

FCC SAR

TEST REPORT

of

Fixed Wireless Phone on CDMA 800MHz

Model Name:

PX320N

Trade Name:

Axesstel

Report No.:

SH10060012S11

FCC ID:

PH7PX320N

prepared for

Axesstel Inc

6815 Flanders Drive, #210, San Diego, CA92121, USA

Certification pidrepared by

Shenzhen Morlab Communications Technology Co., Ltd.

Morlab Laboratory

3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China

Tel: +86 755 86130398 Fax: +86 755 86130218

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory. Any objections should be raised to us within thirty workdays since the date of issue.

Contents

1. GENERAL INFORMATION4
1.1. Notes
1.2. Organization item
1.3. Conclusion
2. TESTING LABORATORY5
2.1. Identification of the Responsible Testing Laboratory
2.2. Identification of the Responsible Testing Location
2.3. Accreditation Certificate
2.4. List of Test Equipments
3. TECHNICAL INFORMATION6
3.1. Identification of Applicant6
3.2. Identification of Manufacturer6
3.3. Equipment Under Test (EUT)
3.3.1. Photographs of the EUT6
3.3.2. Identification of all used EUTs
3.4. Applied Reference Documents
3.5. Device Category and SAR Limits
3.6. Test Environment/Conditions
4. SPECIFIC ABSORPTION RATE (SAR)9
4.1 Introduction9
4.2 SAR Definition 9
5. SAR MEASUREMENT SETUP10
5.1. The Measurement System
5.2. Probe
5.3. Phantom
5.4. Device Holder
6. TISSUE SIMULATING LIQUIDS14
7. UNCERTAINTY ASSESSMENT16
7.1. UNCERTAINTY EVALUATION FOR HANDSET SAR TEST

7.2. UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK	17
8. SAR MEASUREMENT EVALUATION	19
8.1. System Setup	19
8.2. Validation Results	19
9. OPERATIONAL CONDITIONS DURING TEST	20
9.1. Informations on the testing	20
9.2. Body-worn Configurations	20
9.3. Measurement procedure	20
9.4. Description of interpolation/extrapolation scheme	21
10. TEST RESULTS LIST	22
10.1. Summary of Measurement Results	22
ANNEX A ACCREDITATION CERTIFICATE	24
ANNEX B PHOTOGRAPHS OF THE EUT	25
ANNEX C GRAPH TEST RESULTS	29

1. General Information

1.1. Notes

The test results of this test report relate exclusively to the information specified in section 3.3. Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the identification. The test report may only be reproduced or published in full. Reproduction or publications of extracts from the test report requires the prior written approval of Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory. The test report shall be invalid without all the signatures of testing the Project Manager, the Deputy Project Manager and the Test Lab Manager. Any objections must be raised to Morlab within 30 days since the date when the report is received. It will not be taken into consideration beyond this limit.

1.2. Organization item

Report No.:

SH10060012S11

Date of Issue:

Dec. 27, 2010

Date of Tests:

Dec. 27, 2010 -Dec. 27, 2010

Responsible for Accreditation:

Wei Bei

Project Manager:

Zhang Jun

Deputy Project Manager:

Huang Yunlong

1.3. Conclusion

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory has verified that all tests as listed in the section 10 of this report have been performed successfully with the tested equipment.

Huang Yunlong

Tested by

(Responsible for the Test Report)

Zhang Jun

Reviewed by

(Verification of the Test Report)

Wei Bei

Certification

COBAL SERVIC

Approved by

(Responsible Test Lab Manager)

2. Testing Laboratory

2.1. Identification of the Responsible Testing Laboratory

Company Name: Shenzhen Morlab Communications Technology Co., Ltd.

Department: Morlab Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

Responsible Test Lab Manager: Mr. Shu Luan
Telephone: +86 755 86130268
Facsimile: +86 755 86130218

2.2. Identification of the Responsible Testing Location

Name: Shenzhen Morlab Communications Technology Co., Ltd.

Morlab Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

2.3. Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L1659

2.4. List of Test Equipments

No.	Instrument	Type	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Rohde&Schwarz (CMU200, SN:105894)	2010-9-26	1 year
3	Voltmeter	Keithley (2000, SN:1000572)	2010-9-24	1year
4	Synthetizer	Rohde&Schwarz (SML_03, SN:101868)	2010-9-24	1year
5	Amplifier	Nucl udes (ALB216, SN:10800)	2010-9-24	1 year
6	Power Meter	Rohde&Schwarz (NRVD, SN:101066)	2010-9-24	1 year
7	Probe	Antennessa (SN:SN_3708_EP80)	2010-9-24	1 year
8	Phantom	Antennessa (SN:SN_36_08_SAM62)	2010-9-24	1 year
9	Liquid	Antennessa (Last Calibration:21 08 08)	2010-8-21	1year
10	Dipole Validation Kit	SATIMO (SN 36/08 DIPC99)	2010-9-23	1year

3. Technical Information

Note: the following data is based on the information by the applicant.

3.1. Identification of Applicant

Company Name: Axesstel Inc

Address: 6815 Flanders Drive, #210, San Diego, CA 92121, USA

3.2. Identification of Manufacturer

Company Name: Asiatelco Technologies Co.

Address: #289 Bisheng Rd, Bld-8, 3F, Zhangjiang Hi-Tech Park, Pudong,

Shanghai, China

3.3. Equipment Under Test (EUT)

Brand Name: Axesstel Inc Type Name: Axesstel Inc Marking Name: PX320N

Hardware Version: P2

Software Version: PX320SE_C2.1C.US_44_6_1T

Frequency Bands: CDMA 800 Modulation Mode: QPSK

Antenna type: Fixed Internal Antenna

Antenna type: whip antenna
Accessories: Charger; Battery
Battery Model: ABL-1200A
Battery specification: 1200mAh 3.6V
Development Stage: Identical prototype

3.3.1. Photographs of the EUT

Please see for photographs of the EUT.

