FCC ID: PHX-MMDS-CPE4 Page 1 of 31

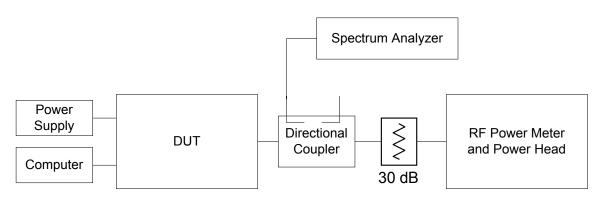
Exhibit 6

Text Report

NextNet Wireless, Inc 9555 James Ave. South Suite 270 Bloomington, MN 55431

Exhibit 6 Test Report

RF Power Output


Rule Part Number:	2.1046, 21.909(n), 74.939(p) EIRP < 18 dBW
Test Procedure:	The RF output power is measured with a power meter. The RF output is applied to a 30 dB attenuator that is connected to the power sensor of the power meter. The transmitter is enabled in test mode with the attached computer.
Test Conditions:	Frequency = 2503, 2593, 2683 MHz Temperature = 25°C Supply Voltage = 120 Vac / 60 Hz
Test Daving anti	

Test Equipment:

DVM	Fluke 87 III			
	Calibration not required			
Spectrum Analyzer	Rohde&Schwarz			
	Model: FSEB			
	NN Asset #: 000330			
	Cal Date: 07-26-2002			
	Cal Due: 07-26-2003			
Directional Coupler	Dual Directional Coupler			
	Model: Narda 3022			
	S/N: 01231			
Attenuators (30dB)	Pasternack			
	Model: 20dB PE7016-20			
	Model: 10dB PE7005-10			
	Calibration not required			
Computer	Dell Inspiron 5000			
	Model: PPM			
	S/N: 000832RM-12961-04P-2257			
Power Supply	FRIWO			
	Model: SDA5519G			

RF Power Output

Test Set-Up:

Test Results:

14.29 % transmit duty cycle

Minimum	Power set	ting
Freq (MHz)	(dBm)	(Watts)
2503	0.72	0.00118
2593	0.95	0.00124
2683	0.34	0.00108
Maximum	n Power set	ting
Freq (MHz)	(dBm)	(Watts)
2503	32.93	1.96
2593	32.95	1.97
2683	32.85	1.93

RF Power Output

Test Conclusions:

	Vertically Polarized Antenna
	RF Power Output = 33 dBm
	Vertical Antenna Gain = 13 dBi
	Transmitted Power = RF Power + Isotropic Antenna Gain
	Transmitted Power = $33 + 13 = 46$ dBim
	Transmitted Power = 10*log(2W)+13dBi = 16 dBiW < 18 dBiW
Pass:	Transmitted Power Output Requirement for Vertically Polarized Antenna for user installation
	Horizontally Polarized Antenna
	RF Power Output = 33 dBm
	Horizontal Antenna Gain = 12.5 dBi
	Transmitted Power = RF Power + Isotropic Antenna Gain

Transmitted Power = 33 + 12.5 = 45.5 dBim

Transmitted Power = $10*\log(2W)+12.5$ dBi = 15.5 dBiW < 18 dBiW

Pass: Transmitted Power Output Requirement for Horizontally Polarized Antenna for user installation

Rule Parts:

2.1047(d), 21.905(b), 21.908(d), 21.908(e), 74.936(a), 74.936(f)

Modulation Characteristics = OFDM

21.905(b) Quadrature amplitude modulation (QAM), digital vestigial sideband modulation (VSB), quadrature phase shift key modulation (QPSK), code division multiple access (CDMA), and orthogonal frequency division multiplex (OFDM) emissions may be employed, subject to compliance with the policies set forth in the Declaratory Ruling and Order, 11 FCC Rcd 18839 (1996). Use of OFDM also is subject to the subsequent Declaratory Ruling and Order, DA 99-554 (Mass Med. Bur. rel. Mar. 19, 1999).

