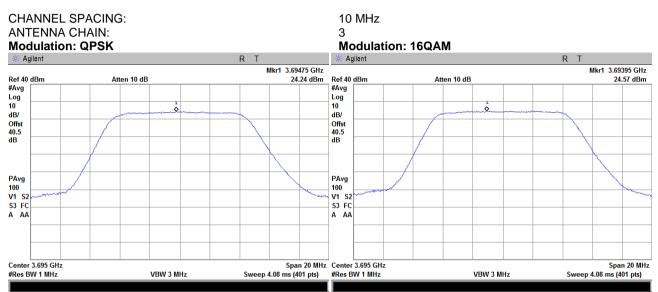
Plot 7.1.7 Peak spectral power density at low frequency

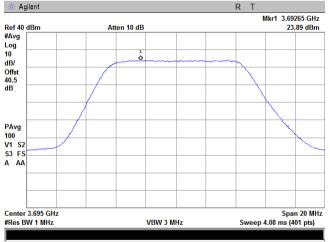




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

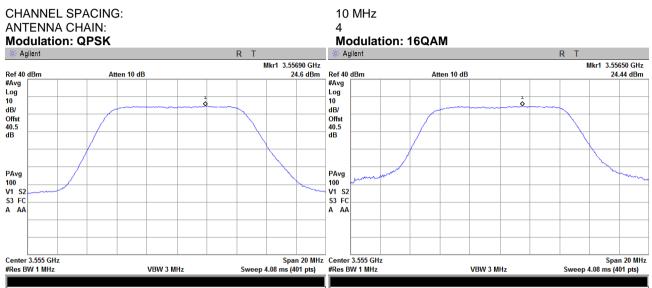
Plot 7.1.8 Peak spectral power density at mid frequency

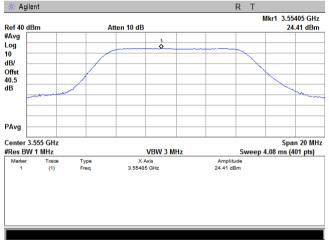




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	-		

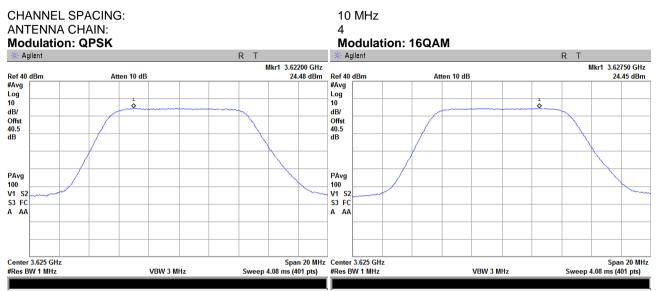
Plot 7.1.9 Peak spectral power density at high frequency

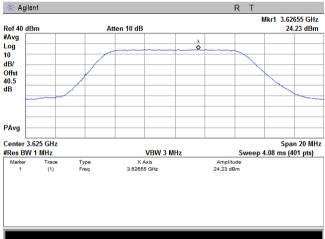




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraici.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	· · · ·		·

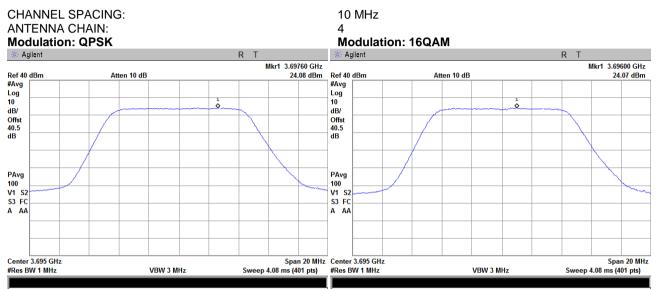
Plot 7.1.10 Peak spectral power density at low frequency

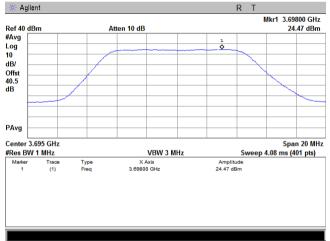




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

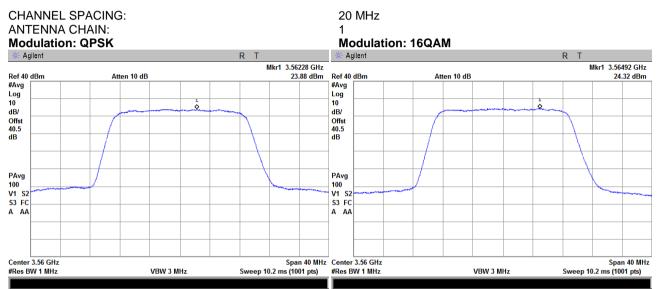
Plot 7.1.11 Peak spectral power density at mid frequency

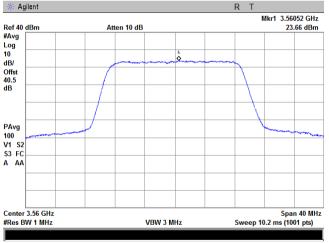




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraici.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	· · · ·		·

Plot 7.1.12 Peak spectral power density at high frequency





Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	-		

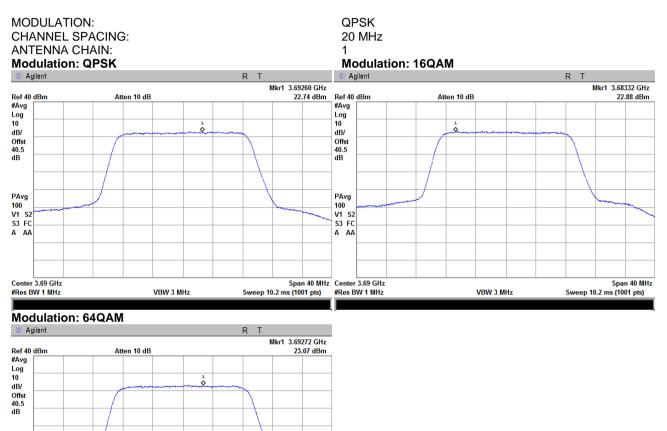
Plot 7.1.13 Peak spectral power density at low frequency within

Center 3.625 GHz #Res BW 1 MHz

Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	-		

Span 40 MHz Sweep 10.2 ms (1001 pts)

VBW 3 MHz

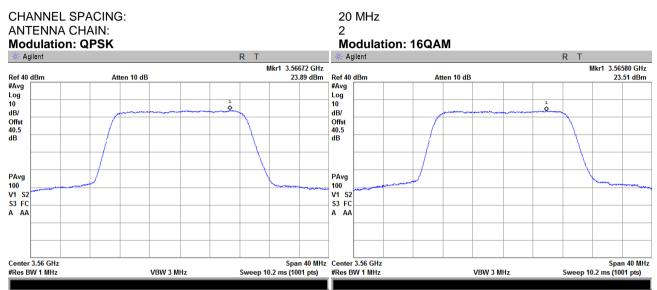


PAvg 100 V1 S2 S3 FC A AA

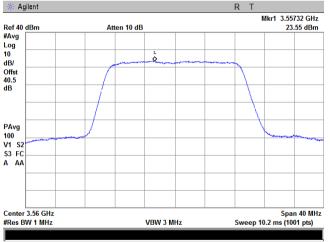
Center 3.69 GHz #Res BW 1 MHz

Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	-		

Plot 7.1.15 Peak spectral power density at high frequency

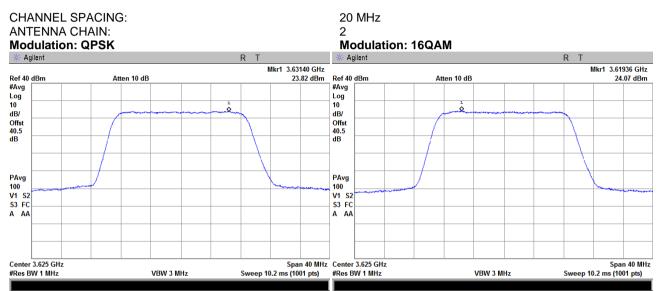

Span 40 MHz Sweep 10.2 ms (1001 pts)

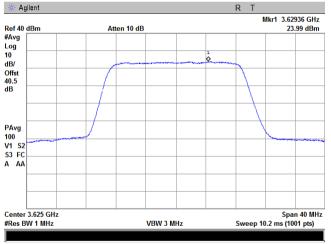
VBW 3 MHz



Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	-		

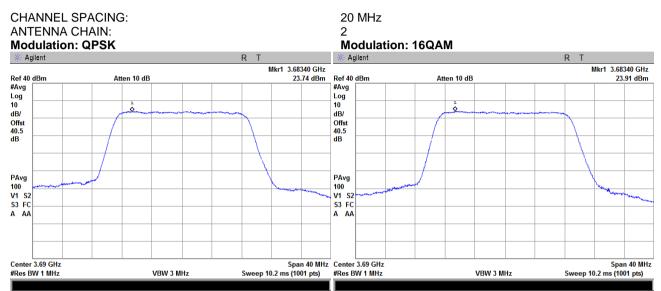
Plot 7.1.16 Peak spectral power density at low frequency

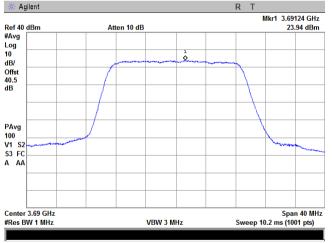

Modulation: 64QAM ** Agilent



Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

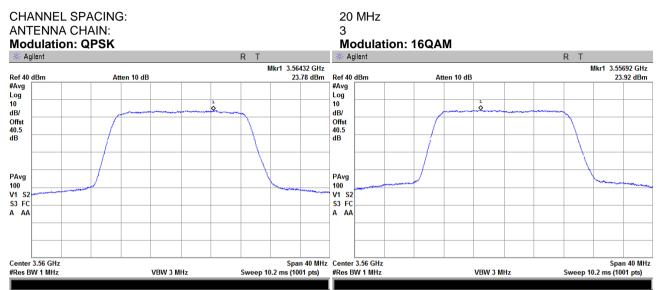
Plot 7.1.17 Peak spectral power density at mid frequency

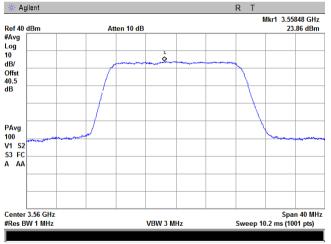




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	Verdict: PASS	
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

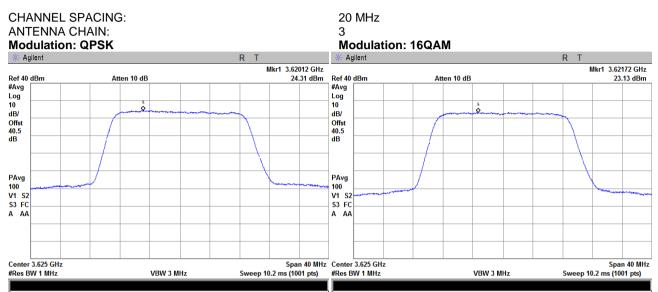
Plot 7.1.18 Peak spectral power density at high frequency

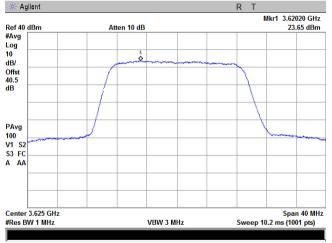




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

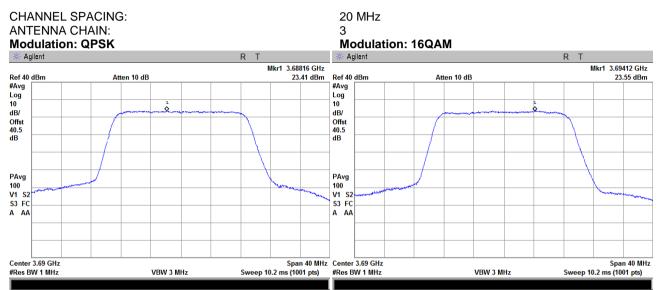
Plot 7.1.19 Peak spectral power density at low frequency

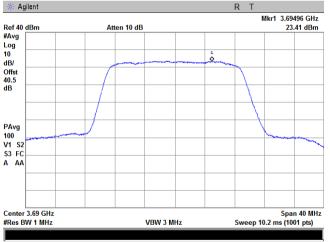




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraici.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

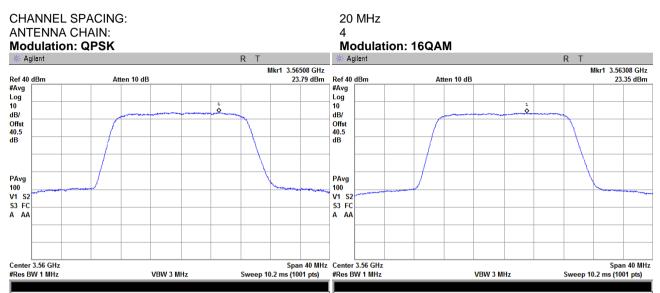
Plot 7.1.20 Peak spectral power density at mid frequency

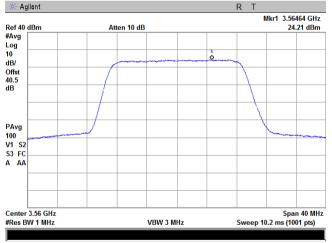




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraici.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

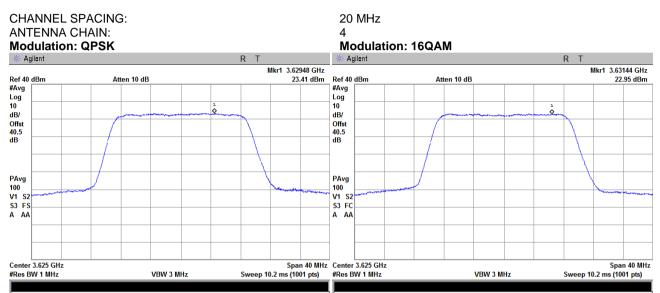
Plot 7.1.21 Peak spectral power density at high frequency

