

SPECIFIC ABSORPTION RATE (SAR)

TEST REPORT

of

Fixed Wireless Phone on CDMA 1900MHz

Model Name:

PX330N

Brand Name:

Axesstel Inc

Report No.:

SH10060012S01

FCC ID:

PH7PX130N

prepared for

Axesstel Inc

6815 Flanders Drive, #210, San Diego, CA 92121, USA

Certification

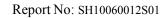
prepared by

Shenzhen Electronic Product Quality Testing Center Morlab Laboratory

3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China

Tel: +86 755 86130398 Fax: +86 755 86130218

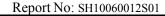
NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant, it shall not be reproduced except in full, without the written approval of Shenzhen Electronic Product Quality Testing Center Morlab Laboratory. Any objections should be raised to us within thirty workdays since the date of issue.



	GENERA	L SUMMARY				
Product Name	Model PX330N					
Brand Name	Axesstel Inc	Carrier	Oliver Liu			
Quantity of EUT	One	Manufacturer	Asiatelco Technologies Co			
Standard(s)	ANSI C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz. OET 65(Edition 97-01), Supplement C (Edition 01-01): Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. IEEE 1528-2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques. FCC Tracking Number: 478906 Localized Specific Absorption Rate (SAR) of this portable wireless equipment has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this test report. Maximum localized SAR is below exposure limits specified in the relevant standards					
	cited in Clause 5.1 of this test report General Judgment: Pass		of issue: Dec . 21 . 2010			
Comment		08.75MHz (CDMA1900M 88.75MHz (CDMA1900M measured sample.				
Tested Checked	u by.	Certificabate: 30	6.12.30 6.12.30 10.12.30 Page 2 of 4			

TABLE OF CONTENT

1 GF	ENERAL CONDITIONS	4
2 AI	OMINISTRATIVE DATE	5
2.1	IDENTIFICATION OF THE RESPONSIBLE TESTING LABORATORY	5
2.2	IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION(S)	
2.3	Organization Item	
2.4	IDENTIFICATION OF APPLICANT	5
3 EQ	QUIPMENT UNDER TEST (EUT)	6
4 OF	PERATIONAL CONDITIONS DURING TEST	7
4.1	SCHEMATIC TEST CONFIGURATION	7
4.2	SAR MEASUREMENT SYSTEM	7
4.2	2.1 Robot system specification	8
4.2	2.2 Probe Specification	8
ISOTE	ROPIC E-FIELD PROBE SPECIFICATION.	10
Boun	NDARY DETECTION UNIT AND PROBE MOUNTING DEVICE	10
DAQ-	PAQ (ANALOG TO DIGITAL ELECTRONICS)	11
4.2	2.3 Phantoms, Device Holder and Simulant Liquid	12
	AS Universal Workstation	
Univ	ERSAL DEVICE POSITIONER	
4.2	r ·	
4.2		
	DATION DIPOLES	
	lidation Result	
4.2		
4.2	2.7 Description of Interpolation/Extrapolation Scheme	16
5 CH	HARACTERISTICS OF THE TEST	17
5.1	1.1 Applicable Limit Regulations	17
5.1	1.2 Applicable Measurement Standards	17
6 LA	ABORATORY ENVIRONMENT	17
7 TE	EST RESULTS	18
7.1	Explain	18
7.2	DIELECTRIC PERFORMANCE	18
7.3	SUMMARY OF MEASUREMENT RESULTS (CDMA1900)	18
7.4	Conclusion	19
8 MI	EASUREMENT UNCERTAINTIES	20
9 M	AIN TEST INSTRUMENTS	22
ANNEX	X A- ACCREDITATION CERTIFICATE	23


ANNEX B- TEST LAYOUT	25
ANNEX C- SAMPLE PHOTOGRAPHS	31
ANNEX D- GRAPH TEST RESULTS	32

1 GENERAL CONDITIONS

This report only refers to the item that has undergone the test. This report standalone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities.

This document is only valid if complete; no partial reproduction can be made without written approval of Shenzhen Morlab Communications Technology Co., Ltd.

This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of Shenzhen Morlab Communications Technology Co., Ltd. and the Accreditation Bodies, if it applies.

2 Administrative Date

2.1 Identification of the Responsible Testing Laboratory

Company Name: Shenzhen Morlab Communications Technology Co.,Ltd.

Department: Testing Department

Address: 3Fl, Electronic Testing Building, ShaHe Road, NanShan District,

Shenzhen, P. R. China

Telephone: +86 755 86130268 **Fax:** +86 755 86130218

Responsible Test Lab

Managers:

2.2 Identification of the Responsible Testing Location(s)

Company Name: Shenzhen Electronic Product Quality Testing Center Morlab

Laboratory

Mr. Shu Luan

Address: 3Fl, Electronic Testing Building, ShaHe Road, NanShan District,

Shenzhen, P. R. China

2.3 Organization Item

Morlab Report No.: SH10060012S01
Morlab Project Leader: Mr. Zhang Jun

Morlab Responsible for

Accreditation scope:

Mrs. Wei Bei

Start of Testing: 2010-12-21 **End of Testing:** 2010-12-21

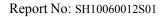
2.4 Identification of Applicant

Company Name: Axesstel Inc

Address: 6815 Flanders Drive, #210, San Diego, CA 92121, USA

Contact person: Oliver Liu

Telephone: +86-21-51688806 **Fax:** +86-21-33932400


2.5.Identification of Manufacture

Company Name: Asiatelco Technologies Co.