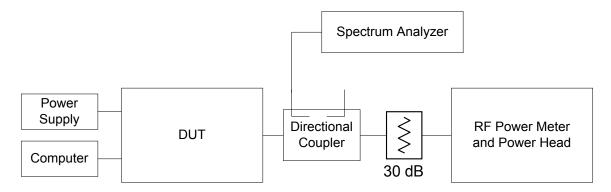
21.908(d) The maximum out-of-band power of an MDS response station using all or part of a 6 MHz channel, employing digital modulation and transmitting with an EIRP greater than -6 dBW per 6 MHz channel shall be attenuated (as measured in accordance with paragraph (e) of this section) at the 6 MHz channel edges at least 25 dB relative to the average 6 MHz channel power level, then attenuated along a linear slope to at least 40 dB at 250 kHz beyond the nearest channel edge, then attenuated along a linear slope from that level to at least 60 dB at 3 MHz above the upper and below the lower licensed channel edges, and attenuated at least 60 dB at all other frequencies.

21.908(e) In measuring compliance with the out-of-band emissions limitations, the licensee shall employ one of two methods in each instance: (1) absolute power measurement of the average signal power with one instrument, with measurement of the spectral attenuation on a separate instrument; or (2) relative measurement of both the average power and the spectral attenuation on a single instrument. The formula for absolute power measurements is to be used when the average signal power is found using a separate instrument, such as a power meter; the formula gives the amount by which the measured power value is to be attenuated to find the absolute power value to be used on the spectrum analyzer or equivalent instrument at the spectral point of concern. The formula for relative power measurements is to be used when the average signal power is found using the same instrument as used to measure the attenuation at the specified spectral points, and allows different resolution bandwidths to be applied to the two parts of the measurement; the formula gives the required amplitude separation (in dB) between the flat top of the (digital) signal and the point of concern.

For absolute power measurements: Attenuation in dB (below channel power) = $A + 10\log (CBW / RBw)$ For relative power measurements: Attenuation in dB (below flat top) = $A + 10\log (RBW1 / RBW2)$ Where: A = Attenuation specified for spectral point (e.g., 25, 35, 40, 60 dB) CBW = Channel bandwidth (for absolute power measurements) RBW = Resolution bandwidth (for absolute power measurements) RBW1 = Resolution bandwidth for flat top measurement (relative) RBW2 = Resolution bandwidth for spectral point measurement (relative)

74.936(a) An ITFS station may employ amplitude modulation (C3F) for the transmission of the visual signal and frequency modulation (F3E) or (G3E) for the transmission of the aural signal when transmitting a standard analog television signal. Quadrature amplitude modulation (QAM), digital vestigial sideband modulation (VSB), quadrature phase shift key modulation (QPSK), code division multiple access (CDMA) and orthogonal frequency division multiplex (OFDM) emissions may be employed, subject to compliance with the policies set forth in the *Declaratory Ruling and Order*, 11 FCC Rcd 18839 (1996). Use of OFDM also is subject to the subsequently *Digital Declaratory Ruling and Order*, DA 99-554 (Mass Med. Bur. rel. Mar. 19, 1999).

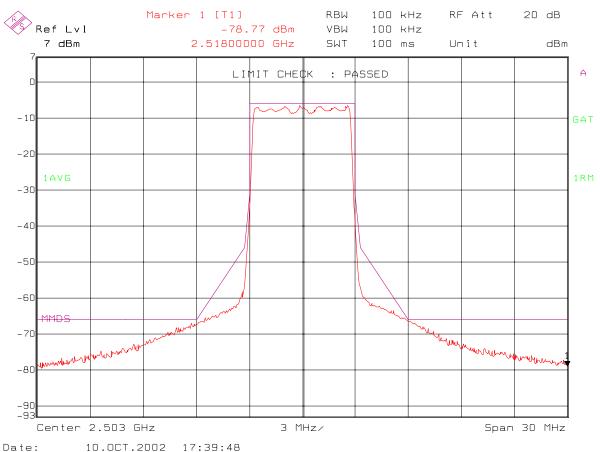
74.936(f) The maximum out-of-band power of an ITFS response station using all or part of a 6 MHz channel, employing digital modulation and transmitting with an EIRP greater than -6 dBW per 6 MHz channel shall be attenuated (as measured in accordance with §21.908(e)) at the 6 MHz channel edges at least 25 dB relative to the average 6 MHz channel power level, then attenuated along a linear slope to at least 40 dB at 250 kHz beyond the nearest channel edge, then attenuated along a linear slope from that level to at least 60 dB at 3 MHz above the upper and below the lower licensed channel edges, and attenuated at least 60 dB at all other frequencies. The maximum out-of-band power of an ITFS response station using all or part of a 6 MHz channel, employing digital modulation and transmitting with an EIRP no greater than -6 dBW per 6 MHz channel shall be attenuated (as measured in accordance with §21.908(e)) at the channel edges at least 25 dB relative to the average 6 MHz channel transmitter output power level (P), then attenuated along a linear slope to at least 40 dB or 33+10log(P) dB, whichever is the lesser attenuation, at 250 kHz beyond the nearest channel edge, then attenuated along a linear slope from that level to at least 60 dB or 43+10log(P) dB, whichever is the lesser attenuation, at 3 MHz above the upper and below the lower licensed channel edges, and attenuated at least 60 dB or 43+10log(P) dB, whichever is the lesser attenuation, at all other frequencies.


