

FCC ID PER PART 15.227

EMI MEASUREMENT AND TEST REPORT

For

Global DME, Inc.

619 Martin Ave. #6,
Rohnert Park, CA 94928

FCC ID: PHNTL03RF

March 1, 2001

This Report Concerns: <input checked="" type="checkbox"/> Original Report	Equipment Type: Caregiver Alert System
Test Engineer: Jeff Lee	
Test Date: February 15, 2001	
Reviewed By: John Y. Chan – Engineering Manager	
Prepared By: Bay Area Compliance Laboratory Corporation 230 Commercial Street, Suite 2 Sunnyvale, CA 94086 Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: This report may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
1.2 OBJECTIVE	3
1.3 RELATED SUBMITTAL(S)/GRANT(S).....	3
1.4 TEST METHODOLOGY.....	3
1.5 TEST FACILITY	3
1.6 TEST EQUIPMENT LIST	4
1.7 EQUIPMENT UNDER TEST (EUT).....	4
2 - SYSTEM TEST CONFIGURATION	5
2.1 JUSTIFICATION.....	5
2.2 BLOCK DIAGRAM.....	5
2.3 TEST SETUP BLOCK DIAGRAM.....	6
2.4 EQUIPMENT MODIFICATIONS.....	7
3 - CONDUCTED EMISSIONS TEST DATA	8
4 - RADIATED EMISSION DATA	9
4.1 EUT SETUP	9
4.2 SPECTRUM ANALYZER SETUP.....	9
4.3 TEST PROCEDURE	9
4.4 CORRECTED AMPLITUDE & MARGIN CALCULATION.....	9
4.5 SUMMARY OF TEST RESULTS.....	10
4.6 RADIATED EMISSIONS TEST RESULT DATA.....	10
5 – MEASUREMENT OF EMISSIONS WITHIN BAND EDGES	11
APPENDIX A – AGENCY AUTHORIZATION LETTER	13

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

The *Global DME, Inc.* 's model *TL-03RF* for the "EUT" as referred to in this report is a 26.96-27.28MHz RF transmitter that is a wireless remote Caregiver Alert System.

The EUT measures 4.0" L x 2.75" W x 1.75" H.

1.2 Objective

This certification report is prepared on behalf of *Global DME, Inc.* in accordance with Part 2, Subpart J, and Part 15, Subparts A, B, and C of the Federal Communication Commissions rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules, Part 15, sec 227 for field strength requirement.

1.3 Related Submittal(s)/Grant(s)

No Related Submittals

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 –1992, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.5 Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Suite 2, Sunnyvale, California, USA.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-674 and R-657. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program

(NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, IEC/CISPR 22: 1993, and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

