

**GREG BEST
CONSULTING, INC**

5541 Vantage Vista Drive
Colorado Springs, CO 80919
719-592-9781

TEST REPORT

TXUD1000A DTV TRANSMITTER TECHNICAL REPORT

The following information is provided to support the technical performance of the ELETTRONIKA TXUD1000A DTV transmitter. The information is supplied for broadcast TV service according to applicable portions of Part 74.

The following information is provided in support of verification that the transmitter meets the appropriate requirements. Measurements were recorded of spectrum and other appropriate data to demonstrate compliance.

1. Power Output Measurements.
2. Frequency Stability tests versus AC input voltage and temperature
3. Adjacent channel, harmonic and spurious measurements to demonstrate the transmitter meets the DTV stringent emission mask and FCC rule 74.794.
4. Measurement of cabinet radiation for spurs and harmonics as specified in FCC Rule 2.1053 and 2.1057.

Measurements for these parameters were conducted at a power output level of 1000 watts and the range of power for which type certification is sought is 25% of that value (i.e. 250 watts) to the maximum value of 1000 watts.

All test equipment had been calibrated within nominal calibration periods prior to the use of the test equipment.

RF POWER OUTPUT MEASUREMENTS

The equipment was configured as below shown in Figure 1. The loss through the RF output cable and directional coupler was calibrated at the channel center frequency of 665 MHz. Average power was read on the Rohde and Schwarz URV using the NRV-Z53 Power Sensor.

Power Output

EUT:

TXUD1000A

Description:

1kW UHF ATSC Transmitter

100%	
Temperature [°C]	Power RF [W]
0	1021
10	1015
20	1009
30	1003
40	998
50	995

25%	
Temperature [°C]	Power RF [W]
0	258
10	255
20	254
30	251
40	249
50	247

100%	
Power RF [W]	Power Supply [Vac]
1000	85%
1000	Nominal volts
1000	115%

Current [A]	21,8/13,7/13,6
Voltage [V]	230

25%	
Power RF [W]	Power Supply [Vac]
250	85%
250	Nominal volts
250	115%

Current [A]	13,2/8,5/8,3
Voltage [V]	230

APPARATO	MARCA	MODELLO
Humidifier	Cuoghi	NEB-5000
Thermal detector	CAREL	IR32c
Humidity detector	CAREL	S90HP
Thermal Chamber (-20°C / 60°C)	Assembled by COTER	

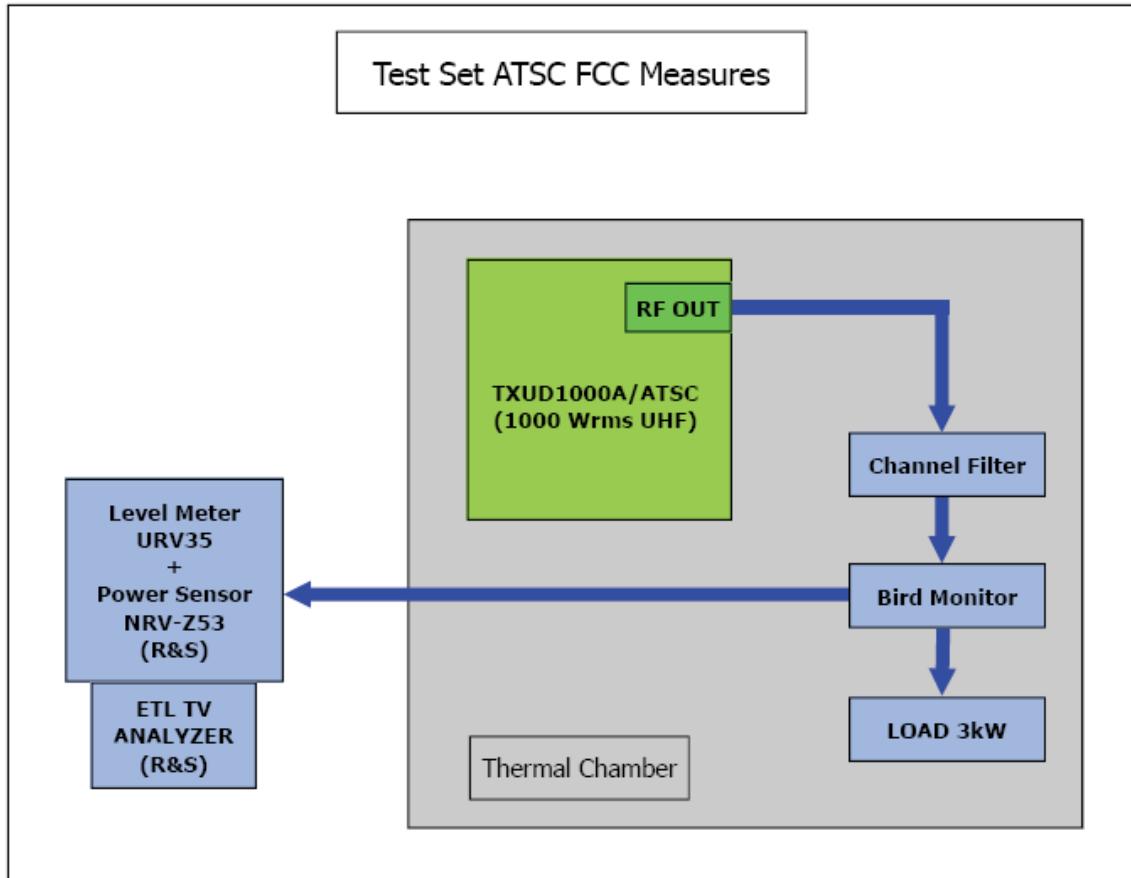


Figure 1

The loss of the Bird monitor tap and interconnecting cable was taken into account when the power measurement was made.