Test Procedure:

The Orthogonal Frequency Division Multiplexing (OFDM) modulated Time Division Duplex (TDD) RF signal from the test unit is applied to a spectrum analyzer. The Spectrum Analyzer is time gated, with zero delay, to capture the transmission during the burst. An RMS detector is used to measure the average power of the transmission. The resolution bandwidth of the flat top measurement is equal to the resolution bandwidth of the spectral point measurement thereby setting the 10log (RBW1 / RBW2) = 0 for the relative power measurement method. The transmitter is enabled in test mode with the attached computer.

Test Conditions:

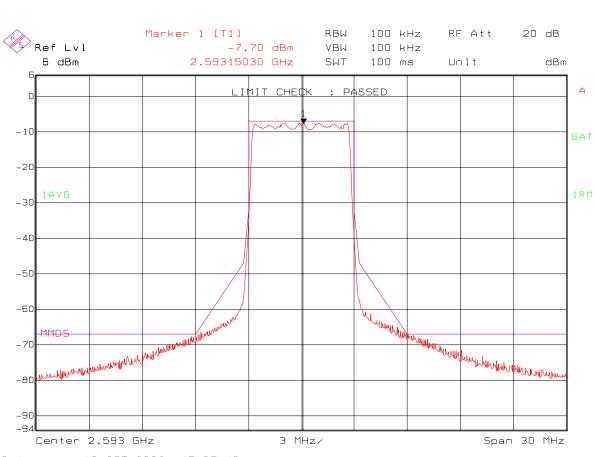
Frequencies = 2503, 2593, 2683 MHz Temperature = 25°C Supply Voltage = 120 Vac / 60 Hz


Test Set-Up:

Test Equipment:

DING	
DVM	Fluke 87 III
	Calibration not required
Spectrum Analyzer	Rohde&Schwarz
	Model: FSEB
	NN Asset #: 000330
	Cal Date: 07-26-2002
	Cal Due: 07-26-2003
Directional Coupler	Dual Directional Coupler
	Model: Narda 3022
	S/N: 01231
Attenuators (30dB)	Pasternack
	Model: 20dB PE7016-20
	Model: 10dB PE7005-10
	Calibration not required
Computer	Dell Inspiron 5000
	Model: PPM
	S/N: 000832RM-12961-04P-2257
Power Supply	FRIWO
	Model: SDA5519G

Test Results:Channel 1, 2503 MHz (33dBm / 2W)


Date: 10.001.2002 11.00.4

NextNet Wireless, Inc 9555 James Ave. South Suite 270 Bloomington, MN 55431

Test Results:

Modulation Characteristics

Channel 16, 2593 MHz (33dBm / 2W)

