

Part 1 of 1

1.0	Introduction and Overview	
2.0	Referenced Standards and Guidelines	
	2.1 SAR Limits	
3.0	Description of Device Under Test (DUT)	
4.0	Description of Test System	
	4.1 Description of Robotics/Probes/Re	adout Electronics5
	4.2 Description of Phantom(s)	
	4.2.1 Flat Phantom	
	4.2.2 SAM Phantom	
	4.2.3 Elliptical Flat Phantom	
	4.3 Description of Equivalent Tissues.	
5.0	Additional Test Equipment	
6.0	SAR Measurement System Verification	7
	6.1 Equivalent Tissue Test results	7
	6.2 System Check Test results	
7.0	DUT Test Strategy and Methodology	
	e	
	7.2 Device Positioning Procedures	
		9
	7.2.2 Head	9
	7.2.3 Face	9
8.0	Environmental Test Conditions	9
9.0	Test Results Summary	
	9.1 Highest SAR results calculation me	thodology 11
10.0	O Conclusion	

APPENDICES

А	Measurement Uncertainty	
В	Probe Calibration Certificates	15
С	Dipole Calibration Certificates	
D	Test System Verification Scans	
E	DUT Scans (Shortened Scans and Highest SAR configurations)	
F	DUT Supplementary Data (e.g. Power Slump)	
G	DUT Test Position Photos	
Η	DUT and Body-worn Accessory Photos	
Ι	DUT Antenna Separation Distances and Offered Accessory Test Status	

Report Revision History

Date	Revision	Comments
2/13/2008	0	Initial release

1.0 Introduction and Overview

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the G&PS EME Test Lab for the model number PCEx25100 of FCC ID: PHX-PCE25100. The results herein reflect initial test results.

2.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1(2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- United States Federal Communications Commission, Code of Federal Regulations; Rule Part 47CFR § 2.1093 sub-part J:1999
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- American National Standards Institute (ANSI) / Institute of Electrical and Electronic Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronic Engineers (IEEE) C95.1-2005 Edition
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6. Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, 1999
- Australian Communications Authority Radiocommunications (Electromagnetic Radiation -Human Exposure) Standard 2003
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9KHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"

2.1 SAR Limits

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population /	(Occupational /		
	Uncontrolled Exposure	Controlled Exposure		
	Environment)	Environment)		
Spatial Average - ANSI -				
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.60	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles	4.0	20.0		
averaged over 10-g)				
Localized SAR - ICNIRP -	2.0	10.0		
(Head and Trunk 10-g)	2.0	10.0		

3.0 Description of Device Under Test (DUT)

FCC ID: PHX-PCE25100 is a Laptop Express Card slot device which utilizes Expedience protocol. The transmission is Orthogonal Frequency Division Multiplexing (OFDM) and Time Division Duplex TDD. For TDD this device supports a maximum transmitter duty cycle of 9.09% for a 6 MHz channel and 10.53% for a 5.5 MHz channel. The OFDM signal structure is comprised of a TDMA frame made up of 1024 sub-carriers containing QPSK information.

This device contains an internal fold down antenna and an RF port for an optional accessory antenna. Refer to MPE report for optional antenna EME certification.

This device will be marketed to and used by the general population. This device may be used in a desk or laptop operation.


FCC ID: PHX-PCE25100 is capable of operating in the 2496-2690MHz band. The rated conducted power is 1.12 watts pulse average for the internal antenna and 1.41 watts pulsed averaged for the external antenna. The maximum conducted output power is 1.32 watts and 1.67 watts respectively as defined by the upper limit of the production line final test station.

FCC ID: PHX-PCE25100 is offered with the options and accessories listed on the coversheet of this report.

Test Output Power

A table of the characteristic power slump versus time is provided in Appendix F.

4.0 Description of Test System

4.1 Descriptions of Robotics/probes/Readout Electronics

The laboratory utilizes a Dosimetric Assessment System (DASY4TM) SAR measurement system Version 4.7 build 55 manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The test system consists of a Stäubli RX90L robot, DAE3V1, and ES3DV2 E-Field probe. Please reference the SPEAG user manual and application notes for detailed probe, robot, and SAR computational procedures. Section 5.0 presents relevant test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

4.2 **Description of Phantom(s)**

4.2.1 Flat Phantom

Phantom Type	Phantom Material	Phantom Dimensions (cm)	Support structure opening dimensions (cm)	Support structure material	Loss Tangent (wood)
NA	High Density Polyethylene (HDPE)	NA	NA	Wood	< 0.05

4.2.2 SAM Phantom

Phantom Type	Material Parameters	Material Thickness (mm)	Support structure material	Loss Tangent (wood)
	200MHz -3GHz; Er			
	= <5,			
	Loss Tangent =	2mm +/-		
NA	< 0.05	0.2mm	Wood	< 0.05

4.2.3 Elliptical Flat Phantom

	Material	Material Thickness	Support structure	Loss Tangent
Phantom ID	Parameters	(mm)	material	(wood)
	300MHz -6GHz; Er			
	= 4 + / -1,			
	Loss Tangent =	2.0mm +/-		
OVAL1021	< 0.05	0.2mm	Wood	< 0.05

4.3 Description of Equivalent tissues

Type of Simulated Tissue

The simulated tissue used is compliant to that specified in FCC Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01) and IEEE 1528, 2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

% of listed ingredient	2593MHz		2600	MHz
S	Head	Head Body		Body
Sugar	NA	NA	NA	NA
Diacetin	NA	34.5	NA	34.5
De ionized				
-Water	NA	65.2	NA	65.2
Salt	NA	0.94	NA	0.94
HEC	NA	NA	NA	NA
Bact.	NA	0.1	NA	0.1

Simulated Tissue Composition

Reference section 6.1 for target parameters

5.0 Additional Test Equipment

Equipment Type	Model Number	Serial Number	Calibration Due Date
Power Meter (Agilent)	E4418B	GB40206553	4/25/2008
Power Meter (HP)	E4418B	US39251150	4/25/2008
Power Meter (HP)	E4418B	US39251152	3/17/2008
Power Sensor (HP)	8482B	3318A06773	5/2/2008
Power Sensor (Agilent)	8482B	3318A07546	5/16/2008
Power Sensor (Agilent)	8482B	3318A07392	3/19/2008