Calculation of Output Power.

The output power may be determined by adding the coupling value (including cable loss) to the indicated power read on the power meter.

In this case, 10.7 dBm (or 1.28 milliwatts) indicated reading + 49.3 dB coupling (from calibration of coupler) = 60 dBm = 1000 watts

Frequency Stability versus Line Voltage

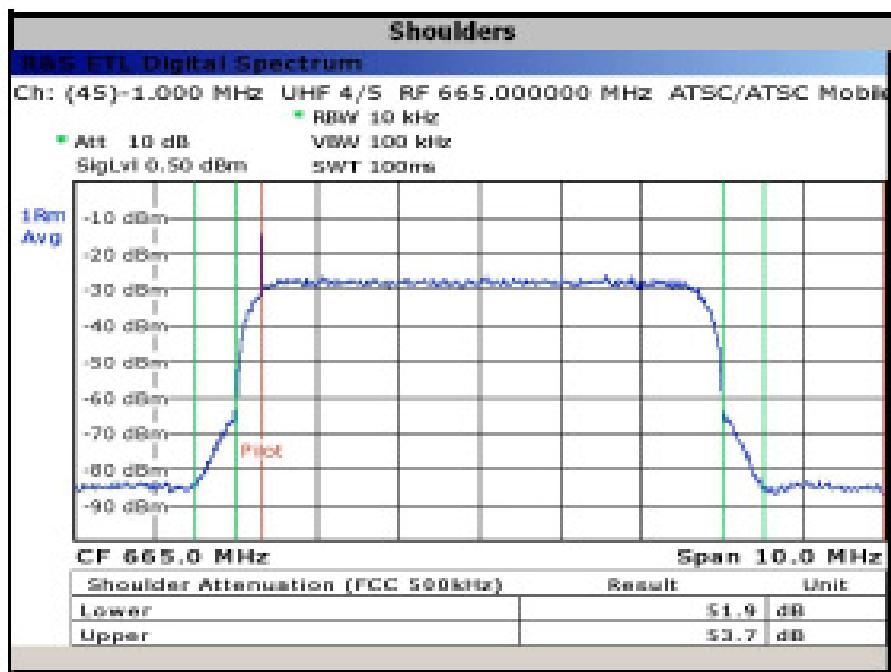
The equipment was configured as shown in Figure 1. A variac was inserted in the test configuration between the AC mains service and the TXUD1000A Transmitter. The AC voltage was set-up at 240 volts and the transmitter was energized and adjusted to produce 1000 watts in the RF channel. The nominal frequency was recorded. The variac was adjusted to 85% and 115% of nominal voltage and the corresponding changes in pilot frequency measured on the R & S ETL were recorded in the table on the next page.

Frequency Stability versus Temperature

For temperature stability measurements the exciter was placed inside the temperature chamber equipped with temperature controller as shown in Figure 1. The transmitter was energized at nominal power and the pilot frequency was measured on the Rhode and Schwarz ETL test set. The temperature was then raised to +50°C, allowed to stabilize for 15 minutes and then cycled to each colder temperature where it was allowed to stabilize for 10 minutes before recording the measured value. Then the measured values were compared against the reference pilot frequency for this channel of 662.309441 MHz.

Frequency Stability

Temperature °C	Time (min)	Pilot Freq (MHz)	Difference from ideal (Hz)
25	20	662,3096296	189
50	12	662,3096606	220
40	13	662,3096466	206
30	16	662,3096426	202
20	14	662,3096216	181
10	12	662,3096096	169
0	10	662,3093876	-53


100%	
Pilot Frequency	Power Supply
MHz	Volts
662,309432	85%
662,309441	Nominal volts
662,309448	115%

The maximum deviation from the desired pilot frequency over the specified temperature range and the specified voltage range was 220 Hz which was well within the +/- 10 kHz tolerance identified in FCC rule 74.795.

Emission Mask Compliance Measurement

To determine emission mask compliance the test equipment configuration shown in Figure 1 was used. The measurement procedure was performed according to IEEE Recommended Practice 1631-2008. The transmitter was tested for compliance with the stringent emission mask classification. The first part of the tests measured the adjacent channel emission and the second part of the tests measured the harmonic and spurious energy.