3.3.2. Identification of all used EUTs

The EUT Identity consists of numerical and letter characters (see the table below), the first five numerical characters indicates the Type of the EUT defined by Morlab, the next letter character

indicates the test sample, and the following two numerical characters indicates the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	P2	PX320SE_C2.1C.US_44_6_1T

3.4. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title					
1	47 CFR § 2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices					
2	FCC OET	Evaluating Compliance with FCC Guidelines for Human					
	Bulletin 65	Exposure to Radiofrequency Electromagnetic Fields					
	(Edition 97-01),						
	Supplement C						
	(Edition 01-01)						
3	ANSI C95.1-1999	IEEE Standard for Safety Levels with Respect to Human					
		Exposure to Radio Frequency Electromagnetic Fields, 3kHz to					
		300 GHz					
4	IEEE 1528-2003	Recommended Practice for Determining the Peak Spatial-Average					
		Specific Absorption Rate(SAR) in the Human Body Due to					
		Wireless Communications Devices: Experimental Techniques.					
5	KDB 941225 D01	SAR Measurement Procedures for 3G Devices					
	v02	CDMA 2000/EV-Do WCDMA/HSDPA/HSPA					
6	FCC Number	Tracking Number 478906					

3.5. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.6. Test Environment/Conditions

Normal Temperature (NT): $20 \dots 25 \text{ } \text{C}$ Relative Humidity: $30 \dots 75 \text{ } \text{\%}$

Air Pressure: 980 ... 1020 hPa
Details of Power Supply: 100--265V/AC

Extreme Temperature: Low Temperature (LT) = $-10 \, \text{C}$

High Temperature (HT) = $55 \, \text{C}$

Extreme Voltage of the EUT: Normal Voltage (NV) = 5.0V

Low Voltage (LV) = 4.5VHigh Voltage (HV) = 5.5V

Test frequency: CDMA Cellular Operation mode: Call established

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1013, 384 and 777 respectively in the case of CDMA Cellular MHz, The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δ T is the temperature rise and δ t the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

5.1. The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

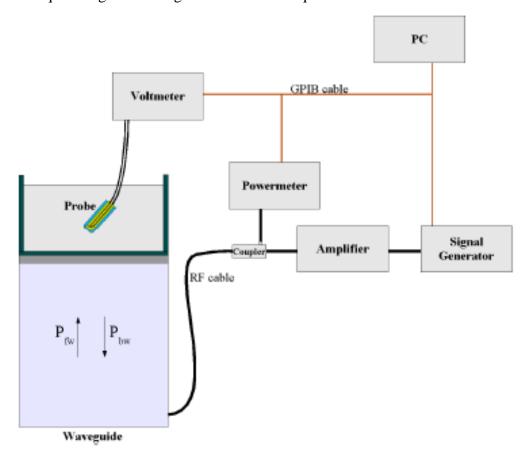
5.2. Probe

For the measurements the COMOSAR SEPT ISOTROPIC E-FIELD PROBE with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm


- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB

- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:1ess than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4(P_{fw} - P_{bw})}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

1 = Skin depth Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

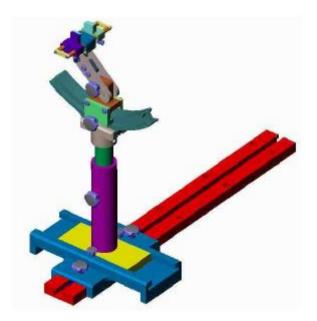
The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$
 (N=1,2,3)

where DCP is the diode compression point in mV.



5.3. Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

5.4. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 °.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

6. Tissue Simulating Liquids

Simulant liquids that are used for testing at frequencies of GSM 850MHz, which are made mainly of sugar, salt and water solutions may be left in the phantoms. Approximately 20litres are needed for an upright head compared to about 25 litres for a horizontal bath phantom. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR)or from the flat phantom to the liquid top surface (body SAR) is 15 cm.

Table gives the recipes for one liter of head and body tissue simulating liquid for frequency band 850MHz.

Ingredients	Fraguer	ov Bond	
	Frequency Band		
(% by weight)	835]	MHz	
Tissue Type	Head	Body	
Water	41.45	52.4	
Salt(NaCl)	1.45	1.4	
Sugar	56.0	45.0	
HEC	1.0	1.0	
Bactericide	0.1	0.1	
Triton X-100	0.0	0.0	
DGBE	0.0	0.0	
Dielectric	42.45	56 1	
Constant	42.43	56.1	
Conductivity	0.91	0.95	
(S/m)	0.91	0.93	

Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement phone was put on in the belt holder.

Table 1: Dielectric Performance of Head Tissue Simulating Liquid

Temperature: 23.0~23.8 °C, humidity: 54~60%.								
/	Frequency	Permittivity ε	Conductivity σ (S/m)					
Target value	835 MHZ	41.5	0.90					
Validation value	835 MHZ	40.490002	0.883918					
(Dec. 27)								

Table 2: Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 23.0~23.8 ℃, humidity: 54~60%.									
/	/ Frequency Permittivity ε Conductivity σ (S/								
Target value	835 MHz	55.2	0.97						
Validation value	835 MHz	54.116001	0.989164						
(Dec. 27)									

7. Uncertainty Assessment

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

7.1. UNCERTAINTY EVALUATION FOR HANDSET SAR TEST

		,							
a	b	c	d	e= f(d,k)	f	g	h=	i=	k
							c*f/e	c*g/e	
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci	1g Ui	10g Ui	V
		(+- %	Dist.			(10g)	(+-%)	(+-%)	i
)							
Measurement System			т	1	T.	T	T	1	
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	
Axial Isotropy	E.2.2	2.5	R	T	Γ	T	1.02	1.02	<u> </u>
Hemispherical Isotropy	E.2.2	4.0	R	<u> </u>			1.63	1.63	
Boundary effect	E.2.3	1.0	R	<u> </u>	1	1	0.58	0.58	T
Linearity	E.2.4	5.0	R		1	1	2.89	2.89	
System detection limits	E.2.5	1.0	R		1	1	0.58	0.58	
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	
Reponse Time	E.2.7	3.0	R		1	1	1.73	1.73	
Integration Time	E.2.8	2.0	R		1	1	1.15	1.15	
RF ambient Conditions	E.6.1	3.0	R		1	1	1.73	1.73	
Probe positioner Mechanical	E.6.2	2.0	R	 	1	1	1.15	1.15	
Tolerance									
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R		1	1	0.03	0.03	
Extrapolation, interpolation and	E.5.2	5.0	R		1	1	2.89	2.89	
integration Algoritms for Max.									
SAR Evaluation									
Test sample Related		<u>. </u>	.	,					
Test sample positioning	E.4.2.1	0.03	N	1	1	1	0.03	0.03	N -
									1
Device Holder Uncertainty	E.4.1.1	5.00	N	1	1	1	5.00	5.00	
Output power Power Drift - SAR	6.6.2	4.04	R		1	1	2.33	2.33	
drift measurement									
Phantom and Tissue Parameters	s								

