

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 <u>http://www.digitalemc.com</u>

CERTIFICATE OF COMPLIANCE FCC Part 22 & 24 Certification

Dates of Tests: November 03 ~ 10, 2008 Test Report S/N:DR50110811S Test Site : DIGITAL EMC CO., LTD.

FCC ID.	PH7TG130F
APPLICANT	Axesstel Inc

Classification	:	Licensed Non-Broadcast Station Transmitter(TNB)				
FCC Rule Part(s)	:	§22(H), §24(E), §2				
ЕИТ Туре	:	GSM GPRS QUAD BAND FWT with ANALOG & DIGITAL G3 FAX				
Model name	:	TG130F				
Serial number	:	Identical prototype				
TX Frequency Range	:	824.2 ~ 848.8 MHz (GSM850) / 1850.2 ~ 1909.8 MHz (PCS1900)				
RX Frequency Range	:	869.2 ~ 893.8 MHz (GSM850) / 1930.2 ~ 1989.8 MHz (PCS1900)				
Max. RF Output Power	:	3.819W ERP GSM850				
	:	1.030W EIRP PCS1900				
Date of Issue	:	November 20, 2008				

TABLE OF CONTENTS

۲	CONFIDENTIALITY LETTER(S)	
۲	AUTHOLIZATION LETTER	
۲	TEST REPORT	
	1 SCOPE	3
	2 INTRODUCTION	4
	3 TEST REPORT	5
	3.1 SUMMARY OF TEST	5
	3.2 POWER OUTPUT	6
	3.3 OCUPIED BANDWIDTH	13
	3.4 OCCUPIED BANDWIDTH EMISSION LIMIT	17
	3.5 SPURIOUS EMISSION AT ANT. TERMINAL	23
	3.6 FIELD STRENGTH OF SPURIOUS RADIATION	33
	3.7 FREQUENCY STABILITY	40
	4 TEST EQUIPMENT	45
	5 EMISSION DESIGNATOR	47
	6 CONCLUSION	48
۲	PART LOCATION	
۲	FCC ID LABEL & LOCATION	
۲	TEST SETUP PHOTOGRAPHS	
۲	EXTERNAL PHOTOGRAPHS	
۲	INTERNAL PHOTOGRAPHS	
۲	BLOCK DIAGRAM(S)	
۲	SCHEMATIC DIAGRAM(S)	
۲	OPERATIONAL DESCRIPTION	
۲	PARTS LIST	
۲	USER'S MANUAL	
۲	MPE CALCULATION	

MEASUREMENT REPORT

<u>1. Scope</u>

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant: Axesstel Inc

Address: 6815 Flanders Drive Ste. 210, San Diego, California 92121, United States

Attention: D.S. Kim (Product Manager)

- FCC ID: PH7TG130F
- Quantity: The mass product
- Tx Freq. Range: 824.2 ~ 848.8 MHz (GSM850) / 1850.2 ~ 1909.8 MHz (PCS1900)
- Rx Freq. Range: 869.2 ~ 893.8 MHz (GSM850) / 1930.2 ~ 1989.8 MHz (PCS1900)
- Max. Power Rating: 3.819W ERP GSM850
- 1.030W EIRP PCS1900
- FCC Classification(s): Licensed Non-broadcast Station Transmitter(TNB)
- Equipment (EUT) Type: GSM GPRS QUAD BAND FWT with ANALOG & DIGITAL G3 FAX
- Modulation(s): GMSK
- Frequency Tolerance: ± 0.00025 % (2.5ppm)
- FCC Rule Part(s): §22(H), §24(E), §2
- Dates of Tests: November 03 ~ 10, 2008
- Place of Tests: DIGITAL EMC
- Test Report S/N: DR50110811S

2. General Information

This report contains the result of tests performed by: DIGITAL EMC CO., LTD. Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 <u>http://www.digitalemc.com</u> E-mail: demc@unitel.co.kr Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory". This laboratory is accredited by NVLAP for NVLAP Lab. Code : 200559-0.

Test operator: engineer

November 20, 2008	D.C. Cha	an	
Data	Name	Signature	
Report Reviewed By:	manager	Am	
November 20, 2008	Harvey Sung	-00	
Data	Name	Signature	
Ordering party:			
Company name	: Axesstel Inc		
Address	: 6815 Flanders D	rive Ste. 210.	
Zipcode	: 92121		
City/State	: San Diego / Cali	fornia	
Country	: United States		
Date of order	: October 24, 2008	3	

3. Test Report

3.1 Summary of test

FCC Part Section(s)	Parameter	Status (note 1)
22.913(a) / 24.232(b), 2.1046	Power Output	С
22.917 / 24.238, 2.1049(h)(i)	Occupied Bandwidth	С
22.917(b) / 24.238(b)	Emission Bandwidth	С
22.917 / 24.238 2.1051	Emission Limits Transmitter	С
2.1053 (a)	Field Strength of Spurious Radiation	С
2.1055	Frequency Stability	С
Note 1: C= Complies N	C=Not Complies NT=Not Tested NA=Not Applicable	

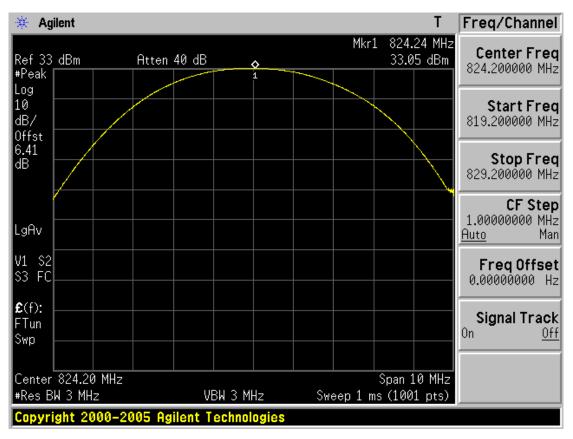
The sample was tested according to the following specification: FCC Parts §22(H), §24(E), §2; ANSI/TIA/EIA-603-C 2004 This device was also tested and approved by FCC DOC

3.2 Power Output

FCC ID	PH7TG130F	
Specification	47 CFR 2.1046 (a)	
Tested Frequency	824.2MHz, 836.6MHz and 848.8MHz for GSM 1850.2MHz, 1880.0MHz and 1909.8MHz for PC	

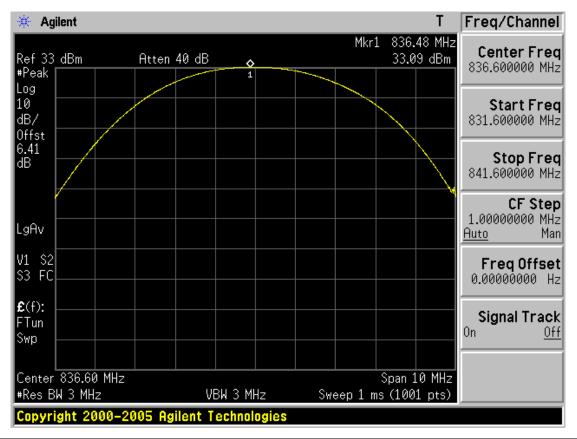
Measurement Procedure:

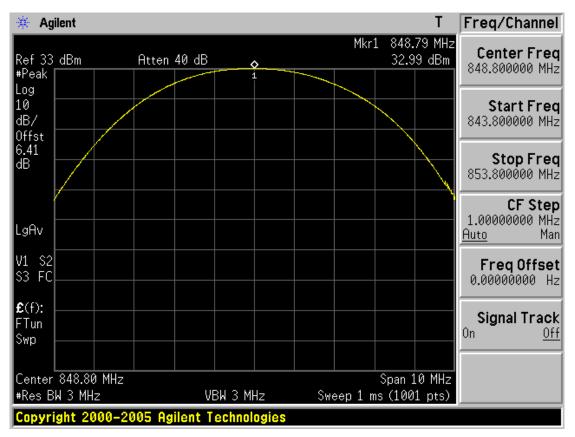
- During the process of testing, the EUT was controlled via Radio Communication tester to ensure max. power transmission and proper modulation.
- Power output was measured at the RF output terminals when the transmitter is adjusted in accordance with Communication tester (or the tune-up procedure).