The transmitter was energized at 1000 watts on channel 46 (center frequency of 665 MHz) as established by the power meter. A reference was established on the ETL spectrum analyzer taking into account the insertion loss of the directional coupler and the interconnecting cables. The minimum displayed average noise level (DANL) for the spectrum analyzer was determined to be -115 dBm in a 10 kHz bandwidth. In order to measure a signal equivalent to the emission mask, the RF sample level must be 93 dB above the DANL using the RBW of 10 kHz. That level will be -22 dBm. In this case, the RF sample level was -4.9 dBm as measured with the channel power measurement mode of the spectrum analyzer so there was 17 dB of margin in the measurement capability. The bandstop filter frequency response was determined using a spectrum analyzer and tracking generator. The insertion loss at the center of each of the twelve 500 kHz segments either side of the main channel was tabulated. The bandstop filter tabulated values were taken into account once the bandstop filter was inserted in the path between the coupler and the spectrum analyzer.

Spectrum shoulder measurement of the desired channel

The next step was to measure the first four 500 kHz subbands on each side of the desired channel. For this part of the measurement, the bandstop filter was not necessary. The photo above shows the shoulder levels measured in the first adjacent channels. The attenuator on the spectrum analyzer was adjusted so that it was not being overloaded. Once the first four 500 kHz subbands were measured, the signal was close to the noise floor for that attenuator setting.

The spectrum analyzer noise floor was subtracted from the measured values when the measured values were within 7 dB of the noise floor.

The next step was to install the bandstop filter in the path from the coupler to the spectrum analyzer and reduce the attenuation so that the emissions in the remaining 500 kHz subbands could be measured.

The attenuator setting of the spectrum analyzer ensured the noise floor was below the measured emissions. Once that was done, the spectrum analyzer attenuator was not changed and the channel power mode was engaged to measure each of the remaining 500 kHz segments (on both sides of the desired channel) using the center frequency of that segment.

The final step was to make any adjustments necessary for the proximity of the noise floor and to take into account the stopband filter loss in that order, and record the values in the table. Then those recorded power levels were subtracted from the total power in the desired channel to determine if they met the emission mask. The attached spreadsheet shows the raw measured values, any correction factors, the noise-floor-corrected measured amplitudes and the final measurement versus the FCC Stringent Emission Mask.

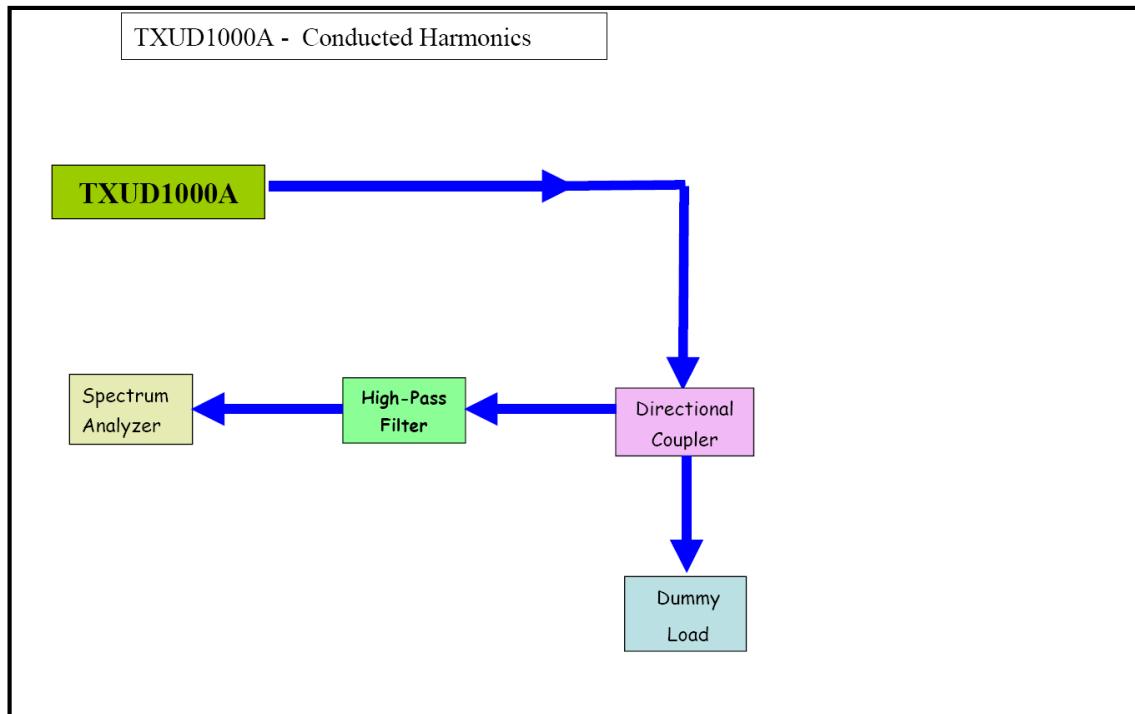
Spectr. Analyzer 10kHz RBW Noise Floor [dBm]	-115,0
Spectr. Analyzer 500kHz RBW Noise Floor [dBm]	-98,0
Noise floor proximity upper threshold [dBm]	-88,0
Noise floor proximity lower threshold [dBm]	-95,0