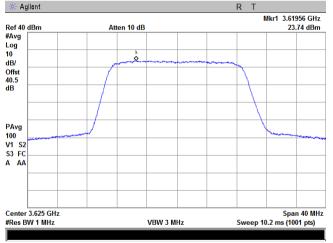




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraici.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

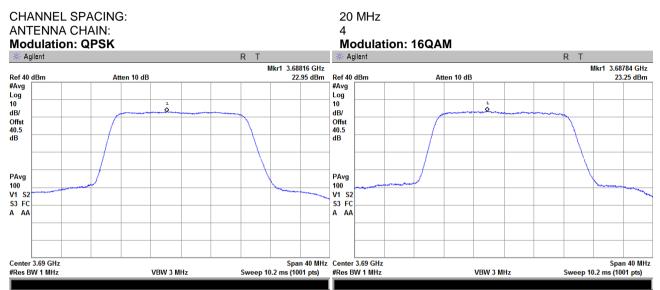
Plot 7.1.22 Peak spectral power density at low frequency

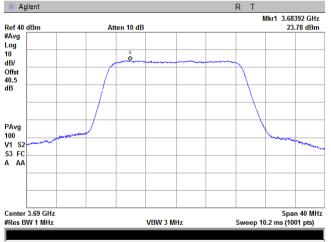




Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	veraici.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

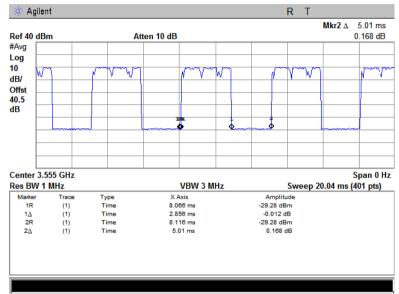
Plot 7.1.23 Peak spectral power density at mid frequency





Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18	- Verdict: PASS	
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

Plot 7.1.24 Peak spectral power density at high frequency



Test specification:	Section 96.41(b), Maximum EIRP and maximum power spectral density		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	- Verdict:	PASS
Date(s):	16-Dec-18 - 17-Dec-18		FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			

Plot 7.1.25 Transmission pulse duration and pulse period

Duty cycle factor = 10*log(2.856/5.01) = -2.44 dB

Test specification: Section 96.41(g), Peak-to- average power ratio				
Test procedure:	Section 96.41(g)			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	23-Dec-18	verdict.	FA33	
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1010 hPa	Power: 48 VDC	
Remarks:				

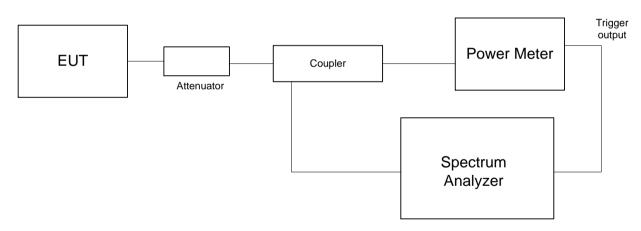
7.2 Peak-to-average power ratio (PAPR) test

7.2.1 General

This test was performed to measure the peak to average power ratio at RF antenna connector. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Peak-to-average power ratio limits

Assigned frequency renge MHz	Peak to average power ratio limit	
Assigned frequency range, MHz	Probability, %	dB
3550.0 - 3700.0	0.1	13.0


7.2.2 Test procedure

7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.

7.2.2.2 The EUT was adjusted to produce maximum available to the end user RF output power.

7.2.2.3 The peak to average power ratio was measured with power meter as provided in Table 7.2.2 and associated plots.

Figure 7.2.1 Peak-to-average power test setup

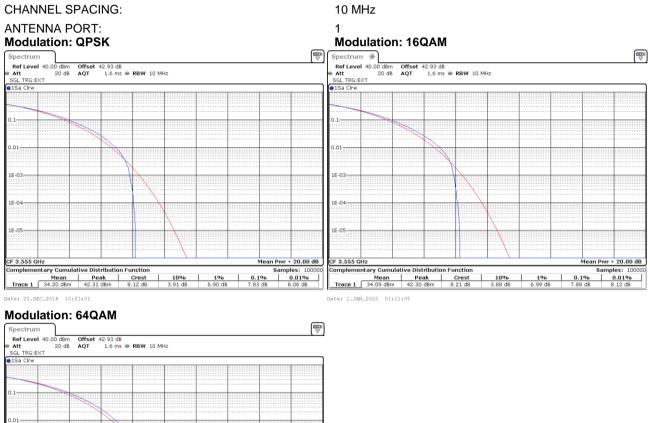
Test specification: Section 96.41(g), Peak-to- average power ratio				
Test procedure:	Section 96.41(g)			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	23-Dec-18	verdict.	FA35	
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1010 hPa	Power: 48 VDC	
Remarks:				

Table 7.2.2 Peak-to-average power test results

OPERATING FREQUENCY R DETECTOR USED: MODULATING SIGNAL: TRANSMITTER OUTPUT PO\			3550 – 3700 MHz Peak/Average PRBS Maximum	
Carrier frequency, MHz	Peak to average ratio, dB	Limit, dBm	Margin, dB	Verdict
Channel Spacing 10 MHz				
Modulation QPSK				
3555.0	7.83	13.0	-5.17	Pass
3625.0	7.80	13.0	-5.20	Pass
3695.0	7.77	13.0	-5.23	Pass
Modulation 16QAM				
3555.0	7.88	13.0	-5.12	Pass
3625.0	7.86	13.0	-5.14	Pass
3695.0	7.86	13.0	-5.14	Pass
Modulation 64QAM				
3555.0	7.80	13.0	-5.20	Pass
3625.0	7.80	13.0	-5.20	Pass
3695.0	7.77	13.0	-5.23	Pass
Channel Spacing 20 MHz				
Modulation QPSK				
3560.0	11.40	13.0	-1.60	Pass
3625.0	11.62	13.0	-1.38	Pass
3690.0	11.22	13.0	-1.78	Pass
Modulation 16QAM				
3560.0	11.31	13.0	-1.69	Pass
3625.0	11.51	13.0	-1.49	Pass
3690.0	11.55	13.0	-1.45	Pass
Modulation 64QAM				
3560.0	11.43	13.0	-1.57	Pass
3625.0	11.71	13.0	-1.29	Pass
3690.0	11.50	13.0	-1.50	Pass

Note: Offset 42.93 dB included: coupling loss 10 dB, attenuator 30 dB, cables loss 2.93 dB

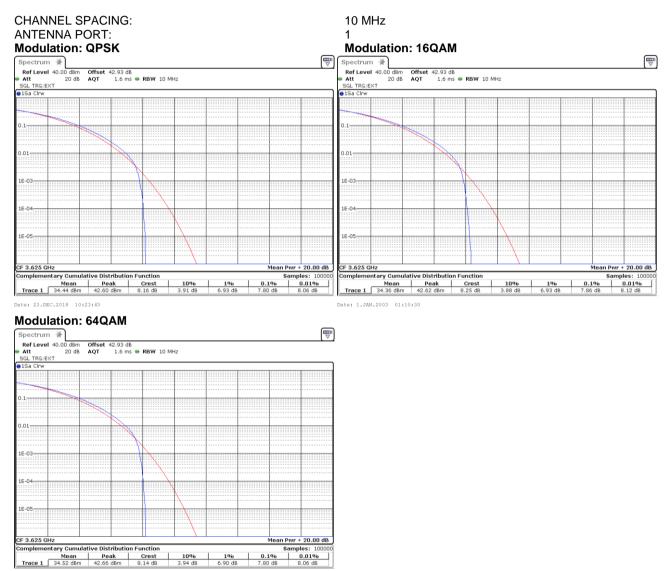
Reference numbers of test equipment used


		HL 3301	HL 3302	HL 3434	HL 4355		
--	--	---------	---------	---------	---------	--	--

Full description is given in Appendix A.

Test specification:	Section 96.41(g), Peak-to	- average power ratio	
Test procedure:	Section 96.41(g)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	-		

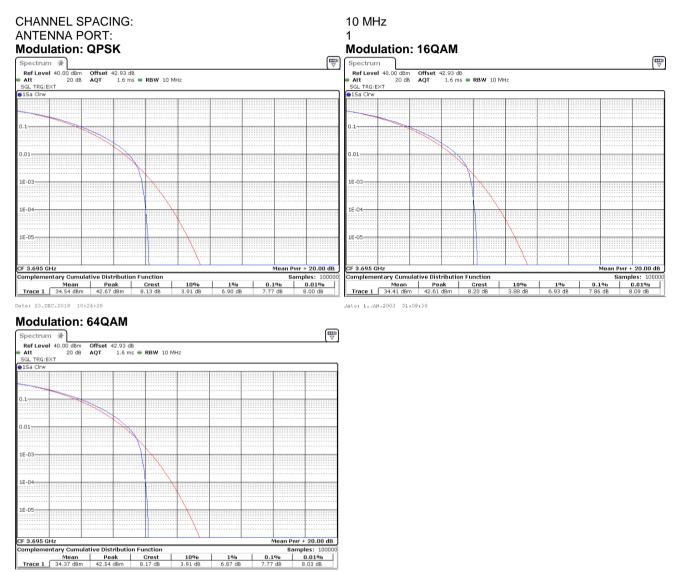
Plot 7.2.1 Peak-to-average power ratio test results at low frequency


0.1 0.01 1E-03 1E-04 1E-05 Complementary Cumulative Distribution Function Trace 1 33.86 dBm 42.02 dBm 8.16 dB 3.91 dB 6.92 dB 7.80 dB 8.06 dB 7.80 dB 8.06 dB

Date: 1.JAN.2003 00:59:17

Test specification:	Section 96.41(g), Peak-to	- average power ratio	
Test procedure:	Section 96.41(g)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	-		

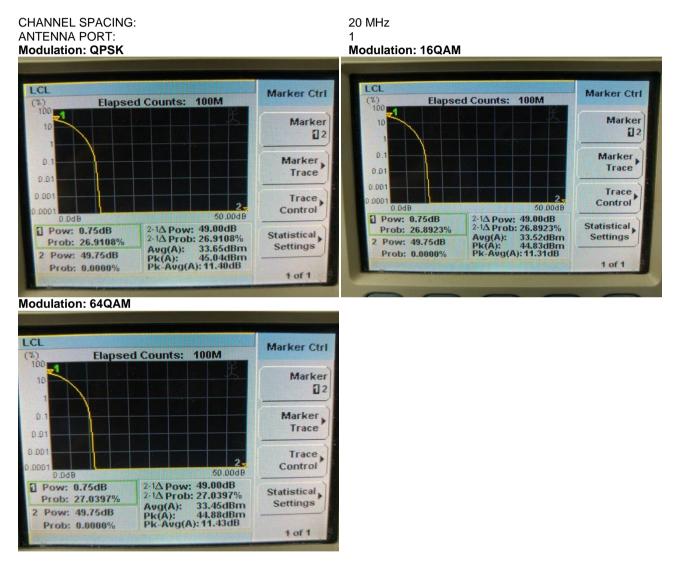
Plot 7.2.2 Peak-to-average power ratio test results at mid frequency



Date: 1.JAN.2003 01:01:15

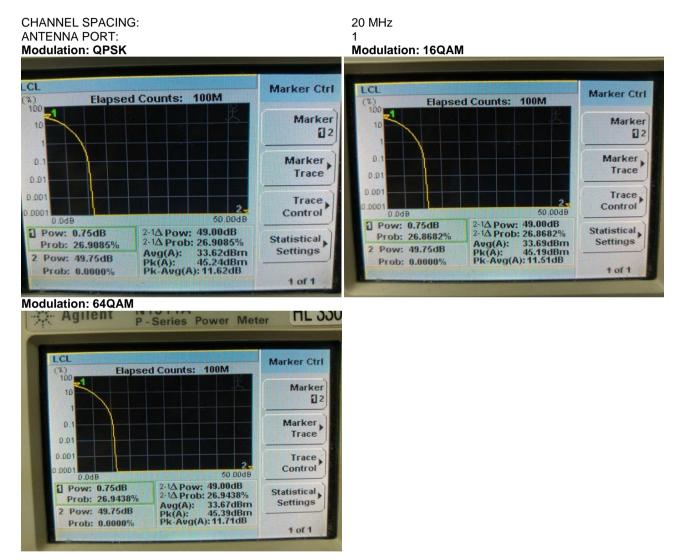
Test specification:	Section 96.41(g), Peak-to- average power ratio				
Test procedure:	Section 96.41(g)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	23-Dec-18	verdict.	FA33		
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1010 hPa	Power: 48 VDC		
Remarks:	-				

Plot 7.2.3 Peak-to-average power ratio test results at high frequency

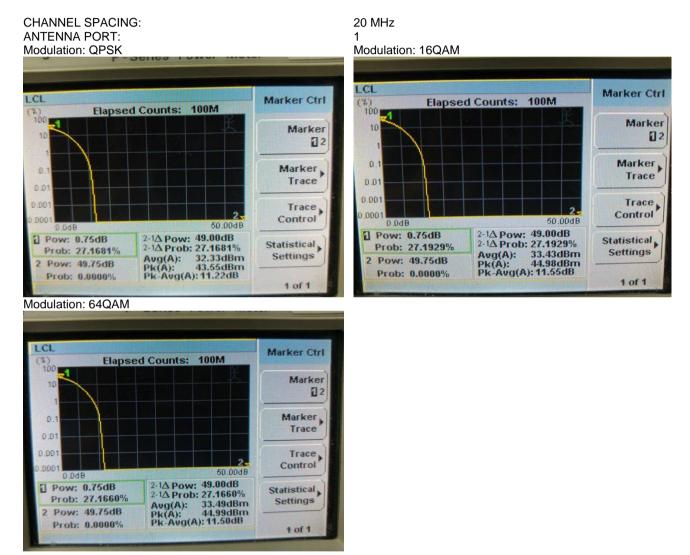


Date: 1.JAN.2003 01:04:22

Test specification:	Section 96.41(g), Peak-to	- average power ratio	
Test procedure:	Section 96.41(g)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	•		


Plot 7.2.4 Peak-to-average power ratio test results at low frequency

Test specification:	Section 96.41(g), Peak-to	- average power ratio	
Test procedure:	Section 96.41(g)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	veraict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:			


Plot 7.2.5 Peak-to-average power ratio test results at mid frequency

Test specification:	Section 96.41(g), Peak-to	- average power ratio	
Test procedure:	Section 96.41(g)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1010 hPa	Power: 48 VDC
Remarks:	•		

Plot 7.2.6 Peak-to-average power ratio test results at high frequency

Test specification:	on: Section2.1049, Occupied bandwidth			
Test procedure:	47 CFR, Section 2.1049			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	21-Dec-18	verdict.	FA33	
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC	
Remarks:				

7.3 Occupied bandwidth test

7.3.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Occupied bandwidth limits

Assigned frequency,	Modulation envelope reference points*,	Maximum allowed bandwidth,
MHz	%	MHz
3550-3700	99	

* - Modulation envelope reference points are provided in terms of attenuation below the unmodulated carrier.