	1		_	1	T	1	1	T	
Phantom Uncertainty (Shape and	E.3.1	0.05	R		1	1	0.03	0.03	
thickness tolerances)									
Liquid conductivity - deviation	E.3.2	4.57	R		0.64	0.43	1.69	1.13	
from target value									
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	M
measurement uncertainty									
Liquid permittivity - deviation	E.3.2	3.69	R		0.6	0.49	1.28	1.04	
from target value									
Liquid permittivity -	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
measurement uncertainty									
Combined Standard Uncertainty			RSS				11.23	10.70	
Expanded Uncertainty			k				21.91	20.86	
(95% Confidence interval)									

7.2. UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

a	b	c	d	e=f(d,k)	f	g	h=	i=	k
							c*f/e	c*g/e	
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci	1g Ui	10g Ui	V
		(+- %	Dist.			(10g)	(+-%)	(+-%)	i
)							
Measurement System		T				_			1
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	
Axial Isotropy	E.2.2	2.5	R				1.02	1.02	
Hemispherical Isotropy	E.2.2	4.0	R				1.63	1.63	
Boundary effect	E.2.3	1.0	R		1	1	0.58	0.58	
Linearity	E.2.4	5.0	R		1	1	2.89	2.89	
System detection limits	E.2.5	1.0	R		1	1	0.58	0.58	
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	
Reponse Time	E.2.7	3.0	R		1	1	1.73	1.73	
Integration Time	E.2.8	2.0	R		1	1	1.15	1.15	
RF ambient Conditions	E.6.1	3.0	R		1	1	1.73	1.73	
Probe positioner Mechanical Tolerance	E.6.2	2.0	R		1	1	1.15	1.15	
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R		1	1	0.03	0.03	
Extrapolation, interpolation and integration Algoritms for Max.	E.5.2	5.0	R		1	1	2.89	2.89	

SAR Evaluation				T				\overline{T}	
Dipole					•			•	
Dipole axis to liquid Distance	8,E.4.2	1.00	N		1	1	0.58	0.58	N - 1
Input power and SAR drift measurement	8,6.6.2	4.04	R		1	1	2.33	2.33	1
Phantom and Tissue Parameters	s								
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R		1	1	0.03	0.03	
Liquid conductivity - deviation from target value	E.3.2	4.57	R		0.64	0.43	1.69	1.13	
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	M
Liquid permittivity - deviation from target value	E.3.2	3.69	R		0.6	0.49	1.28	1.04	
Liquid permittivity - measurement uncertainty	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
Combined Standard Uncertainty			RSS				10.08	9.47	
Expanded Uncertainty (95% Confidence interval)			k				19.65	18.47	

8. SAR Measurement Evaluation

8.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom.

Equipments:

name	Type and specification
Signal generator	E4433B
Directional coupler	450MHz-3GHz
Amplifier	3W 502(10-2500MHz)
Reference dipole	835MHz:SN 36/08 DIPC99

8.2. Validation Results

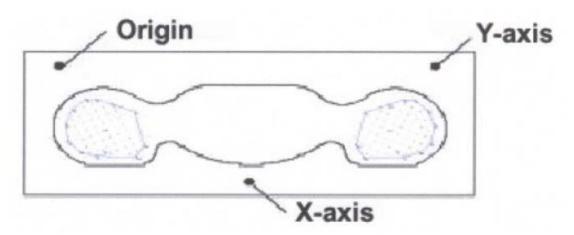
Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %.

Frequency	835MHz
Target value (1g)	9.5 W/Kg
250 mW input power	2.45 W/Kg
Test value (1g)	9.81W/Kg

Note: System checks the specific test data please see page 54-57.

9. Operational Conditions During Test

9.1. Informations on the testing


Please refer to Appendix B for the test setup photos.

9.2. Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is 1.5cm(taking into account of the IEEE 1528 and the place of the antenna)

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

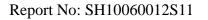
SAR Measurement Points in Area Scan

9.3. Measurement procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the

inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.


- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

9.4. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

10. Test Results List

10.1.Summary of Measurement Results

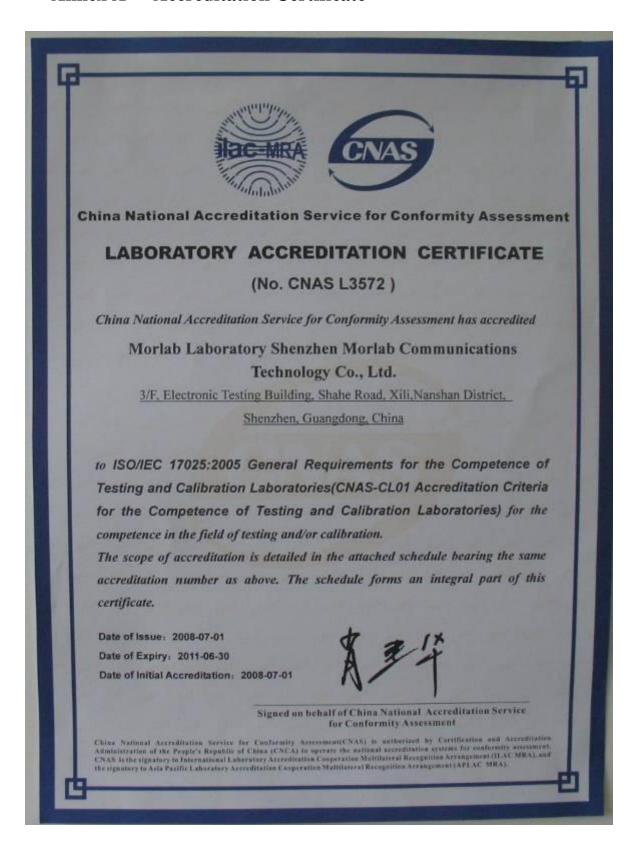
Conducted Power(dBm)

Test Model	Test Status	Channel	Frequency(M Hz)	Conducted Power(dBm)
		1013	824.70	24.77
	FCH_RC1	384	836.52	24.35
CDMA 2000 1xRTT		777	848.31	25.52
	FCH_RC3	1013	824.70	24.63
		384	836.52	24.25
		777	848.31	25.40
		1013	824.70	24.47
	FCH+SCH_RC3	384	836.52	24.05
		777	848.31	25.31

Note:According to KDB 941225, the body SAR is measured in RC3 with SO32. Body SAR for RC1 or FCH+SCH is not required when the maximum power is less than 1/4 dB higher than FCH_RC3.