Min. Sample Level [dBm]	-4,9
-------------------------	------

ATSC TRANSMISSION MASK COMPLIANCE TEST

Stringent Mask

Channel Power [dBm]	-0,6
Channel no.	A46
Center Freq. [MHz]	665


Delta Frequency [MHz]	Frequency [MHz]	Measured Amplitude [dBm]	Noise floor correction	Bandstop Filter Loss [dB]	Corrected Amplitude [dBm]	Amplitude below Channel Power [dB]	FCC Limit [dB]	Pass/Fail
3,25	668,25	-54,5	-54,5	0,0	-54,5	53,9	47,0	Pass
3,75	668,75	-67,7	-67,7	0,0	-67,7	67,1	49,9	Pass
4,25	669,25	-67,8	-67,8	0,0	-67,8	67,2	55,6	Pass
4,75	669,75	-69,5	-69,5	0,0	-69,5	68,9	61,4	Pass
5,25	670,25	-72,3	-72,3	3,9	-68,4	67,8	67,1	Pass
5,75	670,75	-76,4	-76,4	3,6	-72,8	72,2	71,9	Pass
6,25	671,25	-79,1	-79,8	2,6	-77,2	76,6	76,0	Pass
6,75	671,75	-80,2	-80,2	2,1	-78,1	77,5	76,0	Pass
7,25	672,25	-80,5	-80,5	2,0	-78,5	77,9	76,0	Pass
7,75	672,75	-81,0	-81,0	1,6	-79,4	78,8	76,0	Pass
8,25	673,25	-80,3	-80,3	1,3	-79,0	78,4	76,0	Pass
8,75	673,75	-80,6	-80,6	1,2	-79,4	78,8	76,0	Pass
-3,25	651,75	-53,3	-53,3	0,0	-53,3	52,7	47,0	Pass
-3,75	651,25	-67,2	-67,2	0,0	-67,2	66,6	49,9	Pass
-4,25	650,75	-67,0	-67,0	0,0	-67,0	66,4	55,6	Pass
-4,75	650,25	-68,9	-68,9	0,0	-68,9	68,3	61,4	Pass
-5,25	659,75	-71,9	-71,9	3,8	-68,1	67,5	67,1	Pass
-5,75	659,25	-75,8	-75,8	2,6	-73,2	72,6	71,9	Pass
-6,25	658,75	-79,9	-79,9	3,1	-76,8	76,2	76,0	Pass
-6,75	658,25	-80,4	-80,4	2,5	-77,9	77,3	76,0	Pass
-7,25	657,75	-80,8	-80,8	2,0	-78,8	78,2	76,0	Pass
-7,75	657,25	-80,5	-80,5	1,7	-78,8	78,2	76,0	Pass
-8,25	656,75	-80,8	-80,8	1,2	-79,6	79,0	76,0	Pass
-8,75	656,25	-81,2	-81,2	0,9	-80,3	79,7	76,0	Pass

Testing Date:	07/09/2009
Tester:	Pugliese/Ingravallo

Conducted Harmonic and Spurious Measurements

The test setup shown below was used. First the highpass filter is characterized over the spectrum of investigation. The same amplitude reference was obtained using the channel power measurement mode of the spectrum analyzer without the highpass filter in the system. Then the high pass filter was inserted into the path from the directional coupler to the spectrum analyzer. In this case, the highpass filter provided >40 dB attenuation to the main channel signal. The sensitivity of the spectrum analyzer was increased so that the noise floor of the spectrum analyzer was approximately -110 dBm measured using a marker and a 10 kHz resolution bandwidth (RBW). The spectrum from just above the upper adjacent channel to the 10th harmonic of the fundamental frequency was investigated to determine if any spurious or harmonic energy existed. The highest amplitude measurement of each 500 kHz subband in each harmonic spectrum was taken using the 10 kHz RBW of the spectrum analyzer and the channel power mode (using a measurement bandwidth of 500 kHz) of the spectrum analyzer.

Using the directional coupler calibration factors up to the 10th harmonic, the energy was computed. This value of harmonic energy was compared to the total channel power and the resultant dB_{DTV} value was calculated and compared to the -76dB FCC requirement. The results are shown in the table on the next page.