Address: #289 Bisheng Rd, Bld-8, 3F, Zhangjiang Hi-Tech Park, Pudong,

Shanghai, China

Notes: This data is based on the information offered by the applicant.

3 Equipment Under Test (EUT)

3.1.Identification of the Equipment under Test

Product Name: Fixed Wireless Phone on CDMA 1900MHz

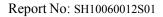
Brand name: Axesstel Inc

Model No: PX330N

General description: Test frequency CDMA 1900 MHz,

Accessories Charger, Battery
Battery Model ABL-1200A
Battery specification 3.6V 1200mAh

Battery Manufacture Zetong Electron Science & Technique Co., Ltd


Antenna type CDMA1900 Modulation mode CDMA 1x

3.2.Identification of all used Test Sample of the Equipment under Test

EUT Code	Serial Number	Hardware Version	Software Version	IMEI
#1	N/A	P2	PX330SE_P2.1C.US_44_6_1T	N/A

NOTE:

- 1. The EUT consists of Hand Telephone Set and normal options: Charger, Lithium Battery as listed above.
- 2. Please refer to Appendix C for the photographs of the EUT. For a more detailed features description of the EUT, please refer to its User's Manual.

4 OPERATIONAL CONDITIONS DURING TEST

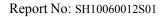
4.1 Schematic Test Configuration

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The TCH is allocated to 25, 600 and 1175 respectively in the case of CDMA 1900 MHz. The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point shall be lower than the output

power level of the handset by at least 35 dB.


4.2 SAR Measurement System

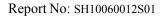
ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller.ALSAS-10U uses the latest methodologies and FDTD order to provide a platform which is repeatable with minimum uncertainty.

Applications Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are

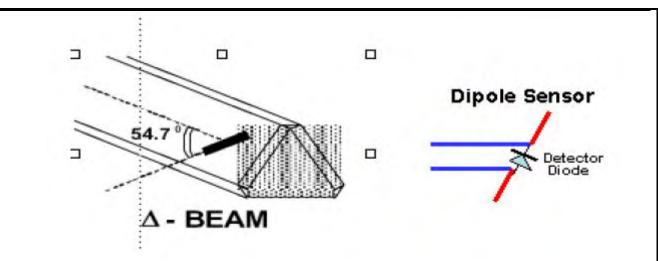
embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently is available up to 6 GHz in simulated tissue.

4.2.1 Robot system specification

ALSAS-10U utilizes a six articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelop. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

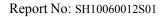

Robot/Controller Manufacturer	Thermo CRS	
Number of Axis	Six independently controlled axis	
Positioning Repeatability	0.05mm	
Controller Type	Single phase Pentium based C500C	
Robot Reach	710mm	
Communication	RS232 and LAN compatible	

4.2.2 Probe Specification


The isotropic E-Field probe has been fully calibrated and assessed for isotropic, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change. A number of methods is used for calibrating probes, and these are outlined in the table below:

Calibration Frequency	Air Calibration	Tissue Calibration	
850MHZ	TEM Cell	Temperature	
1900MHZ	TEM Cell	Temperature	

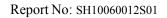
The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:



SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$



Isotropic E-Field Probe Specification

Frequency Dependent	
Below 2GHz Calibration in air performed in a TEM Cell	
Above 2GHz Calibration in air performed in waveguide	
0.70 μ V/(V/m) 2 to 0.85 μ V/(V/m) 2	
0.0005 W/kg to 100W/kg	
Better than 0.2dB	
Calibration for Specific Frequency	
< 5mm	
1.56 (+/- 0.02mm)	
290mm	
@ 500 Hz: 1dB	
@1.02 KHz: 3dB	
Less than 2% for distance greater than 2.4mm	
Diameter less than 5mm Compliant with Standards	

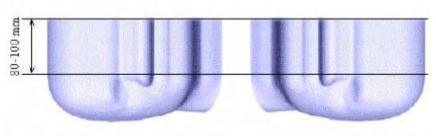
Boundary detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detecting during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, &Z). The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connected to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

Daq-Paq (Analog to Digital Electronics)

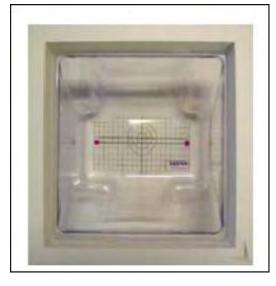
ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from 5µ V to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via a RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit	
Amplifier Range	20m∨ to 200m∨ and 150m∨ to 800m∨	
Field Integration	Local Co-Processor utilizing proprietary integration	
	algorithms	
Number of Input Channels	4 in total 3 dedicated and 1 spare	
Communication	Packet data via RS232	



4.2.3 Phantoms, Device Holder and Simulant Liquid

4.2.3.1 Sam Phantom


The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

APREL Laboratories Universal Phantom
The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software. The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the

conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

Device and Dipole Holder

ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurement using different types of phantoms with one set up, which significantly speeds up the measurement process.