1.6 Test Equipment List

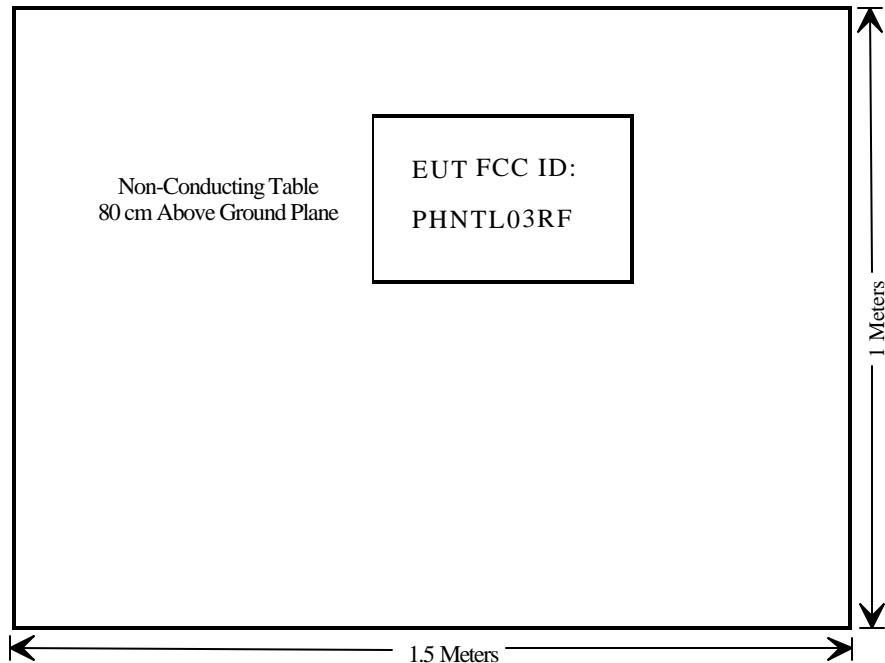
Manufacturer	Description	Model	Serial Number	Cal. Due Data
HP	Spectrum Analyzer	8568B	2610A02165	12/6/01
HP	Spectrum Analyzer	8593B	2919A00242	12/20/01
HP	Amplifier	8349B	2644A02662	12/20/01
HP	Quasi-Peak Adapter	85650A	917059	12/6/01
HP	Amplifier	8447E	1937A01046	12/6/01
A.H. System	Horn Antenna	SAS0200/571	261	12/27/01
Com-Power	Log Periodic Antenna	AL-100	16005	11/2/01
Com-Power	Biconical Antenna	AB-100	14012	11/2/01
Solar Electronics	LISN	8012-50-R-24-BNC	968447	12/28/01
Com-Power	LISN	LI-200	12208	12/20/01
Com-Power	LISN	LI-200	12005	12/20/01
BACL	Data Entry Software	DES1	0001	12/20/01

1.7 Equipment Under Test (EUT)

Manufacturer	Description	Model	Serial Number	FCC ID
Global DME, Inc.	Caregiver Alert System	TL-03RF	N/A	PHNTL03RF

2 - SYSTEM TEST CONFIGURATION

2.1 Justification


The EUT was configured for testing in a typical fashion (as normally used in a typical application).

The final qualification test was performed with the EUT operating at normal mode.

2.2 Block Diagram

Appendix A contains a copy of the EUT's block diagram as reference.

2.3 Test Setup Block Diagram

2.4 Equipment Modifications

No modification(s) was made by BACL Corp. to ensure the EUT to comply with the applicable limits.

3 - CONDUCTED EMISSIONS TEST DATA

Not applicable because of battery operation.

4 - RADIATED EMISSION DATA

4.1 EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the ANSI C63.4 - 1992. The specification used was the FCC Class B limits.

The spacing between the peripherals was 10 cm.

External I/O cables are draped over edge of test table or bundled when necessary.

4.2 Spectrum Analyzer Setup

According to FCC Rules, 47 CFR 15, the EUT was tested to 1000 MHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Start Frequency30 MHz
Stop Frequency	1000 MHz
Sweep Speed.....	Auto
IF Bandwidth.....	.100 kHz
Video Bandwidth.....	.1 MHz
Quasi-Peak Adapter Bandwidth.....	.120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth.....	.1MHz

4.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (less than -4 dB μ V), and are distinguished with a "QP" in the data table.

The EUT was operating at normal to represent worst case results during final qualification test. Therefore, this configuration was used for final test data recorded in the table(s) listed under section 4.7 of this report.

4.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB μ V means the emission is 7dB μ V below the maximum limit for Class B. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{FCC Limit}$$

4.5 Summary of Test Results

According to the final data in section 4.6, the EUT complied with the FCC 15.227 standards and these test results are deemed satisfactory evidence of compliance with Regulations, and had the worst margin of:

-7.3 dBmV at 217.47 MHz in the Vertical polarization for Normal operating mode, 30 to 1000MHz, 3 meters.