Date: 10.0CT.2002 17:37:46

NextNet Wireless, Inc 9555 James Ave. South Suite 270 Bloomington, MN 55431

Span 30 MHz

dBm

Α

GAT

1RM

-10

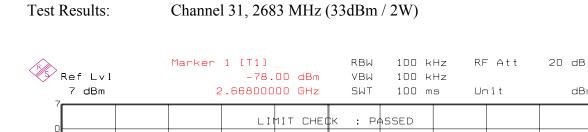
-20

-30

-40

-50

-60


-70

-80

-90 -93

1AVG

Modulation Characteristics

m

3 MHz/

m

Date: 10.0CT.2002 17:38:56

Center 2.683 GHz

Lanning with a high high high and a hand and a hand a h

NextNet Wireless, Inc 9555 James Ave. South Suite 270 Bloomington, MN 55431

Occupied Bandwidth

Rule Part Number:	2.1049(h), 21.105
	Each authorization issued pursuant to these rules will show, as the emission designator, a symbol representing the class of emission which shall be prefixed by a number specifying the necessary bandwidth. This figure does not necessarily indicate the bandwidth actually occupied by the emission at any instant. In those cases where part 2 of this chapter does not provide a formula for the computation of the necessary bandwidth, the occupied bandwidth may be used in the emission designator.
Test Procedure:	The Orthogonal Frequency Division Multiplexing (OFDM) modulated Time Division Duplex (TDD) RF signal from the test unit is applied to a spectrum analyzer. The Spectrum Analyzer is time gated, with zero delay, to capture the transmission during the burst. The occupied bandwidth of the test unit is recorded by measuring the modulation bandwidth at the 25 dB points. The transmitter is enabled in test mode with the attached computer.
Test Conditions:	Frequency = 2503, 2593, 2683 MHz Temperature = 25°C Supply Voltage = 120 Vac / 60 Hz

Test Results Summary:

Channel 1

Occupied Bandwidth = 2.50584820 GHz - 2.50016683 GHzOccupied Bandwidth = 5.68137 MHz

Channel 16

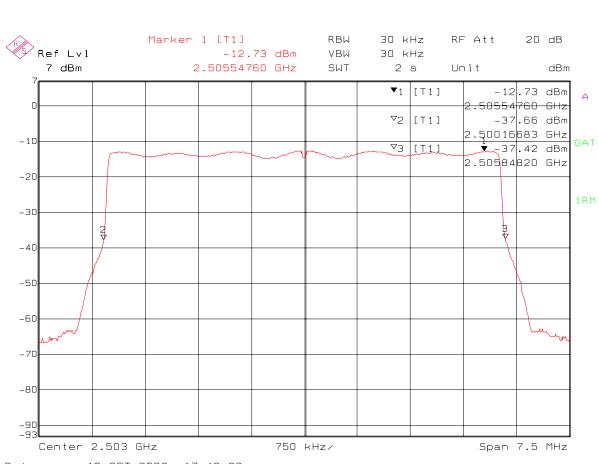
Occupied Bandwidth = 2.59586323 GHz – 2.59015180 GHz Occupied Bandwidth = 5.71143 MHz

Channel 31

Occupied Bandwidth = 2.68586323 GHz - 2.68015180 GHz Occupied Bandwidth = 5.71143 MHz

Occupied Bandwidth

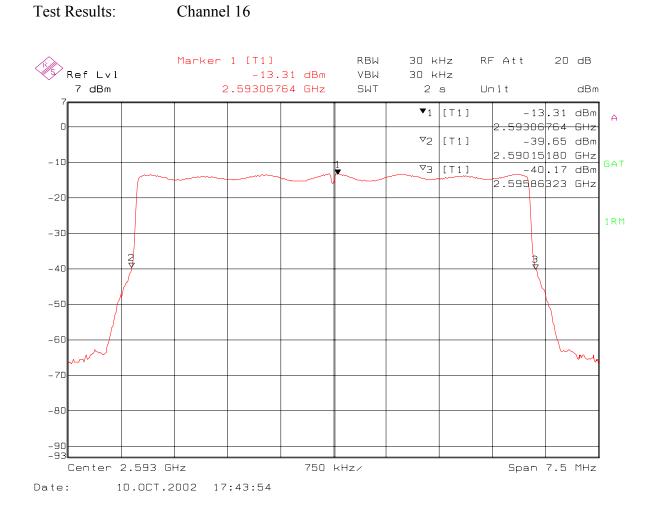
Test Set-Up: Spectrum Analyzer Power Supply DUT Directional Coupler 30 dB RF Power Meter and Power Head


Test Equipment:

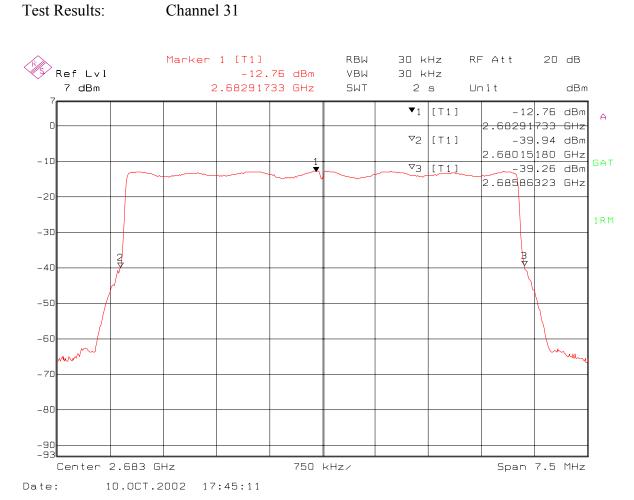
DVM	Fluke 87 III			
	Calibration not required			
Spectrum Analyzer	Rohde&Schwarz			
	Model: FSEB			
	NN Asset #: 000330			
	Cal Date: 07-26-2002			
	Cal Due: 07-26-2003			
Directional Coupler	Dual Directional Coupler			
_	Model: Narda 3022			
	S/N: 01231			
Attenuators (30dB)	Pasternack			
	Model: 20dB PE7016-20			
	Model: 10dB PE7005-10			
	Calibration not required			
Computer	Dell Inspiron 5000			
_	Model: PPM			
	S/N: 000832RM-12961-04P-2257			
Power Supply	FRIWO			
	Model: SDA5519G			

Test Results:

Occupied Bandwidth


Channel 1

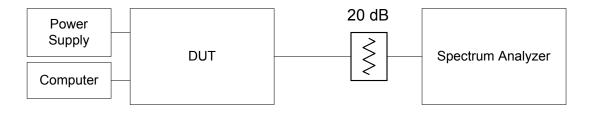
Date: 10.0CT.2002 17:42:23


NextNet Wireless, Inc 9555 James Ave. South Suite 270 Bloomington, MN 55431

Occupied Bandwidth

NextNet Wireless, Inc 9555 James Ave. South Suite 270 Bloomington, MN 55431

Occupied Bandwidth


NextNet Wireless, Inc 9555 James Ave. South Suite 270 Bloomington, MN 55431

Rule Part Number:	2.1051, 2.1049, 2.1057
	Frequency Range = 9 kHz to 26.86 GHz
	Attenuation (dB) below the power (W) supplied to the antenna transmission line
	Attenuation = $43 + 10 \log P$, or 70 dBc, whichever is less stringent
	Attenuation = $43 + 10\log(2) = 46$ dBc 2 watt transmit level
Test Procedure:	The Orthogonal Frequency Division Multiplexing (OFDM) modulated Time Division Duplex (TDD) RF signal from the test unit is applied to a spectrum analyzer thru a 20 dB attenuator. The transmission is recorded from 9 kHz to 26.5 GHz. The transmitter is enabled in test mode with the attached computer.
Test Conditions:	Frequency = 2593 MHz Temperature = 25°C Supply Voltage = 120 Vac / 60 Hz

Test Equipment: CPE

DVM	Fluke 87 III			
	Calibration not required			
Attenuator	Inmet Corporation			
	Model: 12B-20dB			
	Calibration not required			
Spectrum Analyzer	Hewlett Packard			
	HP8563E			
	S/N: 3221A00143			
	Cal Date: 2-12-2002			
	Cal Due: 2-12-2003			
Computer	Dell Inspiron 5000			
	Model: PPM			
	S/N: 000832RM-12961-04P-2257			
Power Supply	FRIWO			
	Model: SDA5519G			

Test Setup

Test Results: The spectral measurement from 9 kHz to 150 kHz resulted in one observed spurious signal that is internal to the spectrum analyzer.

Channel 16, 2593 MHz (33 dBm / 2 Watts) 9 KHz – 150 KHz

мКА 64.	б кн	z							
-62	. 83	dBm							
			Ŷ						
A 1	LL. MAN	Alleria	الدامه باطل	بنالية بر	Mun	10	يدري الرب	Hunden	

Test Results: The spectral measurement from 150 kHz to 30 MHz resulted in no observed spurious signals.