Universal Device Positioner

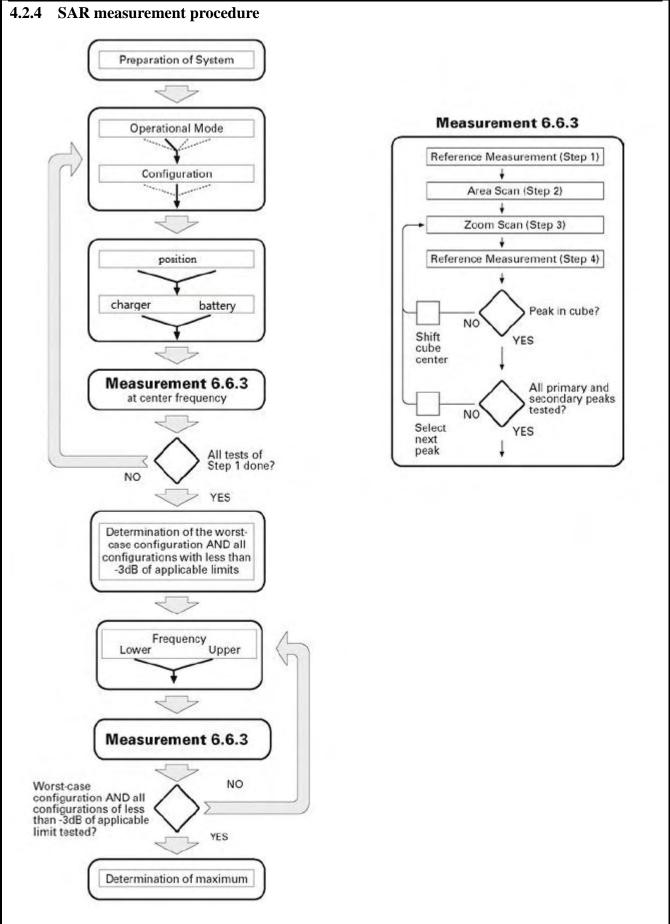
The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt movements for head SAR analysis. Overall uncertainty for measurements has been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.

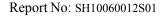
4.2.3.2 Tissue Simulating Liquids

There is no simulating liquids that can cover all frequency bands. Therefore, our system is using different liquids for the measured band as explained bellows.

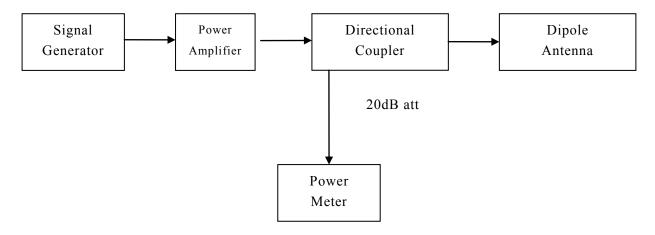
The parameters of the simulating solution strongly influence the SAR values. The different normalization organizations have defined adapted solutions for the each mobile system.

GSM liquid: is made of Sugar, de-ionized water and NaCl, reconstituting the electric properties of human tissues at 850MHz.


PCS Liquid: is made of de-ionized water, Glycol monobutyl and NaCl, reconstituting the electric properties of human tissues at 1900MHz.

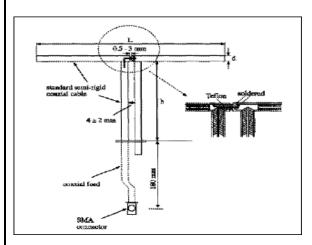

Several measurement systems are available for measuring the dielectric parameters.

Antennessa has developed its own software, based on a coaxial probe. This method allows measurement of liquid permittivity between 300 MHz and 6GHz.



After an area scan has been done at a fixed distance of 8mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEE P1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behavior are tested.


4.2.5 Validation Test Using Flat Phantom

The following procedure, recommended for performing validation tests using flat phantom is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below:

4.2.5.1 Setting up the Box Phantom for Validation Testing

Validation Dipoles

The dipoles used are based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. The table below provides details for the mechanical and electrical specifications for the dipoles.

Report No: SH10060012S01

Frequency	L(mm)	h(mm)	d(mm)
850MHZ	160	89.8	3.6
1900MHZ	73	39.5	3.6

Validation Result

validation Result					
System Performance Check at 1900MHz					
Validation Kit: AS	SL-D-1900-S-2				
Frequency(MHz)	Description	SAR(W/Kg) 1g	SAR(W/Kg) 10g	Tissue Temp.(°C)	
	Reference result	39.7	20.5	N/A	
1900MHz	+/-5%window	37.715 to 41.685	19.475 to 21.525	IN/A	
	21-Dec 10	38.79	20.08	21.0	

Note: All SAR values are normalized to 1W forward power.