Equipment Type	Model Number	Serial Number	Calibration Due Date
Bi-Directional Coupler (NARDA)	3022	77114	2/17/2008
Signal Generator (HP)	E4421B	US39270649	8/16/2008
Agilent Microwave System Amplifier	83006A	MY39500388	CNR
Agilent Power Supply	87421A	3611A01968	CNR
Agilent PNA-L Network Analyzer	N5230A	MY45001092	5/22/2008
Dielectric Probe Kit (HP)	85070C	US99360076	CNR
Speag Dipole	D2600V2	1002	1/5/2009

Additional Test Equipment (Continued)

6.0 SAR Measurement System Verification

The SAR measurements were conducted with probe model/serial number ES3DV2/SN3007. The system performance check was conducted daily and within 24 hours prior to testing. DASY output files of the probe/dipole calibration certificates and system performance test results are included in appendices B, C, D respectively. The table below summarizes the system performance check results normalized to 1W.

Dipole validation scans at the head from SPEAG are provided in APPENDIX D. The G&PS EME lab validated the dipole to the applicable IEEE system performance targets. Within the same day system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. The results of the G&PS EME system performance validation are provided herein.

6.1 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/-5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 5.0.

FCC Body						
Frequency (MHz)	Di-electric Constant Target	Di-electric Constant Meas. (Range)	Conductivity Target S/m	Conductivity Meas. (Range) S/m		
2593	52.5	52.0-52.5	2.15	2.13-2.14		
2600	52.5	52.0-52.5	2.16	2.13-2.14		

Target versus Actual tissue parameters (1/28/08 – 1/29/08)

IEEE Head						
Di-electric Di-electric Conductivity Conductivity						
Frequency (MHz)	Constant	Constant	Target	Meas. (Range)		
Frequency (WIIIZ)	Target	Meas. (Range)	S/m	S/m		
NA	NA	NA	NA	NA		

6.2 System Check Test Results

Probe Serial #	Tissue Type	Probe Cal Date	Dipole Kit / Serial #	System Perf. Result when normalized to 1W (mW/g)	Reference SAR @ 1W (mW/g)	Test Date(s)
	FCC		SPEAG 2600V2			1/28/08-1/29/08
3007	Body	3/15/07	/1002	60.1 +/- 0.8	58.66 +/- 10%	2 test days

Note: See APPENDIX D for an explanation of the reference SAR targets stated above. (System performance results reflects the median performance $+/-\frac{1}{2}$ of the test date(s) performance ranges)

The DASY4[™] system is operated per the instructions in the DASY4[™] Users Manual. The complete manual is available directly from SPEAG[™]. All measurement equipment used to assess EME SAR compliance was calibrated according to 17025 A2LA guidelines.

7.0 DUT Test Strategy and Methodology

7.1 DUT Configuration(s)

The DUT is a portable device for laptop or desktop operation using OFDM transmission signaling. The device is placed in the test positions presented in Appendix G.

Test Plan

All options and accessories listed on the cover page of this report were considered in order to develop the SAR test plan for this product. SAR measurements were performed using an elliptical flat phantom with the applicable simulated tissue to assess performance at the body using the relevant transmission mode.

Assessments at the Body Page 10 & 11 of 44; Table 1

- Assessment in the 2496-2690MHz band of the available 5.5MHz bandwidth and 6MHz bandwidth.
- Assessment of the optional antenna positions using the worst case from above.
- Assessment of two other Laptops using the worst case from above.
- Assessment of the band edges using the worst case from above.

Shortened scan assessment at the Body Page 11 of 44; Table 2

- A "shortened" scan was performed using the test configuration that produced the highest SAR results overall. Note that the shortened scan is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a cube scan only was performed. The shortened scan represents the cube scan performance results.

7.2 Device Positioning Procedures

Reference Appendix G for photos of the DUT tested positions.

7.2.1 Body

The DUT was inserted into a laptop and the laptop was positioned in normal use configuration against the phantom.

7.2.2 Head

NA

7.2.3 Face

NA

8.0 Environmental Test Conditions

The EME Laboratory ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within $+/ - 2^{\circ}C$ of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was 15cm +/- 0.5cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The table below presents the range and average environmental conditions during the SAR tests reported herein:

	Target	Measured
		Range: 21.2-24.8°C
Ambient Temperature	20 - 25 °C	Avg. 22.2°C
		Range: 34.1-56.7%
Relative Humidity	30 - 70 %	Avg. 46.6%
		Range: 20.5-21.5°C
Tissue Temperature	NA	Avg. 20.9 °C

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

9.0 Test Results Summary

All SAR results obtained by the tests described in Section 7.1 are listed below. Each test configuration was assessed using the full DASY4TM coarse and 5x5x7 cube methodology. The associated SAR plots are provided in APPENDIX E. A shorten scan is reported in Table 2 below based on the highest configuration from Table 1. Appendix E also presents shortened SAR cube scan to assess the validity of the calculated results presented herein.

Note: The results of the shortened cube scans presented in Appendix E demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid.