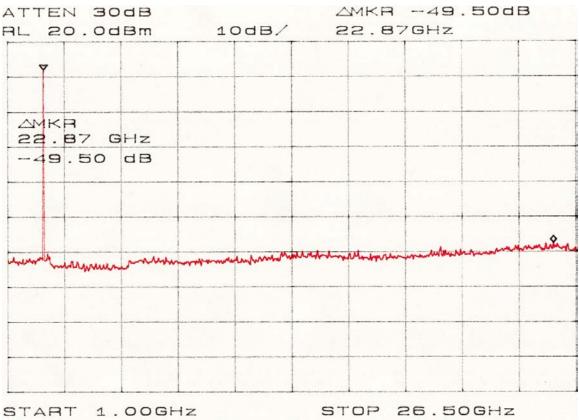
Channel 16, 2593 MHz (33 dBm / 2 Watts) 150 KHz – 30 MHz

MKR								
BOO	KHZ		 					
-58	.67	dBm						
2	and a state of	mmunder	 	1		1- N- 1 M.M.	the Meter .	4104
	terres to reading of	- Martin Martin	 And an and a second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a a diversity of	and manufactures	- Frank In the	

START 150KHZ STOP 30.00MHZ *ABW 10KHZ *VBW 30KHZ *SWP 5.0sec

Test Results: The spectral measurement from 30 MHz to 1 GHz resulted in no observed spurious signals.

Channel 16, 2593 MHz (33 dBm / 2 Watts) 30 MHz – 1 GHz

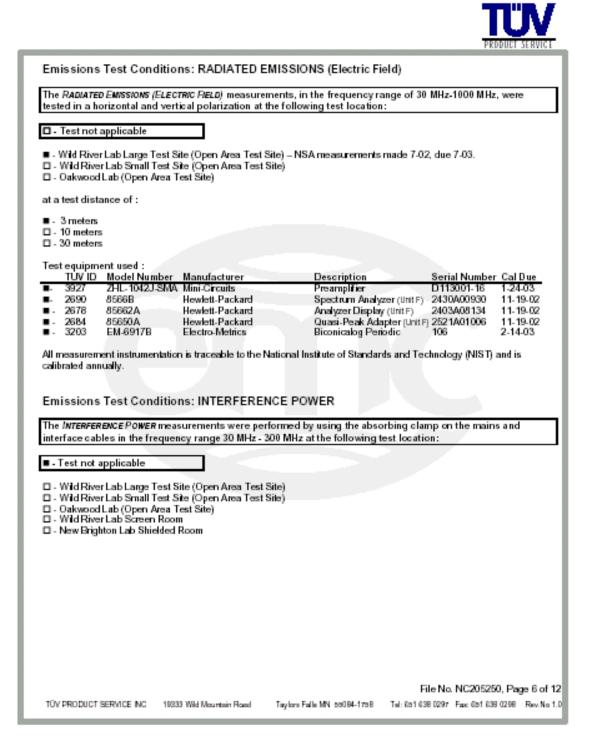

	0.00	1 1		1	285.4		1	
MKR 285	.4 M	1Hz						
-52	. 50	dBm						
							1	
	-	minin	manthema	 mon	hunder	umum	math	may

START 30.0MHZ STOP 1.0000GHZ *RBW 100KHZ *VBW 300KHZ *SWP 5.0sec Exhibit 6 Test Report

Spurious emissions at antenna terminals

Test Results: The spectral measurement from 1 GHz to 26.5 GHz resulted in no observed spurious signals.

Channel 16, 2593 MHz (33 dBm / 2 Watts) 1 GHz – 26.5 GHz


RBW 1.0MHz *VBW 3.0MHz *SWP 10sec

Rule Part Number:	2.1053, 2.1049, 2.1057
	Frequency Range = 30 MHz to 26.86 GHz Case Radiation Attenuation = 43+10logP = -13 dBm maximum
Test Procedure:	The field strength of spurious radiation was measured at an open area test site with applicable measurement antennas, low noise amplifiers, and spectrum analyzers. Measurements were performed by TUV Product Service Inc – Taylors Falls on Oct 14, 2002. Spurious signals were maximized for peak level by rotation of the test unit and elevation of the measurement antenna. Antenna substitution was performed to verify compliance with the regulations. Identified spurious signals between 30 MHz and 1000 MHz are measured with a 120 kHz/6 dB bandwidth and quasi-peak detection. Spurious signals above 1000 MHz are measured with a 1 MHz/6 dB bandwidth and peak detection.
Test Conditions:	Channel 16 Frequency = 2593 MHz Temperature = 25°C Supply Voltage = 120 Vac / 60 Hz
Test Equipment:	NextNet Wireless, Inc.