SAR Values, Measured against the Body.

Temperature: 23.0~23.8 °C, humidity: 54~60%.				
Limit of SAD (W/Ira)	1 g Average			
Limit of SAR (W/kg)	1	1.6		
	Measurement Result (W/kg)			
Test Case	1 a Avorago	Conducted		
Test Case	1 g Average (W/kg)	Power		
	(W/Kg)	(dBm)		
Back Side with antenna position 1 Middle Channel	0.191	24.25		
(with adapter)	0.191	24.23		
Back Side with antenna position 2 Middle Channel	0.512	24.25		
(with adapter)	0.512	24.23		
Back Side with antenna position 3 Middle Channel	0.495	24.25		
(with adapter)	0.473	24.23		
Back Side with antenna position 1 Middle Channel	0.218	24.25		
(with battery)	0.210	27.23		
Back Side with antenna position 2 Low Channel	0.434	24.63		
(with battery)	0.434	24.03		
Back Side with antenna position 2 Middle Channel	0.548	24.25		
(with battery)	0.540	27.23		



Back Side with antenna position 2 High Channel (with battery)	0.556	25.40
Back Side with antenna position 3 Middle Channel (with battery)	0.529	24.25

Annex A Accreditation Certificate

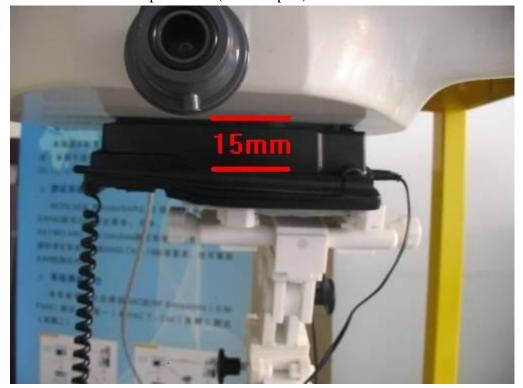
Annex B Photographs of the EUT

1 EUT Back Side with antenna position 1(with battery)

2 EUT Back Side with antenna position 2(with battery)

3 EUT Back Side with antenna position 3(with battery)

4 EUT Back Side with antenna position 1(with adapter)



6 EUT Back Side with antenna position 2 (with adapter)

6 EUT Back Side with antenna position 3 (with adapter)

Liquid Level Photo

Sample Photograph

Annex C Graph Test Results

	BAND	<u>PARAMETERS</u>
TYPE	<u>CDMA80</u> <u>0</u>	Measurement 1: Back Side with antenna position 1 Middle Channel (with adapter) Measurement 2: Back Side with antenna position 2 Middle Channel (with adapter) Measurement 3: Back Side with antenna position 3 Middle Channel (with adapter) Measurement 4: Back Side with antenna position 1 Middle Channel (with battery) Measurement 5: Back Side with antenna position 2 Low Channel (with battery) Measurement 6: Back Side with antenna position 2 Middle Channel (with battery) Measurement 7: Back Side with antenna position 2 High Channel (with battery) Measurement 8: Back Side with antenna position 3 Middle Channel (with battery)

MEASUREMENT 1

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

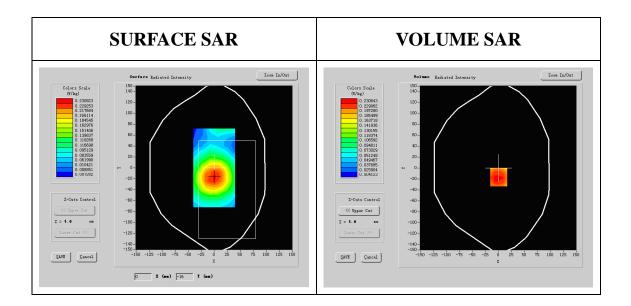
Date of measurement: 27/12/2010

Measurement duration: 8 minutes 04 seconds

A. Experimental conditions.

surf_sam_plan.txt			
Validation plane			
Body			
CDMA850			
Middle			
CDMA			

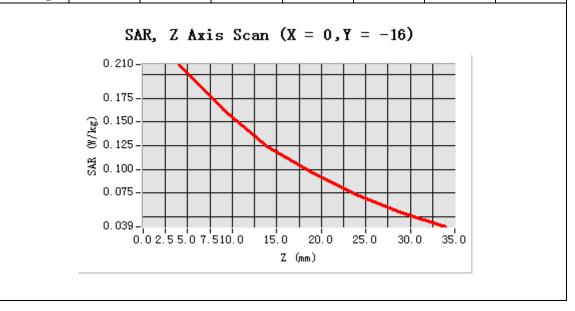
B. SAR Measurement Results

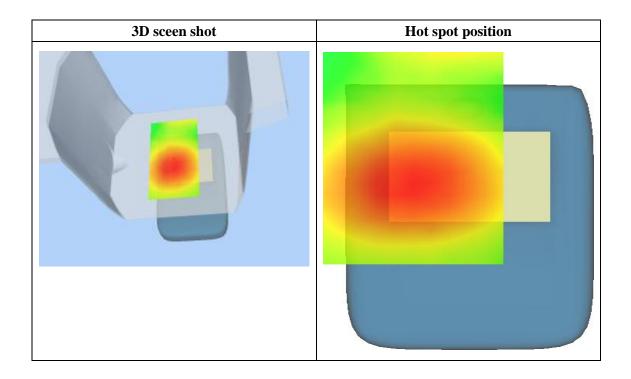

Middle Band SAR (Channel 384):