		A	ssessments a	t the Body	2496-26	90MHz b	and			
Run Number/ SN	Antenna Pos.	Freq. (MHz)	Battery	Test position	Initial Power (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g-SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g-SAR (mW/g)
	Assess	ment at the	body – Lapt	op 1, 5.5M	IHZz bar	ndwidth @	₽ 10.53% du	ıty cycle		
MeC-Ab-080128-	90 degrees - Internal (123-0552-		Laptop	Laptop Against						
05/40DA94	0900)	2593	Battery	Phantom	1.29	-0.428	0.522	0.273	0.59	0.31
	1 1	sment at the	body – Lap	top 1, 6.0N	1HZz ba	ndwidth	@ 9.09% du	ty cycle	1	
MeC-Ab-080128- 06/40DA94	90 degrees - Internal (123-0552- 0900)	2593	Laptop Battery	Laptop Against Phantom	1.37	-0.529	0.501	0.261	0.57	0.29
Asses	sment at the	body – Lapt	op 1, Anteni	na position	search 5	.5MHZz	bandwidth (@ 10.53% d	uty cycle	
MeC-Ab-080128- 07/40DA94	Closed Internal (123-0552- 0900)	2593	Laptop Battery	Laptop Against Phantom	1.29	-0.472	0.278	0.142	0.32	0.16
MeC-Ab-080128- 08/40DA94	Opened (180 Degrees) Internal (123-0552- 0900)	2593	Laptop Battery	Laptop Against Phantom	1.31	-0.684	0.922	0.482	1.09	0.57
* JsT-Ab-080129- 07/002E14	Opened (180 Degrees) Internal (123-0552- 0900)	2593	Laptop Battery	Laptop Against Phantom	1.36	-0.160	1.17	0.589	1.21	0.61
	Assess	ment at the	body – Lapt	op 2, 5.5M	IHZz bar	ndwidth @	₽ 10.53% du	ity cycle		
	Opened (180 Degrees) Internal			Laptop						
JsT-Ab-080129- 02/40DA94	(123-0552- 0900)	2593	Laptop	Against Phantom	1.33	0.781	0.398	0.226	0.40	0.23
02/40DA94	, ,		Battery						0.40	0.25
	Opened (180 Degrees) Internal	ment at the		Laptop	IHZz bar	ndwidth (<u> 10.53% du</u>	ity cycle		
JsT-Ab-080129- 04/40DA94	(123-0552- 0900)	2593	Laptop Battery	Against Phantom	1.36	-0.532	0.368	0.217	0.42	0.25

Table1

Tablet (continued)														
		A	ssessments a	t the Body	2496-26	90MHz b	and			u				
					Initial	SAR	Meas.	Meas.	Max Calc.	Max Calc.				
Run Number/	Antenna	Freq.		Test	Power	Drift	1g-SAR	10g-SAR	1g-SAR	10g-SAR				
SN	Pos.	(MHz)	Battery	position	(W)	(dB)	(mW/g)	(mW/g)	(mW/g)	(mW/g)				
	1000	(1,111)	Dutterj	position	(11)	(u2)	((111,1,1,8)					
Ass	Assessment at the body – Frequency search Laptop 1, 5.5MHZz bandwidth @ 10.53% duty cycle													
	Opened													
	(180													
	Degrees)													
	Internal			Laptop										
LT AL 080120			T ,											
JsT-Ab-080129-	(123-0552-		Laptop	Against										
05/40DA94	0900)	2499	Battery	Phantom	1.36	-0.321	0.789	0.411	0.85	0.44				
	Opened													
	(180													
	Degrees)													
	Internal			Laptop										
JsT-Ab-080129-	(123-0552-		Laptop	Against										
06/40DA94	0900)	2687	Battery	Phantom	1.35	-0.119	0.617	0.321	0.63	0.33				

Table1 (continued)

Table2

*Worst case configuration from above shortened scan –using the DASY 4 full coarse and 5x5x7 cube scan measurements.										
	Opened (180 Degrees)									
Shorten Scan	Internal		Lantan	Laptop						
MeC-Ab-080129- 09/002E14	(123-0552- 0900)	2593	Laptop Battery	Against Phantom	1.37	-0.257	1.2	0.612	1.27	0.65

9.1 Highest SAR results calculation methodology

The calculated maximum 1-gram and 10-gram averaged SAR results reported herein for the full DASY TM coarse and 5x5x7 cube measurements are determined by scaling the measured SAR to account for power leveling variations and power slump. For this device the Maximum Calculated 1-gram and 10-gram averaged peak SAR is calculated using the following formula:

Max. Calc. 1-g/10-g Avg. SAR = $((SAR \text{ meas.} / (10^{(Pdrift/10)}))^{(Pmax/Pint)})^{*} DC\%$ $P_{max} = Maximum Power (W)$ $P_{int} = Initial Power (W)$ Pdrift = DASY drift results (dB) - (for conservative results positive drifts are not accounted for) SAR_{meas}. = Measured 1-g/10-g Avg. SAR (mW/g) DC % = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation.

10.0 Conclusion

The highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for FCC ID: PHX-PCE25100 models PCEx25100.

Max. Calc.: 1-g Avg. SAR: 1.27 W/kg (Body); 10-g Avg. SAR: 0.65 W/kg (Body)

These test results clearly demonstrate compliance with FCC General Population/Uncontrolled RF Exposure limits of **1.6W/kg** per the requirements of 47 CFR 2.1093(d).

APPENDIX A Measurement Uncertainty

							h =	<i>i</i> =	
а	b	с	d	e = f(d,k)	f	g	c x f / e	cxg/e	k
	IEEE	Tol.	Prob		c _i	c _i	lg	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u_i	и;	
Uncertainty Component	section			Div.			(±%)	(±%)	vi
Measurement System									
Probe Calibration	E.2.1	5.9	Ν	1.00	1	1	5.9	5.9	00
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	00
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	Ν	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	Ν	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	Ν	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	Ν	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				11	11	411
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				22	22	

Uncertainty Budget for Device Under Test, for 30 MHz to 3 GHz

FCD-0558 Rev 5

			· •		•	<u> </u>	1	2-	
							h =	i =	
a	b	с	d	e = f(d, k)	f	g	cxf/e	cxg/e	k
		Tol.	Prob.		C i	C _i	1 g	10 g	
	IEEE 1528	(± %)	Dist.		(1 g)	(10 g)	и,	u,	
Uncertainty Component	section			Div.			(±%)	(±%)	v _i
Measurement System									
Probe Calibration	E.2.1	5.9	Ν	1.00	1	1	5.9	5.9	80
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	8
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	80
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	80
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	80
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	Ν	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	80
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	80
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	œ
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	00
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	œ
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	80
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	00
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	00
Combined Standard Uncertainty			RSS				9	9	999999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				18	17	

Uncertainty Budget for System Validation (dipole & flat phantom) for 30 MHz to 3 GHz

FCD-0558 Rev 5

Notes for Tables 1 and 2

a) Column headings *a-k* are given for reference.

b) Tol. - tolerance in influence quantity.

c) Prob. Dist. – Probability distribution

d) N, R - normal, rectangular probability distributions

e) Div. - divisor used to translate tolerance into normally distributed standard uncertainty

f) ci - sensitivity coefficient that should be applied to convert the variability of the

uncertainty component into a variability of SAR.

g) *ui* – SAR uncertainty

h) *vi* - degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty.