7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.
- 7.3.2.2 The EUT was set to transmit the unmodulated carrier and the reference peak power level was measured.
- **7.3.2.3** The EUT was set to transmit the normally modulated carrier.
- **7.3.2.4** The transmitter occupied bandwidth was measured with spectrum analyzer as a frequency delta between the reference points on modulation envelope and provided in Table 7.3.2 and the associated plots.

Figure 7.3.1 Occupied bandwidth test setup

Test specification:	specification: Section2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict: PASS			
Date(s):	21-Dec-18	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC		
Remarks:	-				

Table 7.3.2 Occupied bandwidth test results

DETECTOR USED:	AVR
RESOLUTION BANDWIDTH:	300 kHz
VIDEO BANDWIDTH:	3 MHz
MODULATION ENVELOPE REFERENCE POINTS:	99%

CS=10 MHz

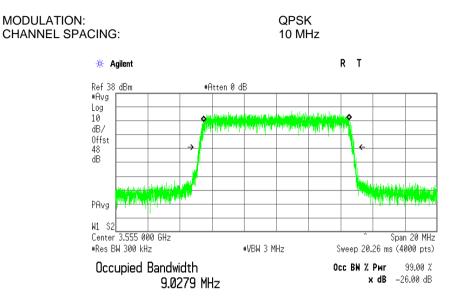
Modulation	Carrier frequency, MHz	Occupied bandwidth, MHz	Limit, MHz	Margin, MHz	Verdict
	3555	9.0279	10	-0.0721	Pass
QPSK	3625	9.0160	10	-0.9840	Pass
	3695	9.0066	10	-0.9934	Pass
	3555	9.0135	10	-0.9865	Pass
16 QAM	3625	9.0007	10	-0.9993	Pass
	3695	9.0040	10	-0.9960	Pass
	3555	9.0257	10	-0.9743	Pass
64 QAM	3625	9.0134	10	-0.9866	Pass
	3695	8.9717	10	-1.0283	Pass

CS=20 MHz

Modulation	Carrier frequency, MHz	Occupied bandwidth, MHz	Limit, MHz	Margin, kHz	Verdict
	3560	17.5700	20	-2.4300	Pass
QPSK	3625	17.5747	20	-2.4253	Pass
	3690	17.5779	20	-2.4221	Pass
	3560	17.6201	20	-2.3799	Pass
16 QAM	3625	17.5749	20	-2.4251	Pass
	3690	17.5821	20	-2. 4179	Pass
	3560	17.5841	20	-2.4159	Pass
64 QAM	3625	17.5610	20	-2.4390	Pass
	3690	17.5826	20	-2.4174	Pass

Note: Offset 48 dB included: coupling loss 16 dB, attenuator 30 dB, cables loss 2.0 dB

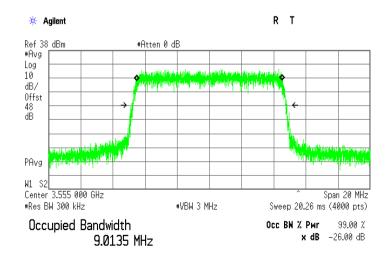
Reference numbers of test equipment used


[HL 3818				
_		 1: 0			

Full description is given in Appendix A.

Test specification:	specification: Section2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict: PASS			
Date(s):	21-Dec-18	veraict.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC		
Remarks:	•				

Plot 7.3.1 Occupied bandwidth test result at low frequency

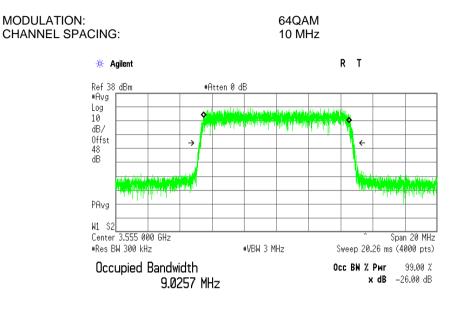


Transmit Freq Error -4.228 kHz x dB Bandwidth 9.646 MHz*

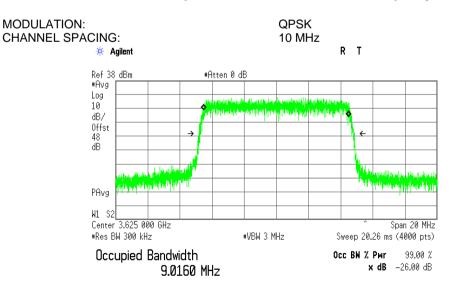
Plot 7.3.2 Occupied bandwidth test result at low frequency

MODULAT	ION:
CHANNEL	SPACING:

16QAM 10 MHz



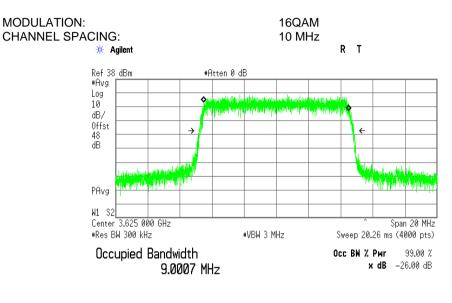
Tr	ans	mit Freq Error	1.751	Hz
x	dB	Bandwidth	9.664	MHz≭


Test specification: Section2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049			
Test mode:	Compliance	Verdict: PASS		
Date(s):	21-Dec-18	verdict.	FA33	
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC	
Remarks:				

Plot 7.3.3 Occupied bandwidth test result at low frequency

Transmit Freq Error 4.582 kHz x dB Bandwidth 9.580 MHz*

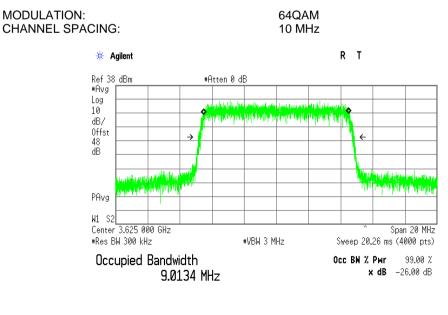
Plot 7.3.4 Occupied bandwidth test result at mid frequency



Transmit Freq Error	-3.788 kHz
x dB Bandwidth	9.689 MHz≭

Test specification:	Section2.1049, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdiet: DASS			
Date(s):	21-Dec-18	Verdict: PASS			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC		
Remarks:					

Plot 7.3.5 Occupied bandwidth test result at mid frequency

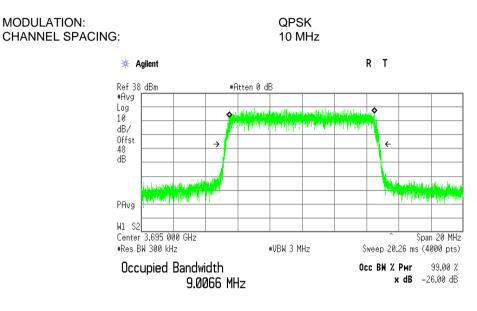


x dB Bandwidth 9.604 MHz*

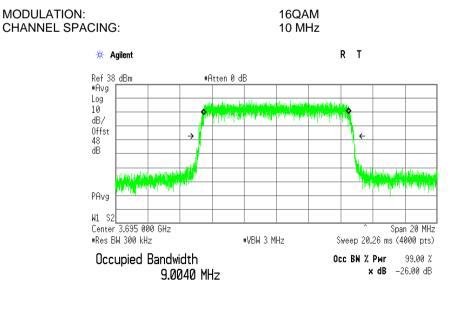
-11.631 kHz

Transmit Freq Error

Plot 7.3.6 Occupied bandwidth test result at mid frequency

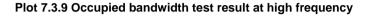


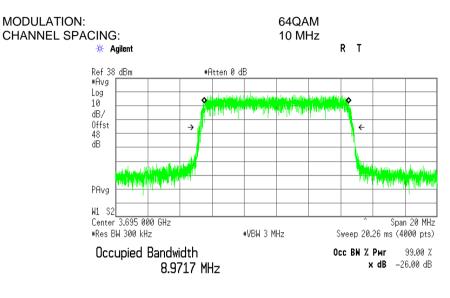
Transmit Freq Error-1.171 kHzx dB Bandwidth9.709 MHz*


Test specification:	Section2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:	· · ·		

Plot 7.3.7 Occupied bandwidth test result at high frequency

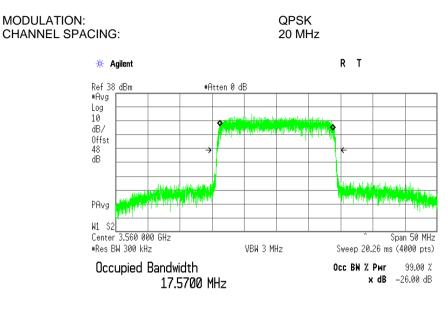
Transmit Freq Error -14.151 kHz Occupied Bandwidth 9.635 MHz*





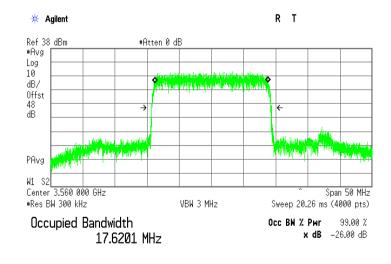
Transmit Freq Error -12.260 kHz x dB Bandwidth 9.661 MHz*

Test specification:	Section2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict: PASS	
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			


–5.855 kHz 9.619 MHz*

Transmit Freq Error x dB Bandwidth

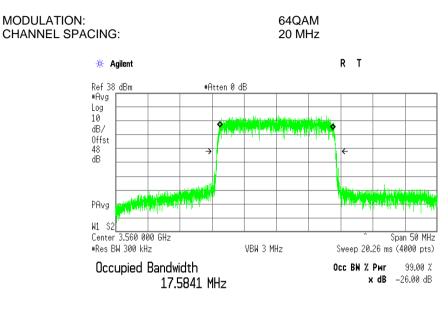
Test specification:	Section2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA00
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			


Plot 7.3.10 Occupied bandwidth test result at low frequency

Transmit Freq Error 21.170 kHz x dB Bandwidth 218.465 MHz*

Plot 7.3.11 Occupied bandwidth test result at low frequency

MODULATION: CHANNEL SPACING: 16QAM 20 MHz

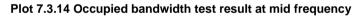


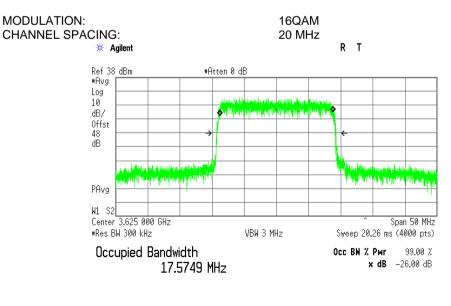
Transmit Freq Error	–12.200 kHz
x dB Bandwidth	18.633 MHz*

Test specification:	Section2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	veraict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:	•		

Plot 7.3.12 Occupied bandwidth test result at low frequency

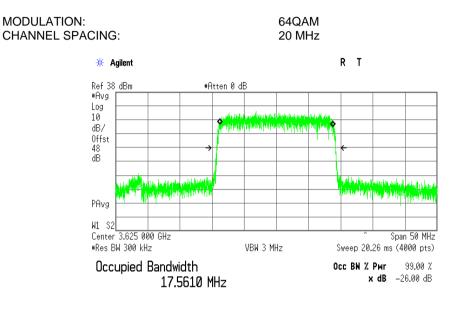
Transmit Freq Error	25.484 kHz
x dB Bandwidth	18.609 MHz*



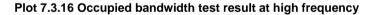

Test specification:	Section2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict: PASS	
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			

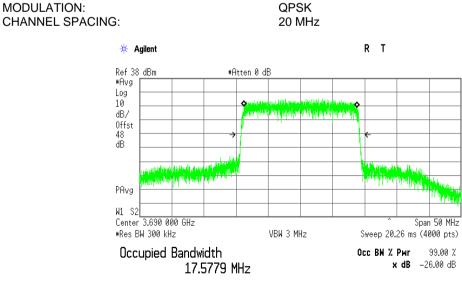
Plot 7.3.13 Occupied bandwidth test result at mid frequency

Transmit Freq Error9.140 kHzx dB Bandwidth18.424 MHz*



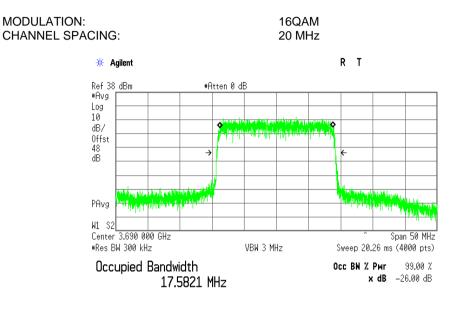
Transmit Freq Error -8.956 kHz x dB Bandwidth 18.562 MHz*



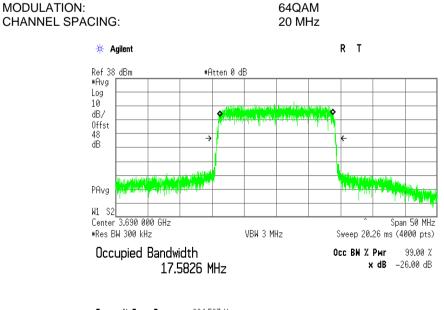

Test specification:	Section2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA00
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			

Plot 7.3.15 Occupied bandwidth test result at mid frequency

Transmit Freq Error -11.733 kHz x dB Bandwidth 18.499 MHz*



Transmit Freq Error -3.472 kHz x dB Bandwidth 18.474 MHz*


Test specification:	Section2.1049, Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	veraict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:	•		

Plot 7.3.17 Occupied bandwidth test result at high frequency

Transmit Freq Error 11.432 kHz x dB Bandwidth 18.520 MHz*

Plot 7.3.18 Occupied bandwidth test result at high frequency

Transmit Freq Error-824.567 Hzx dB Bandwidth18.445 MHz*

Test specification:	Section 96.41(e), Emission mask		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			

7.4 Emission outside the fundamental test

7.4.1 General

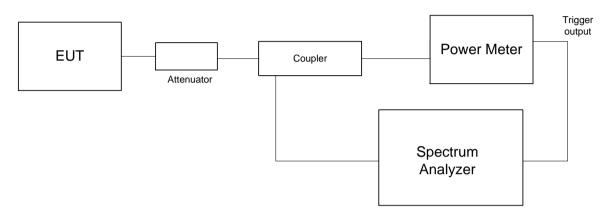
This test was performed to measure emission mask at RF antenna connector. Specification test limits are given in Table 7.4.1.