TXUD1000A HARMONIC AND SPURIOUS MEASUREMENTS

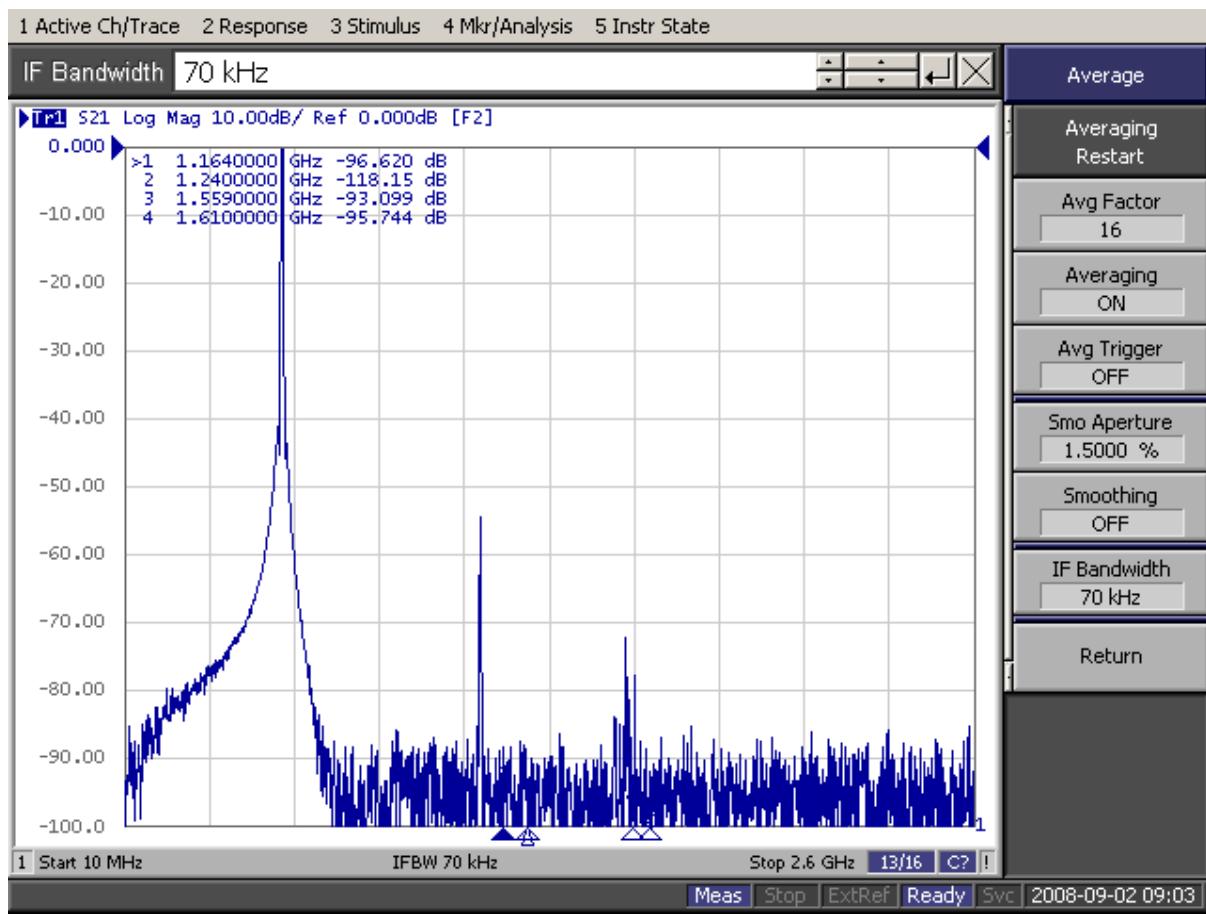
XMTR CONDUCTED HARMONIC MEASUREMENTS

EUT:	TXUD1000A	
Description:	1kW ATSC UHF Transmitter	
Output Power (Wrms):	1000	dBm value: 60,0
Required level (from ATSC stringent mask):	76	dBm
TX Frequency (MHz):	665	

Harmonic	Frequency	Measured Level	Noise Floor Channel Power	Cable & HPF Loss	Coupling Factor	$(ML)+(C&HPF\ Loss)+CF$	Required Level	Corrected Level	Status Pass/Fail
	[MHz]	[dBm]	[dBm]	[dB]	[dB]	[dB]	[dB]	[dB]	
Xmit freq.	665								N/A
2nd	1330	-89	-96,0	3,0	45,4	-40,6	76	101	Pass
3rd	1995	-91	-98,0	2,4	43,1	-45,5	76	106	Pass
4th	2660	-93	-97,0	2,3	42,1	-48,6	76	109	Pass
5th	3325	-94	-97,0	6,6	40,3	-47,1	76	107	Pass
6th	3990	-96	-98,0	5,7	41,1	-49,2	76	109	Pass
7th	4655	-96	-97,0	5,9	40,6	-49,5	76	110	Pass
8th	5320	-95	-97,0	7,3	44,3	-43,4	76	103	Pass
9th	5985	-97	-98,0	8,2	45,2	-43,6	76	104	Pass
10th	6650	-96	-97,0	8,8	48,6	-38,6	76	99	Pass