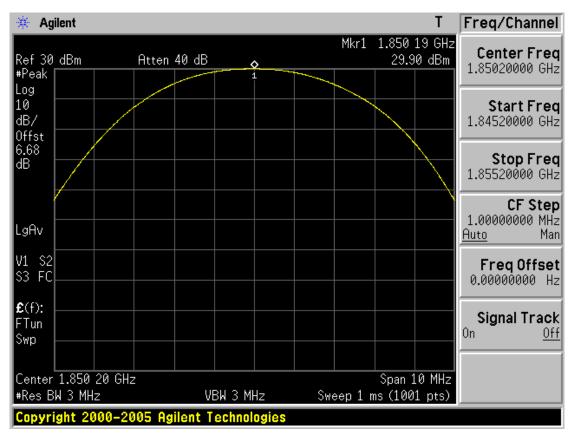

Measurement Data:

GSM850

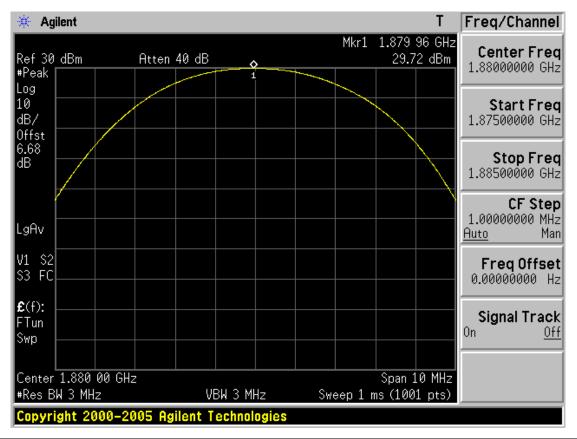
Channel	Frequency (MHz)	TEST CONDITIONS Power Step: 5
		(dBm)
128	824.2	33.05
190	836.6	33.09
251	848.8	32.99

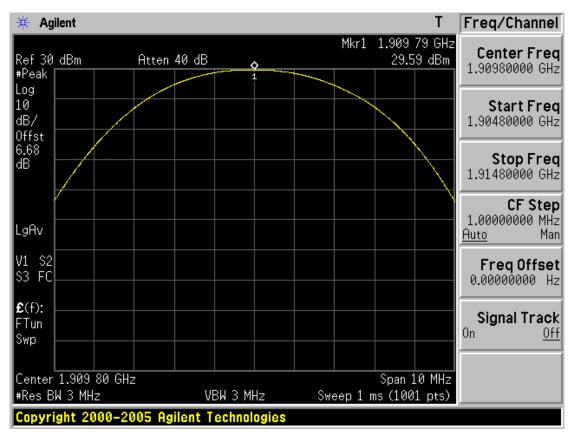

PCS1900


Channel	Frequency (MHz)	TEST CONDITIONS Power Step: 0
		(dBm)
512	1850.2	29.90
661	1880.0	29.72
810	1909.8	29.59


POWER OUT. GSM850 Ch.128

POWER OUT. GSM850 Ch.190




POWER OUT. GSM850 Ch.251

POWER OUT. PCS1900 Ch.512

POWER OUT. PCS1900 Ch.661

POWER OUT. PCS1900 Ch.810

ERP (GSM850)

FCC ID	:	PH7TG130F
Specification	:	47 CFR 22.913(a)
Tested Frequency	:	824.2MHz, 836.6MHz and 848.8MHz for GSM850
RBW=VBW	:	3MHz

Measurement Procedure:

Effective Radiated Power Output Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C 2004

The EUT was placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

Measurement Data:

	Frequency	TEST CONDITIONS Power Step: 5						
Channel	(MHz)	Ref. level (dBm)	Pol. (H/V)	ERP (dBm)	ERP (W)	Power Supply	Note.	
128	824.2	-2.08	V	35.82	3.819	Adaptor	-	
190	836.6	-5.08	V	33.82	2.410	Adaptor	-	
251	848.8	-5.26	V	33.13	2.056	Adaptor	-	

EIRP (PCS1900)

FCC ID	:	PH7TG130F
Specification	:	47 CFR 24.232(b)
Tested Frequency	:	1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900
RBW=VBW	:	3MHz

Measurement Procedure:

Effective Radiated Power Output Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C 2004

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

Measurement Data:

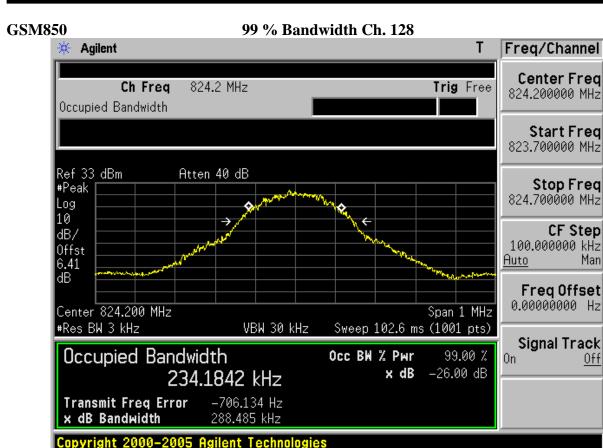
Channel Frequency (MHz)	Frequency	TEST CONDITIONS Power Step: 0						
	Ref. level (dBm)	Pol. (H/V)	ANT GAIN	EIRP (dBm)	EIRP (W)	Power Supply	Note	
512	1850.20	19.75	V	8.55	28.30	0.676	Adaptor	-
661	1880.00	20.68	V	8.39	29.07	0.807	Adaptor	-
810	1909.80	21.76	V	8.37	30.13	1.030	Adaptor	-

3.3 Occupied Bandwidth

FCC ID	PH7TG130F	
Specification	47 CFR 2.1049 (h)(i)	
Tested Frequency	824.2MHz, 836.6MHz and 848.8MHz for GSM 1850.2MHz, 1880.0MHz and 1909.8MHz for PC	

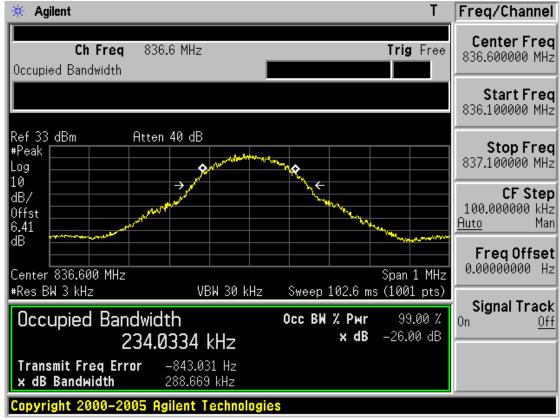
Measurement Procedure:

- The 99% power bandwidth was measured with a calibrated spectrum analyzer.
- Spectrum analyzer plots are included on the following pages.