Frequency displacement from frequency block	Limit*, dBm/MHz	RBW, kHz
Channel Spacing 10 MHz		
0 – 1 MHz	- 13	100
0 – 10 MHz	- 13	1000
10 – 20 MHz	- 25	1000
Above 3530 MHz and below 3720 MHz	- 25	1000
Below 3530 MHz and above 3720 MHz	- 40	1000
Channel Spacing 20 MHz		
0 – 1 MHz	- 13	200
0 – 10 MHz	- 13	1000
10 – 20 MHz	- 25	1000
Above 3530 MHz and below 3720 MHz	- 25	1000
Below 3530 MHz and above 3720 MHz	- 40	1000

Table 7.4.1 Emission mask limits

* - Limit at each antenna connector (amount of antennas N = 2)

7.4.2 Test procedure


7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized and its proper operation was checked.

7.4.2.2 The emission mask was measured with spectrum analyzer as provided in Table 7.4.2, Table 7.4.3 and the the associated plots.

Test specification:	Section 96.41(e), Emission mask		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA00
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:	•		

Figure 7.4.1 Emission mask test setup

Test specification:	Section 96.41(e), Emissio	n mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			

Table 7.4.2 Emission mask test results, CS=10 MHz

Modulation	Carrier frequency, MHz	Frequency displacement from EA frequency block	Test result, dBm/MHz	Limit*, dBm/MHz	Verdict
		Within 0 to 10 MHz	-24.19	-16	Pass
		Greater than 10 MHz	-32.41	-28	Pass
	Low	Below 3530 MHz	-43.16	-43	Pass
	Mid	Within 0 to 10 MHz	-21.05	-16	Pass
QPSK		Greater than 10 MHz	-31.34	-28	Pass
	High	Within 0 to 10 MHz	-21.39	-16	Pass
		Greater than 10 MHz	-34.28	-28	Pass
		Above 3720 MHz	-44.08	-43	Pass
		Within 0 to 10 MHz	-23.77	-16	Pass
		Greater than 10 MHz	-31.13	-28	Pass
	Low	Below 3530 MHz	-44.22	-43	Pass
	Mid	Within 0 to 10 MHz	-22.74	-16	Pass
16 QAM		Greater than 10 MHz	-33.22	-28	Pass
	High	Within 0 to 10 MHz	-22.13	-16	Pass
		Greater than 10 MHz	-33.14	-28	Pass
		Above 3720 MHz	-43.79	-43	Pass
		Within 0 to 10 MHz	-18.45	-16	Pass
		Greater than 10 MHz	-31.06	-28	Pass
	Low	Below 3530 MHz	-43.68	-43	Pass
	Mid	Within 0 to 10 MHz	-23.19	-16	Pass
		Greater than 10 MHz	-33.11	-28	Pass
64 QAM	High	Within 0 to 10 MHz	-21.76	-16	Pass
	-	Greater than 10 MHz	-32.58	-28	Pass
		Above 3720 MHz	-43.05	-43	Pass

Note: Offset 48 dB included: coupling loss 16 dB, attenuator 30 dB, cables loss 2.0 dB *The limit was reduced 3 dB due to 2 antennae.

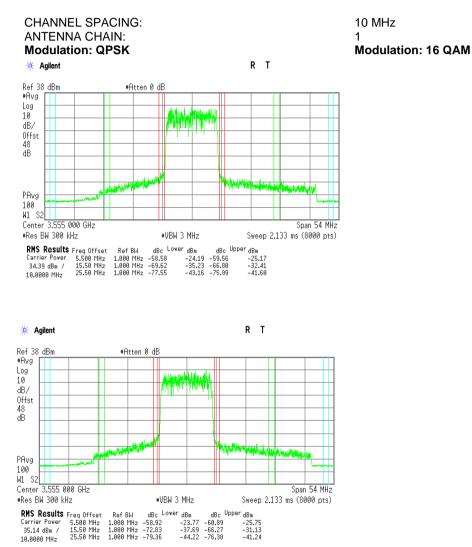
Test specification:	Section 96.41(e), Emissio	n mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	veraici.	FA35
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			

Table 7.4.3 Emission mask test results, CS=20 MHz

Modulation	Carrier frequency, MHz	Frequency displacement from EA frequency block	Test result dBm/MHz	Limit* dBm/MHz	Verdict
		Within 0 to 10 MHz	-27.06	-16	Pass
		Greater than 10 MHz	-32.41	-28	Pass
	Low	Below 3530 MHz	-43.17	-43	Pass
	Mid	Within 0 to 10 MHz	-23.65	-16	Pass
QPSK		Greater than 10 MHz	-31.07	-28	Pass
	High	Within 0 to 10 MHz	-30.92	-16	Pass
		Greater than 10 MHz	-35.04	-28	Pass
		Above 3720 MHz	-43.15	-43	Pass
		Within 0 to 10 MHz	-26.30	-16	Pass
		Greater than 10 MHz	-31.44	-28	Pass
	Low	Below 3530 MHz	-43.15	-43	Pass
	Mid	Within 0 to 10 MHz	-24.44	-16	Pass
16 QAM		Greater than 10 MHz	-30.28	-28	Pass
	High	Within 0 to 10 MHz	-30.57	-16	Pass
		Greater than 10 MHz	-35.30	-28	Pass
		Above 3720 MHz	-43.03	-43	Pass
		Within 0 to 10 MHz	-26.97	-16	Pass
		Greater than 10 MHz	-31.62	-28	Pass
	Low	Below 3530 MHz	-43.14	-43	Pass
	Mid	Within 0 to 10 MHz	-23.63	-16	Pass
		Greater than 10 MHz	-28.71	-28	Pass
64 QAM	High	Within 0 to 10 MHz	-29.81	-16	Pass
	-	Greater than 10 MHz	-36.23	-28	Pass
		Above 3720 MHz	-43.10	-43	Pass

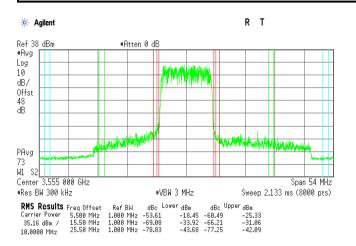
*The limit was reduced 3 dB due to 2 antennae.

Reference numbers of test equipment used

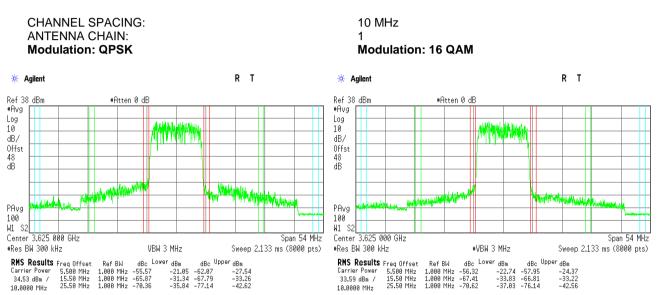

ſ	HL 3818		-			
F	ull description is	aiven in Appen	dix A.			

Full description is given in Appendix A.

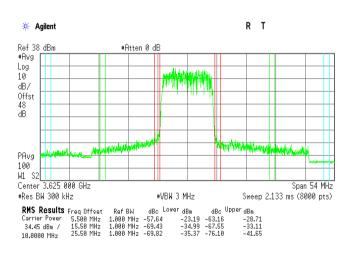
Test specification:	Section 96.41(e), Emission	on mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA35
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:	· · · ·		


Plot 7.4.1 Emission outside the fundamental test results at low carrier frequency

Modulation:64 QAM

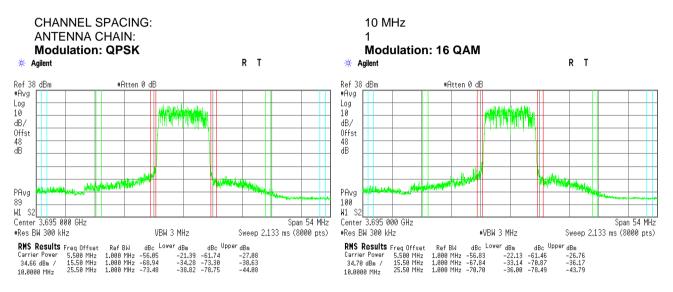


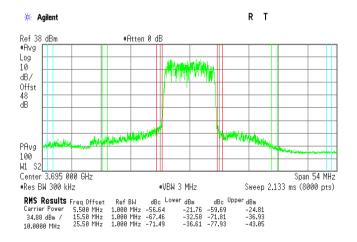
Test specification:	Section 96.41(e), Emissio	n mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			



Test specification:	Section 96.41(e), Emissior	n mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			

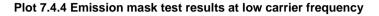
Plot 7.4.2 Emission outside the fundamental test results at mid carrier frequency

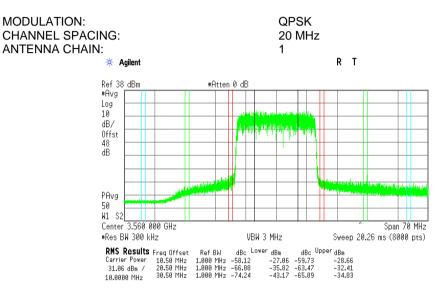

Modulation:64 QAM



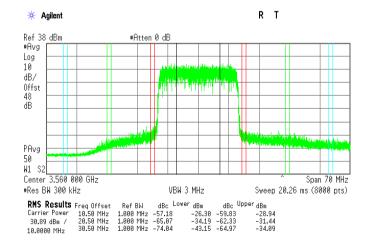
Test specification:	Section 96.41(e), Emissio	n mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	veraici.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			·

Plot 7.4.3 Emission outside the fundamental test results at high carrier frequency

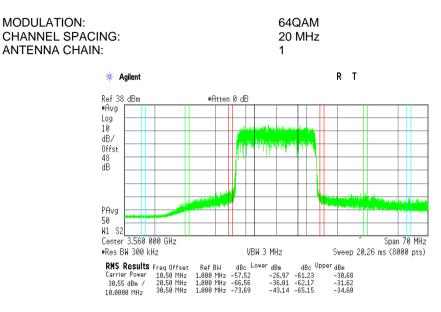


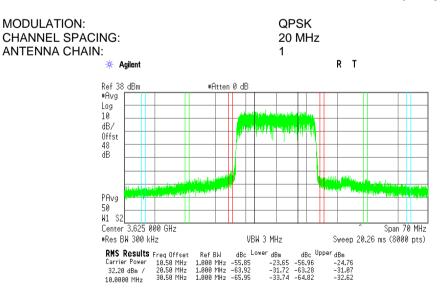

Modulation: 64 QAM

Test specification:	Section 96.41(e), Emission	on mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA00
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			



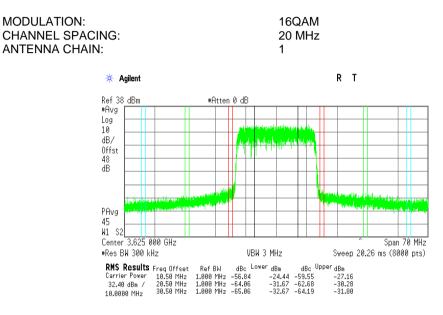
Plot 7.4.5 Emission mask test results at low carrier frequency

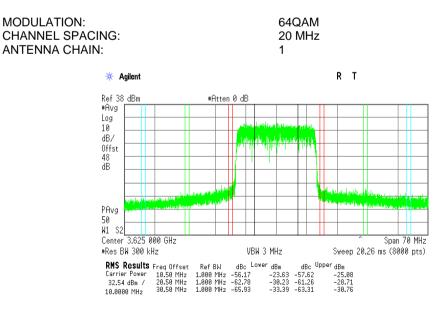

16QAM 20 MHz 1



Test specification:	Section 96.41(e), Emission mask		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:	· · ·		

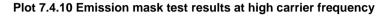
Plot 7.4.6 Emission mask test results at low carrier frequency

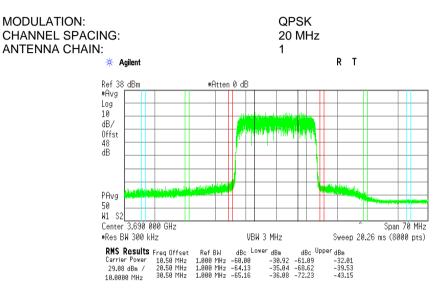

Plot 7.4.7 Emission mask test results at mid carrier frequency

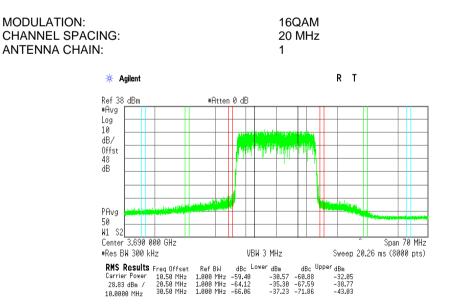


Test specification:	Section 96.41(e), Emission	on mask	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	21-Dec-18	verdict.	FA00
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			

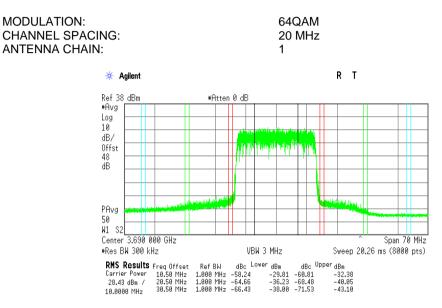
Plot 7.4.8 Emission mask test results at mid carrier frequency




Plot 7.4.9 Emission mask test results at mid carrier frequency



Test specification:	Section 96.41(e), Emission mask				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Vordict	PASS		
Date(s):	21-Dec-18	- Verdict: PASS			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC		
Remarks:					


Plot 7.4.11 Emission mask test results at high carrier frequency

Test specification:	Section 96.41(e), Emission mask				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	21-Dec-18	veraict.	FA00		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC		
Remarks:					

Plot 7.4.12 Emission mask test results at high carrier frequency

Test specification:	Section 96.41(e)(2), Radiated spurious emissions				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Vordiot	PASS		
Date(s):	18-Dec-18	- Verdict: PASS			
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC		
Remarks:					

7.5 Radiated spurious emission measurements

7.5.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.5.1.