Frequency (MHz)	836.520020		
Relative permittivity (real part)	54.116001		
Relative permittivity	18.926250		

Conductivity (S/m)	0.989164		
Variation (%)	-0.390000		
Ambient Temperature:	22.4 ℃		
Liquid Temperature:	22.5 ℃		
ConvF:	28.559,25.681,27.588		
Crest factor:	1:1		

Maximum location: X=0.00, Y=-16.00


SAR 10g (W/Kg)	0.106388
SAR 1g (W/Kg)	0.191337



Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.2104	0.1634	0.1243	0.0961	0.0732	0.0543
(W/Kg)							

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

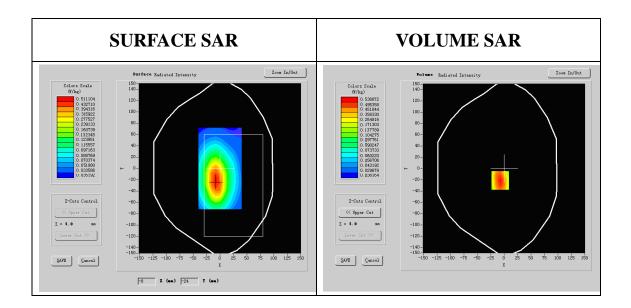
Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 27/12/2010

Measurement duration: 7 minutes 59 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	CDMA850
Channels	Middle
Signal	CDMA

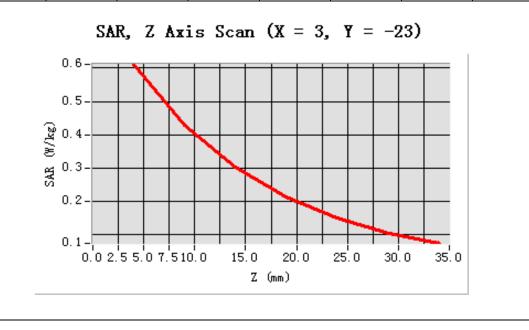

B. SAR Measurement Results

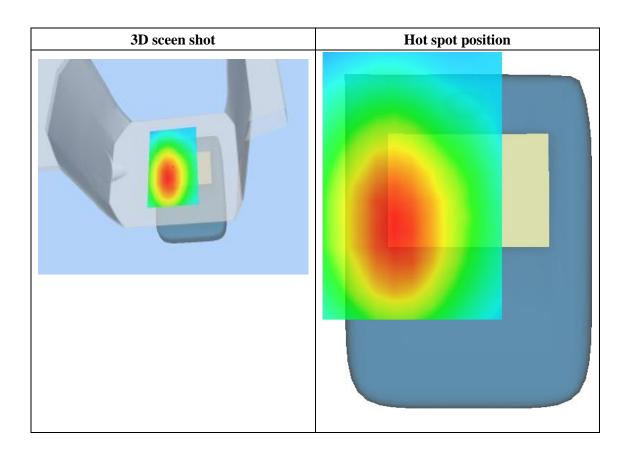
Middle Band SAR (Channel 384):

Frequency (MHz)	836.520020
Relative permittivity (real part)	54.116001
Relative permittivity	19.120001

Conductivity (S/m)	0.989164
Variation (%)	-0.500000
Ambient Temperature:	22.4 ℃
Liquid Temperature:	22.5 ℃
ConvF:	28.559,25.681,27.588
Crest factor:	1:1

Maximum location: X=3.00, Y=-23.00


SAR 10g (W/Kg)	0.313725
SAR 1g (W/Kg)	0.511766



Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.6114	0.4308	0.3046	0.2143	0.1500	0.1061
(W/Kg)							

MEASUREMENT 3

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

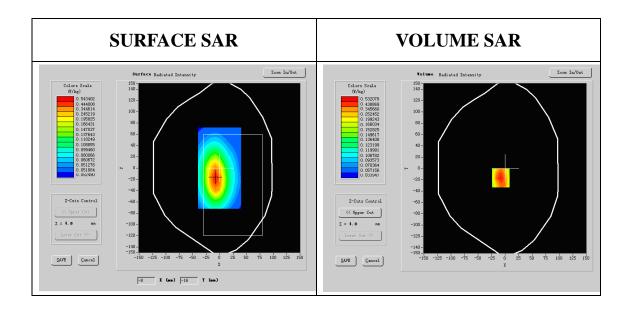
Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 27/12/2010

Measurement duration: 7 minutes 59 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	CDMA850
Channels	Middle
Signal	CDMA

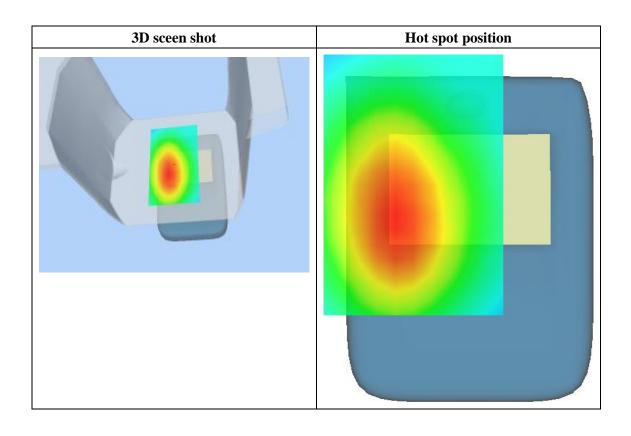

B. SAR Measurement Results

Middle Band SAR (Channel 384):

Frequency (MHz)	836.520020
Relative permittivity (real part)	54.116001
Relative permittivity	18.967199

Conductivity (S/m)	0.989164
Variation (%)	-0.590000
Ambient Temperature:	22.4 ℃
Liquid Temperature:	22.5 ℃
ConvF:	28.559,25.681,27.588
Crest factor:	1:1

Maximum location: X=2.00, Y=-23.00


SAR 10g (W/Kg)	0.300263
SAR 1g (W/Kg)	0.494733

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.5641	0.4014	0.2862	0.2036	0.1440	0.1026
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