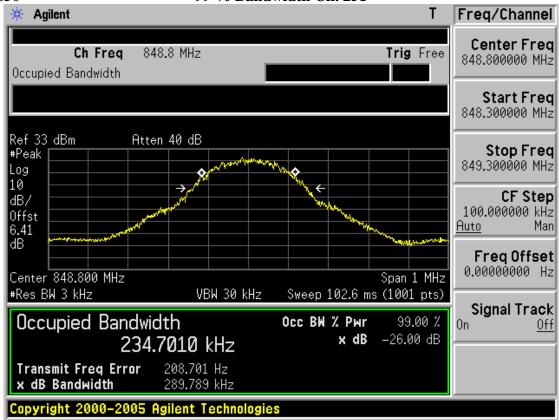

Measurement Data:

GSM850

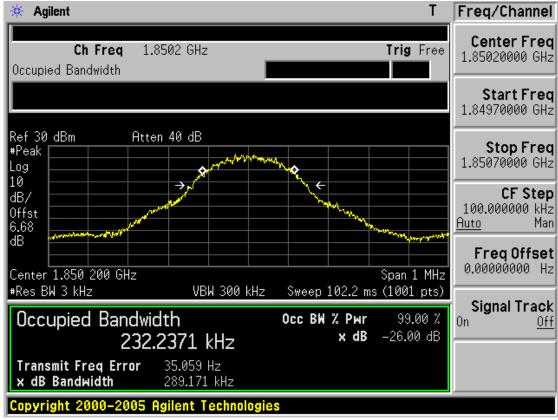
Channel	Frequency (MHz)	99% Bandwidth
		(kHz)
128	824.2	234.1842
190	836.6	234.0334
251	848.8	234.7010


PCS1900

Charrent	Frequency (MHz)	99% Bandwidth
Channel		(kHz)
512	1850.2	232.2371
661	1880.0	233.7321
810	1909.8	231.9492


GSM850

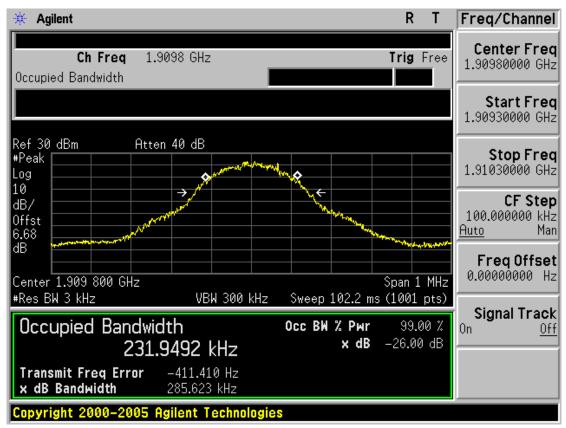
99 % Bandwidth Ch. 190



99 % Bandwidth Ch. 251

PCS1900

99 % Bandwidth Ch. 512



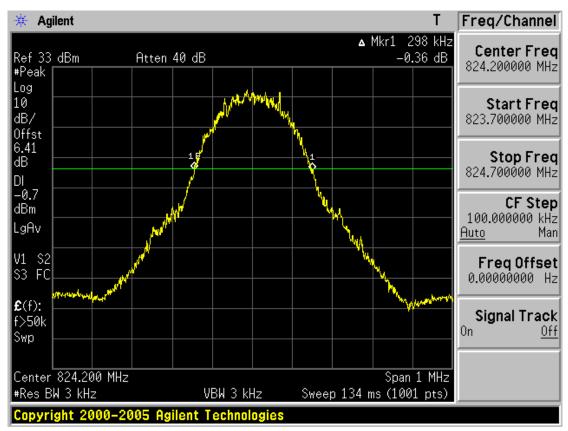
99 % Bandwidth Ch. 661

99 % Bandwidth Ch. 810

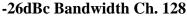
3.4 Occupied Bandwidth Emission Limit

FCC ID	:	PH7TG130F
Specification	:	47 CFR 24.238(b)
Tested Frequency	:	824.2MHz, 836.6MHz and 848.8MHz for GSM850 1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900

Measurement Procedure:

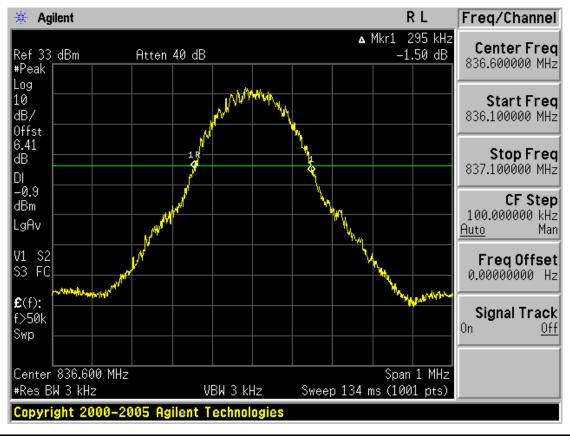

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43+10log(P) dB.
 - (b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1^{MHz} or greater. However, in the 1^{MHz} bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26dB below the transmitter power.
 - (c) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
 - The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.
 - Spectrum analyzer plots are included on the following pages.

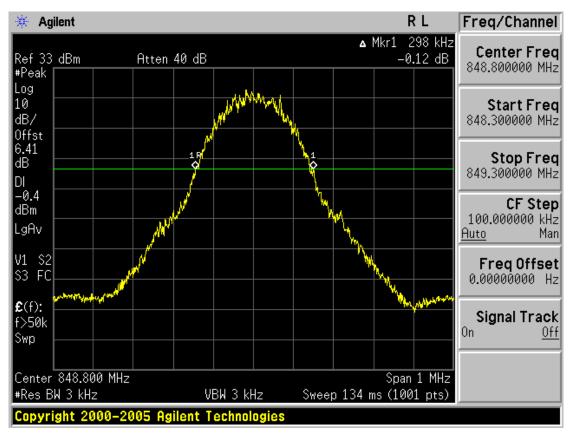
Measurement Data:


Channel	Frequency (MHz)	-26dBc Bandwidth
		(kHz)
128	824.2	298
190	836.6	295
251	848.8	298

PCS1900

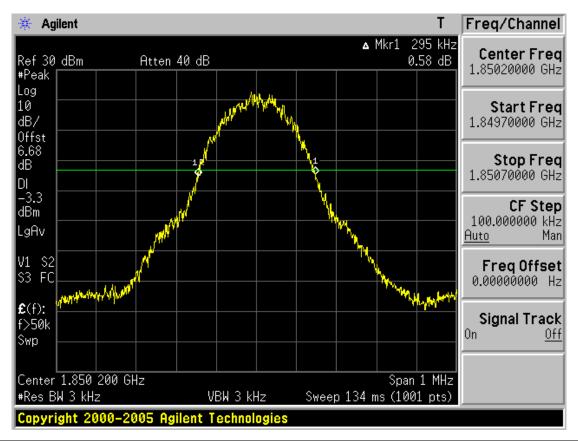
Charrent	Frequency	-26dBc Bandwidth		
Channel	(MHz)	(kHz)		
512	1850.2	295		
661	1880.0	291		
810	1909.8	295		