Table 7.5.1 Radiated spurious emission test limits
--

Frequency, MHz	EIRP of spurious, dBm	Equivalent field strength limit @ 3m, dB(µV/m)***	
0.09 - below 3530.0	-40.0	55.2	
3720.0 – 10th harmonic*	-40.0	55.2	

*** - Equivalent field strength limit was calculated from maximum allowed ERP of spurious as follows: E=sqrt(30xPx1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.5.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and the performance check was conducted.
- **7.5.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- 7.5.2.3 The worst test results (the lowest margins) were recorded in Table 7.5.2 and shown in the associated plots.

7.5.3 Test procedure for spurious emission field strength measurements above 30 MHz

- **7.5.3.1** The EUT was set up as shown in Figure 7.5.2, energized and the performance check was conducted.
- **7.5.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360^o and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- 7.5.3.3 The worst test results (the lowest margins) were recorded in Table 7.5.2 and shown in the associated plots.

Test specification:	Section 96.41(e)(2), Radia	Section 96.41(e)(2), Radiated spurious emissions				
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	18-Dec-18	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC			
Remarks:						

Figure 7.5.1 Setup for spurious emission field strength measurements in 9 kHz to 30 MHz band

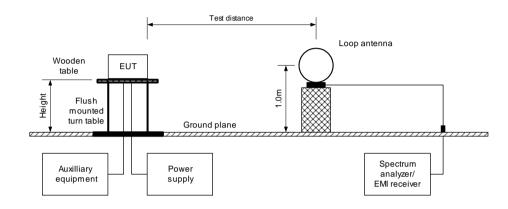
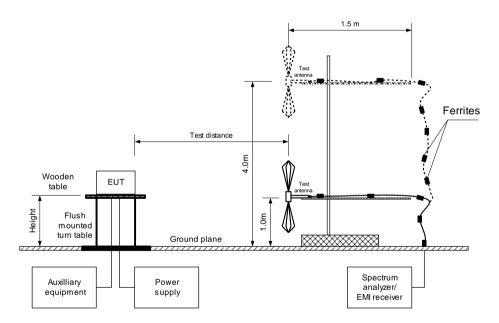



Figure 7.5.2 Setup for spurious emission field strength measurements above 30 MHz

Test specification:	Section 96.41(e)(2), Radiated spurious emissions				
Test procedure:	Section 96.41(e)(3)				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	18-Dec-18	veraici.	FA33		
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC		
Remarks:	-				

Table 7.5.2 Spurious emission field strength test results

ASSIGNED FREQUENCY RANGE: TEST DISTANCE: TEST SITE: INVESTIGATED FREQUENCY RANGE: DETECTOR USED: VIDEO BANDWIDTH: TEST ANTENNA TYPE:

3550 - 3700 MHz
3 m
Semi anechoic chamber
0.009 – 37000 MHz
Peak
> Resolution bandwidth
Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)
Double ridged guide (above 1000 MHz)
QPSK
PRBS
Maximum

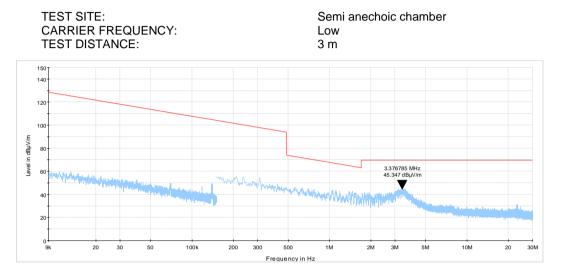
MODULATION: MODULATING SIGNAL: TRANSMITTER OUTPUT POWER SETTINGS:

Frequency, MHz	Field strength, dB(μV/m)	Limit, dB(µV/m)	Margin, dB*	RBW, kHz	Antenna polarization	Antenna height, cm	Turn-table position**, degrees	Verdict		
Low, mid and	Low, mid and high frequency									
33.258	51.41	55.2	-3.79	100	Vertical	104	-173	Pass		
499.190	39.78	55.2	-15.42	100	Vertical	102	62	Pass		
1267.228	38.61	55.2	-16.59	1000	Horizontal	162	-149	Pass		
1420.955	39.21	55.2	-15.99	1000	Horizontal	192	-121	Pass		
1843.067	41.09	55.2	-14.11	1000	Vertical	192	-162	Pass		
2400.227	39.81	55.2	-15.39	1000	Vertical	100	180	Pass		
Mid frequen	су									
7250.075	51.27	55.2	-3.93	1000	Vertical	263	-167	Pass		
High frequer	ncy									
7393.410	45.84	55.2	-9.36	1000	Vertical	223	22	Pass		

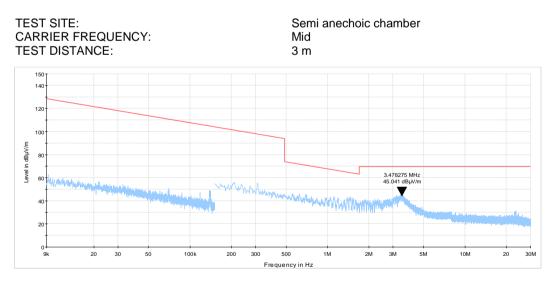
*- Margin = Field strength of spurious – calculated field strength limit.

**- EUT front panel refers to 0 degrees position of turntable.

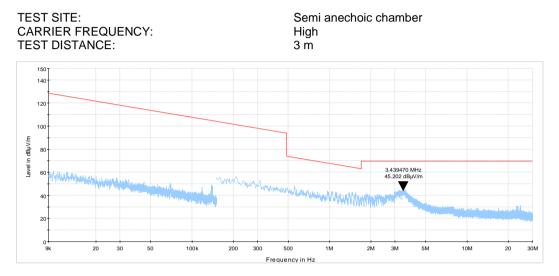
Reference numbers of test equipment used


[HL 0446	HL 3903	HL 4360	HL 4933	HL 4956	HL 5111	HL 5288	HL 5405
E	ull description is	aivon in Annor	div A					

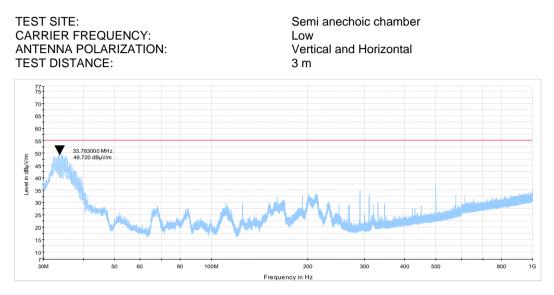
Full description is given in Appendix A.



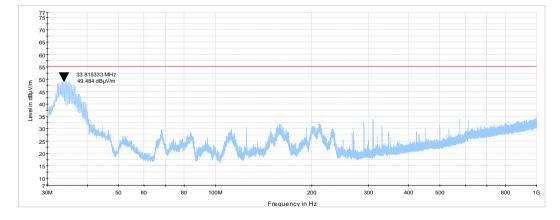
Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	18-Dec-18		
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC
Remarks:			


Plot 7.5.2 Radiated emission measurements in 9 kHz - 30 MHz range

Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict: PASS	
Date(s):	18-Dec-18		
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC
Remarks:			

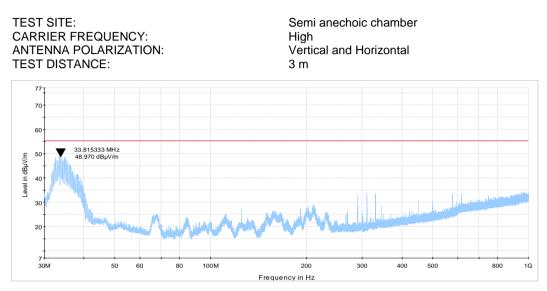


Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	18-Dec-18	verdict.	FA33
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC
Remarks:			

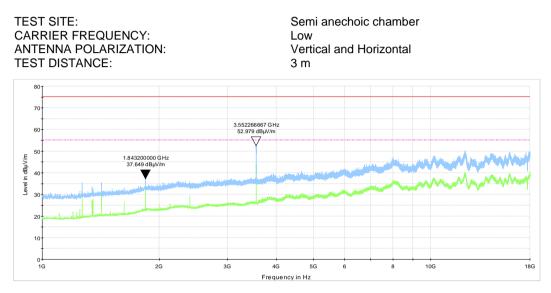


Plot 7.5.5 Radiated emission measurements in 30 - 1000 MHz range

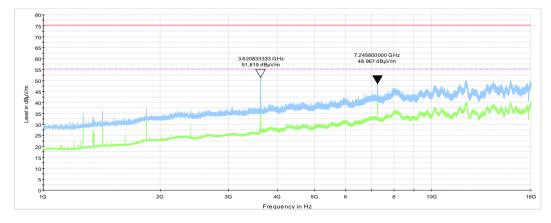
TEST SITE: CARRIER FREQUENCY: ANTENNA POLARIZATION: TEST DISTANCE:


Semi anechoic chamber Mid Vertical and Horizontal 3 m

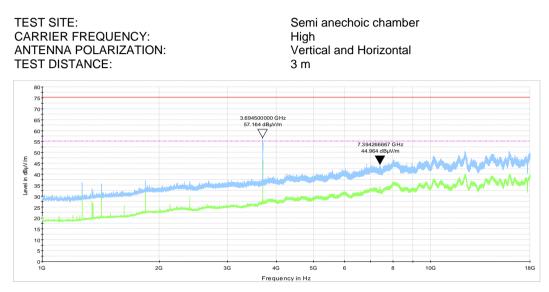
Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict: PASS	
Date(s):	18-Dec-18		
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC
Remarks:			


Plot 7.5.6 Radiated emission measurements in 30 - 1000 MHz range

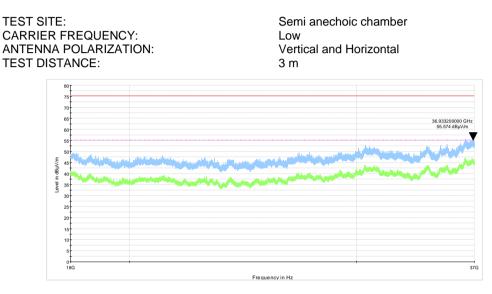
Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict: PASS	
Date(s):	18-Dec-18		
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC
Remarks:			



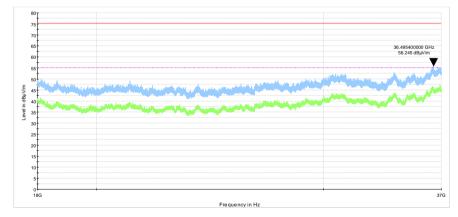
TEST SITE: CARRIER FREQUENCY: ANTENNA POLARIZATION: TEST DISTANCE:


Semi anechoic chamber Mid Vertical and Horizontal 3 m

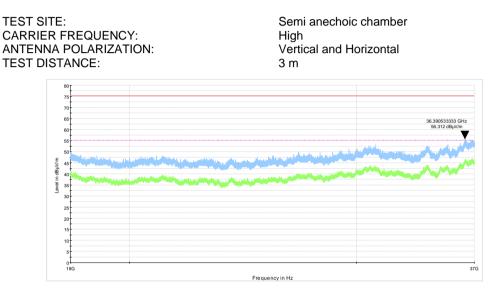
Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict: PASS	
Date(s):	18-Dec-18		
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC
Remarks:			


Plot 7.5.9 Radiated emission measurements in 1000 – 18000 MHz range

Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	18-Dec-18		
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC
Remarks:			



TEST SITE: CARRIER FREQUENCY: ANTENNA POLARIZATION: TEST DISTANCE:


Semi anechoic chamber Mid Vertical and Horizontal 3 m

Test specification:	Section 96.41(e)(2), Radiated spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	18-Dec-18		
Temperature: 24 °C	Relative Humidity: 52 %	Air Pressure: 1020 hPa	Power: 48 VDC
Remarks:			

Plot 7.5.12 Radiated emission measurements in 18000 – 37000 MHz range

Test specification:	Section 96.41(e)(3), Conducted spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict: PASS	
Date(s):	23-Dec-18	verdict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:			

7.6 Spurious emissions at RF antenna connector test

7.6.1 General

This test was performed to measure spurious emissions at RF antenna connector. Specification test limits are given in Table 7.6.1.

Table 7.6.1	Spurious	emission	limits
1001011011	opunouo	01111001011	

Frequency offset from channel band edge, MHz	Attenuation below carrier, dBc	ERP of spurious, dBm
0 - 10	NA	-13.0
10 – 20	NA	-25.0
More than 20	NA	-40.0

* - spurious emission limits do not apply to the in band emission within ± 250 % of the authorized bandwidth from the carrier; investigated in course of emission mask testing

** - P is transmitter output power in Watts

7.6.2 Test procedure

7.6.2.1 The EUT was set up as shown in Figure 7.6.1, energized and its proper operation was checked.

- 7.6.2.2 The EUT was adjusted to produce maximum available for end user RF output power.
- 7.6.2.3 The spurious emission was measured with spectrum analyzer as provided in Table 7.6.2 and associated plots.