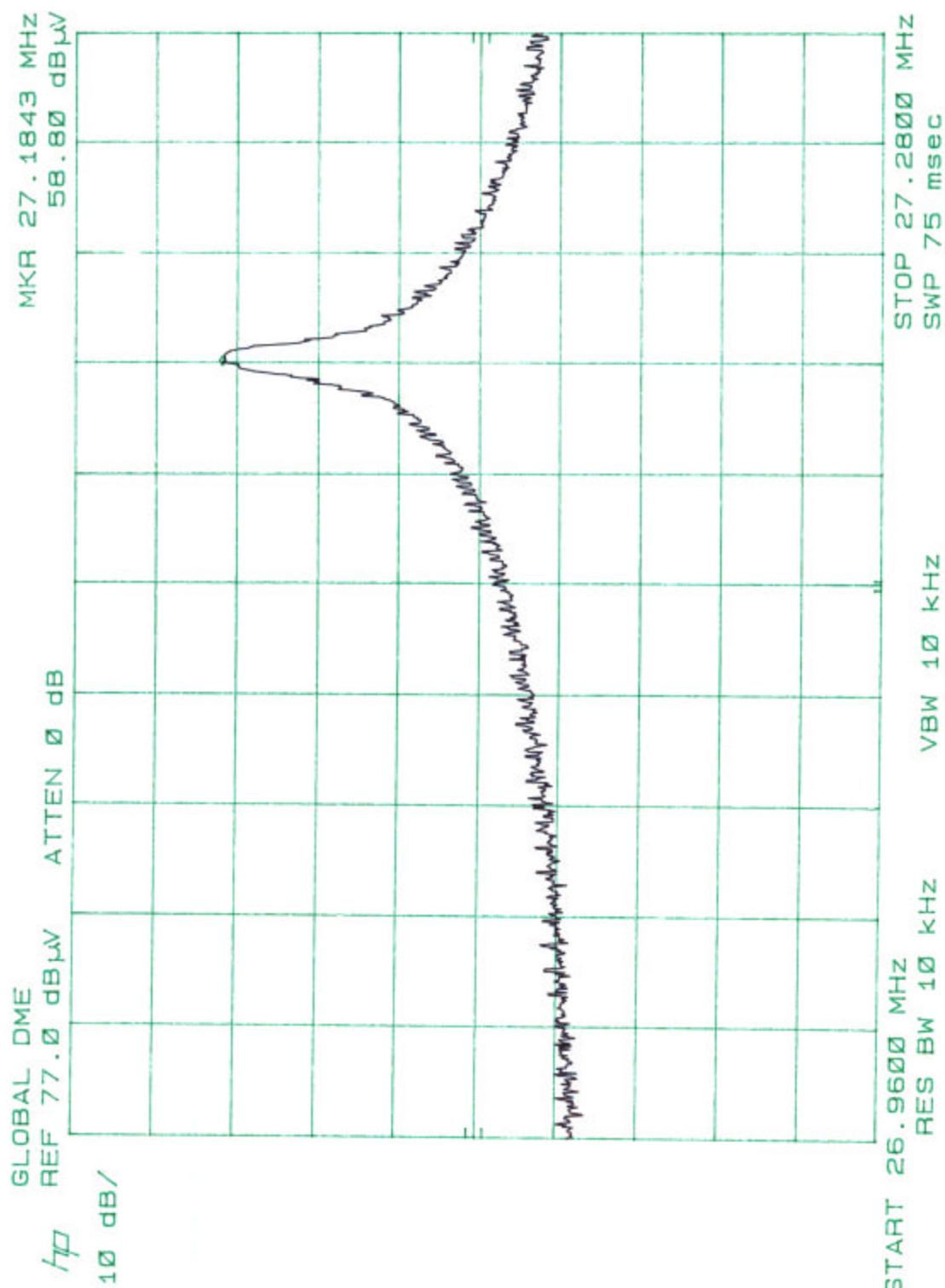
4.6 Radiated Emissions Test Result Data

4.6.1 Final Test Data for Normal Operating Mode, 30 to 1000 MHz, 3 meters.

INDICATED		TABLE	ANTENNA		CORRECTION FACTOR			CORRECTED AMPLITUDE	FCC 15.227	
Frequency MHz	Ampl. dBmV/m		Angle Degree	Height Meter	Polar H/ V	Antenna dBmV/m	Cable dB		Corr. Ampl. dBmV/m	Limit dBmV/m
217.46	39.0	270	1.0	V	17.5	4.0	21.8	38.7	46.0	-7.3
244.64	36.0	225	1.0	V	18.8	4.4	22.1	37.1	46.0	-8.9
163.10	40.0	180	1.0	V	12.4	3.6	21.8	34.2	43.5	-9.3
217.46	36.0	90	2.0	H	17.5	4.0	21.8	35.7	46.0	-10.3
135.93	40.0	125	1.0	V	11.1	3.1	21.2	33.0	43.5	-10.5
244.64	34	125	2.2	H	18.8	4.4	22.1	35.1	46.0	-10.9
81.54	38.0	190	4.0	H	9.2	2.3	21.0	28.5	40.0	-11.5
271.84	32.5	270	1.0	V	18.9	4.9	22.2	34.1	46.0	-11.9
190.30	35.0	225	1.0	V	14.3	3.9	21.6	31.6	43.5	-11.9
54.38	36.9	0	1.2	V	10.2	1.7	21.7	27.1	40.0	-12.9
81.54	33.5	90	1.0	V	9.2	2.3	21.0	24.0	40.0	-16.0
54.38	32.6	0	4.0	H	10.2	1.7	21.7	22.8	40.0	-17.2
407.76	30.0	300	1.0	V	15.1	6.6	23.3	28.4	46.0	-17.6
108.72	35.0	90	4.0	H	9.2	2.7	21.6	25.3	43.5	-18.2
163.10	27.5	0	2.5	H	12.4	3.6	21.8	21.7	43.5	-21.8
135.93	27.2	0	2.5	H	11.1	3.1	21.2	20.2	43.5	-23.3
190.30	23.2	270	1.8	H	14.3	3.9	21.6	19.8	43.5	-23.7
108.72	26.9	90	1.2	V	9.2	2.7	21.6	17.2	43.5	-26.3
27.18	56.0(A)	225	4.0	H	14.6	1.5	21.4	50.7	80.0	-29.3
27.18	54.6(A)	100	1.0	V	14.6	1.5	21.4	49.3	80.0	-30.7
27.18	66.0(P)	180	4.0	H	14.6	1.5	21.4	60.7	100.0	-39.3