4.2.6 Measurement Procedure

The following steps are used for each test position

Establish a call with the maximum output power with a base station simulator. The connection between the mobile phone and the base station simulator is established via air interface.

Measurement of the local E-field distribution is done with a grid of 8 to 16mm*8 to 16mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolating scheme.

Around this point, a cube of 30*30*30mm or 32*32*32mm is assessed by measuring 5 or 8*5 or 8*4 or 5mm. With these data, the peak spatial-average SAR value can be calculated.

4.2.7 Description of Interpolation/Extrapolation Scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

Report No: SH10060012S01

An extrapolation is using to determinate this highest local SAR values. The extrapolation is base on a fourth-order least square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8mm. to obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1gram requires a very fine resolution in the three-dimensional scanned data array.

5 CHARACTERISTICS OF THE TEST

5.1.1 Applicable Limit Regulations

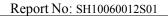
ANSI C95.1-1999: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.1.2 Applicable Measurement Standards

IEEE 1528-2003: Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

OET 65(Edition 97-01), Supplement C (Edition 01-01): Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields.


It specifies the measurement method for demonstration of compliance with the SAR limits for such equipments.

6 LABORATORY ENVIRONMENT

Table: The Ambient Conditions during SAR Test

Temperature	Min. =15°C, Max. =30°C		
Relative humidity	Min. =30%, Max. =70%		
Ground system resistance	<0.5Ω		
Ambient noise is checked and found very low and in compliance with requirement of standards.			

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

7 TEST RESULTS

7.1 Explain

The EUT has been tested under the operating conditions.

7.2 Dielectric Performance

For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement phone was put on in the belt holder.

Table: Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 23.0~23.8 °C. humidity: 54~60%.

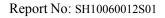
1 cmperature. 25.0~25.0 °C, numunty. 54~00 %.					
/	Frequency	Permittivity ε	Conductivity σ (S/m)		
Target value	1900 MHz	53.3	1.52		
Validation value	1900 MHz	52.84	1.54		
(Dec 21)					

7.3 Summary of Measurement Results (CDMA1900)

Conducted Power(dBm)

Test Model	Test Status	Channel	Frequency(M Hz)	Conducted Power(dBm)
		25 (Low)	1851.25	23.75
	RC1+SO55	600 (Mid)	1880.00	23.59
		1175 (High)	1908.75	22.89
CD144 2000	RC3+SO32	25 (Low)	1851.25	23.60
CDMA 2000 1xRTT		600 (Mid)	1880.00	23.45
IXKII		1175 (High)	1908.75	22.73
		25 (Low)	1851.25	23.62
	FCH+SCH_RC3	600 (Mid)	1880.00	23.48
		1175 (High)	1908.75	22.70

According to KDB 941225, the body SAR is measured in RC3 with SO32. Body SAR for RC1 is not required because the maximum power is less than 1/4 dB higher than RC3. SAR for FCH+SCH is not required when the maximum power is less than 1/4 dB higher than that measured with FCH only.



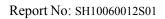
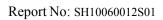


Table 1: SAR Values (CDMA 1900), Measured against the body.

Temperature: 20.0~21.0 ℃, Relative Humidity: 45~50%.			
Limit of CAD (W/Irg)	1 g Average 1.6		
Limit of SAR (W/kg)			
	Measurement Result (W/kg)		
Test Configuration	1 g	Power	
	Average(W/kg)	Drift(%)	
Back Side with antenna position 1 Middle Channel	0.049	3.446	
(with battery)	0.049	3.440	
Back Side with antenna position 2 Middle Channel	0.111	-4.671	
(with battery)	0.111	-4.071	
Back Side with antenna position 3 Middle Channel	0.232	4.117	
(with battery)	0.232	4.11/	
Back Side with antenna position 1 Middle Channel	0.080	-3.780	
(with adapter)	0.080	-3.780	
Back Side with antenna position 2 Middle Channel	0.198	1.841	
(with adapter)	0.196	1.041	
Back Side with antenna position 3 Low Channel	0.325	2.415	
(with adapter)	0.323	2.413	
Back Side with antenna position 3 Middle Channel	0.273	-0.748	
(with adapter)	0.273	-0.740	
Back Side with antenna position 3 High Channel	0.223	-4.374	
(with adapter)	0.223	-7.5/7	

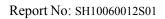
7.4 Conclusion

Peak Spatial-Average Specific Absorption Rate (SAR) of this portable wireless device has been measured in all configurations requested by the relevant standards cited in Clause 5.2 of this report. SAR values are below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.



8 Measurement Uncertainties

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.