Figure 7.6.1 Spurious emission test setup

Test specification:	Section 96.41(e)(3), Conducted spurious emissions		
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict: PASS	
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:			

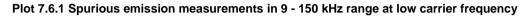
Table 7.6.2 Spurious emission test results

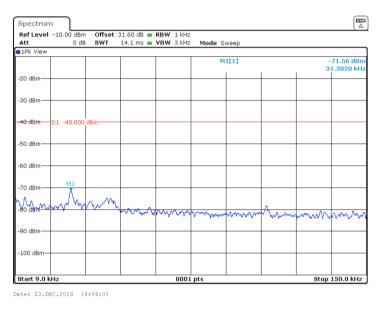
ASSIGNED F INVESTIGAT DETECTOR U VIDEO BAND MODULATIO MODULATIN CHANNEL SE TRANSMITTE	ED FREQUEN JSED: WIDTH: N: G SIGNAL: PACING:	NCY RANGE:		3550 - 37(0.009 - 37 Peak ≥ Resoluti QPSK PRBS 10 MHz Maximum	7000 MHz on bandwidth				
Frequency, MHz	SA reading, dBm	Attenuator, dB	Cable loss, dB	RBW, kHz	Spurious emission, dBm	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict
Low carrier f	requency 3555	MHz							
			No emiss	sions were fo	bund				Pass
Mid carrier fr	equency 3625	MHz							
No emissions were found Pas							Pass		
High carrier f	requency 3695	5 MHz							
			No emiss	sions were fo	bund				Pass

*- Margin = Spurious emission – specification limit.

Note: in 0.009-18000 MHz range the offset 31.6 dB included: attenuator 30 dB, cables loss 1.6 dB

in 18-37 GHz range the offset 32.9 dB included: attenuator 30 dB, cables loss 2.9 dB


Reference numbers of test equipment used


HL 4355	HL 3818	HL 3903	HL 3434	HL 4366	HL 5286
HL 3287	HL 4342	HL 5174	HL 5175		

Full description is given in Appendix A.

Test specification:	Section 96.41(e)(3), Cond	lucted spurious emissions	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:	•	· ·	

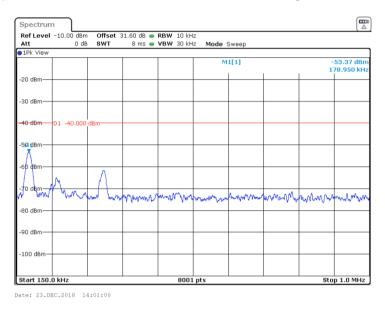
Plot 7.6.2 Spurious emission measurements in 9 - 150 kHz range at mid carrier frequency

	-10.00 dBm		31.60 dB 👄						
Att 1Pk View	0 dB	SWT	14.1 ms 👄	VBW 3 KH	2 Mode 9	Sweep			
IFK TIOW					1	M1[1]			-74.42 dBn .0.0840 kH
-20 dBm									
-30 dBm									
-40 dBm	D1 -40.000	dBm							
-50 dBm									
-60 dBm									
70 dBm-									
-80 asm	m	~~~~~	por mon	m	hom	m	mm	mm	mm
-90 dBm									
-100 dBm—									
Start 9.0 k					1 pts				150.0 kHz

Date: 23.DEC.2018 14:03:14

Test specification:	Section 96.41(e)(3), Cond	ucted spurious emissions	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA35
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:	-		

Plot 7.6.4 Spurious emission measurements in 0.15 - 1 MHz range at low carrier frequency

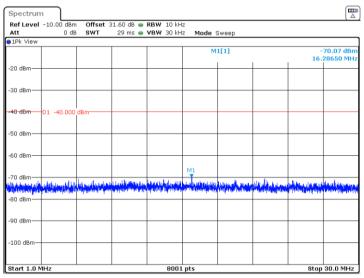

Spectrum Ref Level	-10.00 dBm	Offset	31.60 dB 👄	RBW 10 kH	17				
Att	0 dB	SWT		VBW 30 kH		Sweep			
1Pk View									
					M	1[1]			53.17 dBn 78.950 kH
-20 dBm									
-30 dBm									
-40 dBm	D1 -40.000	dBm							
-50 dBm-									
-70 dBm-	A	Λ							
No upin	how has	war hav	man	month	mmm	hanna	mahan	mant	mm
-80 dBm									
-90 dBm									
-100 dBm—									

Date: 23.DEC.2018 14:00:24

Test specification:	Section 96.41(e)(3), Cond	ucted spurious emissions	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA35
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:	-		

Plot 7.6.5 Spurious emission measurements in 0.15 - 1MHz range at mid carrier frequency

Plot 7.6.6 Spurious emission measurements in 0.15 – 1MHz range at high carrier frequency


	-10.00 dBm		31.60 dB 👄						
Att 1Pk View	0 dB	SWT	8 ms 😑	VBW 30 k	Hz Mode	Sweep			
The Alem					M	1[1]			53.46 dBr 78.950 kH
-20 dBm									
-30 dBm									
-40 dBm	D1 -40.000	dBm							
-50 dBm									
-70 dBm-	M	Δ							
-80 dBm	Mang	nor ha	mmm	man	mann	mm	warm	mmm	mm
-80 UBIII									
-90 dBm									
-100 dBm									
Start 150.0	1 647		1	000	1 pts			Pto	p 1.0 MH

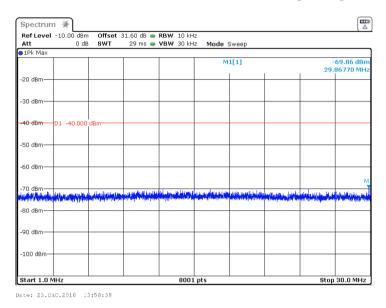
Date: 23.DEC.2018 14:01:41

Test specification:	Section 96.41(e)(3), Cond	lucted spurious emissions	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:	-		

Plot 7.6.7 Spurious emission measurements in 1- 30.0 MHz range at low carrier frequency

Date: 23.DEC.2018 13:59:42

Plot 7.6.8 Spurious emission measurements in 1- 30.0 MHz range at mid carrier frequency

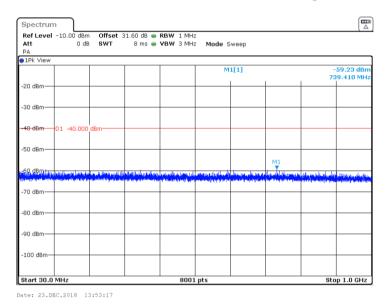

Att	-10.00 dBm 0 dB		31.60 dB 👄 29 ms 👄	VBW 30 kH		Sweep		
1Pk View								
					м	1[1]		70.75 dB 05890 MF
-20 dBm								
-30 dBm								
-40 dBm	D1 -40.000	dBm						
-50 dBm								
-50 abiii								
-60 dBm								
					M1			
-70 dBm			a to a division	. Kalana	-			
				and the state poster			line of the line of the second se	President in
-80 dBm			· · ·					
-90 dBm								
-100 dBm-								

Date: 23.DEC.2018 13:59:11

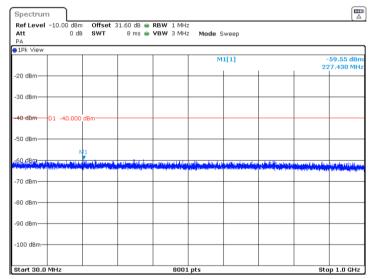
Test specification:	Section 96.41(e)(3), Cond	ucted spurious emissions	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA35
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:	-		

Plot 7.6.9 Spurious emission measurements in 1 – 30.0 MHz range at high carrier frequency

Plot 7.6.10 Spurious emission measurements in 30.0 - 1000 MHz range at low carrier frequency


Att PA	-10.00 dBm 0 dB			<pre>RBW 1 MHz VBW 3 MHz</pre>		weep			
●1Pk View					м	1[1]			59.58 dBr
-20 dBm—								63	9.870 MH
-30 dBm—									
-40 dBm	D1 -40.000	dBm							
-50 dBm									
-60 dBm	a faith an ailtean	alt attack at a	de activite milita	han the first state of states to	wise a successful first	M1	la celle a d'h a d'h	statelist is forces	to to attract the
-70 dBm—	an an in a spinor and	- Incomposition	il energy and the game	A SURVEY AND A DESCRIPTION OF A	anter free plant have	nan managan diriyya	and a second		are the second
-80 dBm—									
-90 dBm—									
-100 dBm—									

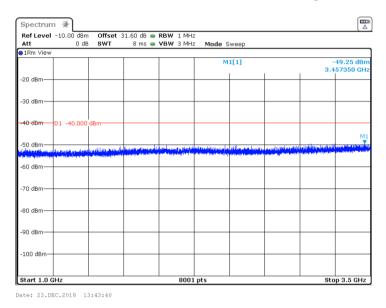
Date: 23.DEC.2018 13:52:44



Test specification:	Section 96.41(e)(3), Conducted spurious emissions						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	23-Dec-18	verdict.	FA33				
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC				
Remarks:	-	· ·					

Plot 7.6.11 Spurious emission measurements in 30.0 - 1000 MHz range at mid carrier frequency

Plot 7.6.12 Spurious emission measurements in 30.0 - 1000 MHz range at high carrier frequency

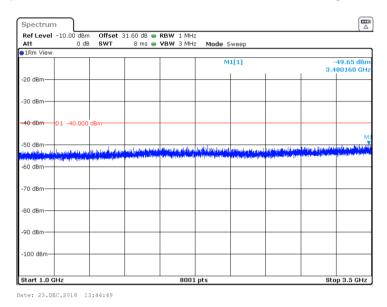


Date: 23.DEC.2018 13:55:46

Test specification:	Section 96.41(e)(3), Conc	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	23-Dec-18	verdict.	FA33				
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC				
Remarks:	•						

Plot 7.6.13 Spurious emission measurements in 1000 - 3500 MHz range at low carrier frequency

Plot 7.6.14 Spurious emission measurements in 1000 - 3500 MHz at mid carrier frequency

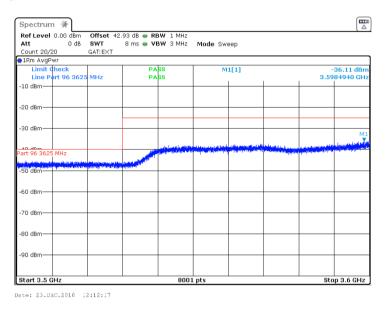

-49.46 dE 3.379860 G
3.379860 G
- and the state
- and a strand the
- Alice and a second

Date: 23.DEC.2018 13:44:15

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	23-Dec-18	verdict.	FA33			
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC			
Remarks:	•	· ·				

Plot 7.6.15 Spurious emission measurements in 1000 - 3500 MHz at high carrier frequency

Plot 7.6.16 Spurious emission measurements in 3500 - 3530 MHz range at low carrier frequency

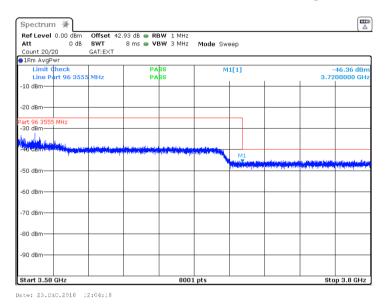

Ref Level 0.00 dBm Att 0 dB	SWT	.93 dB 👄 RB 8 ms 👄 VB		Mode Sw	eep			
Count 20/20	GAT: EXT				F			
1Rm AvgPwr								
Limit Check Line Part 96 355	C 1411-	PA PA		M	1[1]			45.10 dBr 49910 GH
-10 dBm	амнг	PA	55				3.322	49910 GH
-20 dBm								
-30 dBm								
40.40 m						M1		
				1		IMIT		
	and the second	A CONTRACTOR OF A CONTRACT	a delete the state of the	Lune Later de la	to Longing and the second	and a second second	and the second second	and all the day to a
		a ser iner alesie			an sa hana ang ang ang ang ang ang ang ang ang	North Market		
		a na ana ana ana ana ana ana ana ana an		an a	an sa historia fia			
and the state of the	her yn ef yn yf hef yn yn de arthof yn		n a shine ya ma na san san Na san ya ma na san san san	Lay yang di Aktor yang di Katalan Mang dan yang di Katalan Mang dan yang di Katalan	in Lind in a try parties to the fact price is a price		ne na hain an hain an hain Ta na hain an h	
-50 dBm			na velako zako zako zako zako zako zako zako z				in an an a faile and a second	
-50 dBm		n ja see geografia ja sijae			erende for de la factoria		ing the full state of the second state of the	
-50 dBm -60 dBm -70 dBm								
-50 dBm -60 dBm -70 dBm								
-50 dBm								

Date: 23.DEC.2018 11:53:14

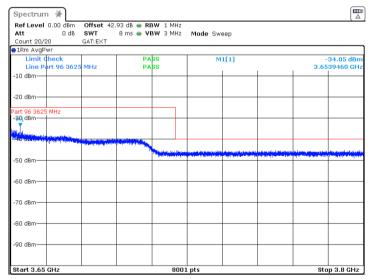
Test specification:	Section 96.41(e)(3), Conc	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	23-Dec-18	verdict.	FA33				
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC				
Remarks:							

Plot 7.6.17 Spurious emission measurements in 3500 - 3600 MHz at mid carrier frequency

Plot 7.6.18 Spurious emission measurements in 3500 - 3680 MHz at high carrier frequency


Att 0 dB SW1	et 42.93 dB 👄 RBV 8 ms 👄 VBV		eep	
Count 20/20 GAT:	EXT			
1Rm AvgPwr				
Limit Check	PAS		1[1]	-39.89 dBi
Line Part 96 3695 MHz	PAS	s		3.5984940 GH
-10 dBm				
-20 dBm				
-20 UBIII				
-30 dBm				
-30 UBIII				المارين المراجع
40. d0m	the shares and the	M1	an all states and a state of the states of t	
art 96 3695 MHz	Las probably and an a state of the state of	and a second	annelige a standard and refer to the faces	Sandlade Services (1997)
-S0 dBm				
-50 dBm				
-60 dBm				
70.10				
-70 dBm				
00.40-				
-80 dBm				
-90 dBm				