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Motorola MFRL

Certificate No: ES3-3007_Mar07

Accreditation No.: SCS 108

bject	ES3DV2 - SN:3	007	A DESCRIPTION
alibration procedure(s)	QA CAL-01.v5 a	and QA CAL-14.v3	
	Calibration proc	edure for dosimetric E-field probes	
	and the second second		
alibration date:	March 15, 2007		
ondition of the calibrated item	In Tolerance		
	III TOIGIGITUG		
his calibration certificate docum	ents the traceability to na	tional standards, which realize the physical units of	measurements (SI)
e measurements and the unc	ertainties with confidence	probability are given on the following pages and are	e part of the certificate.
I calibrations have been condu	cted in the closed laborat	ory facility: environment temperature (22 ± 3)°C and	d humidity < 70%.
Calibrations have been condu			
alibration Equipment used (M8			
alibration Equipment used (M8			
alibration Equipment used (M8 rimary Standards	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
alibration Equipment used (M8 rimary Standards ower meter E4419B	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557)	Scheduled Calibration Apr-07
alibration Equipment used (M8 rimary Standards ower meter E4419B ower sensor E4412A	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Scheduled Calibration Apr-07 Apr-07
alibration Equipment used (M8 rimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Scheduled Calibration Apr-07 Apr-07 Apr-07
alibration Equipment used (M8 rimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Aug-07
alibration Equipment used (M8 rimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07
alibration Equipment used (M8 rimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Aug-07
alibration Equipment used (M8 rimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07
alibration Equipment used (M8 rimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Aug-07
alibration Equipment used (M8 rimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Jan-08
alibration Equipment used (M8 rimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Jan-08 Jun-07
alibration Equipment used (M8 imary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID #	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Scheduled Calibration Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-0
alibration Equipment used (M8 imary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards F generator HP 8648C	TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-05 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-0 In house check: Oct-0
alibration Equipment used (M8 imary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5086 (20b) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-05 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) Function	Scheduled Calibration Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-0
alibration Equipment used (M8 imary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards F generator HP 8648C	TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Not-06) Function Technical Manager	Scheduled Calibration Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-0 In house check: Nov-0 Signature
alibration Equipment used (M8 imary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5086 (20b) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Not-06) Function Technical Manager	Scheduled Calibration Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-0 In house check: Oct-0 Signature
alibration Equipment used (M8 imary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5086 (20b) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Not-06) Function Technical Manager	Scheduled Calibration Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-0 In house check: Oct-0

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3007_Mar07

Page 1 of 9

Issued: March 16, 2007

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étaionnage
 - Servizio svizzero di taratura
 - S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3007_Mar07

SR5738

Probe ES3DV2

SN:3007

Manufactured: Last calibrated: Recalibrated: October 22, 1999 May 25, 2006 March 15, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV2 SN:3007

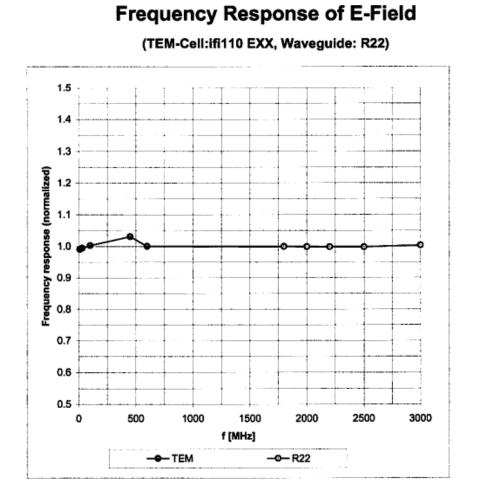
March 15, 2007

DASY - Parameters of Probe: ES3DV2 SN:3007

Sensitivity in From	Diode Compression ^B			
NormX	1.73 ± 10.1%	μV/(V/m) ²	DCP X	92 mV
NormY	1.86 ± 10.1%	μV/(V/m) ²	DCP Y	93 mV
NormZ	1.87 ± 10.1%	μV/(V/m)²	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

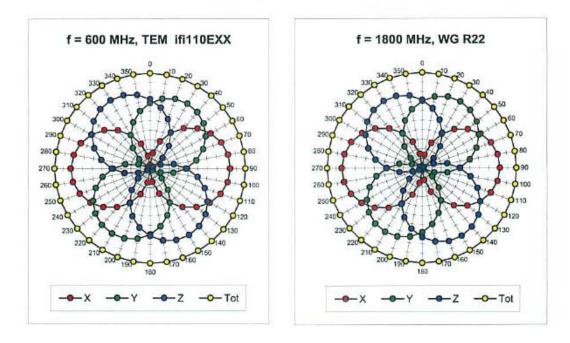
Please see Page 8.

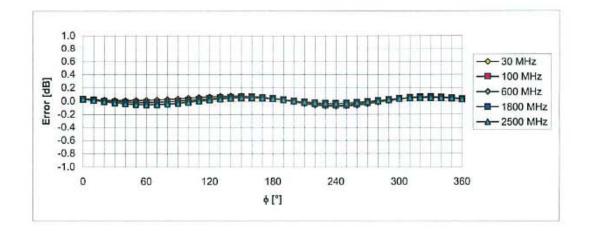

Boundary Effect

TSL	2450	MHz	Typical SAR gradient: 10.5 %	b per mm	
	Sensor Center to	o Phanto	om Surface Distance	3.0 mm	4.0 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	7.6	6.2
	SAR _{be} [%]	With Co	orrection Algorithm	0.7	0.3
TSL	2600	MHz	Typical SAR gradient: 11 % j	per mm	
	Sensor Center to	o Phanto	om Surface Distance	3.0 mm	4.0 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	8.1	6.5
	SAR _{be} [%]	With Co	orrection Algorithm	0.6	0.3
Sens	or Offset				
	Probe Tip to Ser	nsor Cer	nter	2.7 mm	

