FCC ID: PH7MV420 **DATE: January 14, 2007** # **ATTACHMENT S – DIPOLE CALIBRATION DATA** TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.kr Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | Hent H-CT (Dymstec) | | Certific | Certificate No: D835V2-441_Aug06 | | |--|--|--|----------------------------------|--| | ALIBRATION C | ERTIFICATE | | | | | Dbject | D835V2 - SN: 44 | 1 | THE PRINT CHIEF | | | Calibration procedure(s) | QA CAL-05.v6 Calibration procedure for dipole validation kits | | s | | | Calibration date: | August 14, 2006 | ani sa masari. | Come no di spor | | | Condition of the calibrated item | In Tolerance | William the state of | | | | Primary Standards Power meter EPM-442A Power sensor HP 8481A | ID#
GB37480704
US37292783 | Cal Date (Calibrated by, Certificate
04-Oct-05 (METAS, No. 251-00516
04-Oct-05 (METAS, No. 251-00516 |) Oct-06 | | | Reference 20 dB Attenuator | SN: 5086 (20g) | 10-Aug-06 (METAS, No. 217-00591) | | | | Reference 10 dB Attenuator | SN: 5047.2 (10r) | 10-Aug-06 (METAS, No 217-00591) | | | | Reference Probe ET3DV6 | SN 1507
SN 601 | 28-Oct-05 (SPEAG, No. ET3-1507_
15-Dec-05 (SPEAG, No. DAE4-601, | | | | er Auer - Jacob Medicae (* 1870) er 188 fil. | | All sources are a service of the ser | | | | Secondary Standards | ID# | Check Date (in house) | Oct-05) In house check: Oct-07 | | | Power sensor HP 8481A
RF generator Agilent E4421B | MY41092317
MY41000675 | 18-Oct-02 (SPEAG, in house check
11-May-05 (SPEAG, in house check | 1907 | | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (SPEAG, in house check | | | | | Name | Function | Signature | | | Calibrated by: | Claudio Leubler | Laboratory Technician | ldu | | | Approved by: | Katja Pokovic | Technical Manager | The Way | | | M35453443045555 | ALL CONTROL OF THE PARTY | | falan la | | Certificate No: D835V2-441_Aug06 Page 1 of 6 TEL: +82 31 639 8518 FAX: +82 31 639 8525 <u>www.hct.co.l</u> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ### Additional Documentation: d) DASY4 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D835V2-441_Aug06 Page 2 of 6 ## Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.1 Ω - 6.7 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | ## General Antenna Parameters and Design | Management of the second th | | |--|----------| | Electrical Delay (one direction) | 1.376 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | | |-----------------|----------------|--|--| | Manufactured on | March 09, 2001 | | | Certificate No: D835V2-441_Aug06 Page 4 of 6 ## Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.1 Ω - 6.7 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | ## General Antenna Parameters and Design | Management of the second th | | |--|----------| | Electrical Delay (one direction) | 1.376 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | | |-----------------|----------------|--|--| | Manufactured on | March 09, 2001 | | | Certificate No: D835V2-441_Aug06 Page 4 of 6 ## DASY4 Validation Report for Head TSL Date/Time: 14.08.2006 13:00:04 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 441 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900; Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 28.10.2005 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 4.9L; Type: QD000P49AA;; Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171 ## Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.4 V/m; Power Drift = -0.067 dB Peak SAR (extrapolated) = 3.50 W/kg SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (measured) = 2.53 mW/g 0 dB = 2.53 mW/g Certificate No: D835V2-441_Aug06 Page 5 of 6 TEL: +82 31 639 8518 FAX: +82 31 639 8525 ## Impedance Measurement Plot for Head TSL Certificate No: D835V2-441_Aug06 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D2450V2-743 Jan06 Accreditation No.: SCS 108 | | ERTIFICATE | THE THE PERSON NAMED IN THE PERSON NAMED IN | | |--|--|--|--| | Object | D2450V2 - SN: 7 | 43 | | | Calibration procedure(s) | QA CAL-05.v6
Calibration proce | dure for dipole validation kits | | | Calibration date: | January 20, 2006 | | | | Condition of the calibrated item | In Tolerance | | 建设是100的科区 第 | | | | obability are given on the following pages and an y facility: environment temperature (22 ± 3) °C and | | | Calibration Equipment used (M& | TE critical for calibration) | | | | | TE critical for calibration) | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Primary Standards | A MARINE CONTRACTOR OF CONTRACTOR | Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) | Scheduled Calibration Oct-06 | | rimary Standards
Power meter EPM-442A | ID# | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516) | Oct-06
Oct-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A | ID#
GB37480704 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator | ID #
GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r) | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 | ID #
GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
SN 3025 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ES3-3025_Oct05) | Oct-06
Oct-06
Aug-06
Aug-06
Oct-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 | ID #
GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r) | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498) | Oct-06
Oct-06
Aug-06
Aug-06 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ES3-3025_Oct05)
15-Dec-05 (SPEAG, No. DAE4-601_Dec05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ES3-3025_Oct05)
15-Dec-05 (SPEAG, No. DAE4-601_Dec05)
Check Date (in house) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 MY41000675 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 | 04-Oct-05 (METAS, No. 251-00516)
04-Oct-05 (METAS, No. 251-00516)
11-Aug-05 (METAS, No 251-00498)
11-Aug-05 (METAS, No 251-00498)
28-Oct-05 (SPEAG, No. ES3-3025_Oct05)
15-Dec-05 (SPEAG, No. DAE4-601_Dec05)
Check Date (in house) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 MY41000675 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 MY41000675 US37390585 S4206 | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) 15-Dec-05 (SPEAG, No. DAE4-801_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | | Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E Calibrated by: | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID# MY41092317 MY41090675 US37390585 S4206 Name | 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ES3-3025_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) | Oct-06 Oct-06 Aug-06 Aug-06 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 | Certificate No: D2450V2-743_Jan06 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ## **Additional Documentation:** d) DASY4 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-743_Jan06 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.6 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Area Scan resolution | dx, dy = 15 mm | | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.79 mho/m ± 6 % | | Head TSL temperature during test | (21.9 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 14.0 mW/g | | SAR normalized | normalized to 1W | 56.0 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 55.1 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.47 mW / g | | SAR normalized | normalized to 1W | 25.9 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 25.6 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-743_Jan06 Page 3 of 6 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" ## Appendix ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.6 Ω + 6.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.0 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.158 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|------------------|--| | Manufactured on | December 1, 2003 | | Certificate No: D2450V2-743_Jan06 Page 4 of 6 #### DASY4 Validation Report for Head TSL Date/Time: 20.01.2006 13:08:54 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:743 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB; Medium parameters used: f = 2450 MHz; $\sigma = 1.79$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: ES3DV2 - SN3025 (HF); ConvF(4.4, 4.4, 4.4); Calibrated: 28.10.2005 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 15.12.2005 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ; Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 160 Pin = 250 mW; d = 10 mm 2/Area Scan (81x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.1 mW/g Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0; Measurement grid: dx=5mm, dy=5mm, dy=5mm Reference Value = 93.1 V/m; Power Drift = 0.132 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 14 mW/g; SAR(10 g) = 6.47 mW/g Maximum value of SAR (measured) = 15.9 mW/g Certificate No: D2450V2-743_Jan06 Page 5 of 6 Report No.: HCT-SAR07-0105 FCC ID: PH7MV420 ## Impedance Measurement Plot for Head TSL Certificate No: D2450V2-743_Jan06 Page 6 of 6