27.18	65.4(P)	80	1.0	V	14.6	1.5	21.4	60.1	100.0	-39.9

Note: "A" stands for Average.

"P" stands for peak reading.


5 – Measurement of Emissions within Band Edges

FCC Rules Part 15 Section 15.227 (26.96 – 27.28 MHz)

Results and Notes:

L. FCC Lower Band Edge	>26.960MHz
H. FCC Higher Band Edge	>27.280MHz
C: Un-modulated Carrier at Frequency	>27.184MHz
D. No. of dB from un-modulated Carrier	>40dB

The plot(s) is presented hereinafter as reference.

Appendix A – Agency Authorization Letter

03/06/2001 11:47 7872600000

GOBALDME

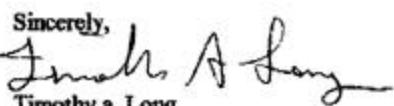
PAGE 82

GLOBAL DME619 Martin Ave
suite #6
Robnett Park, Ca 94928Phone 800 650-3637
Fax 707-206-0800

February 22, 2001

Federal Communications Commission
7435 Oakland Mills Road
Columbia, Maryland, 21046

Sir/Madam,


Reg: FCC grant for TL-03RF

This letter is an authorization to accept Bay Area Compliance Lab. Corporation as an agent for Global DME Inc, to sign applications before the Commission on our behalf, to make representations to you on our behalf, and to receive and exchange data between our company and the commission in connection with certification of the following Tohkai Precision Industrial Limited product:

Product Description: Bed monitor with wireless remote alarm, model TL-03RF

Under FCC docket number 20780 and general docket number 80-284 pursuant to part 15, FCC rules and regulations.

Sincerely,

Timothy a. Long
President, Global DME Inc.