Computer	Dell Inspiron 5000 Model: PPM S/N: 000832RM-12961-04P-2257
Power Supply	FRIWO Model: SDA5519G

Test Equipment:

TUV Product Services

Test Equipment: TUV Product Services

						APPORT JENTINE
E	Emissions Test Conditions: RADIATED EMISSIONS (Electric Field)					
	The EQUIVALENT RADIATED ENISSIONS measurements in the frequency range 1 GHz - 26 GHz were performed in a horizontal and vertical polarization at the following test location:					
C] - Test not	applicable				
E	1 - Wild Rive	er Lab Small Test 3	Site (Open Area Test Site) Site (Open Area Test Site)			
		i Lab (Open Area ar Lab Screen Roo				
	t a test dist					
	1 - 1 meter					
-	I- 3 metera I-10 metera					
	1 - 10 meter	s				
Т	est equipm	ent used :				
_	τύν ισ		Manufacturer	Description	Serial Numbe	r Cal Due
	L 2071	3105	Emco	Ridge Guide Antenna	2077	
-	- 2662	1 1970K	Hewlett-Packard	Harm Mixer - 18-26.5 G		1-17-03
-	- 2661 - 2478	11970A AWT-18037	Hewlett-Packard Avantek	Harm Mixer – 26.5-40 Gl Preamplifier 8-18 GHz	1001-9226	1-17-03 3-18-03
-	- 2477	AFT-8434	Avantek	Preamplifier 4-8 GHz	2613A92801	3-18-03
	- 2788	3116	Electro-Mechanics (EMC)		z 2005	2-11-03
-	- 2127	11975A	Hewlett Packard	Amplifier 2-8 GHz	2738A01200	1-24-03
-	- 2075	3115	Electro-Mechanics (EMC)		z 9001-3275	10-20-02
-	- 3010 - 3203	6769B EM-6917B	Wiltron Electro-Metrics	Signal Generator Biconicalog Periodic	106	5-10-03 2-14-03
	- 3927	ZHL-1042J-SM/		Preamplifier	D113001-16	1-24-03
	- 2690	8566B	Hewlett-Packard	Spectrum Analyzer (Unit P		11-19-02
	- 2678	85662A	Hewlett-Packard	Analyzer Display (Unit F)	2403A08134	11-19-02
	- 2684	85650A	Hewlett-Packard	Quasi-Peak Adapter (Unit	F] 2521A01006	11-19-02
	ll measuren alibrated ani		on is traceable to the Nation	al Institute of Standards and T	echnology (NIST)	and is
					DI- N- NORSCH	0 D
	-				File No. NC20525	
	TÜV PRODUCT	SERVICE INC 199	33 Wild Mountain Road Tayl	ors Falls MN 550 B4-175 B Tel: 651	638.0297 Fax: 681.63	19 02 98 Rev. No 1.0

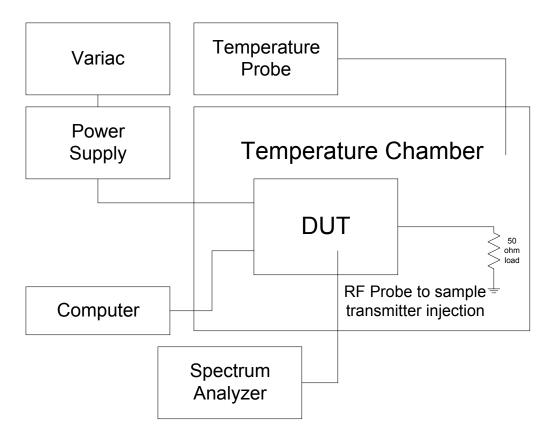
Test Setup: TUV Product Services

TEST SETUP FOR EMISSIONS TESTING WILD RIVER LAB Large Test Site Notes: Items shown in dotted lines are located on the floor below the test area. It is 5 meters vertically from the ground floor to the test area. 2. 50 Hz, 60 Hz, and 400 Hz are power panels for alternating current. 3. The antenna may be positioned horizontally 3, 10 or 30 meters from the center of the turntable. The circle is a 6.7 meter diameter turntable. 5. A ground plane is in the plane of this sheet. The test sample is shown in the azimuthal position representing zero degrees. ANTEN Shielded Endpoint 600 Hz DI H 271 58 180 File No. NC205250, Page A2 of A16 Tel: 651 638 0297 Fax: 651 638 0298 Rev.No 1.0 TOV PRODUCT SERVICE INC. 19333 Wild Mountain Road Taylors Falls NN 55064-1758