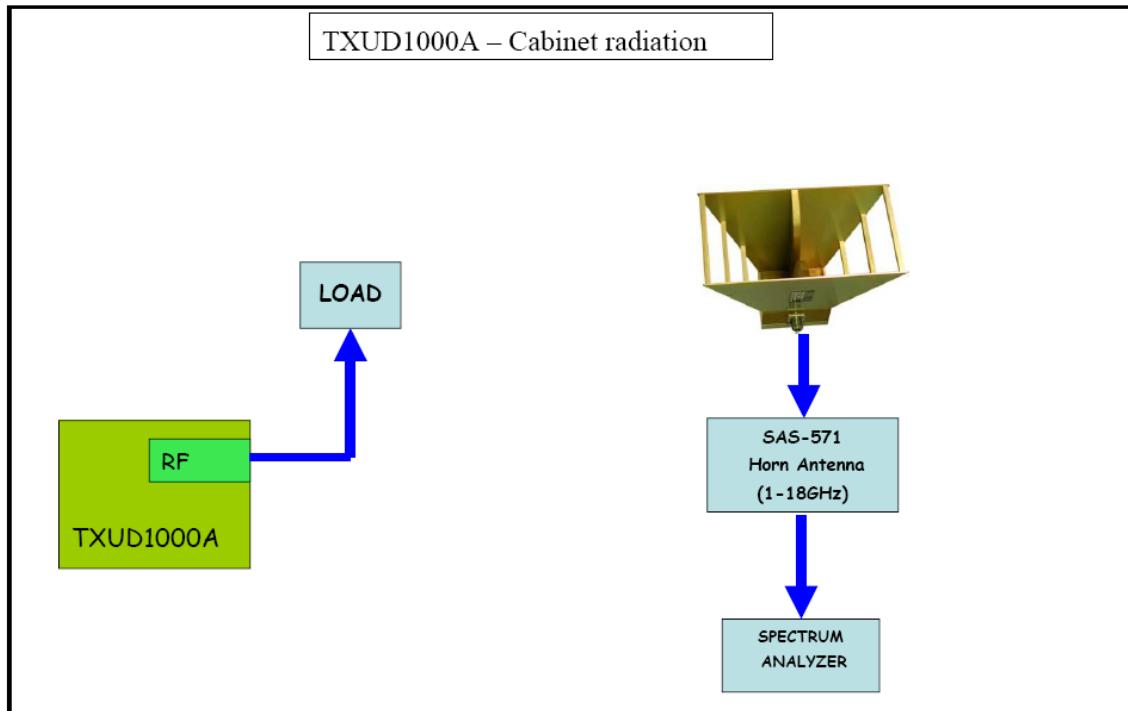
Z`

All results meet the $-76 \text{ dB}_{\text{DTV}}$ FCC requirement for the stringent emission mask.


Filter attenuation provided at the RNSS bands

FCC rule 74.794 (b) (1) requires that all transmitters operating on channels 22-24, 32-36, 38, and 65-69 provide 85 dB of filtering in the frequency band of 1164-1240 MHz and 1559 to 1610 MHz. The TXUD1000A uses the combination of the bandpass filter supplied with every transmitter and additional low pass filter(s) for transmitters operating on the above mentioned channels. The bandpass filter provides a minimum of 70 dB attenuation at the specified frequencies and the lowpass filters provides an additional 70 dB of filtering. The combination of these two types of filters greatly exceeds the 85 dB required amount of filtering. The combined filter response of the bandstop filter and the lowpass filter is shown below.

FILTER ATTENUATION FOR TXUD1000A


The test configuration for the response shown below consists of a network analyzer connected to the bandpass filter and two lowpass filters, one to each side of the bandpass filter. The combined RF filter system was swept using the network analyzer and the out of band rejection at the requested frequencies is >90 dB as shown by the markers. The zero reference is shown as the top line on the network analyzer.

CH23 2 Emission Mask Filter (Combination Bandpass filter and Low Pass Filter Configuration)

CABINET RADIATION

The transmitter and test equipment were configured as shown below. The transmitter was energized and operated at 1000 watts. The free space path loss and antenna gain characteristics were obtained at the fundamental frequency and at each of the harmonics of the visual carrier frequency in order to accurately assess the level of the signal radiated from the cabinet. Radiation from the cabinet was measured with 4 different physical rotation angles: 0, 90, 180, and 270 degrees (0 degrees being the front of the cabinet). All harmonic and spurious spectral components that were above the noise floor were measured and recorded. The measured values are tabulated in the table on the next page. In addition, calculations are provided in the tables on the next pages to determine whether the cabinet radiation in a 500 kHz bandwidth was below the -60 dB level.