UNCERTAINTY EVALUATION FOR HANDSET SAR TEST

l	UNCE	RTAINTY EVALU	JATION FO	JR HAND	SET SAR T	EST	
Source of	Tolerance	Probability	Diviso	ci1	ci1	Standard	Standard
Uncertainty	Value	Distribution	r	(1-g)	(10-g)	Uncertainty	Uncertain
						(1-g) %	ty (10-
							g) %
Measurem							
ent System							
-							
Probe	3.5	normal	1	1	1	3.5	3.5
Calibration							
Axial	3.7	rectangular	√3	(1-	(1-	1.5	1.5
Isotropy				cp)1/2	cp)1/2		
Hemispherica	10.9	rectangular	√3	√ cp	√ cp	4.4	4.4
1 Isotropy		_		_	_		
Boundary	1.0	rectangular	√3	1	1	0.6	0.6
Effect							
Linearity	4.7	rectangular	√3	1	1	2.7	2.7
Detection	1.0	rectangular	√3	1	1	0.6	0.6
Limit							
Readout	1.0	normal	1	1	1	1.0	1.0
Electronics							
Response	0.8	rectangular	√3	1	1	0.5	0.5
Time		_					
Integration	1.7	rectangular	√3	1	1	1.0	1.0
Time							
RF Ambient	3.0	rectangular	√3	1	1	1.7	1.7
Condition							
Probe	0.4	rectangular	√3	1	1	0.2	0.2
Positioner							
Mech.							
Restriction							
Probe	2.9	rectangular	√3	1	1	1.7	1.7
Positioning							
with respect							
to Phantom							
Shell							
Extrapolation	3.7	rectangular	√3	1	1	2.1	2.1
	•		•				

		_			ı		7
and							
Integration							
Test Sample	4.0	normal	1	1	1	4.0	4.0
Positioning							
Device	2.0	normal	1	1	1	2.0	2.0
Holder							
Uncertainty							
Drift of	0.6	rectangular	√3	1	1	0.3	0.3
Output							
Power							
Phantom and							
Setup							
Phantom	3.4	rectangular	√3	1	1	2.0	2.0
Uncertainty(s							
hape &							
thickness							
tolerance)							
Liquid	5.0	rectangular	√3	0.7	0.5	2.0	1.4
Conductivity(
target)							
Liquid	0.0	normal	1	0.7	0.5	0.0	0.0
Conductivity(
meas.)							
Liquid	5.0	rectangular	√3	0.6	0.5	1.7	1.4
Permittivity(t							
arget)							
Liquid	2.4	normal	1	0.6	0.5	1.4	1.2
Permittivity(
meas.)							
Combined		RSS				9.3	9.2
Uncertainty							
Combined		Normal(k=2)				18.7	18.3
Uncertainty							
(coverage							
factor=2)							
	J.	<u>-</u> L	,				

9 MAIN TEST INSTRUMENTS

Instrument	Manufacture	Model No.	Serial No.	Last Calibration
Universal Work Station	Aprel	ALS-UWS	100-00154	Jun.2010
Data Acquisition Package	Aprel	ALS-DAQ-PAQ-3	110-00215	Jun.2010
Probe Mounting Device and Boundary Detection Sensor System	Aprel	ALS-PMDPS-3	120-00265	Jun.2010
Miniature E-Field Probe	Aprel	ALS-E-020	273-В	Sep.2010
Left ear SAM Phontom	Aprel	ALS-P-SAM-L	130-00312	N/A
Right ear SAM Phontom	Aprel	ALS-P-SAM-R	140-00362	N/A
Universal SAM Phontom	Aprel	ALS-P-SU-1	150-00410	N/A
Reference Validation Dipole 900MHz	Aprel	ALS-D-900-S-2	190-00607	N/A
Reference Validation Dipole 1800MHz	Aprel	ALS-D-1800-S-2	200-00657	N/A
Dielectric Probe Kit	Aprel	ALS-PR-DIEL	260-00955	N/A
Device Holder 2.0	Aprel	ALS-H-E-SET-2	170-00506	N/A
SAR software	Aprel	ALS-SAR-AL-10	Ver.2.3.6	N/A
CRS C500C Controller	Thermo	ALS-C500	RCF0504291	N/A
CRS F3 Robot	Aprel	ALS-F3-SW	N/A	N/A
Power Amplifier	Mini-Circuit	SN0974	040306	N/A
Directional Coupler	Agilent	778D-012	N/A	N/A
Universal Radio Communication Tester	Rohde&Schwarz	CMU200	104845	Jan.10
Vector Network	Anritsu	MS4623B	N/A	Nov.10
Signal Generator	Agilent	E8257D	N/A	Jan.10
Power Meter	Rohde&Schwarz	NRP	N/A	Jan.10

ANNEX A- Accreditation Certificate

of

Shenzhen Morlab Communications Technology Co.,Ltd.

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

Fixed Wireless Phone on CDMA 1900MHz

REPORT NO: SH10060012S01

Type Name: PX330N

Hardware Version: P2

Software Version: PX330SE_P2.1C.US_44_6_1T

Accreditation Certificate

China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(No. CNAS L1659)

China National Accreditation Service for Conformity Assessment has accredited

Shenzhen Electronic Product Quality Testing Center

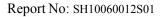
Electronic Testing Building, Shahe Road, Xili, Nanshan District,

Shenzhen, Guangdong, China

to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing and calibration.