Test Results: Pass

	Final	Substitution Final	Limit	Margin
	-			Margin
Freq. MHz	dBuV/m	dBm	FCC Part 2.1053	dB
110.05	30.1	-47.7	-13 dBm	34.7
132.73	33.1	-44.7	-13 dBm	31.7
140.00	33.3	-44.5	-13 dBm	31.5
179.10	30.8	-47.0	-13 dBm	34.0
224.00	30	-47.8	-13 dBm	34.8
225.40	34.5	-43.3	-13 dBm	30.3
269.20	30.3	-47.5	-13 dBm	34.5
448.00	32	-45.8	-13 dBm	32.8
450.95	32.8	-45.0	-13 dBm	32.0
640.00	31	-46.8	-13 dBm	33.8
900.00	35.1	-42.7	-13 dBm	29.7
924.00	33.8	-44.0	-13 dBm	31.0
952.00	31.5	-46.3	-13 dBm	33.3
1955.80	42.0	-35.8	-13 dBm	22.8
2334.00	40.7	-37.1	-13 dBm	24.1
5186.04	42.1	-35.7	-13 dBm	22.7
7778.89	53.8	-24.0	-13 dBm	11.0

Exhibit 6 Test Report


Frequency Stability

Rule Part Number:	2.1055, 21.101(a), 74.961(a)			
	Stability Requirements: 0.001 % or 10 ppm			
Test Procedure:	The local oscillator signal that drives the transmit modulator was lightly coupled onto an RF probe and applied to a spectrum analyzer. The frequency of the RF VCO was monitored and recorded for changes due to temperature change and input voltag			
Test Conditions:	Standard Test Conditions			
Test Equipment:	СРЕ			

DVM	Fluke 87 III		
	Calibration not required		
Spectrum Analyzer	Hewlett Packard		
	HP8563E		
	S/N: 3221A00143		
	Cal Date: 2-12-2002		
	Cal Due: 2-12-2003		
Temperature Chamber	Test Equity		
	1000 Series		
	Calibration not required		
Temperature Sensor	Fluke 89 IV True RMS Multimeter		
	K-Type thermocouple		
	Calibration not required		
Computer	Dell Inspiron 5000		
	Model: PPM		
	S/N: 000832RM-12961-04P-2257		
Power Supply	FRIWO		
	Model: SDA5519G		
Variac	Ohmite Mfg. Co.		
	Variable Transformer		
	CAT. No. VT02F		

Frequency Stability

Test Set-Up:

Frequency Stability

Test Conditions: Frequency = 2593 MHz Supply Voltage = 120 Vac / 60 Hz

> 2.1055(a) The frequency stability shall be measured with variation of ambient temperature as follows: (1) From -30° to $+50^{\circ}$ centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section. 2.1055(b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range.

Test Results: Temperature Variation

Temperature (°C)	Frequency (Hz)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	2592999430	-570	-0.000022	-0.220
-20	2592998770	-1230	-0.000047	-0.474
-10	2592998030	-1970	-0.000076	-0.760
0	2592997800	-2200	-0.000085	-0.848
10	2592997630	-2370	-0.000091	-0.914
20	2592997300	-2700	-0.000104	-1.041
25	2592997070	-2930	-0.000113	-1.130
30	2592996830	-3170	-0.000122	-1.223
40	2592996270	-3730	-0.000144	-1.438
50	2592995900	-4100	-0.000158	-1.581

Exhibit 6 Test Report

Frequency Stability

Test Conditions:	Frequency = 2593 MHz Temperature = 25°C
	(d) The frequency stability shall be measured with variation of primary supply voltage as follows:(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
Test Results:	Supply Voltage Variation
	Source Input

Voltage Specification: 120 Vac / 60 Hz

Source Voltage (VAC)	Frequency (Hz)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
102.0	2592996800	-3200	-0.000123	-1.234
106.5	2592996800	-3200	-0.000123	-1.234
111.0	2592996770	-3230	-0.000125	-1.246
115.5	2592996770	-3230	-0.000125	-1.246
120.0	2592996770	-3230	-0.000125	-1.246
124.5	2592996730	-3270	-0.000126	-1.261
129.0	2592996700	-3300	-0.000127	-1.273
133.5	2592996730	-3270	-0.000126	-1.261
138.0	2592996730	-3270	-0.000126	-1.261