ATSC XMTR CABINET RADIATION SPREADSHEET

EUT:	TXUD1000A																																																																																																																					
Description:	1kW ATSC UHF Transmitter																																																																																																																					
TX Frequency (MHz):	665				Front View																																																																																																																	
Output Power (Wrms):	1000	dBm value:	60,0	dBm																																																																																																																		
			Corrected level must be less than:		0,0	dBm																																																																																																																
Distance (m):	10																																																																																																																					
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 10%;">Harmonic</th> <th style="width: 10%;">Frequency</th> <th style="width: 10%;">Measured</th> <th style="width: 10%;">Cable</th> <th style="width: 10%;">Antenna</th> <th style="width: 10%;">Path</th> <th style="width: 10%;">Corrected</th> <th style="width: 10%;">Required</th> <th style="width: 10%;">Status</th> <th style="width: 10%;">Pass/Fail</th> </tr> <tr> <th>MHz</th> <th>Level</th> <th>Loss</th> <th>Gain</th> <th>Loss</th> <th>Level</th> <th>Level</th> <th>Level</th> <th>Pass</th> </tr> </thead> <tbody> <tr> <td>Xmit freq.</td> <td style="background-color: #ffff00;">665</td> <td></td> <td></td> <td></td> <td style="background-color: #ffff00;">48,9</td> <td style="background-color: #ffff00;">48,9</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">N/A</td> </tr> <tr> <td>2nd</td> <td style="background-color: #ffff00;">1330</td> <td style="background-color: #ffff00;">-81,2</td> <td style="background-color: #ffff00;">1,3</td> <td style="background-color: #ffff00;">9,4</td> <td style="background-color: #ffff00;">54,9</td> <td style="background-color: #ffff00;">-34,4</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">Pass</td> </tr> <tr> <td>3rd</td> <td style="background-color: #ffff00;">1995</td> <td style="background-color: #ffff00;">-94,8</td> <td style="background-color: #ffff00;">1,9</td> <td style="background-color: #ffff00;">9,1</td> <td style="background-color: #ffff00;">58,4</td> <td style="background-color: #ffff00;">-43,6</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">Pass</td> </tr> <tr> <td>4th</td> <td style="background-color: #ffff00;">2660</td> <td style="background-color: #ffff00;">-93,2</td> <td style="background-color: #ffff00;">2,1</td> <td style="background-color: #ffff00;">10,6</td> <td style="background-color: #ffff00;">60,9</td> <td style="background-color: #ffff00;">-40,8</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">Pass</td> </tr> <tr> <td>5th</td> <td style="background-color: #ffff00;">3325</td> <td style="background-color: #ffff00;">-85,1</td> <td style="background-color: #ffff00;">2,4</td> <td style="background-color: #ffff00;">11,2</td> <td style="background-color: #ffff00;">62,8</td> <td style="background-color: #ffff00;">-31,1</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">Pass</td> </tr> <tr> <td>6th</td> <td style="background-color: #ffff00;">3990</td> <td style="background-color: #ffff00;">-86,2</td> <td style="background-color: #ffff00;">3,2</td> <td style="background-color: #ffff00;">10,7</td> <td style="background-color: #ffff00;">64,4</td> <td style="background-color: #ffff00;">-29,3</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">Pass</td> </tr> <tr> <td>7th</td> <td style="background-color: #ffff00;">4655</td> <td style="background-color: #ffff00;">-86,9</td> <td style="background-color: #ffff00;">3,6</td> <td style="background-color: #ffff00;">11,1</td> <td style="background-color: #ffff00;">65,8</td> <td style="background-color: #ffff00;">-28,6</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">Pass</td> </tr> <tr> <td>8th</td> <td style="background-color: #ffff00;">5320</td> <td style="background-color: #ffff00;">-87,0</td> <td style="background-color: #ffff00;">4,4</td> <td style="background-color: #ffff00;">11,4</td> <td style="background-color: #ffff00;">66,9</td> <td style="background-color: #ffff00;">-27,1</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">Pass</td> </tr> <tr> <td>9th</td> <td style="background-color: #ffff00;">5985</td> <td style="background-color: #ffff00;">-88,0</td> <td style="background-color: #ffff00;">5,2</td> <td style="background-color: #ffff00;">11,9</td> <td style="background-color: #ffff00;">67,9</td> <td style="background-color: #ffff00;">-26,8</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">Pass</td> </tr> <tr> <td>10th</td> <td style="background-color: #ffff00;">6650</td> <td style="background-color: #ffff00;">-89,1</td> <td style="background-color: #ffff00;">7,8</td> <td style="background-color: #ffff00;">11,7</td> <td style="background-color: #ffff00;">68,9</td> <td style="background-color: #ffff00;">-24,1</td> <td style="background-color: #ffff00;">0,0</td> <td style="background-color: #ffff00;">Pass</td> </tr> </tbody> </table>										Harmonic	Frequency	Measured	Cable	Antenna	Path	Corrected	Required	Status	Pass/Fail	MHz	Level	Loss	Gain	Loss	Level	Level	Level	Pass	Xmit freq.	665				48,9	48,9	0,0	N/A	2nd	1330	-81,2	1,3	9,4	54,9	-34,4	0,0	Pass	3rd	1995	-94,8	1,9	9,1	58,4	-43,6	0,0	Pass	4th	2660	-93,2	2,1	10,6	60,9	-40,8	0,0	Pass	5th	3325	-85,1	2,4	11,2	62,8	-31,1	0,0	Pass	6th	3990	-86,2	3,2	10,7	64,4	-29,3	0,0	Pass	7th	4655	-86,9	3,6	11,1	65,8	-28,6	0,0	Pass	8th	5320	-87,0	4,4	11,4	66,9	-27,1	0,0	Pass	9th	5985	-88,0	5,2	11,9	67,9	-26,8	0,0	Pass	10th	6650	-89,1	7,8	11,7	68,9	-24,1	0,0	Pass
Harmonic	Frequency	Measured	Cable	Antenna	Path	Corrected	Required	Status	Pass/Fail																																																																																																													
MHz	Level	Loss	Gain	Loss	Level	Level	Level	Pass																																																																																																														
Xmit freq.	665				48,9	48,9	0,0	N/A																																																																																																														
2nd	1330	-81,2	1,3	9,4	54,9	-34,4	0,0	Pass																																																																																																														
3rd	1995	-94,8	1,9	9,1	58,4	-43,6	0,0	Pass																																																																																																														
4th	2660	-93,2	2,1	10,6	60,9	-40,8	0,0	Pass																																																																																																														
5th	3325	-85,1	2,4	11,2	62,8	-31,1	0,0	Pass																																																																																																														
6th	3990	-86,2	3,2	10,7	64,4	-29,3	0,0	Pass																																																																																																														
7th	4655	-86,9	3,6	11,1	65,8	-28,6	0,0	Pass																																																																																																														
8th	5320	-87,0	4,4	11,4	66,9	-27,1	0,0	Pass																																																																																																														
9th	5985	-88,0	5,2	11,9	67,9	-26,8	0,0	Pass																																																																																																														
10th	6650	-89,1	7,8	11,7	68,9	-24,1	0,0	Pass																																																																																																														