The scope of accreditation is detailed in the attached schedule bearing the same accreditation number as above. The schedule forms an integral part of this certificate.

Date of Issue: 2009-09-29


Date of Expiry: 2012-09-28

Date of Initial Accreditation: 1999-08-03

其建

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment(CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation systems for conformity assessment. CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (ILAC MRA), and the signatory to Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA).

ANNEX B- Test Layout

of

Shenzhen Morlab Communications Technology Co.,Ltd.

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

Fixed Wireless Phone on CDMA 1900MHz

REPORT NO: SH10060012S01

Type Name: PX330N

Hardware Version: P2

Software Version: PX330SE_P2.1C.US_44_6_1T

Test Layout

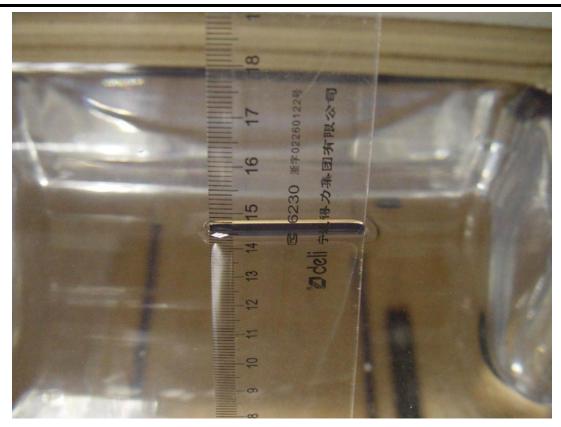


Figure B.1 Depth of Simulating Liquid in SAM Body Phantom

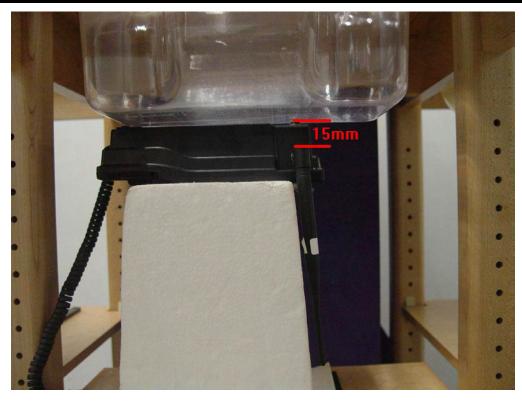


Figure B.2 EUT Back Side with antenna position 1 (with battery)

Figure B.3 EUT Back Side with antenna position 2 (with battery)



Figure B.4 EUT Back Side with antenna position 3 (with battery)

Figure B.5 EUT Back Side with antenna position 1 (with adapter)

Figure B.6 EUT Back Side with antenna position 2 (with adapter)

Figure B.7 EUT Back Side with antenna position 3 (with adapter)

ANNEX C- Sample Photographs

of

Shenzhen Morlab Communications Technology Co.,Ltd.

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

Fixed Wireless Phone on CDMA 1900MHz

REPORT NO: SH10060012S01

Type Name: PX330N

Hardware Version: P2

Software Version: PX330SE_P2.1C.US_44_6_1T

Sample Photographs

Photograph of the Equipment under Test

ANNEX D- Graph Test Results

of

Shenzhen Morlab Communications Technology Co.,Ltd.

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

Fixed Wireless Phone on CDMA 1900MHz

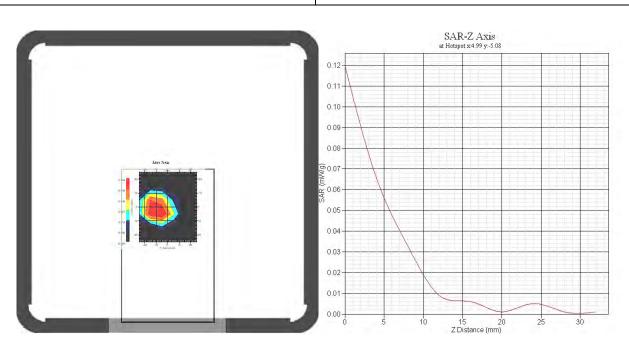
REPORT NO: SH10060012S01

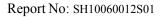
Type Name: PX330N

Hardware Version: P2

Software Version: PX330SE_P2.1C.US_44_6_1T

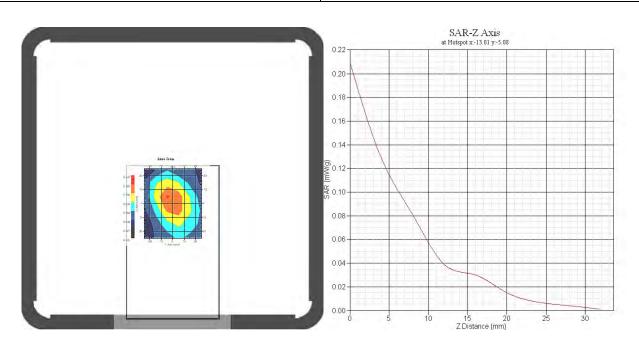
Graph Test Results

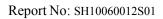




CDMA1900 Flat Body, Middle frequency with antenna position 1(with battery)