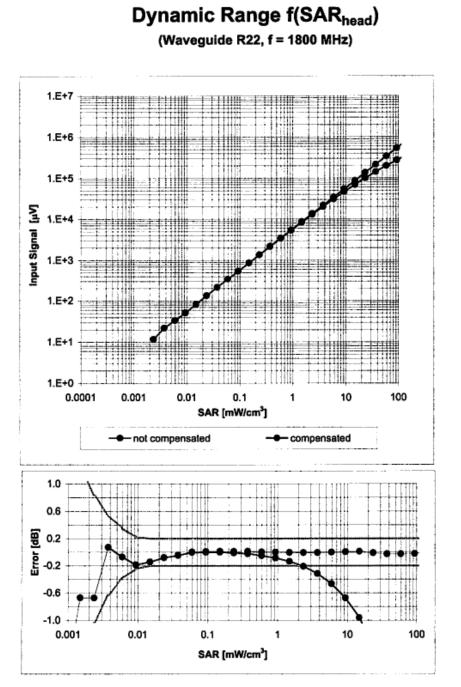
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


^B Numerical linearization parameter: uncertainty not required.

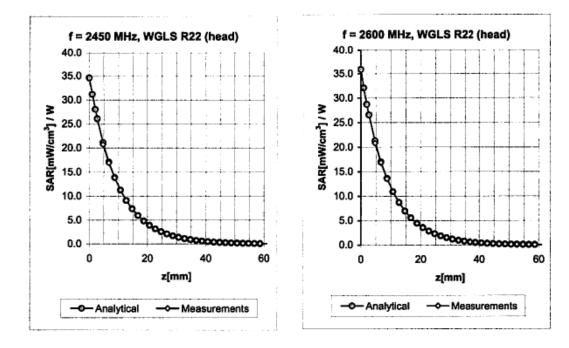

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3007_Mar07


Page 5 of 9

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

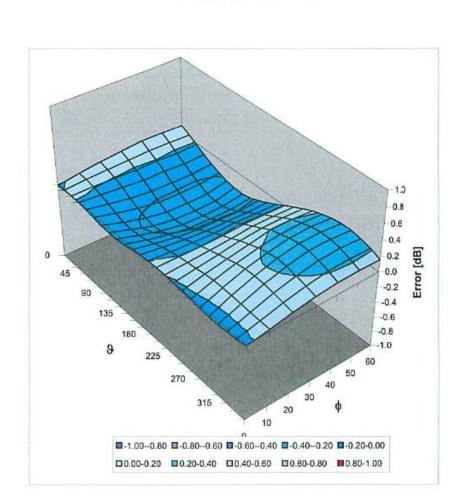

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page 7 of 9

ES3DV2 SN:3007

·····

March 15, 2007


Conversion Factor Assessment

f [MHz]	Validity [MHz]*	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty	
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.62	1.70	4.54	± 11.8% (k=2)	
2600	± 50 / ± 100	Head	39.0 ± 5%	1.96 ± 5%	0.59	1.74	4.34	± 11.8% (k=2)	
3500	± 50 / ± 100	Head	37.9 ± 5%	2.91 ± 5%	0.59	1.50	4.17	± 13.1% (k=2)	
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.75	1.51	4.20	± 11.8% (k=2)	
2600	± 50 / ± 100	Body	52.5 ± 5%	2.16 ± 5%	0.98	1.22	3.85	± 11.8% (k=2)	
3500	± 50 / ± 100	Body	51.3 ± 5%	3.31 ± 5%	0.74	1.53	3.34	± 13.1% (k=2)	

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3007_Mar07

Page 8 of 9

Deviation from Isotropy in HSL Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3007_Mar07

Page 9 of 9

SR5738

Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SHISS CRIVERATO S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: D2600V2-1002_Jan07

Client Motorola CGISS

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Object	D2600V2 - SN: 1	002	
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	January 5, 2007		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	rtainties with confidence pr	onal standards, which realize the physical units of obability are given on the following pages and are y facility: environment temperature (22 ± 3)°C and	part of the certificate.
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN: 907	03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ES3-3025_Oct06) 20-Jul-06 (SPEAG, No. DAE4-907_Jul06)	Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jul-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	MY41092317 MY41000675 US37390585 S4206	18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07 In house check: Nov-07 In house check: Nov-07
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Ky Kaly
Approved by:	Niels Kuster	Quality Manager	1/265

Certificate No: D2600V2-1002_Jan07

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2600V2-1002_Jan07

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.90 mho/m ± 6 %	
Head TSL temperature during test	(22.0 ± 0.2) °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	15.0 mW / g
SAR normalized	normalized to 1W	60.0 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	59.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	PA
SAR measured	250 mW input power	6.68 mW/g
SAR normalized	normalized to 1W	26.7 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	26.5 mW / g ± 16.5 % (k=2)

^{*} Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.3 Ω - 5.5 jΩ	
Return Loss	– 24.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the cipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

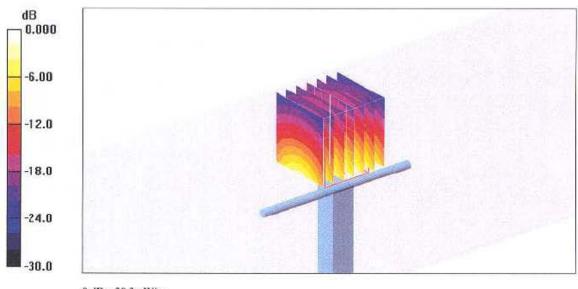
Manufactured by	SPEAG	
Manufactured on	December 23, 2006	

.