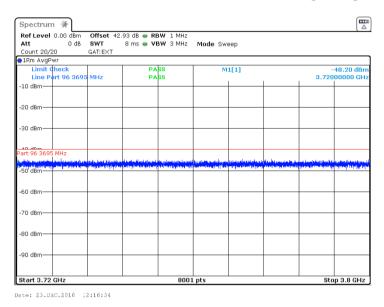
Date: 23.DEC.2018 12:15:17



Test specification:	Section 96.41(e)(3), Conducted spurious emissions						
Test procedure:	Section 96.41(e)(3)						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	23-Dec-18	verdict.	FA33				
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC				
Remarks:	-	· ·					

Plot 7.6.19 Spurious emission measurements in 3580 - 3800 MHz range at low carrier frequency

Plot 7.6.20 Spurious emission measurements in 3650 - 3800 MHz range at mid carrier frequency

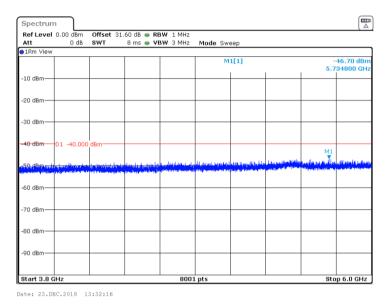


Date: 23.DEC.2018 12:08:06

Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	23-Dec-18	verdict.	FA33			
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC			
Remarks:	•	· ·				

Plot 7.6.21 Spurious emission measurements in 3720 – 3800 MHz range at high carrier frequency

Plot 7.6.22 Spurious emission measurements in 3800 - 6000 MHz range at low carrier frequency

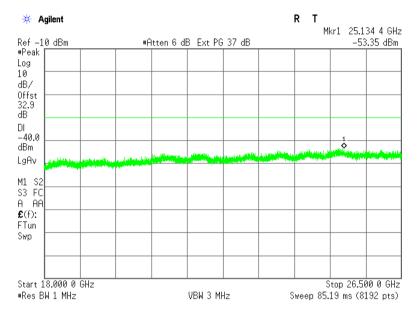

Att	0.00 dBm 0 dB	SWT	.60 dB 👄 RB 8 ms 👄 VB		Mode Sw	еер			
∋1Rm View		I	T	I					
					м	1[1]			47.09 dBr 62670 GH
-10 dBm									
-20 dBm									
-30 dBm									
-50 abiii									
-40 dBm	D1 -40.000	dBm					M	1	
50.dbmh	- and the ball					ارو بد عمر الاست	or all the letters	an allashadadh Taracan na anna	, the sould a
on selfenteder opt	ensyles and the bal	itels of the backward	a na kata sa kata sa na		- And Construction	the state of the s		 advanter trakentione 	a lor o au
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm			+						

Date: 23.DEC.2018 13:33:08

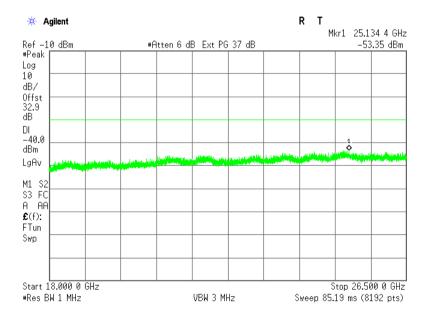
Test specification:	Section 96.41(e)(3), Conducted spurious emissions					
Test procedure:	Section 96.41(e)(3)					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	23-Dec-18	veraict.	FA33			
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC			
Remarks:						

Plot 7.6.23 Spurious emission measurements in 3800 - 6000 MHz at mid carrier frequency

Plot 7.6.24 Spurious emission measurements in 3800 - 6000 MHz at high carrier frequency

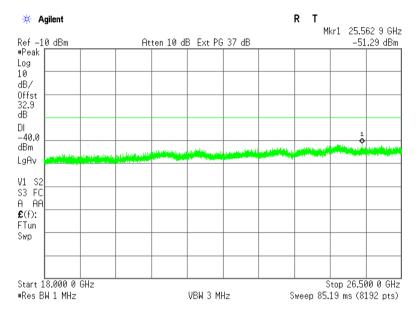

Att	-10.00 dBm 0 dB		31.60 dB 👄 8 ms 👄	VBW 3 MH		Sweep		
∋1Rm View					м	1[1]		46.23 dBn
-20 dBm							5.8	43960 GH
-30 dBm								
-40 dBm	D1 -40.000	dBm						M1
1-50-d8m-rd-				h history, Ula	. Hantsternheite Ares			
Interation advantages on	phone and the second	at our Peters fit bi	all a second second				1	
-60 dBm—								
-70 dBm								
-70 dBm								
-60 dBm								

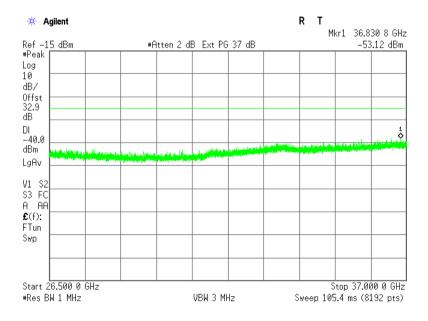
Date: 23.DEC.2018 13:22:34



Test specification:	Section 96.41(e)(3), Conc	ducted spurious emissions	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA00
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:			

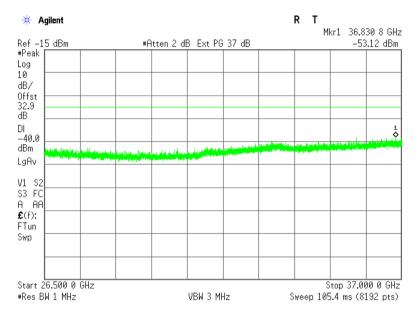
Plot 7.6.25 Spurious emission measurements in 18000 - 26500 MHz range at low carrier frequency

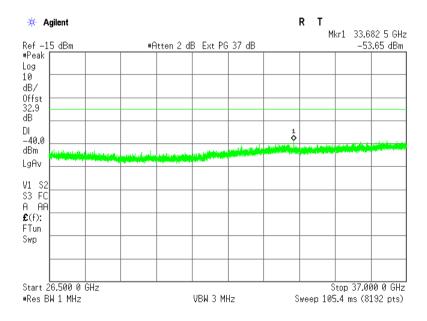

Plot 7.6.26 Spurious emission measurements in 18000 - 26500 MHz at mid carrier frequency



Test specification:	Section 96.41(e)(3), Cond	lucted spurious emissions	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:			

Plot 7.6.27 Spurious emission measurements in 18000 - 26500 MHz at high carrier frequency


Plot 7.6.28 Spurious emission measurements in 26500 - 37000 MHz range at low carrier frequency



Test specification:	Section 96.41(e)(3), Conc	lucted spurious emissions	
Test procedure:	Section 96.41(e)(3)		
Test mode:	Compliance	Verdict:	PASS
Date(s):	23-Dec-18	verdict.	FA33
Temperature: 24.3 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 48 VDC
Remarks:			

Plot 7.6.29 Spurious emission measurements in 26500 - 37000 MHz at mid carrier frequency

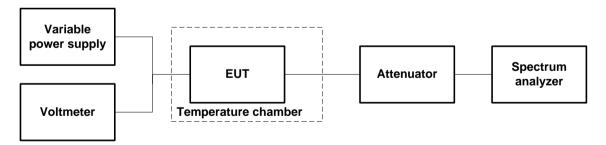
Plot 7.6.30 Spurious emission measurements in 26500 - 37000 MHz at high carrier frequency

Test specification:	Section 2.1055, Frequency	/ stability	
Test procedure:	47 CFR, Section 2.1055		
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Jan-19	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			

7.7 Frequency stability test

7.7.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.7.1.


Table 7.7.1 Frequency stability limits

Accident frequency MHz	Maximum allowed fre	quency displacement
Assigned frequency, MHz	ppm	Hz
3555.0		NA
3625.0	NA	NA
3695.0		NA

7.7.2 Test procedure

- 7.7.2.1 The EUT was set up as shown in Figure 7.7.1, energized and its proper operation was checked.
- **7.7.2.2** The EUT power was turned off. Temperature within test chamber was set to +30°C and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.7.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then every minute until frequency had been stabilized or 10 minutes elapsed whichever reached the last. The EUT was powered off.
- 7.7.2.4 The above procedure was repeated at 0°C and at the lowest test temperature.
- **7.7.2.5** The EUT was powered on and carrier frequency was measured at start up moment and at the end of stabilization period at the rest of test temperatures and voltages. The EUT was powered off.
- 7.7.2.6 Frequency displacement was calculated and compared with the limit as provided in Table 7.7.2.

Figure 7.7.1 Frequency stability test setup

Test specification:	Section 2.1055, Frequency	stability	
Test procedure:	47 CFR, Section 2.1055		
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Jan-19	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 48 VDC
Remarks:			

Table 7.7.2 Frequency stability test results

NOMINA FEMPER POWER SPECTR RESOLU	ATURE S DURING 1 UM ANAL TION BAN ANDWIDT	VOLTAGE TABILIZAT TEMPERAT YZER MOE IDWIDTH:	ION PERIC				3550 - 370 48 VDC 20 min Off Counter 1 kHz 1 kHz Unmodulat				
T, ⁰C	Voltage,			F	requency, M	Hz				equency t, Hz	Verdict
	v	Start up	1 st min	2 nd min	3 rd min	4 th min	5 th min	10 th min	Positive	Negative	
Low free	uency 355				-		-			- J	
-30	nominal	3555.00050	3555.00050	3555.00050	3555.00045	3555.00050	3555.00050	3555.00045	500	0	Comply
-20	nominal	3555.00055	NA	NA	NA	NA	NA	3555.00045	550	0	Comply
-10	nominal	3555.00055	NA	NA	NA	NA	NA	3555.00055	550	0	Comply
0	nominal	3555.0005	3555.00055	3555.00050	3555.00035	3555.00040	3555.00050	3555.00050	550	0	Comply
10	nominal	3555.00050	3555.00055 NA	3555.00050 NA	3555.00035 NA	3555.00040 NA	3555.00050 NA	3555.00050	500	0	Comply
20	15%	35554.99947	NA	NA	NA	NA	NA	3555.00045	0	-777	Comply
20	nominal	3554.99932	NA	NA	NA	NA	NA	3554.99889	0	-1114	Comply
20	-15%	3554.99932	NA	NA	NA	NA	NA	3554.99886	0	-1136	Comply
30	nominal	3554.99816	3555.00020	3555.00024	3555.00015	3555.00019	3555.00017	3555.00019	242	-1841	Comply
40	nominal	3554.99950	NA	NA	NA	NA	NA	3555.00055	550	-500	Comply
50	nominal	3555.00055	NA	NA	NA	NA	NA	3555.00050	550	0	Comply
	uency 3625		na -	na -		NA NA	NA NA	3333.00030			comply
-30	nominal	3625.00055	3625.0005	3625.0005	3625.00055	3625.0005	3625.00045	3625.00045	550	0	Comply
-30	nominal	3625.00055	3625.0005 NA	3625.0005 NA	3625.00055 NA	3625.0005 NA	3625.00045 NA	3625.00045	550	0	Comply
-10	nominal	3625.00055	NA	NA	NA	NA	NA	3625.00045	550	-450	Comply
0	nominal	3624.99950	3625.00055	3625.0005	3625.00055	3625.0006	3625.0006	3625.00055	600	0	Comply
10	nominal	3625.00060	3625.00055 NA	3625.0005 NA	3625.00055 NA	3625.0006 NA	3625.0006 NA	3625.0006	450	0	Comply
20	15%	3625.00045	NA	NA	NA	NA	NA	3625.00045	450	-838	Comply
20	nominal				NA		NA		0	-693	Comply
20	-15%	3624.99931	NA	NA	1	NA		3624.99948	0	-868	Comply
30	nominal	3624.99913	NA 0005.00040	NA	NA	NA	NA	3624.99926	164	-110	Comply
40	nominal	3624.99989	3625.00013	3625.00016	3625.00010	3625.00013	3625.00011	3625.00013	600	0	Comply
50	nominal	3625.0005 3625.00055	NA NA	NA NA	NA NA	NA NA	NA NA	3625.0006 3625.0004	550	0	Comply
	quency 369		NA	NA	NA	NA	NA	3023.0004	550	0	Comply
-30	<u> </u>								550	0	Comply
-30	nominal	3695.0005	3695.00050	3695.00055	3695.00055	3695.00055	3695.00055	3695.00055	550 550	0	Comply Comply
-20	nominal	3695.00045	NA	NA	NA	NA	NA	3695.00055	600	0	1 7
-10	nominal	3695.00050	NA	NA	NA	NA 2005 00055	NA 2005 00055	3695.0006	550	0	Comply Comply
10	nominal	3695.00045	3695.00045	3695.0005	3695.00055	3695.00055	3695.00055	3695.00055	550	0	Comply
20	15%	3695.00040	NA	NA	NA	NA	NA	3695.00055	0	-793	Comply
20	nominal	3694.99921	NA	NA	NA	NA	NA	3694.99947	0	-793 -337	Comply
20	-15%	3694.99921	NA	NA	NA	NA	NA	3694.99954	0	-337 -598	Comply
30	nominal	3694.99951	NA	NA	NA	NA	NA	3694.99940	210	-598	Comply
30 40	nominal	3694.99905	3694.99928	3695.00021	3695.00017	3695.00018	3695.00016	3695.00012	450	-720	Comply
40 50	-	3695.00045	NA	NA	NA	NA	NA	3695.00045	450 450	0	Comply
50	nominal	3695.00045	NA	NA	NA	NA	NA	3695.0004	400	U	Comply

* - Reference frequency

Reference numbers of test equipment used

HL 2909 HL 2358 HL 5391			HL 2909	HL 2358	HL 5391					
-------------------------	--	--	---------	---------	---------	--	--	--	--	--

Full description is given in Appendix A.