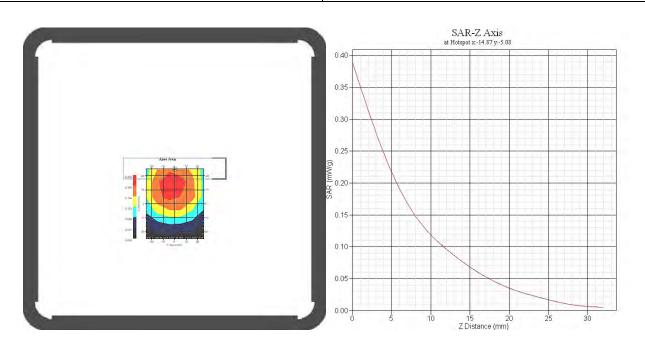
Frequency (MHz)	1880.01
Relative permitivity (real part)	52.840001
Relative permitivity (imaginary part)	15.070000
Conductivity (S/m)	1.5473975
Variation (%)	3.446000
Crest factor	1
Conversion Factor	4.7
Temperatures	21.00 °C
Date	2010-12-21

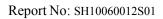

SAR 10g (W/Kg)	0.017
SAR 1g (W/Kg)	0.049



CDMA1900 Flat Body, Middle frequency with antenna position 2(with battery)

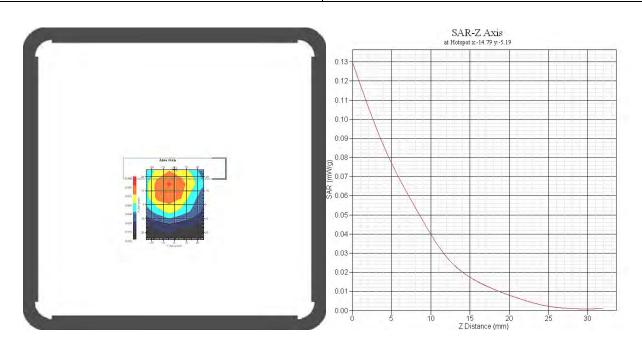
Frequency (MHz)	1880.01
Relative permitivity (real part)	52.840001
Relative permitivity (imaginary part)	12.420000
Conductivity (S/m)	1.5473975
Variation (%)	-4.671000
Crest factor	1
Conversion Factor	4.7
Temperatures	21.00 °C
Date	2010-12-21

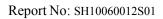




CDMA1900 Flat Body, Middle frequency with antenna position 3(with battery)

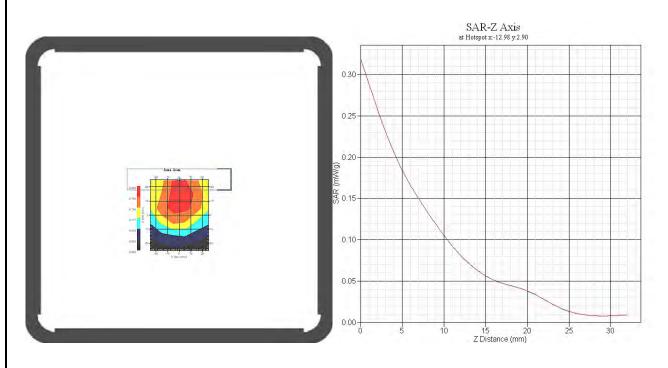
Frequency (MHz)	1880.01
Relative permitivity (real part)	52.840001
Relative permitivity (imaginary part)	21.470000
Conductivity (S/m)	1.5473975
Variation (%)	4.117000
Crest factor	1
Conversion Factor	4.7
Temperatures	21.00 °C
Date	2010-12-21

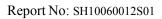

SAR 10g (W/Kg)	0.129
SAR 1g (W/Kg)	0.232



CDMA1900 Flat Body, Middle frequency with antenna position 1(with adapter)

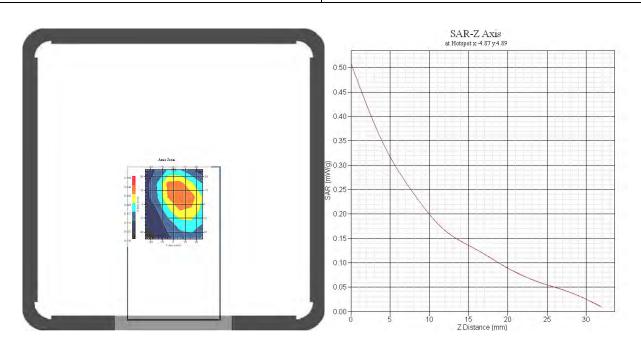
Frequency (MHz)	1880.01
Relative permitivity (real part)	52.840001
Relative permitivity (imaginary part)	9.410000
Conductivity (S/m)	1.5473975
Variation (%)	-3.780000
Crest factor	1
Conversion Factor	4.7
Temperatures	21.00 °C
Date	2010-12-21