Date/Time: 05.01.2007 14:37:50

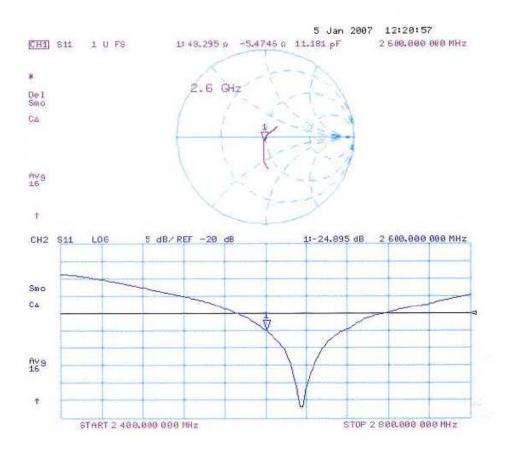
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN1002


Communication System: CW-2600; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB_060425; Medium parameters used: f = 2600 MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025 (HF); ConvF (4.34, 4.34, 4.34); Calibrated: 19.10.2006
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn907; Calibrated: 20.07.2006
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Pin = 250 mW; d = 10 mm/Zoom Scan (dist=3mm) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 78.8 V/m; Power Drift = 0.129 dBPeak SAR (extrapolated) = 33.7 W/kgSAR(1 g) = 15 mW/g; SAR(10 g) = 6.68 mW/gMaximum value of SAR (measured) = 20.3 mW/g

0 dB = 20.3 mW/g

Impedance Measurement Plot for Head TSL

Appendix D Test System Verification Scans

Dipole validation scans at the head from SPEAG are provided in APPENDIX C. G&PS' EME lab validates its' dipole(s) to the applicable IEEE system performance targets. A system validation was performed using FCC body tissue parameters to generate the system performance target values for body at the applicable frequency. Dipoles are assessed using multiple probes and measurements were performed using the isotropic assessment procedure mentioned below.

To assess the isotropic characteristics of the measurement probe, two system performance zoom scans (0 and 90 degrees) were measured. The measured results were averaged together in order to obtain the final calculated 1 gram results.

The results obtained from each probe were then averaged together to determine the new measured SAR target.

Motorola Government & Public Safety EME Laboratory Date/Time: 1/28/2008 7:14:12 AM

Robot# / Run#: DASY4-FL-3 / ErC-SYSP-2600B-080128-01 Phantom# / Tissue Temp.: OVAL1021 / 21.9 (C) Dipole Model# / Serial#: D2600V2 / 1002 TX Freq. / Start power: 2600 (MHz) / 100 (mW)

 Target:
 58.66 mW/g (1g)

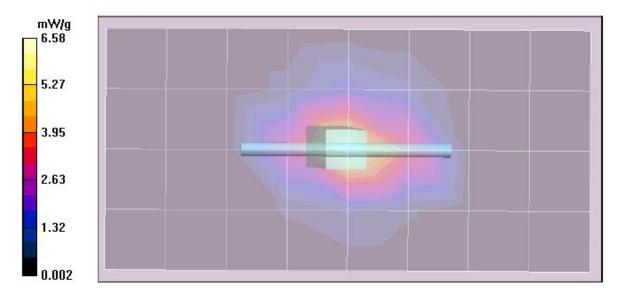
 Calculated:
 59.30 mW/g (1g)

 Percent from Target (+/-):
 1.1 % (1g)

Probe: ES3DV2 - SN3007, Calibrated: 3/15/2007, ConvF(3.85, 3.85, 3.85) Electronics: DAE3 Sn401, Calibrated: 8/28/2007 Duty Cycle: 1:1, Medium parameters used: f = 2600 MHz; σ = 2.13 mho/m; ε_r = 52.5; ρ = 1000 kg/m³

System Performance Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 56.9 V/m; Power Drift = -0.00765 dB Peak SAR (extrapolated) = 12.9 W/kg SAR(1 g) = 5.89 mW/g; SAR(10 g) = 2.61 mW/g Maximum value of SAR (measured) = 6.59 mW/g


System Performance Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 56.9 V/m; Power Drift = -0.00765 dB Peak SAR (extrapolated) = 13.1 W/kg SAR(1 g) = 5.97 mW/g; SAR(10 g) = 2.65 mW/g Maximum value of SAR (measured) = 6.72 mW/g

System Performance Check/Dipole Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.58 mW/g

System Performance Check/Z-Axis Retraction (1x1x17): Measurement grid: dx=20mm, dy=20mm, dz=10mm

Maximum value of SAR (measured) = 6.78 mW/g

Motorola Government & Public Safety EME Laboratory Date/Time: 1/29/2008 6:24:32 AM

Robot# / Run#: DASY4-FL-3 / ErC-SYSP-2600B-080129-01 Phantom# / Tissue Temp.: OVAL1021 / 21.9 (C) Dipole Model# / Serial#: D2600V2 / 1002 TX Freq. / Start power: 2600 (MHz) / 100 (mW)

 Target:
 58.66 mW/g (1g)

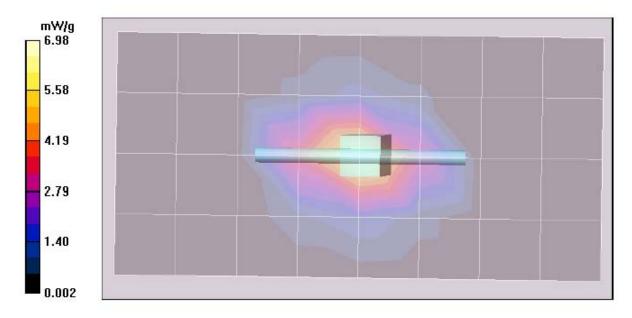
 Calculated:
 60.90 mW/g (1g)

 Percent from Target (+/-):
 3.8 % (1g)

Probe: ES3DV2 - SN3007, Calibrated: 3/15/2007, ConvF(3.85, 3.85, 3.85) Electronics: DAE3 Sn401, Calibrated: 8/28/2007 Duty Cycle: 1:1, Medium parameters used: f = 2600 MHz; σ = 2.14 mho/m; ε_e = 52; ρ = 1000 kg/m³

System Performance Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 58.0 V/m; Power Drift = -0.00951 dB Peak SAR (extrapolated) = 13.4 W/kg SAR(1 g) = 6.08 mW/g; SAR(10 g) = 2.7 mW/g Maximum value of SAR (measured) = 6.87 mW/g


System Performance Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 58.0 V/m; Power Drift = -0.00951 dB Peak SAR (extrapolated) = 13.3 W/kg SAR(1 g) = 6.1 mW/g; SAR(10 g) = 2.71 mW/g Maximum value of SAR (measured) = 6.95 mW/g

System Performance Check/Dipole Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.98 mW/g

System Performance Check/Z-Axis Retraction (1x1x17): Measurement grid: dx=20mm, dy=20mm, dz=10mm