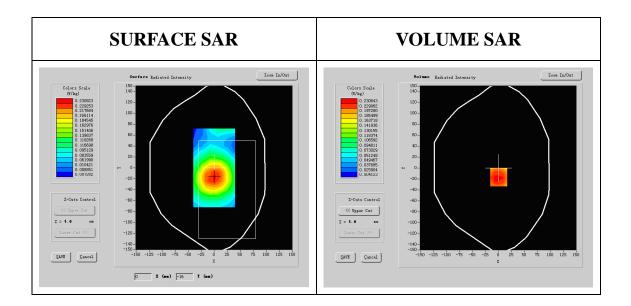
Date of measurement: 27/12/2010

Measurement duration: 7 minutes 43 seconds

A. Experimental conditions.

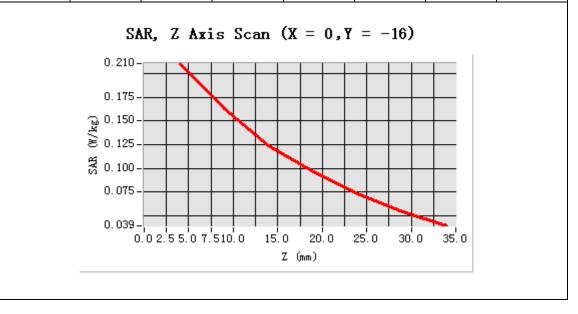
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	CDMA850
Channels	Middle
Signal	CDMA

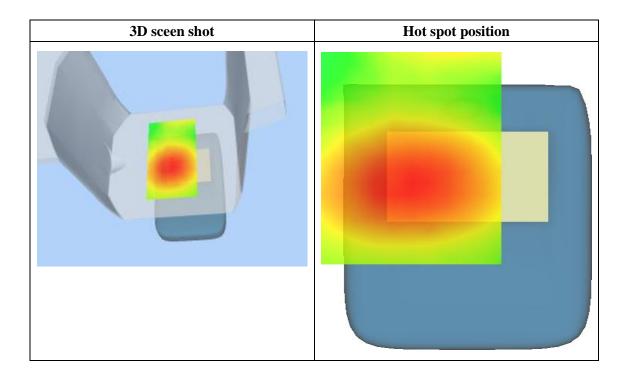
B. SAR Measurement Results


Middle Band SAR (Channel 384):

Frequency (MHz)	836.520020
Relative permittivity (real part)	54.116001
Relative permittivity	19.120001

Conductivity (S/m)	0.989164
Variation (%)	1.030000
Ambient Temperature:	22.4 ℃
Liquid Temperature:	22.5 ℃
ConvF:	28.559,25.681,27.588
Crest factor:	1:1


Maximum location: X=0.00, Y=-16.00


SAR 10g (W/Kg)	0.138968
SAR 1g (W/Kg)	0.218122

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.2213	0.1831	0.1377	0.0989	0.0801	0.0515
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

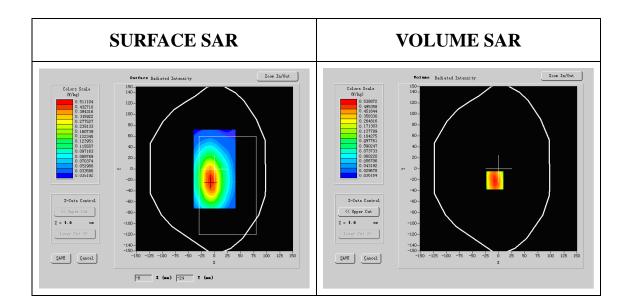
Date of measurement: 27/12/2010

Measurement duration: 8 minutes 4 seconds

A. Experimental conditions.

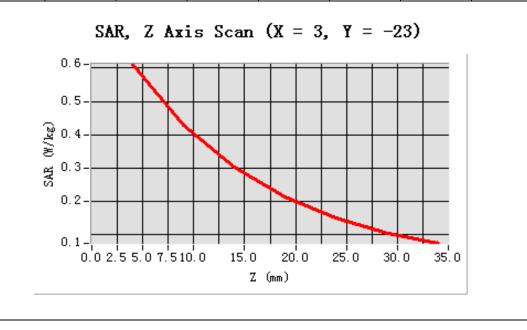
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	CDMA850
Channels	Low
Signal	CDMA

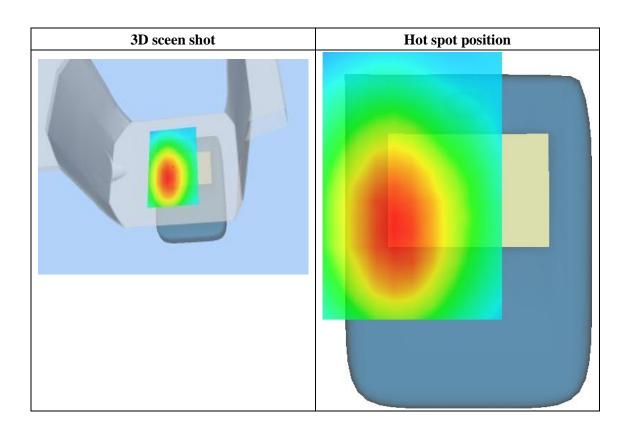
B. SAR Measurement Results


Middle Band SAR (Channel 1013):

Frequency (MHz)	824.700012
Relative permittivity (real part)	54.116001
Relative permittivity	19.120001

Conductivity (S/m)	0.970144
Variation (%)	-3.130000
Ambient Temperature:	22.4 ℃
Liquid Temperature:	22.5 ℃
ConvF:	28.559,25.681,27.588
Crest factor:	1:1


Maximum location: X=3.00, Y=-23.00


SAR 10g (W/Kg)	0.313345
SAR 1g (W/Kg)	0.433771

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.5614	0.4008	0.2246	0.1943	0.1500	0.1061
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