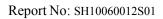

SAR 10g (W/Kg)	0.041
SAR 1g (W/Kg)	0.080



CDMA1900 Flat Body, Middle frequency with antenna position 2(with adapter)

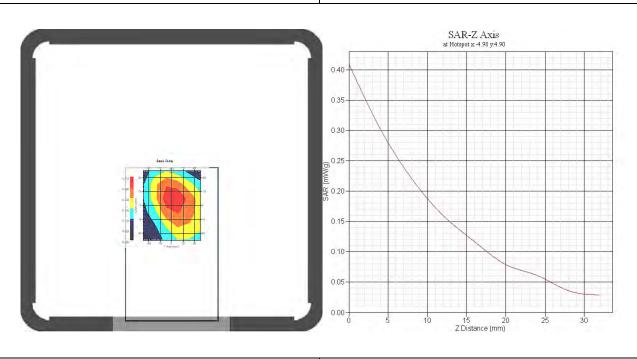
Frequency (MHz)	1880.01
Relative permitivity (real part)	52.840001
Relative permitivity (imaginary part)	12.820000
Conductivity (S/m)	1.5473975
Variation (%)	1.841000
Crest factor	1
Conversion Factor	4.7
Temperatures	21.00 °C
Date	2010-12-21

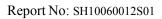

SAR 10g (W/Kg)	0.109
SAR 1g (W/Kg)	0.198



CDMA1900 Flat Body, Low frequency with antenna position 3(with adapter)

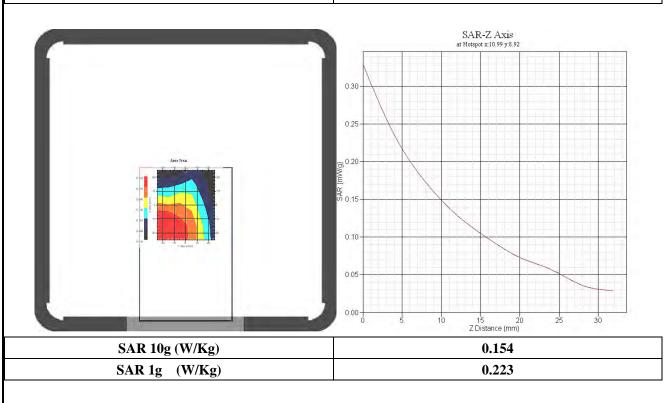
Frequency (MHz)	1851.25
Relative permitivity (real part)	52.910002
Relative permitivity (imaginary part)	17.170000
Conductivity (S/m)	1.5214002
Variation (%)	2.415000
Crest factor	1
Conversion Factor	4.7
Temperatures	21.00 °C
Date	2010-12-21

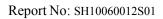

SAR 10g (W/Kg)	0.197
SAR 1g (W/Kg)	0.325



CDMA1900 Flat Body, Middle frequency with antenna position 3(with adapter)

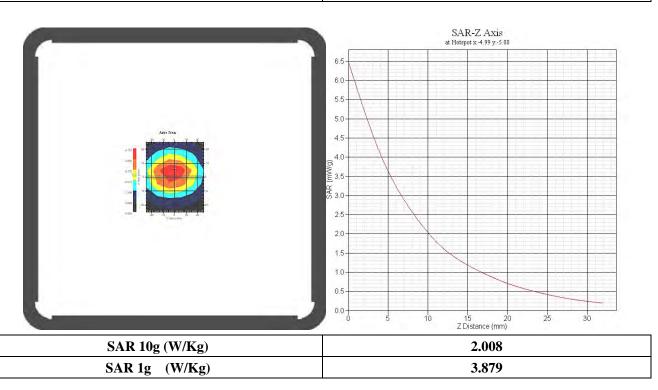
Frequency (MHz)	1880.01
Relative permitivity (real part)	52.840001
Relative permitivity (imaginary part)	-13.070000
Conductivity (S/m)	1.5473975
Variation (%)	-0.748000
Crest factor	1
Conversion Factor	4.7
Temperatures	21.00 °C
Date	2010-12-21


SAR 10g (W/Kg)	0.162
SAR 1g (W/Kg)	0.273



CDMA1900 Flat Body, High frequency with antenna position 3(with adapter)

Frequency (MHz)	1908.75
Relative permitivity (real part)	52.730001
Relative permitivity (imaginary part)	11.34000
Conductivity (S/m)	1.5522314
Variation (%)	-4.374000
Crest factor	1
Conversion Factor	4.7
Temperatures	21.00 °C
Date	2010-12-21



System Performance Check Data

1900
52.841002
14.310000
1.541241
-1.550000
1
4.7
21.00 °C
2010-12-21

** END OF REPORT **