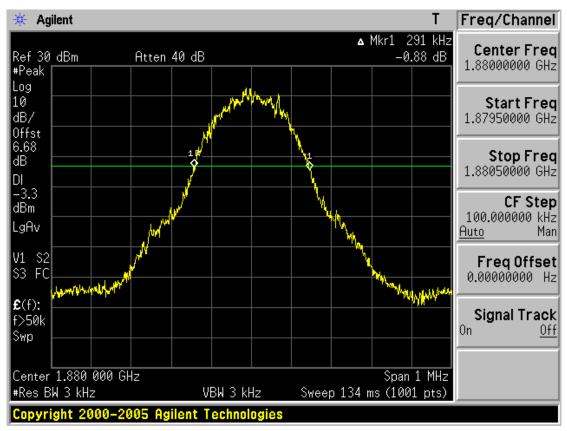



GSM850

GSM850

-26dBc Bandwidth Ch. 190

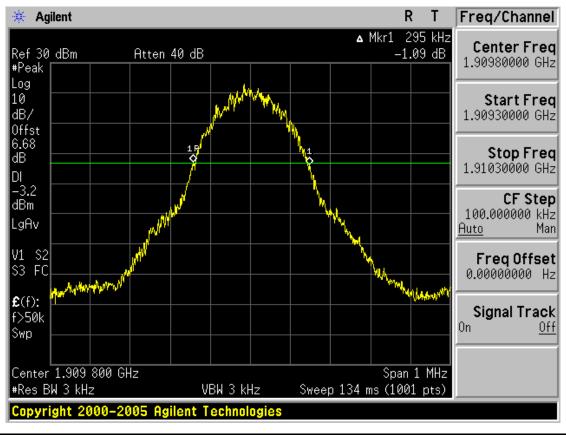


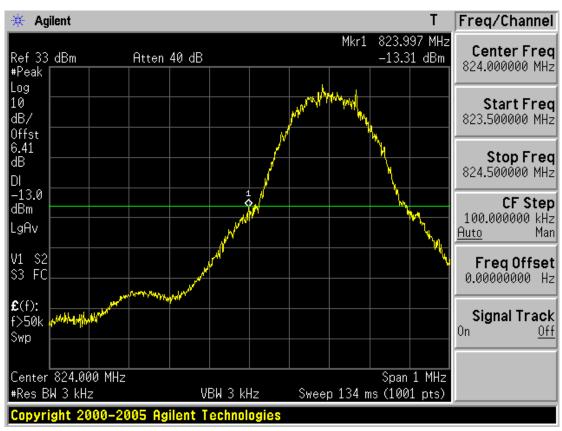

-26dBc Bandwidth Ch. 251

GSM850

PCS1900

-26dBc Bandwidth Ch. 512

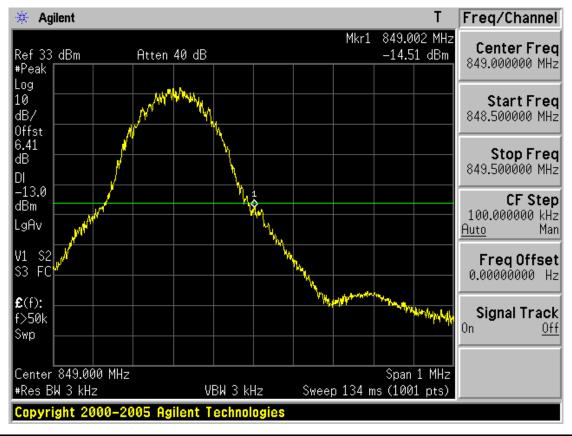


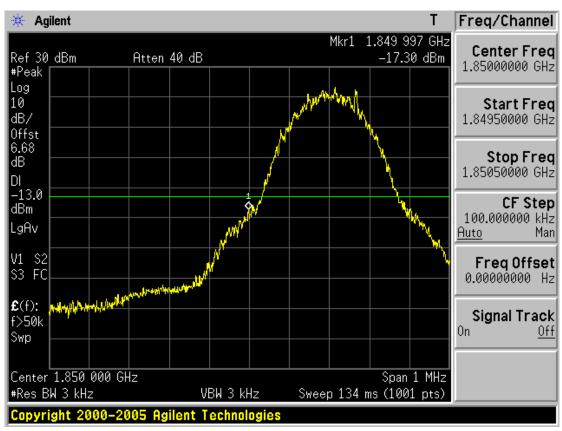


-26dBc Bandwidth Ch. 661

PCS1900

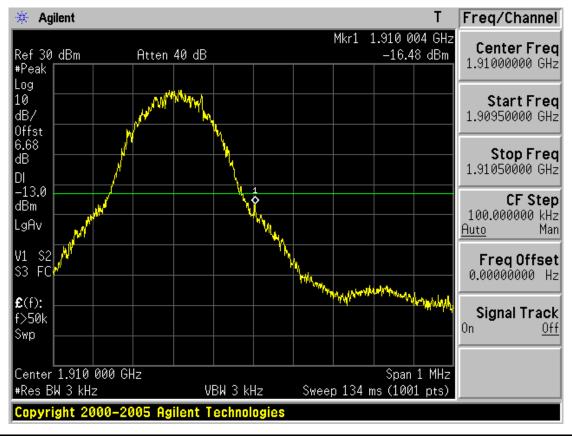
-26dBc Bandwidth Ch. 810




GSM850

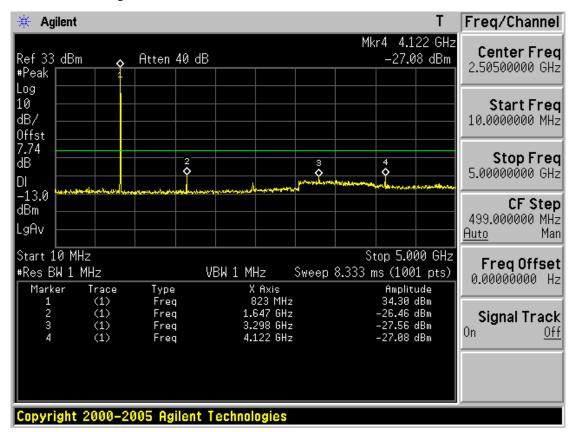
GSM850

Band Edge Ch. 251



PCS1900

Band Edge Ch. 810

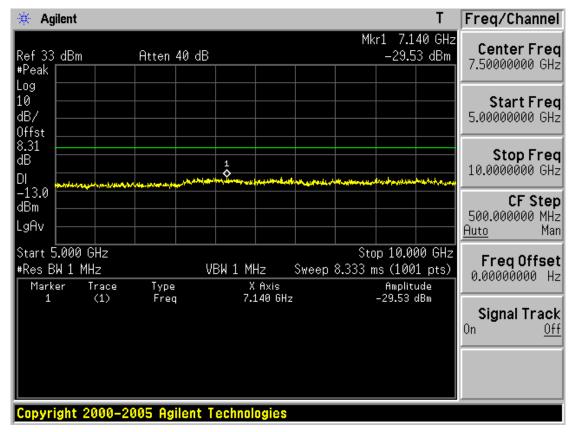


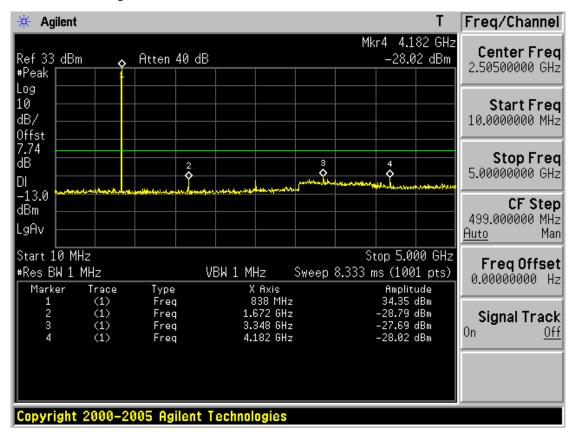
3.5 Spurious and Harmonic Emissions at Antenna Terminal

FCC ID	:	PH7TG130F
Specification	:	47 CFR 2.1051, 24.238(a)
Tested Frequency	:	824.2MHz, 836.6MHz and 848.8MHz for GSM850
rested requency		1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900

Measurement Procedure:

- The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.
- The spectrum is scanned from the lowest frequency generated in the equipment up to 10'th harmonics of the highest frequency.
- Spectrum analyzer plots are included on the following pages.