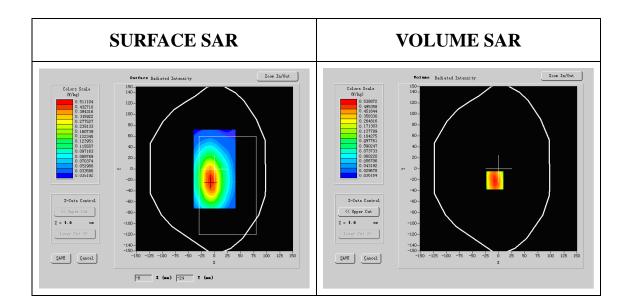
Date of measurement: 27/12/2010

Measurement duration: 7 minutes 42 seconds

A. Experimental conditions.

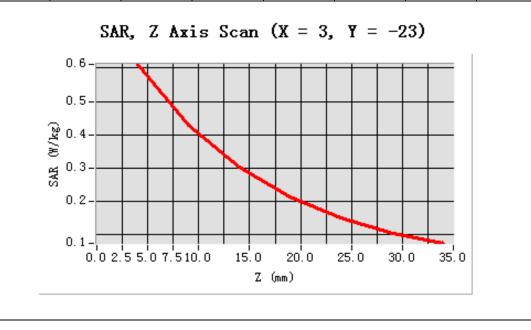
Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position	Body		
Band	CDMA850		
Channels	Middle		
Signal	CDMA		

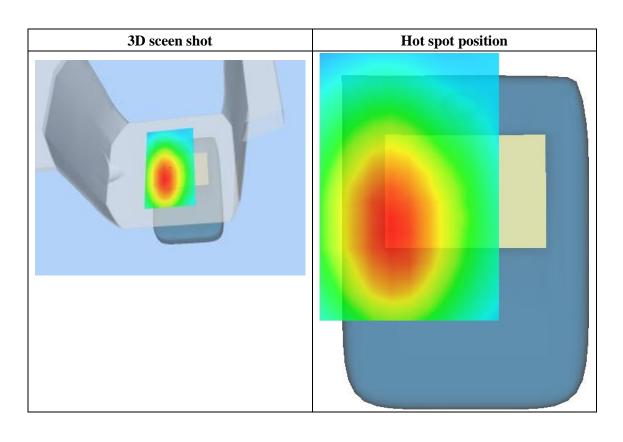
B. SAR Measurement Results


Middle Band SAR (Channel 384):

Frequency (MHz)	836.520020		
Relative permittivity (real part)	54.116001		
Relative permittivity	19.120001		

Conductivity (S/m)	0.989164		
Variation (%)	-1.950000		
Ambient Temperature:	22.4 ℃		
Liquid Temperature:	22.5 ℃		
ConvF:	28.559,25.681,27.588		
Crest factor:	1:1		


Maximum location: X=3.00, Y=-23.00


SAR 10g (W/Kg)	0.349165		
SAR 1g (W/Kg)	0.547734		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.6114	0.4308	0.3046	0.2143	0.1500	0.1061
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

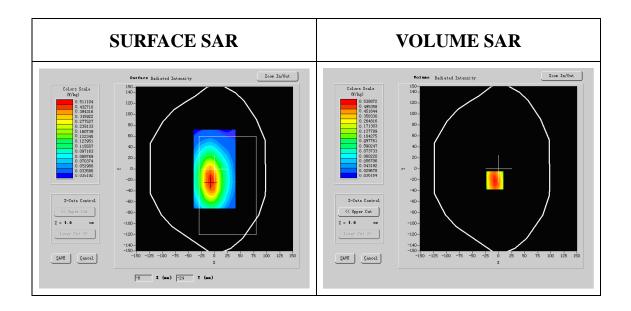
Date of measurement: 27/12/2010

Measurement duration: 9 minutes 8 seconds

A. Experimental conditions.

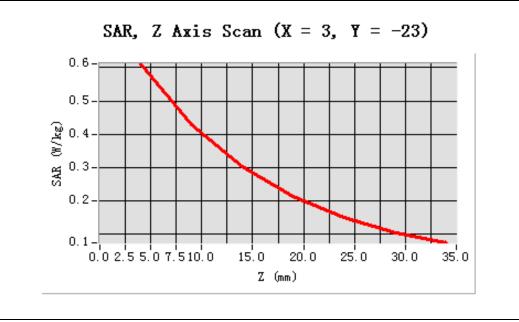
Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position	Body		
Band	CDMA850		
Channels	High		
Signal	CDMA		

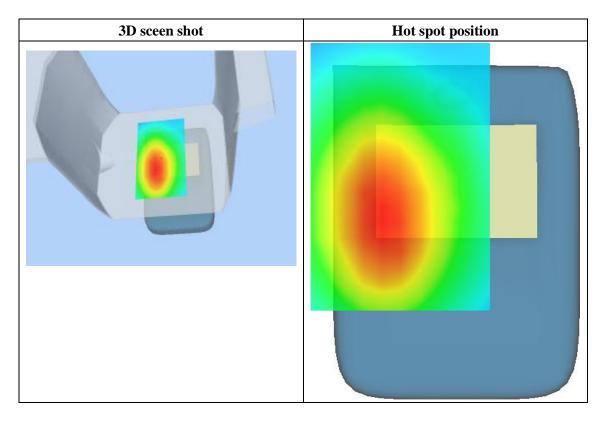
B. SAR Measurement Results


Lower Band SAR (Channel 777):

Frequency (MHz)	848.309998		
Relative permittivity (real part)	54.031021		

Relative permittivity	18.926250		
Conductivity (S/m)	0.993871		
Variation (%)	0.520000		
Ambient Temperature:	22.4 ℃		
Liquid Temperature:	22.5 ℃		
ConvF:	28.559,25.681,27.588		
Crest factor:	1:1		


Maximum location: X=3.00, Y=-23.00


SAR 10g (W/Kg)	0.372787		
SAR 1g (W/Kg)	0.556424		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.6001	0.4271	0.2811	0.1977	0.1500	0.1061
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