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 9 kHz - 30 MHz	EMCO	6502	2857	24-Feb-19	24-Feb-20
2358	Power Supply, 2 X 0-36VDC / 5A, 5VDC / 5A	Horizon Electronics	DHR3655 D	767469	03-Jun-18	03-Jun-19
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	27-Mar-18	27-Mar-19
3287	Low pass filter, DC-3.0 GHz	Unknown	NA	3287	01-Oct-17	01-Oct-19
3301	Power Meter, P-series, 50 MHz to 40 GHz	Agilent Technologies	N1911A	MY451010 57	02-May-18	02-May-19
3302	Power sensor, P-Series, 50 MHz to 40 GHz, -35/30 to 20 dBm	Agilent Technologies	N1922A	MY452405 86	02-May-18	02-May-19
3433	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25679	28-Mar-18	28-Mar-19
3434	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25683	28-Mar-18	28-Mar-19
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	28-May-18	28-May-19
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1226/2A	07-Feb-18	07-Mar-19
4342	High Pass Filter, 50 Ohm, 10.6 to 26.5 GHz,SMA-M / SMA-FM	RLC Electronics	F-5738A	8425	17-May-18	17-May-19
4355	Signal and Spectrum Analyzer, 9 kHz to 7 GHz	Rohde & Schwarz	FSV 7	101630	28-Jun-18	28-Sep-19
4360	EMI Test Receiver, 20 Hz to 40 GHz.	Rohde & Schwarz	ESU40	100322	31-Dec-18	31-Dec-19
4366	Directional coupler, 1 GHz to 18 GHz, 10 dB, SMA Female	Tiger Micro- Electronics Institute	TGD- A1101-10	01e- JSDE805- 007	21-May-18	21-May-20
4933	Active Horn Antenna, 1 GHz to 18 GHz	Com-Power Corporation	AHA-118	701046	06-Jan-19	06-Jan-20
4956	Active horn antenna, 18 to 40 GHz	Com-Power Corporation	AHA-840	105004	25-Jan-19	25-Jan-20
5111	RF cable, 40 GHz, 5.5 m, K-type	Huber-Suhner	SF102EA/ 11SK/11S K/5500M M	502493/2E A	09-Apr-18	09-Apr-19
5174	Medium Power Fixed Coaxial Attenuator DC to 40 GHz, 10 dB, 5 W	API Weinschel, Inc	75A-10- 12	TD854	07-Feb-18	07-Feb-19
5175	Medium Power Fixed Coaxial Attenuator DC to 40 GHz, 20 dB, 5 W	API Weinschel, Inc	75A-20- 12	TE289	07-Feb-18	07-Feb-19
5286	Band Pass Filter, 50 Ohm, 4.4 to 18 GHz, SMA/M-SMA/F	A-INFOMW	WBLB-T- HP-4.4- 18-S	J10800000 305	28-Mar-18	28-Mar-19
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	08-Feb-19	08-Feb-22

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
5391	Temperature/Humidity Cycle Chamber, - 77 - +177 deg., Humidity Range 20% RH to 95% RH	Thermotron	SM-8C	27737	22-Jul-18	22-Jul-19
5405	RF cable, 18 GHz, N-N, 6 m	Huber-Suhner	SF118/11 N(x2)	500023/11 8	01-Aug-18	01-Aug-19

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Transmitter tests	
Carrier power conducted at antenna connector	± 1.7 dB
Carrier power radiated (substitution method)	± 4.5 dB
Occupied bandwidth	±8%
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Spurious emissions radiated 30 MHz – 40 GHz (substitution method)	± 4.5 dB
Frequency error	30 – 300 MHz: ± 50.5 Hz (1.68 ppm)
	300 – 1000 MHz: ± 168 Hz (0.56 ppm)
Transient frequency behaviour	187 Hz
	± 13.9 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Unintentional radiator tests	
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: \pm 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: \pm 6.0 dB
	Double ridged horn antenna: \pm 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), ISED #2186A, CAB identifier is IL1001; Certified by VCCI, Japan (the registration numbers are R-10808 for OATS, R-1082 for anechoic chamber, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address:	P.O. Box 23, Binyamina 3055001, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

11 APPENDIX D	Specification references
FCC 47CFR part 96: 2017	Citizens Broaband Radio Service
FCC 47CFR part 1: 2017	Practice and procedure
FCC 47CFR part 2: 2017	Frequency allocations and radio treaty matters; general rules and regulations
ANSI C63.26:2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
ANSI C63.2: 1996	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4: 2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
KDB 971168 D01 v03r01	Measurement Guidance for Certification of Licensed Digital Transmitters

	from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
KDB 971168 D01 v03r01	Measurement Guidance for Certification of Licensed Digital Transmitters
KDB 940660 D01 v01	Certification and Test Procedures for Citizens Broadband Radio Service Devices Authorized under Part 96
KDB 662911 D01 v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
KDB 662911 D02 v01	MIMO with Cross-Polarized Antenna

12 APPENDIX E Test equipment correction factors

Antenna factor Active loop antenna Model 6502, S/N 2857, HL 0446

Frequency, MHz	Measured antenna factor, dBS/m
0.009	-32.5
0.010	-33.4
0.020	-37.9
0.050	-40.6
0.075	-41.0
0.100	-41.2
0.150	-41.2
0.250	-41.2
0.500	-41.3
0.750	-41.3
1.000	-41.4
2.000	-41.4
3.000	-41.4
4.000	-41.5
5.000	-41.5
10.000	-41.8
15.000	-42.2
20.000	-42.9
25.000	-43.9
30.000	-45.4

Antenna factor is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Freewood Mile	Ant	Antenna factor, dB/m			
Frequency, MHz	Vert Up	Vert Down	Delta		
30	-51.19	-51.28	0.09		
35	-44.03	-44.12	0.09		
40	-43.07	-43.12	0.05		
45	-39.61	-39.79	0.18		
50	-37.84	-38.14	0.3		
60	-34.93	-34.9	0.03		
70	-29.76	-29.66	0.1		
80	-27.69	-27.82	0.13		
90	-29.05	-29.07	0.02		
100	-31.19	-31.19	0		
120	-31.61	-31.6	0.01		
140	-28.13	-28.06	0.07		
160	-27.71	-27.75	0.04		
180	-26.19	-26.15	0.04		
200	-28.2	-28.15	0.05		
250	-27.45	-27.47	0.02		
300	-29.61	-29.63	0.02		
400	-31.77	-31.78	0.01		
500	-32.81	-32.81	0		
600	-33.64	-33.61	0.03		
700	-34.21	-34.21	0		
800	-35.66	-35.66	0		
900	-36.99	-36.91	0.08		
1000	-38	-37.91	0.09		

Antenna factor Trilog antenna Model ALX-8000E, Frankonia, S/N 00809, HL 5288, 30-1000 MHz

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Active Horn Antenna, Com-Power Corporation, model: AHA-118, s/n 701046, HL 4933

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
1000	-16.1
1500	-15.1
2000	-10.9
2500	-11.9
3000	-11.1
3500	-10.6
4000	-8.6
4500	-8.3
5000	-5.9
5500	-5.7
6000	-3.3
6500	-4.0
7000	-2.2
7500	-1.7
8000	1.1
8500	-0.8
9000	-1.5
9500	-0.2

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

The antenna factor shall be added to receiver reading in dBµV to obtain field strength in dBµV/m.

Antenna factor Active Horn Antenna, Com-Power Corporation, model: AHA-840, s/n 105004, HL 4956

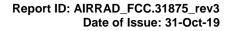
Frequency, MHz	Measured antenna factor (with preamplifier), dB/m	Frequency, M
18000	2.5	29000
18500	0.5	29500
19000	-1.0	30000
19500	-2.4	30500
20000	-2.5	31000
20500	-2.2	31500
21000	-2.0	32000
21500	-2.7	32500
22000	-3.7	33000
22500	-3.8	33500
23000	-3.7	34000
23500	-5.0	34500
24000	-4.5	35000
24500	-5.0	35500
25000	-4.7	36000
25500	-4.4	36500
26000	-4.3	37000
26500	-5.6	38000
27000	-4.3	38500
27500	-4.9	39000
28000	-5.2	39500
28500	-4.4	40000

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
29000	-2.7
29500	-2.6
30000	-1.4
30500	-1.5
31000	-1.0
31500	-2.6
32000	-3.3
32500	-3.3
33000	-5.1
33500	-5.2
34000	-1.5
34500	-5.4
35000	-3.3
35500	-4.2
36000	-2.8
36500	-2.6
37000	-1.0
38000	1.8
38500	2.8
39000	1.3
39500	1.3
40000	0.3

The antenna factor shall be added to receiver reading in dB_µV to obtain field strength in dB_µV/m.

Cable loss Test Cable, Mini-Circuits, CBL-5FT-SMSM+, SMA-SMA, 18 GHz, 1.5 m, S/N 25679 Mini-Circuits, HL 3433

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10.0	0.06	9000	2.01
100	0.17	9500	2.06
500	0.41	10000	2.05
1000	0.58	10500	2.18
1500	0.72	11000	2.26
2000	0.86	11500	2.28
2500	0.96	12000	2.43
3000	1.04	12500	2.53
3500	1.13	13000	2.52
4000	1.23	13500	2.56
4500	1.31	14000	2.60
5000	1.41	14500	2.59
5500	1.49	15000	2.67
6000	1.55	15500	2.76
6500	1.63	16000	2.86
7000	1.71	16500	2.91
7500	1.78	17000	2.95
8000	1.86	17500	3.02
8500	1.92	18000	3.07


Cable loss Test Cable, Mini-Circuits, CBL-5FT-SMSM+, SMA-SMA, 18 GHz, 1.5 m, S/N 25683 Mini-Circuits, HL 3434

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10.0	0.06	9000	1.96
100	0.16	9500	2.01
500	0.40	10000	2.01
1000	0.57	10500	2.14
1500	0.72	11000	2.21
2000	0.85	11500	2.24
2500	0.95	12000	2.36
3000	1.03	12500	2.47
3500	1.11	13000	2.46
4000	1.21	13500	2.50
4500	1.29	14000	2.53
5000	1.39	14500	2.53
5500	1.46	15000	2.62
6000	1.52	15500	2.70
6500	1.60	16000	2.80
7000	1.68	16500	2.86
7500	1.75	17000	2.88
8000	1.83	17500	2.94
8500	1.88	18000	3.00

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 1.5 m, SMA-SMA, S/N 1226/2A HL 3903

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	-0.02	9500	1.84	21000	2.98
100	0.15	10000	1.86	22000	3.07
500	0.38	10500	1.93	23000	3.13
1000	0.56	11000	1.99	24000	3.21
1500	0.69	11500	2.04	25000	3.26
2000	0.82	12000	2.10	26000	3.48
2500	0.90	12500	2.15	27000	3.44
3000	0.98	13000	2.21	28000	3.53
3500	1.06	13500	2.25	29000	3.59
4000	1.11	14000	2.29	30000	3.66
4500	1.17	14500	2.34	31000	3.70
5000	1.24	15000	2.36	32000	3.79
5500	1.32	15500	2.40	33000	3.88
6000	1.40	16000	2.45	34000	3.94
6500	1.50	16500	2.48	35000	3.91
7000	1.56	17000	2.56	36000	4.05
7500	1.62	17500	2.58	37000	4.22
8000	1.68	18000	2.60	38000	4.25
8500	1.74	19000	2.84	39000	4.27
9000	1.78	20000	2.88	40000	4.33

Cable loss RF Cable, Huber-Suhner, 18 GHz, 6 m, SF118/11N(x2), S/N 500023/118 HL 5405

14

5405

Specific Test Report

Frequency Range [GHz]	IL min S21 [dB]	IL min S12 [dB]	RL max S11 [dB]	RL max S22 [dB]	Type: Sales n
0.040 - 1.836	-1.431	-1.431	-37.037	-37,704	Serial n PA no.:
1.836 - 3.632	-2.062	-2.066	-33.573	-32.848	Ring no
3.632 - 5.428	-2.576	-2.576	-28.548	-29.602	Cable le
5.428 - 7.224	-3.013	-3.014	-30.738	-32.523	Test ler
7.224 - 9.020	-3.415	-3.416	-33.728	-32.257	Connec
9.020 - 10.816	-3.772	-3.772	-29.302	-30.735	Connec
10.816 - 12.612	-4.138	-4.138	-28.768	-26.255	Cable:
12.612 - 14.408	-4.456	-4.462	-27.109	-26.151	Meas. S
14.408 - 16.204 16.204 - 18.000	-4.786	-4.786	-26.056	-27.116	
10.204 - 10.000	-5.113	-5.111	-27.762	-28.508	Time:
					Date:

Type:	SF118/11N/11N/6000MM
Sales no .:	10497130
Serial no .:	500023 /118
PA no.:	1956306
Ring no.:	
Cable length:	6 m
Test length:	
Connector 1:	SF_11_N-656
Connector 2:	SF 11 N-656
Cable:	SUCOFLEX 118
Meas. System:	N5230C,MY49001834,A.09.42.22
Time:	7:04:21 AM
Date:	6/6/2018
Inspected by:	AZ /111
Start Freq.:	0.04000 GHz
Chan Frank	

0.04000 GHz Stop Freq.: Meas Points: 801 Source Power: -5 dBm

18.00000 GHz

Page 111 of 112

13 APPENDIX F Abbreviations and acronyms

A AC	ampere alternating current	
A/m	ampere per meter	
AM	amplitude modulation	
AVRG	average (detector)	
BB	broad band	
cm	centimeter	
dB	decibel	
dBm	decibel referred to one milliwatt	
dB(μV)		
$dB(\mu V/m)$ decibel referred to one microvolt per meter		
dB(μA)		
dBΩ	decibel referred to one Ohm	
DC	direct current	
EIRP	equivalent isotropically radiated power	
ERP	effective radiated power	
EUT F	equipment under test	
г GHz	frequency	
GND	gigahertz ground	
H	height	
HL	Hermon laboratories	
Hz	hertz	
ITE	information technology equipment	
k	kilo	
kHz	kilohertz	
LISN	line impedance stabilization network	
LO	local oscillator	
m	meter	
MHz	megahertz	
min	minute	
mm	millimeter	
ms	millisecond	
μs NA	microsecond	
NB	not applicable narrow band	
NT	not tested	
OATS	open area test site	
Ω	Öhm	
QP	quasi-peak	
PM	pulse modulation	
PS	power supply	
RE	radiated emission	
RF	radio frequency	
rms	root mean square	
Rx	receive	
S T	second	
T Tx	temperature transmit	
V	volt	
VA	volt-ampere	
• / 1		

END OF DOCUMENT