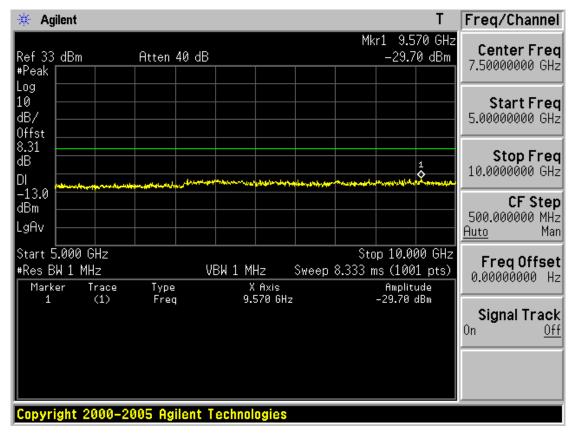


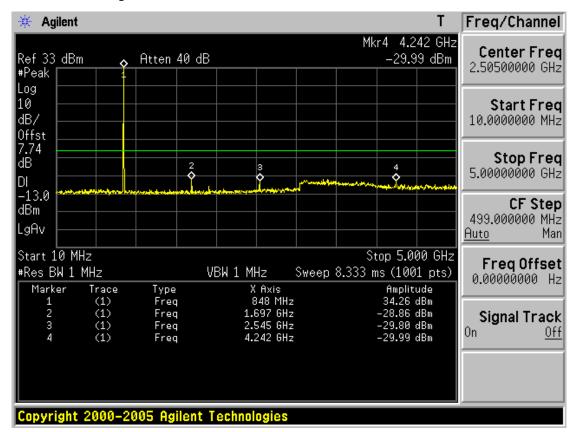

Spurious Emissions at Antenna Terminal / Ch.128 -1

GSM850

GSM850

Spurious Emissions at Antenna Terminal / Ch.128 -2

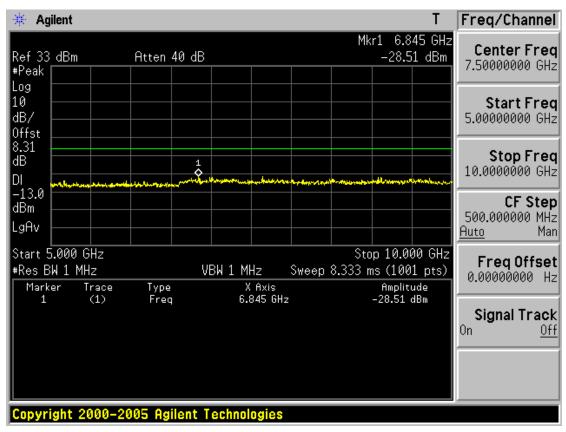


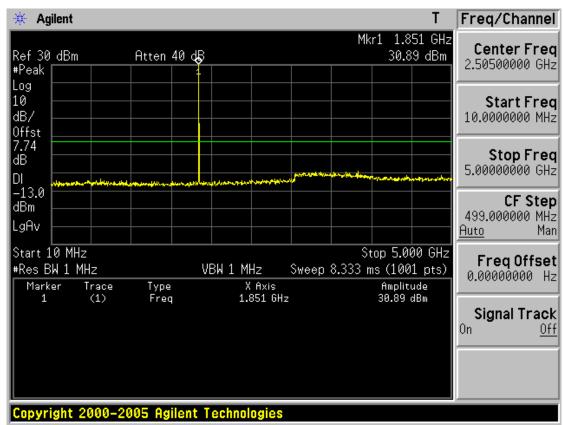

Spurious Emissions at Antenna Terminal / Ch.190 -1

GSM850

GSM850

Spurious Emissions at Antenna Terminal / Ch.190 -2

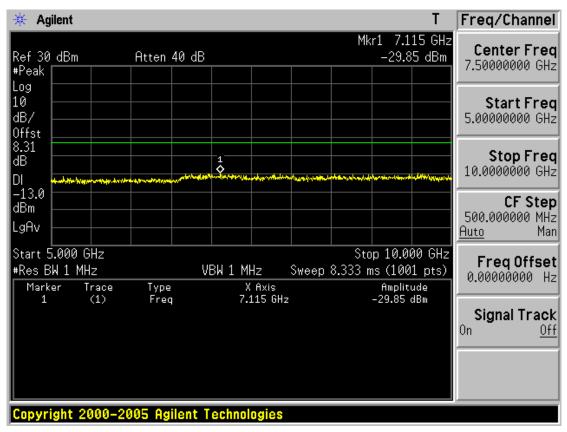


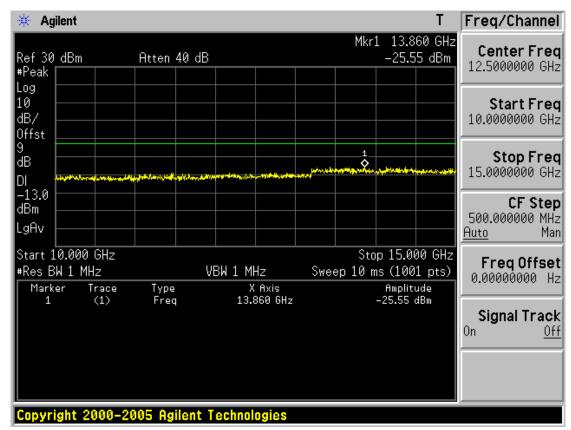

Spurious Emissions at Antenna Terminal / Ch.251 -1

GSM850

GSM850

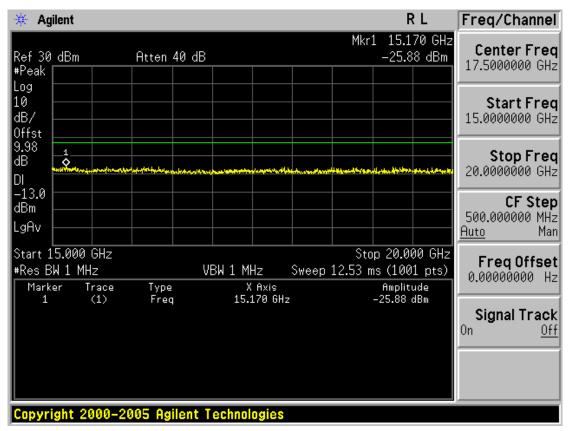
Spurious Emissions at Antenna Terminal / Ch.251-2