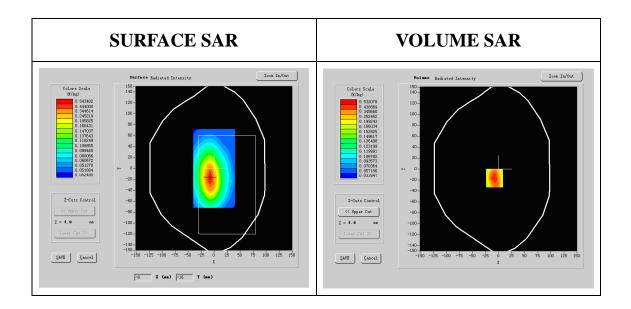
Date of measurement: 27/12/2010

Measurement duration: 9 minutes 7 seconds

A. Experimental conditions.

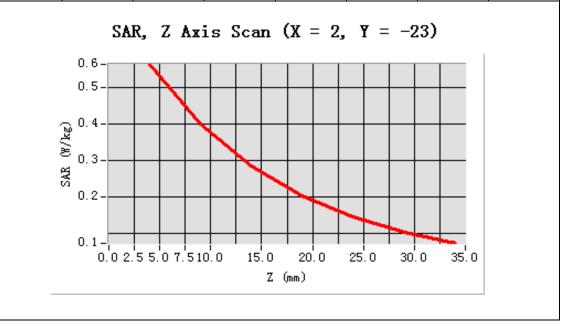
·			
Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position	Body		
Band	CDMA850		
Channels	Middle		
Signal	CDMA		

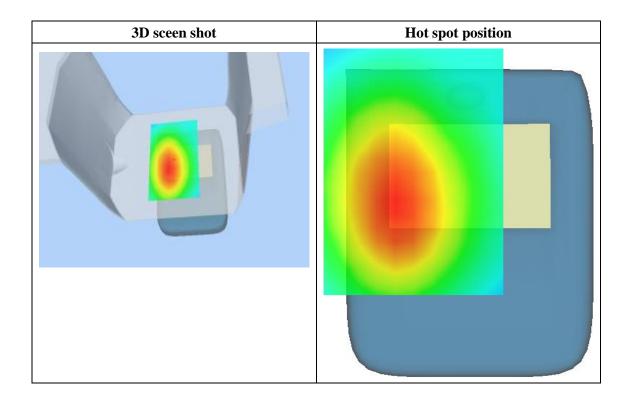
B. SAR Measurement Results


Middle Band SAR (Channel 384):

Frequency (MHz)	836.520020	
Relative permittivity (real part)	54.116001	
Relative permittivity	16.120001	

Conductivity (S/m)	0.989164	
Variation (%)	0.170000	
Ambient Temperature:	22.4 ℃	
Liquid Temperature:	22.5 ℃	
ConvF:	28.559,25.681,27.588	
Crest factor:	1:1	


Maximum location: X=2.00, Y=-23.00


SAR 10g (W/Kg)	0.312487
SAR 1g (W/Kg)	0.528984

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.5674	0.4014	0.2862	0.2036	0.1440	0.1026
(W/Kg)							

System Performance Check Data

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

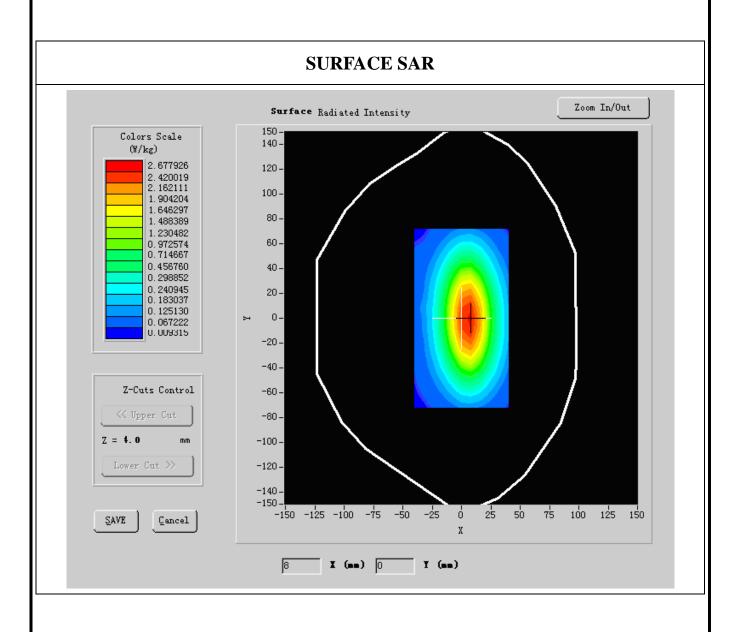
Date of measurement: 27/12/2010

Measurement duration: 13 minutes 24 seconds

A. Experimental conditions.

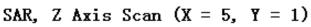
Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position		
Band	835MHz	
Channels		
Signal	CW	

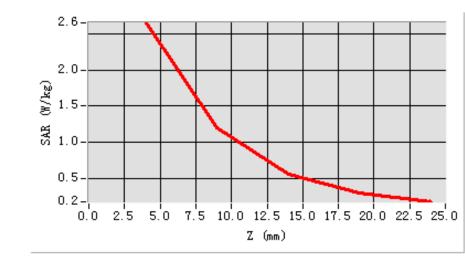
B. SAR Measurement Results


Band SAR

Frequency (MHz)	835.000000	
Relative permittivity (real part)	40.490002	
Relative permittivity	14.340000	
Conductivity (S/m)	0.883918	
Power Drift (%)	-1.150000	

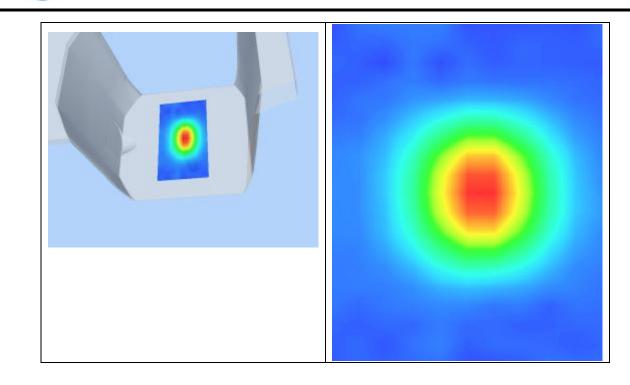
Ambient Temperature:	22.4 ℃		
Liquid Temperature:	22.5 ℃		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:1		


Maximum location: X=8.00, Y=1.00



SAR 10g (W/Kg)	1.671257
SAR 1g (W/Kg)	2.453126

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	2.6486	1.2069	0.5583	0.3002



1		
	3D sceen shot	Hot spot position