Maximum value of SAR (measured) = 6.93 mW/g

DIPOLE SAR TARGET - HEAD

		01/1	0/08	Frequency (MHz	z):	2	2600
Lab Locat	ion:	N	E	Mixture Type:		IEE	E Head
DAE Serial #:		363		Ambient Temp.(°C):	22.7	
Tissue Ch	aracteristic	:5					
Permitivit	y:	36	.9	Phantom Type/S	N:	40302	002B-S12
Conductiv		2.0	01	Distance (mm):		1(0 mm
Tissue Ter	mp.(°C):	2	1				
Reference	Source:	Dip	ole	Power to Dipole		50	mW
Reference		10	71010710	2 contrate Dipole			
Target SA normalized to		-	59.8	mW/g (1g avg.),	26.5	_mW/g(J	10g avg.)
New Ta	rget:						
	leasured S	AR Value: _	56.71	mW/g (1g avg.),	24.71	mW/g (1	10g avg.)
Average M		-		mW/g (1g avg.), thin k=2 Uncertaint		mW/g (1	-5.17% (1g ave)
Average M	ifference F	-	MUST be wi			_ mW/g (I _ Initial:	
Average M Percent Di	ifference F	-	MUST be wi	thin k=2 Uncertaint		_	-5.17% (1g ave) -6.77% (10g ave)
Average M Percent Di Fest perfo Fobe SN #s	ifference F rmed by: 1-G Cube	Tom Target () Diff from Ave	MUST be wi Gene 10-G Cube	thin k=2 Uncertaint Von Holten Diff from Ave	ry): Robot	_	-5.17% (1g ave) -6.77% (10g ave)
Average M Percent Di Fest perfo: Probe SN #s 3006	rmed by: 1-G Cube 57.19	Diff from Ave 0.85%	MUST be wi Gene 10-G Cube 24.91	thin k=2 Uncertaint Von Holten Diff from Ave 0.83%	y): Robot 1	_	-5.17% (1g ave) -6.77% (10g ave)
Average M Percent Di Fest perfor Probe SN #s	ifference F rmed by: 1-G Cube	Diff from Ave 0.85% -0.85%	MUST be wi Gene 10-G Cube	thin k=2 Uncertaint Von Holten Diff from Ave 0.83% -0.83%	ry): Robot	_	-5.17% (1g ave) -6.77% (10g ave)
Average M Percent Di Fest perfo: Probe SN #s 3006	rmed by: 1-G Cube 57.19	Diff from Ave 0.85%	MUST be wi Gene 10-G Cube 24.91	thin k=2 Uncertaint Von Holten Diff from Ave 0.83%	y): Robot 1	_	-5.17% (1g ave) -6.77% (10g ave)
Average M Percent Di Fest perfo: Probe SN #s 3006	rmed by: 1-G Cube 57.19	- Trom Target (N Diff from Ave 0.85% -0.85% -100.00%	MUST be wi Gene 10-G Cube 24.91	thin k=2 Uncertaint Von Holten Diff from Ave 0.83% -0.83% -100.00%	y): Robot 1	_	-5.17% (1g ave) -6.77% (10g ave)
Average M Percent Di Test perfo Probe SN #s 3006	rmed by: 1-G Cube 57.19	- Trom Target (N Diff from Ave 0.85% -0.85% -100.00% -100.00%	MUST be wi Gene 10-G Cube 24.91	thin k=2 Uncertaint Von Holten Diff from Ave 0.83% -0.83% -100.00% -100.00% -100.00%	y): Robot 1	_Initial:	-5.17% (1g ave) -6.77% (10g ave)

DIPOLE SAR TARGET - BODY

Date: Lab Location: DAE Serial #:		01/10/08 NE 363		Frequency (MHz): Mixture Type: Ambient Temp.(°C):		2600 FCC Body 22.1									
								Tissue Cha	aracteristic	s					
								Permitivity: Conductivity:		54.2 2.21		Phantom Type/SN:		OVAL1021	
Distance (mm):		10													
Tissue Ter	np.(°C):	20.	9												
Reference	Source:	Dipo	ole	Power to Dipole:		Ę	50 mW								
Reference	SN:	100													
New Targ Average N	S	AR Value: _	58.66	mW/g(1g avg.),	25.79	mW/g	g (10g avg.								
Average M	feasured S	AR Value:		W/g(1g avg.),	25.79	mW/g _Initial:	g (10g avg. <u>Hv</u> H								
Average M	feasured S	AR Value: _		-	25.79 Robot										
Average M Test perfor Probe	feasured S rmed by:	Diff from	Gene	Von Holten											
Average M Test perfor Probe SN #s	feasured S rmed by: 1-G Cube	Diff from Ave	Gene 10-G Cube	Von Holten Diff from Ave	Robot										
Average M Test perfor Probe SN #s 3006	feasured S rmed by: 1-G Cube 57.64	Diff from Ave -1.7%	Gene 10-G Cube 25.31	Von Holten Diff from Ave -1.9%	Robot R1										
Average M Test perfor Probe SN #s 3006	feasured S rmed by: 1-G Cube 57.64	Diff from Ave -1.7% 1.7%	Gene 10-G Cube 25.31	Von Holten Diff from Ave -1.9% 1.9%	Robot R1 R1										
Average M Test perfor Probe SN #s 3006	feasured S rmed by: 1-G Cube 57.64	Diff from Ave -1.7% 1.7% -100.0%	Gene 10-G Cube 25.31	Von Holten Diff from Ave -1.9% 1.9% -100.0%	Robot R1 R1 Rx										
Average M Test perfor Probe SN #s 3006	feasured S rmed by: 1-G Cube 57.64	Diff from Ave -1.7% 1.7% -100.0% -100.0%	Gene 10-G Cube 25.31	Von Holten Diff from Ave -1.9% 1.9% -100.0% -100.0%	Robot R1 R1 Rx Rx Rx Rx	_Initial:									

Appendix E DUT Scans (Shortened Scan and Highest SAR configuration)

