

CABINET RADIATION

The transmitter and test equipment were configured as shown below including the angles of measurement with respect to the transmitter cabinet. The transmitter was operated at 3500 watts peak sync power with a 10 dB visual/aural ratio with the video input signal being a Modulated Stairstep signal. In this case the fundamental frequency was set to 801 MHz because there was interference on 567 MHz. The free space path loss and antenna gain characteristics were obtained at the fundamental frequency and at each of the harmonics of the visual carrier frequency in order to accurately assess the level of the signal radiated from the cabinet. Radiation from the cabinet was measured with 4 different physical rotation angles: 0, 90, 180, and 270 degrees (0 degrees being the front of the cabinet). All spectral components greater than -80 dB referenced to peak sync power radiated from the cabinet were recorded. The values are tabulated in the table on the next page following the photos.

TEST EQUIPMENT CONFIGURATION

As indicated in the spreadsheet data, the worst case calculation was -75.0 dB at the tenth harmonic. The measurement tables for the all views of the transmitter at each frequency are shown below. The results indicate that all radiated harmonics meet the FCC requirement of 60 dB as outlined in FCC rule 2.1053 and 2.1057.

CABINET RADIATION DATA

CABINET RADIATION SPREADSHEET

3.5 kW Front View

$$3.5 \text{ kW} = 65.4 \text{ dBm}$$

Corrected level must be less than 5.4 dBm

Distance is 30 feet

Harmonic	Frequency MHz	Measured Level	Cable Loss	Antenna Gain	Path Loss	Corrected Level	Required Level	Comparison to transmit level dB
Xmit freq.	801.25	-42	0.9	7.3	49.8	1.4	5.4 dBm	64
2nd	1602.50	-67	1.5	6.8	55.8	-16.5	5.4 dBm	81.9
3rd	2403.75	-77	1.8	7.3	59.3	-23.2	5.4 dBm	88.6
4th	3205.00	-84	2.2	6.1	61.9	-26	5.4 dBm	91.4
5th	4006.25	-90	2.6	6.6	63.7	-30.3	5.4 dBm	95.7
6th	4807.50	-90	3.1	6.7	65.3	-28.3	5.4 dBm	93.7
7th	5608.75	-90	3.7	7.3	66.7	-26.9	5.4 dBm	92.3
8th	6410.00	-90	4.1	6.2	67.8	-24.3	5.4 dBm	89.7
9th	7211.25	-80	4.6	4.6	68.8	-11.2	5.4 dBm	76.6 Noise floor changes
10th	8012.50	-80	5.2	4.6	69.8	-9.6	5.4 dBm	75 Noise floor changes

NOTES:

Antenna AH SYSTEMS SAS-510-7 S/N 118 CAL 1-11-06

Spectrum Analyzer HP 8593E S/N No #

Cable RG213, 12 foot length

Load BIRD 8932-115 S/N 1399

XMTR TXUP3500

Video Source Tektronix 1910 S/N B010833 (color bars)

Aural Carrier =-10 dB

Spectrum analyzer RBW 100 kHz VBW 10kHz

Exciter is VEGA

Note: The spectrum analyzer noise floor reduced 10 dB for data at the 9th and 10th harmonics. This is why the figures are higher than the figures at the previous harmonics.

CABINET RADIATION SPREADSHEET

3.5 kW Left side View

3.5 kW = 65.4 dBm

Corrected level must be less than 5.4 dBm

Distance is 30 feet

Harmonic	Frequency MHz	Measured Level	Cable Loss	Antenna Gain	Path Loss	Corrected Level	Required Level	Comparison to transmit level dB
Xmit freq.	801.25	-66	0.9	7.3	49.8	-22.6	5.4 dBm	88
2nd	1602.50	-66	1.5	6.8	55.8	-15.5	5.4 dBm	80.9
3rd	2403.75	-85	1.8	7.3	59.3	-31.2	5.4 dBm	96.6
4th	3205.00	-90	2.2	6.1	61.9	-32	5.4 dBm	97.4
5th	4006.25	-90	2.6	6.6	63.7	-30.3	5.4 dBm	95.7
6th	4807.50	-90	3.1	6.7	65.3	-28.3	5.4 dBm	93.7
7th	5608.75	-90	3.7	7.3	66.7	-26.9	5.4 dBm	92.3
8th	6410.00	-90	4.1	6.2	67.8	-24.3	5.4 dBm	89.7
9th	7211.25	-80	4.6	4.6	68.8	-11.2	5.4 dBm	76.6 Noise floor changes
10th	8012.50	-80	5.2	4.6	69.8	-9.6	5.4 dBm	75 Noise floor changes

Note: The spectrum analyzer noise floor reduced 10 dB for data at the 9th and 10th harmonics.

