FCC ID : PH7MV430 DATE : January 15, 2007 # **ATTACHMENT S – DIPOLE CALIBRATION DATA** > Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client H-CT (Dymstec) Certificate No: D1900V2-5d032 Mar06 | | CERTIFICATE | | | |---|---|---|--| | Object | D1900V2 - SN: 5d032 | | | | Calibration procedure(s) | QA CAL-05,v6
Calibration proce | dure for dipole validation kits | | | Calibration date: | March 14, 2006 | | | | Condition of the calibrated item | In Tolerance | | | | The measurements and the unce | ertainties with confidence p | onal standards, which realize the physical units of
robability are given on the following pages and are
by facility: environment temperature (22 ± 3) °C and | part of the certificate. | | Calibration Equipment used (M& | TE critical for calibration) | | | | | TE critical for calibration) | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Primary Standards Power meter EPM-442A | ID#
GB37480704 | 04-Oct-05 (METAS, No. 251-00516) | Oct-06 | | Primary Standards
Power meter EPM-442A
Power sensor HP 8481A | ID#
GB37480704
US37292783 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516) | Oct-06
Oct-06 | | Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator | ID #
GB37480704
US37292783
SN: 5086 (20g) | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 | ID #
GB37480704
US37292783
SN: 5086 (20g) | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ET3-1507_Oct05) | Oct-06
Oct-06
Aug-06
Aug-06
Oct-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN: 601 ID # MY41092317 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN: 601 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ET3-1507_Oct05)
15-Dec-05 (SPEAG, No. DAE4-601_Dec05)
Check Date (in house) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 | | Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN: 601 ID # MY41092317 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN: 601 ID # MY41092317 MY41000675 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN: 601 ID # MY41092317 MY4100675 US37390585 S4206 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN: 601 ID # MY41092317 MY4100675 US37390585 S4206 Name | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | Certificate No: D1900V2-5d032 Mar06 Page 1 of 6 TEL: +82 31 639 8518 FAX: +82 31 639 8525 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D1900V2-5d032_Mar06 Page 2 of 6 TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.l ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.7 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Area Scan resolution | dx, dy = 15 mm | | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|---------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.42 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | 21112 .4 | CONTR. | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 9.89 mW / g | | SAR normalized | normalized to 1W | 39.6 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 38.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.20 mW / g | | SAR normalized | normalized to 1W | 20.8 mW/g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 20.6 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d032_Mar06 Page 3 of 6 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.3 Ω + 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.192 ns | |--|----------| | The state of s | 10.0000 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 17, 2003 | Certificate No: D1900V2-5d032_Mar06 Page 4 of 6 # **DASY4 Validation Report for Head TSL** Date/Time: 14.03.2006 15:46:07 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) ## DASY4 Configuration: - Probe: ET3DV6 SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005 - · Sensor-Surface: 4mm (Mechanical Surface Detection) - · Electronics: DAE4 Sn601; Calibrated: 15.12.2005 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; - Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165 Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.6 mW/g Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.89 mW/g; SAR(10 g) = 5.2 mW/g Maximum value of SAR (measured) = 11.2 mW/g Certificate No: D1900V2-5d032_Mar06 Page 5 of 6 # Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d032_Mar06 Page 6 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Cartificate No. D2450V2-743 Jan06 | | ERTIFICATE | THE THE PERSON NAMED IN THE PERSON NAMED IN | | |--|--|--|--| | Object | D2450V2 - SN: 7 | 43 | | | Calibration procedure(s) | QA CAL-05.v6
Calibration proce | dure for dipole validation kits | | | Calibration date: | January 20, 2006 | | | | Condition of the calibrated item | In Tolerance | | 建设是100的科区 第 | | | | obability are given on the following pages and an y facility: environment temperature (22 ± 3) °C and | | | Calibration Equipment used (M& | TE critical for calibration) | | | | | TE critical for calibration) | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Primary Standards | A MARINE CONTRACTOR OF CONTRACTOR | Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) | Scheduled Calibration Oct-06 | | rimary Standards
Power meter EPM-442A | ID# | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516) | Oct-06
Oct-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A | ID#
GB37480704 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator | ID #
GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r) | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 | ID #
GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
SN 3025 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ES3-3025_Oct05) | Oct-06
Oct-06
Aug-06
Aug-06
Oct-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 | ID #
GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r) | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ES3-3025_Oct05)
15-Dec-05 (SPEAG, No. DAE4-601_Dec05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ES3-3025_Oct05)
15-Dec-05 (SPEAG, No. DAE4-601_Dec05)
Check Date (in house) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 MY41000675 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ES3-3025_Oct05)
15-Dec-05 (SPEAG, No. DAE4-601_Dec05)
Check Date (in house) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 MY41000675 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 MY41000675 US37390585 S4206 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) 15-Dec-05 (SPEAG, No. DAE4-801_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | | Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E Calibrated by: | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 MY41090675 US37390585 S4206 Name | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | Certificate No: D2450V2-743_Jan06 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ## Additional Documentation: d) DASY4 System Handbook ## Methods Applied and Interpretation of Parameters: - . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-743_Jan06 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.6 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Area Scan resolution | dx, dy = 15 mm | | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.79 mho/m ± 6 % | | Head TSL temperature during test | (21.9 ± 0.2) °C | | | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 14.0 mW/g | | SAR normalized | normalized to 1W | 56.0 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 55.1 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.47 mW / g | | SAR normalized | normalized to 1W | 25.9 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 25.6 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-743_Jan06 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # Appendix ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.6 Ω + 6.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.0 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.158 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | | |-----------------|------------------|--| | Manufactured on | December 1, 2003 | | Certificate No: D2450V2-743_Jan06 Page 4 of 6 ## DASY4 Validation Report for Head TSL Date/Time: 20.01.2006 13:08:54 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:743 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 2450 MHz; $\sigma = 1.79$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) ## DASY4 Configuration: Probe: ES3DV2 - SN3025 (HF); ConvF(4.4, 4.4, 4.4); Calibrated: 28.10.2005 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160 Pin = 250 mW; d = 10 mm 2/Area Scan (81x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.1 mW/g Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, Reference Value = 93.1 V/m; Power Drift = 0.132 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 14 mW/g; SAR(10 g) = 6.47 mW/g Maximum value of SAR (measured) = 15.9 mW/g Certificate No: D2450V2-743_Jan06 Page 5 of 6 Report No.: HCT-SAR07-0106 FCC ID: PH7MV430 # Impedance Measurement Plot for Head TSL Certificate No: D2450V2-743_Jan06 Page 6 of 6