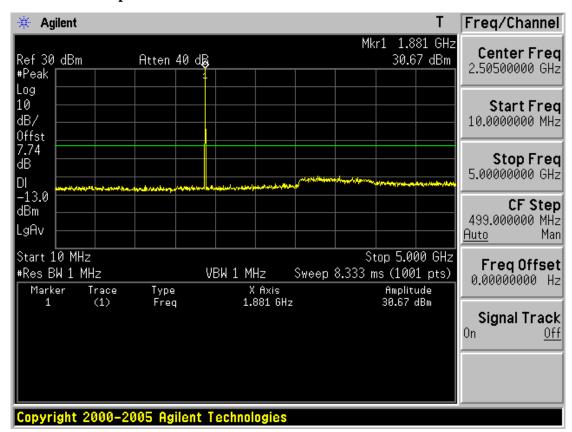



PCS1900 Spurious E

PCS1900

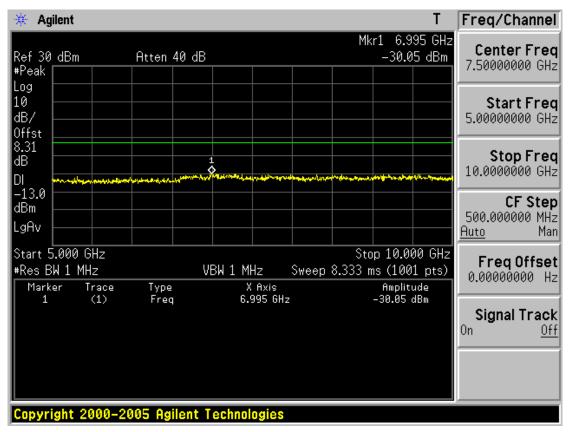
Spurious Emissions at Antenna Terminal / Ch.512 -2

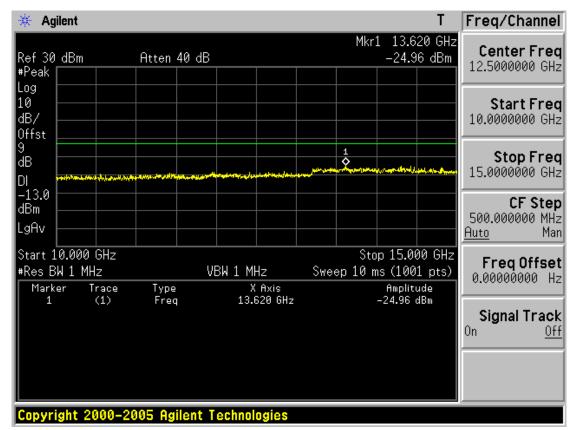




Spurious Emissions at Antenna Terminal / Ch.512 -3

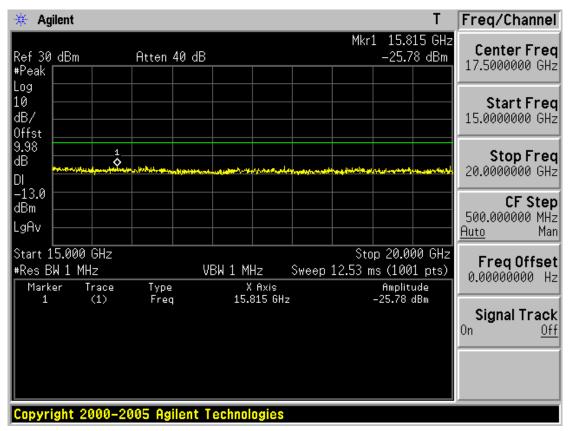
PCS1900

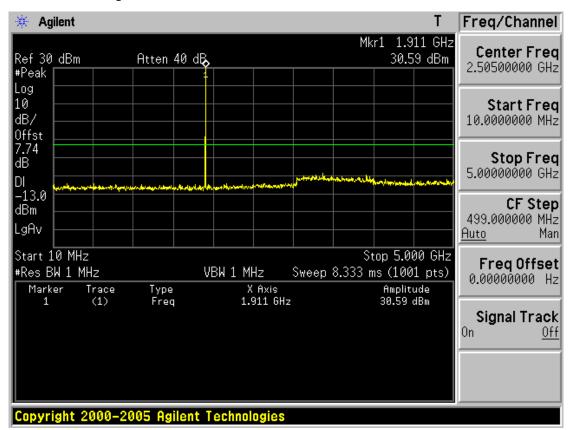

Spurious Emissions at Antenna Terminal / Ch.512 -4



PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -1

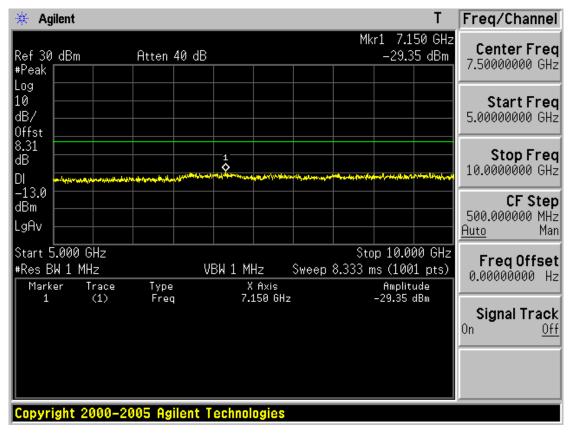
Spurious Emissions at Antenna Terminal / Ch.661 -2

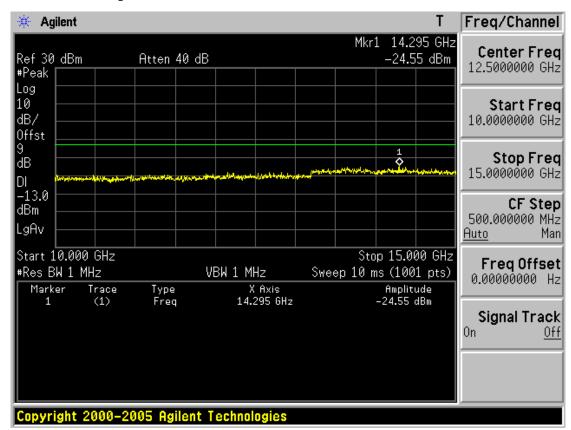




PCS1900

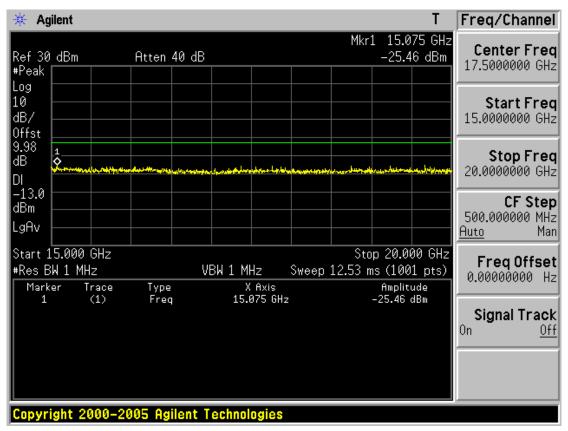
Spurious Emissions at Antenna Terminal / Ch.661 -4





Spurious Emissions at Antenna Terminal / Ch.810 -1

Spurious Emissions at Antenna Terminal / Ch.810 -2



PCS1900

Spurious Emissions at Antenna Terminal / Ch.810 -3

Spurious Emissions at Antenna Terminal / Ch.810 -4

3.6 Field Strength of Spurious Radiation

FCC ID	:	PH7TG130F
Specification	:	47 CFR 2.1053(a)
Tested Frequency	:	824.2MHz, 836.6MHz and 848.8MHz for GSM850 1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900

Measurement Procedure:

- Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

GSM850 Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY	:	824.2	MHz	
CHANNEL	:	128(Low)		
MEASURED OUTPUT POWER	:	<u>35.82</u> dBm =	<u>3.819</u> W	
MODULATION SIGNAL	:	GSM (Internal)		
DISTANCE	:	<u> </u>		
LIMIT	:	$43 + 10 \log_{10} (W) =$	48.82	_dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1648.4	-40.45	5.91	-34.54	V	70.36
1648.4	-43.44	5.91	-37.53	Н	73.35
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

GSM850 Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY	:	836.6	MHz	
CHANNEL	:	190(Mid)		
MEASURED OUTPUT POWER	:	<u>33.82</u> dBm =	<u>2.410</u> W	
MODULATION SIGNAL	:	GSM (Internal)		
DISTANCE	:	<u>3</u> meters		
LIMIT	:	$43 + 10 \log_{10} (W) =$	46.82	_dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1673.2	-47.38	6.01	-41.37	V	75.19
1673.2	-47.05	6.01	-41.04	Н	74.86
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

GSM850 Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY	:	848.8	MHz	
CHANNEL	:	251(High)		
MEASURED OUTPUT POWER	:	<u>33.13</u> dBm =	<u>2.056</u> W	
MODULATION SIGNAL	:	GSM (Internal)		
DISTANCE	:	<u> </u>		
LIMIT	:	$43 + 10 \log_{10} (W) =$	46.13	dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1697.6	-42.20	6.11	-36.09	V	69.22
1697.6	-50.06	6.11	-43.95	Н	77.08
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

GSM1900 Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY	:	1850.2	MHz	
CHANNEL	:	512(Low)		
MEASURED OUTPUT POWER	:	<u>28.30</u> dBm =	<u>0.676</u> W	
MODULATION SIGNAL	:	GSM (Internal)		
DISTANCE	:	<u>3</u> meters		
LIMIT	:	$43 + 10 \log_{10} (W) =$	41.30	_dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3700.40	-42.78	9.56	-33.22	V	61.52
3700.40	-43.69	9.56	-34.13	Н	62.43
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

GSM1900 Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY	:	1880.0	MHz	
CHANNEL	:	661(Mid)		
MEASURED OUTPUT POWER	:	<u>29.07</u> dBm =	<u>0.807</u> W	
MODULATION SIGNAL	:	GSM (Internal)		
DISTANCE	:	<u> </u>		
LIMIT	:	$43 + 10 \log_{10} (W) =$	42.07	_dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3760.00	-43.47	9.55	-33.92	V	-62.99
3760.00	-44.32	9.55	-34.77	Н	-63.84
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

GSM1900 Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY	:	1909.8	MHz	
CHANNEL	:	810(High)		
MEASURED OUTPUT POWER	:	<u>30.13</u> dBm =	<u>1.030</u> W	
MODULATION SIGNAL	:	GSM (Internal)		
DISTANCE	:	<u>3</u> meters		
LIMIT	:	$43 + 10 \log_{10} (W) =$	43.13	_dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3819.60	-43.18	9.55	-33.63	V	63.76
3819.60	-44.10	9.55	-34.55	Н	64.68
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

3.7 Frequency Stability/Temperature Variation.

FCC ID	: PH7TG130F	
Specification	: 47 CFR 2.1055	
Tested Frequency	: 836.6MHz for GSM850 1880.0MHz for PCS190	-

Measurement Procedure:

The frequency stability of the transmitter is measured by:

- a) **Temperature** : The temperature is varied from -30° C to $+50^{\circ}$ C using an environmental chamber.
- b) **Primary Supply Voltage** :The primary supply voltage is varied from 85% to 115% of the voltage Normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – The minimum frequency stability shall be +/- 0.00025% at any time during normal operation.

Specification — The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25°C to 27 °C to provide a reference)
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C(usually 14-16 hours),the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency to the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements is made at 10°C interval up to room temperature. At least a period of one and one half hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency were made at 10intervals starting at -30°C up to +50°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

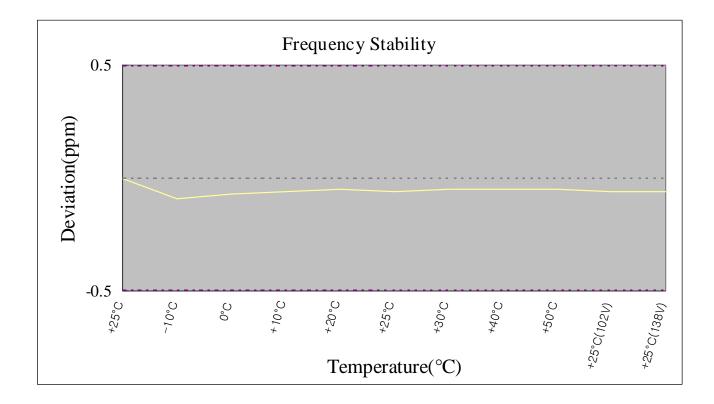
Frequency Stability (GSM850)

 OPERATING FREQUENCY
 :
 836,600,023
 Hz

 CHANNEL
 :
 190(Mid)

 REFERENCE VOLTAGE
 :
 120
 V AC


 DEVIATION LIMIT
 :
 ± 0.00025
 % or
 2.5
 ppm


VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	120	+25(Ref)	836,600,023	0.000000
100%		-30	-	-
100%		-20	-	-
100%		-10	836,599,951	-0.000009
100%		0	836,599,966	-0.000007
100%		+10	836,599,973	-0.000006
100%		+20	836,599,978	-0.000005
100%		+25	836,599,975	-0.000006
100%		+30	836,599,983	-0.000005
100%		+40	836,599,979	-0.000005
100%		+50	836,599,978	-0.000005
85%	102	+25	836,599,973	-0.000006
115%	138	+25	836,599,969	-0.000006
BATT.ENDPOINT	-	+25	-	-

Note : Since this device is a fixed device and indoor use device. So the frequency stability is tested by -10 $^{\circ}$ C

Frequency Stability (GSM850)

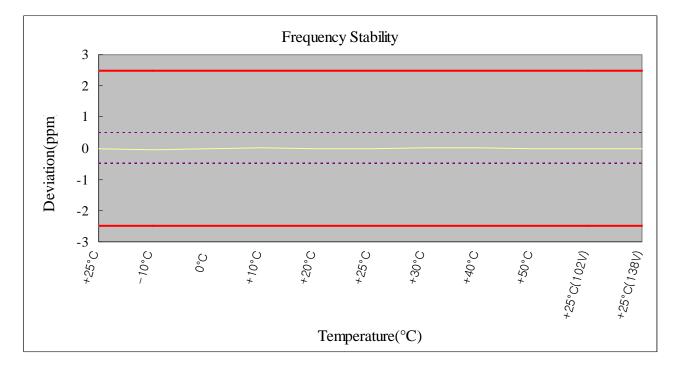
(Continued...)