NOTES:

Antenna:	A.H. Systems SAS-571 S/N 2630 Horn Antenna, 700MHz-18GHz CAL 09/02/2010		
Spectrum Analyzer:	Rohde & Schwarz FSP Spectrum Analyzer, 9kHz - 30GHz S/N 1093.4495.30		
Cable:	RG213, 2,12 meters length		
Load:	Test	TEQ-TR-010-514-50-10000	S/N 103

TX Frequency (MHz):	665					Left View		
Output Power (Wrms):	1000	dBm value:	60,0	dBm				
Corrected level must be less than:			0,0	dBm				
Distance (m):	10							

Harmonic	Frequency	Measured	Cable	Antenna	Path	Corrected	Required	Status
	MHz	Level	Loss	Gain	Loss	Level	Level	Pass/Fail
Xmit freq.	665	0,0	0,0	0	48,9	48,9	0,0	N/A
2nd	1330	-81,6	1,3	9,4	54,9	-34,8	0,0	Pass
3rd	1995	-94,0	1,9	9,1	58,4	-42,8	0,0	Pass
4th	2660	-92,9	2,1	10,6	60,9	-40,5	0,0	Pass
5th	3325	-85,6	2,4	11,2	62,8	-31,6	0,0	Pass
6th	3990	-86,0	3,2	10,7	64,4	-29,1	0,0	Pass
7th	4655	-86,4	3,6	11,1	65,8	-28,1	0,0	Pass
8th	5320	-87,3	4,4	11,4	66,9	-27,4	0,0	Pass
9th	5985	-89,0	5,2	11,9	67,9	-27,8	0,0	Pass
10th	6650	-90,0	7,8	11,7	68,9	-25,0	0,0	Pass

TX Frequency (MHz):	665			Right View		
Output Power (Wrms):	1000	dBm value:	60,0	dBm		
Corrected level must be less than:			0,0	dBm		
Distance (m):	10					

Harmonic	Frequency	Measured	Cable	Antenna	Path	Corrected	Required	Status
	MHz	Level	Loss	Gain	Loss	Level	Level	Pass/Fail
Xmit freq.	665	0,0	0,0	0	48,9	48,9	0,0	N/A
2nd	1330	-82,1	1,3	9,4	54,9	-35,3	0,0	Pass
3rd	1995	-95,1	1,9	9,1	58,4	-43,9	0,0	Pass
4th	2660	-93,2	2,1	10,6	60,9	-40,8	0,0	Pass
5th	3325	-86,0	2,4	11,2	62,8	-32,0	0,0	Pass
6th	3990	-86,3	3,2	10,7	64,4	-29,4	0,0	Pass
7th	4655	-87,1	3,6	11,1	65,8	-28,8	0,0	Pass
8th	5320	-87,9	4,4	11,4	66,9	-28,0	0,0	Pass
9th	5985	-88,2	5,2	11,9	67,9	-27,0	0,0	Pass
10th	6650	-91,1	7,8	11,7	68,9	-26,1	0,0	Pass

TX Frequency (MHz):	665					Rear View	
Output Power (Wrms):	1000	dBm value:		60,0	dBm		
Corrected level must be less than:		0,0	dBm				
Distance (m):		10					

Harmonic	Frequency	Measured	Cable	Antenna	Path	Corrected	Required	Status
	MHz	Level	Loss	Gain	Loss	Level	Level	Pass/Fail
Xmit freq.	665	0,0	0,0	0	48,9	48,9	0,0	N/A
2nd	1330	-81,2	1,3	9,4	54,9	-34,4	0,0	Pass
3rd	1995	-93,5	1,9	9,1	58,4	-42,3	0,0	Pass
4th	2660	-94,2	2,1	10,6	60,9	-41,8	0,0	Pass
5th	3325	-86,6	2,4	11,2	62,8	-32,6	0,0	Pass
6th	3990	-87,1	3,2	10,7	64,4	-30,2	0,0	Pass
7th	4655	-87,8	3,6	11,1	65,8	-29,5	0,0	Pass
8th	5320	-88,3	4,4	11,4	66,9	-28,4	0,0	Pass
9th	5985	-89,6	5,2	11,9	67,9	-28,4	0,0	Pass
10th	6650	-91,5	7,8	11,7	68,9	-26,5	0,0	Pass

All cabinet radiation emissions were well below the -60 dB level with the worst case margin being 24 dB measured from the front of the transmitter.

SUMMARY

In summary, all FCC rules have been met with regard to the performance of the TXUD1000A DTV transmitter.