Shortened Scan Results

Motorola Government & Public Safety EME Laboratory

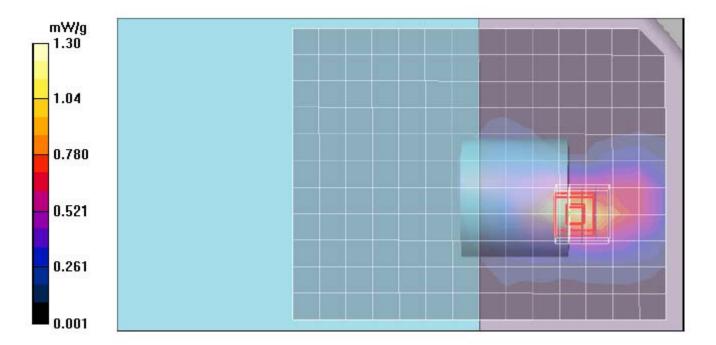
Date/Time: 1/29/2008 6:59:08 PM

Robot# / Run#: DASY4-FL-3 / MeC-Ab-080129-09 Phantom# / Tissue Temp.: OVAL1021 / 20.6 (C) DUT Model# / Serial#: PCEx25100 / 002E14 Antenna / TX Freq.: Internal Opened (180 degrees) / 2593 (MHz) Battery: Dell Laptop Battery #TypeDF192 Carry Acc. / Cable Acc.: None / None Start Power: 1.37 (W)

Comments: Short Scan at the body Shortened scan reflects highest SAR producing configuration; Run time 8 minutes. Representative "normal" scan run time was 25 minutes "Shortened" scan max calculated SAR using SAR drift: 1-g Avg. = 1.27mW/g; 10-g Avg. = 0.65mW/g "Normal" scan max calculated SAR using SAR drift: 1-g Avg. = 1.21mW/g; 10-g Avg. = 0.61mW/g (see part 1 of 1 section 9.0 run # JsT-Ab-080129-07)

Electronics: DAE3 Sn401, Calibrated: 8/28/2007

Duty Cycle: 1:9.5, Medium parameters used: f = 2593 MHz; $\sigma = 2.14$ mho/m; $\epsilon r = 52$; $\rho = 1000$ kg/m³


Ab Scan/5x5x7 Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 24.8 V/m; Power Drift = -0.257 dB

Peak SAR (extrapolated) = 2.53 W/kg

SAR(1 g) = 1.2 mW/g; SAR(10 g) = 0.612 mW/g

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement. Maximum value of SAR (measured) = 1.27 mW/g

Highest SAR Configurations Results

Motorola Government & Public Safety EME Laboratory

Date/Time: 1/29/2008 3:18:51 PM

Robot# / Run#: DASY4-FL-3 / JsT-Ab-080129-07 Phantom# / Tissue Temp.: OVAL1021 / 20.5 (C) DUT Model# / Serial#: PCEx25100 / 002E14 Antenna / TX Freq.: Internal Opened (180 degrees) / 2593 (MHz) Battery: Dell Laptop Battery #TypeDF192 Carry Acc. / Cable Acc.: None / None Start Power: 1.36 (W)

Probe: ES3DV2 - SN3007, Calibrated: 3/15/2007, ConvF(3.85, 3.85, 3.85) Electronics: DAE3 Sn401, Calibrated: 8/28/2007 Duty Cycle: 1:9.5, Medium parameters used: f = 2593 MHz; $\sigma = 2.14$ mho/m; $\epsilon_r = 52$; $\rho = 1000$ kg/m3 **Ab Scan/5x5x7 Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 20.2 V/m; Power Drift = -0.160 dB Peak SAR (extrapolated) = 2.48 W/kg SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.589 mW/g Maximum value of SAR (measured) = 1.29 mW/g

> mW/g 1.26 1.01 0.754 0.503 0.251 0.000

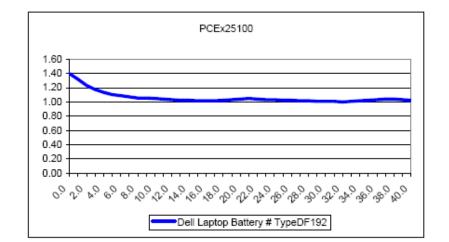
SAR(X,Y,Z,fO) SAR; Z Scan:Value Along Z, X=0, Y=0 1.3 1.2 1.1 1.0 0.9 0.8 -8°, ≷0.7 -0.6 0.5 0.4 0.3 0.2 0.1 0.0 1 0.10 0.02 0.04 0.06 0.08 0.12 0.14 0.16 ō.òc m

APPENDIX F DUT Supplementary Data (Power slump)

FCC ID: PHX-PCE25100

Model # PCEx25100 Serial # 002E14

	Dell Laptop Battery #		WiMax 5.5 MHz
Battery	TypeDF192	Transmit Mode	Mode w/ TxAGC=8
Frequency	2593 MHz	Audio Accessory	None
Date	1/29/2008		


ΤΧ ΤΙΜΕ	Meaured Power	
	meaured Power	

(minutes)

Watts

Dell Laptop Battery # TypeDF192

0.0	1.40
1.0	1.32
2.0	1.23
3.0	1.18
4.0	1.14
5.0	1.10
6.0	1.09
7.0	1.07
8.0	1.06
9.0	1.06
10.0	1.05
11.0	1.04
12.0	1.03
13.0	1.02
14.0	1.02
15.0	1.02
16.0	1.02
17.0	1.02
18.0	1.02
19.0	1.03
20.0	1.04
21.0	1.05
22.0	1.04
23.0	1.03
24.0	1.03
25.0	1.02
26.0	1.02
27.0	1.02
28.0	1.02
29.0	1.01
30.0	1.01
31.0	1.01
32.0	1.00
33.0	1.01
34.0	1.02
35.0	1.02
36.0	1.03
37.0	1.04
38.0	1.04
39.0	1.03
40.0	1.02

Appendix G DUT Test Position Photos

Photos are available in Temporary Confidentiality Exhibit

Appendix H DUT Photos

Photos are available in Temporary Confidentiality Exhibit

Appendix I

DUT Antenna Separation Distances and Offered Accessory Test Status

The following table(s) summarizes the separation distances and test status provided by each of the applicable laptops:

		Min. Separation distances between DUT antenna and phantom surface.	
Laptop Models	Tested ?	(mm)	Comments
1 – Dell	Yes	6	NA
2 – ZT Affinity	Yes	18	NA
3 - Toshiba	Yes	20	NA