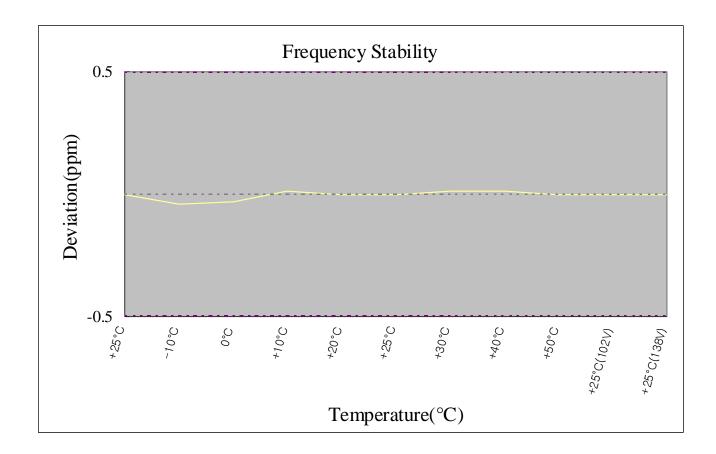
Frequency Stability (PCS1900)

OPERATING FREQUENCY : <u>1,879,999,953</u> Hz

CHANNEL : _____0661(Mid)

REFERENCE VOLTAGE : <u>120</u> V AC


DEVIATION LIMIT : <u>± 0.00025</u> % or <u>2.5</u> ppm


VOLTAGE	POWER	ТЕМР	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	120	+25(Ref) 1,879,999,953		0.000000
100%		-30	-	-
100%		-20	-	-
100%		-10	1,879,999,887	-0.000004
100%		0	1,879,999,889	-0.000003
100%		+10	1,879,999,965	0.000001
100%		+20	1,879,999,953	0.000000
100%		+25	1,879,999,949	0.000000
100%		+30	1,879,999,967	0.000001
100%		+40	1,879,999,968	0.000001
100%		+50	1,879,999,945	0.000000
85%	102	+25	1,879,999,950	0.000000
115%	138	+25	1,879,999,952	0.000000
BATT.ENDPOINT	-	+25	-	-

Note : Since this device is a fixed device and indoor use device. So the frequency stability is tested by -10°C

Frequency Stability (PCS1900)

(continued...)

4. TEST EQUIPMENT

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
01	Spectrum Analyzer	Agilent	E4404B	21/03/08	21/03/09	US41061134
02	Spectrum Analyzer	Agilent	E4440A	06/11/08	06/11/09	MY45304199
03	Spectrum Analyzer	H.P	8563E	13/10/08	13/10/09	3551A04634
04	Spectrum Analyzer	H.P	8591E	26/04/08	26/04/09	3649A05889
05	Spectrum Analyzer	Rohde Schwarz	FSP	09/09/08	09/09/09	100385
06	EMI TEST RECEIVER	R&S	ESU	11/01/08	11/01/09	100014
07	EMI TEST RECEIVER	R&S	ESCI	13/05/08	13/05/09	100364
08	Power Meter	H.P	EMP-442A	10/07/08	10/07/09	GB37170413
09	Power Sensor	H.P	8481A	11/03/08	11/03/09	3318A96566
10	Power Divider	Agilent	11636B	17/12/07	17/12/08	56471
11	Frequency Counter	H.P	5342A	16/09/08	16/09/09	2119A04450
12	Signal Generator	Rohde Schwarz	SMR20	02/04/08	02/04/09	101251
13	Signal Generator	H.P	ESG-3000A	09/07/08	09/07/09	US37230529
14	Vector Signal Generator	Rohde Schwarz	SMJ100A	17/01/08	17/01/09	100148
15	Audio Analyzer	H.P	8903B	09/07/08	09/07/09	3011A09448
16	Modulation Analyzer	H.P	8901B	18/07/08	18/07/09	3028A03029
17	Oscilloscope	Tektronix	TDS3052	07/10/08	07/10/09	B016821
18	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	31/07/08	31/07/09	GB43461134
19	Universal Radio communication Tester	Rohde Schwarz	CMU 200	02/04/08	02/04/09	107631
20	Bluetooth Tester	TESCOM	TC-3000A	01/08/08	01/08/09	3000A4A0121
21	Power Splitter	Anritsu	K241B	14/10/08	14/10/09	020611
22	BAND Reject Filter	Microwave Circuits	N0308372	06/10/08	06/10/09	3125-01DC0352
23	BAND Reject Filter	Wainwright	WRCG1750	06/10/08	06/10/09	2
24	AC Power supply	DAEKWANG	5KVA	20/03/08	20/03/09	20060321-1
25	DC Power Supply	H.P	6622A	20/03/08	20/03/09	3448A03760
26	DC Power Supply	HP	6633A	20/03/08	20/03/09	3524A06634
27	HORN ANT	ETS	3115	13/06/08	13/06/09	6419
28	HORN ANT	ETS	3115	10/09/08	10/09/09	21097
29	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	154
30	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	155
31	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2116

4. TEST EQUIPMENT

(CONTINUED)

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
32	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2117
33	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2261
34	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2262
35	TEMP & HUMIDITY Chamber	JISCO	J-RHC2	10/10/08	10/10/09	021031
36	Log Periodic Antenna	Schwarzbeck	UHALP9108A1	30/09/08	30/09/09	1098
37	Biconical Antenna	Schwarzbeck	VHA9103	13/06/08	13/06/09	2233
38	Digital Multimeter	H.P	34401A	20/03/08	20/03/09	3146A13475,US36122178
39	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/08	01/10/09	BP4386
40	Attenuator (10dB)	WEINSCHEL	23-10-34	30/01/08	30/01/09	BP4387
41	High-Pass Filter	ANRITSU	MP526D	06/10/08	06/10/09	MP27756
42	Attenuator (3dB)	Agilent	8491B	01/08/08	01/08/09	MY39260700
43	Attenuator (20dB)	Aeroflex/Weinschel	86-20-11	06/10/08	06/10/09	432
44	Attenuator (10dB)	Aeroflex/Weinschel	86-10-11	06/10/08	06/10/09	446
45	Attenuator (10dB)	Aeroflex/Weinschel	86-10-11	06/10/08	06/10/09	408
46	Attenuator(40dB)	WEINSCHEL	57-40-33	01/10/08	01/10/09	NN837
47	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	11/07/08	11/07/09	788
48	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	11/07/08	11/07/09	790
49	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	11/07/08	11/07/09	112
50	Amplifier (25dB)	Agilent	8447D	21/05/08	21/05/09	2944A10144
51	Amplifier (30dB)	Agilent	8449B	13/10/08	13/10/09	3008A01590
52	Amplifier (22dB)	H.P	8447E	27/02/08	27/02/09	2945A02865
53	Position Controller	TOKIN	5901T	N/A	N/A	14173
54	Driver	TOKIN	5902T2	N/A	N/A	14174
55	LISN	Kyorits	KNW-407	04/08/08	04/08/09	8-317-8
56	LISN	Kyorits	KNW-242	13/10/08	13/10/09	8-654-15
57	CVCF	NF Electronic	4420	21/03/08	21/03/09	304935/337980
58	Software	ToYo EMI	EP5/RE	N/A	N/A	Ver 2.0.800
59	Software	ToYo EMI	EP5/CE	N/A	N/A	Ver 2.0.801
60	Software	AUDIX	e3	N/A	N/A	Ver 3.0
61	Software	Agilent	Benchlink	N/A	N/A	A.01.09 021211
62	RFI/FIELD Intensity Meter	Kyorits	KNW-2402	11/09/08	11/09/09	4N-170-3

5. EMISSION DESIGNATOR

GSM850

Emission Designator = 235KGXW GSM BW = 234.7010 KHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

PCS1900

- Emission Designator = 234KGXW
- GSM BW = 233.7321 KHz
- G = Phase Modulation
- X = Cases not otherwise covered
- W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

6. CONCLUSION

The data collected shows that the **Axesstel Inc** GSM GPRS QUAD BAND FWT with ANALOG & DIGITAL G3 FAX (**FCC ID: PH7TG130F**) complies with all the requirements of Parts 2, 22 and 24 of the FCC rules.