This is why the figures are higher than the figures at the previous harmonics.

CABINET RADIATION SPREADSHEET

3.5 kW Rightside View

3.5 kW = 65.4 dBm

Corrected level must be less than 5.4 dBm

Distance is 30 feet

Harmonic	Frequency MHz	Measured Level	Cable Loss	Antenna Gain	Path Loss	Corrected Level	Required Level	Comparison to transmit level dB
Xmit freq.	801.25	-50	0.9	7.3	49.8	-6.6	5.4 dBm	72
2nd	1602.50	-70	1.5	6.8	55.8	-19.5	5.4 dBm	84.9
3rd	2403.75	-82	1.8	7.3	59.3	-28.2	5.4 dBm	93.6
4th	3205.00	-90	2.2	6.1	61.9	-32	5.4 dBm	97.4
5th	4006.25	-90	2.6	6.6	63.7	-30.3	5.4 dBm	95.7
6th	4807.50	-90	3.1	6.7	65.3	-28.3	5.4 dBm	93.7
7th	5608.75	-90	3.7	7.3	66.7	-26.9	5.4 dBm	92.3
8th	6410.00	-90	4.1	6.2	67.8	-24.3	5.4 dBm	89.7
9th	7211.25	-80	4.6	4.6	68.8	-11.2	5.4 dBm	76.6 Noise floor changes
10th	8012.50	-80	5.2	4.6	69.8	-9.6	5.4 dBm	75 Noise floor changes

Note: The spectrum analyzer noise floor changed 10 dB for data at the 9th and 10th harmonics.

This is why the figures are higher than the figures at the previous harmonics.

CABINET RADIATION SPREADSHEET

3.5 kW Back side View

3.5 kW = 65.4 dBm

Corrected level must be less than 5.4 dBm

Distance is 30 feet

Harmonic	Frequency MHz	Measured Level	Cable Loss	Antenna Gain	Path Loss	Corrected Level	Required Level	Comparison to transmit level dB
Xmit freq.	801.25	-45	0.9	7.3	49.8	-1.6	5.4 dBm	67
2nd	1602.50	-86	1.5	6.8	55.8	-35.5	5.4 dBm	100.9
3rd	2403.75	-90	1.8	7.3	59.3	-36.2	5.4 dBm	101.6
4th	3205.00	-90	2.2	6.1	61.9	-32	5.4 dBm	97.4
5th	4006.25	-90	2.6	6.6	63.7	-30.3	5.4 dBm	95.7
6th	4807.50	-90	3.1	6.7	65.3	-28.3	5.4 dBm	93.7
7th	5608.75	-90	3.7	7.3	66.7	-26.9	5.4 dBm	92.3
8th	6410.00	-90	4.1	6.2	67.8	-24.3	5.4 dBm	89.7
9th	7211.25	-80	4.6	4.6	68.8	-11.2	5.4 dBm	76.6 Noise floor changes
10th	8012.50	-80	5.2	4.6	69.8	-9.6	5.4 dBm	75 Noise floor changes

Note: The spectrum analyzer noise floor reduced 10 dB for data at the 9th and 10th harmonics.

This is why the figures are higher than the figures at the previous harmonics.

VOLTAGES AND CURRENTS TO FINAL AMPLIFIERS

Final amplifier DC voltage and current measurements were made with the transmitter operating at 3500 Watts power output and at 875 watts power output. A video input signal of sync and 0 IRE "setup" level was used. The aural carrier was energized and adjusted for the proper 10 dB Visual to Aural power ratio. Voltage and current measurements were made at the transmitter.

Peak Output Power = 3500 Watts
Voltage = 32 volts
Total DC Current = $24 \times 10 = 240$ amps
Final amplifier DC power input = $32 \times 240 = 7680$ watts

Peak Output Power = 875 Watts
Voltage = 32 volts
Total DC Current = 84 amps
Final amplifier DC power input = $32 \times 84 = 2688$ watts

EQUIPMENT LIST

The following test equipment was used in the various test equipment configurations or to create calibration of equipment at various frequencies. All equipment was known to be in good working order and the equipment was within the calibration period.

Type	Manufacturer	Model	Date of Calibration	Calibration Expired
Spectrum Analyzer	Advantest	R3132	11/11/05	11/11/06
Signal Generator Platform	Tektronix	TG2000	15/05/05	15/05/06
Video Measurement Set	Tektronix	VM700A	09/01/06	09/01/07
TV Test Receiver	Rohde&Schwarz	EFA	15/05/05	15/05/06
Selective Modulation Analyzer	Rohde&Schwarz	FMAS	02/04/05	02/04/06
Wattmeter	BIRD	4391	02/04/05	02/04/06
Attenuator	Elettronika	N/A		
Dummy Load 100W	Elettronika	N/A		