

Specific Absorption Rate (SAR) Test Report

for

Axesstel Inc.

on the

Axesstel HSUPA Mini ExpressCard

Report Number : FA8O1009
Trade Name : Axesstel
Model Name : EU230

FCC ID : **PH7EU230**

Date of Testing : Nov. 18, 2008 ~ Dec. 04, 2008

Date of Report : Dec. 15, 2008 Date of Review : Dec. 15, 2008

- The test results refer exclusively to the tested model/sample only.
- Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.
- Report Version: Rev. 03

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

1.	Staten	nent of Compliance	3
2.	Admir	nistration Data	4
	2.1	Testing Laboratory	4
	2.2	Applicant	4
	2.3	Manufacturer	
	2.4	Application Details	
3.	Gener	al Information	
	3.1	Description of Device Under Test (DUT)	
	3.2	Basic Description of Accessory	
	3.3	Product Photos	
	3.4	Applied Standards	
	3.5	Device Category and SAR Limits	
	3.6	Test Conditions	
		3.6.1 Ambient Condition	
		3.6.2 Test Configuration	
		3.6.3 FCC 3G SAR Measurement Procedures	7
4.	Specif	fic Absorption Rate (SAR)	
	4.1	Introduction	
	4.2	SAR Definition	
5.	SAR N	Measurement Setup	
	5.1	DASY5 E-Field Probe System	
		5.1.1 ET3DV6 E-Field Probe Specification	
		5.1.2 ET3DV6 E-Field Probe Calibration	
	5.2	DATA Acquisition Electronics (DAE)	
	5.3	Robot	
	5.4	Measurement Server	
	5.5	SAM Twin Phantom	
	5.6	Device Holder for SAM Twin Phantom	
	5.7	Data Storage and Evaluation	.18
		5.7.1 Data Storage	
		5.7.2 Data Evaluation	
	5.8	Test Equipment List	
6.	Tissue	e Simulating Liquids	.21
7.	Uncer	tainty Assessment	.23
8.	SAR N	Measurement Evaluation	.25
	8.1	Purpose of System Performance check	
	8.2	System Setup	
	8.3	Validation Results	
		iption for DUT Testing Position	
10.	Measu	rement Procedures	
	10.1	Spatial Peak SAR Evaluation	
	10.2		
	10.3	SAR Averaged Methods	.30
11.	SAR T	est Results	
	11.1	Conducted Power	
	11.2	Test Records for Body SAR Test	.32
		ences	.34
App	endix	A - System Performance Check Data	
App	endix	B - SAR Measurement Data	
App	endix	C - Calibration Data	
App	endix	D - Product Photos	
App	endix	E - Test Setup Photos	

Test Report No : FA8O1009

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum results found during testing for the **Axesstel Inc. Axesstel HSUPA Mini ExpressCard Axesstel EU230** are as follows (with expanded uncertainty 21.9%):

	GSM850	GSM1900	WCDMA Band V	WCDMA Band II
SAR	SAR	SAR	SAR	SAR
Position	(W/kg)	(W/kg)	(W/kg)	(W/kg)
Body	0.575	0.458	0.92	0.874

They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Roy Wu Manager

2. Administration Data

2.1 Testing Laboratory

Company Name: Sporton International Inc.

Address: No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,

Test Report No : FA8O1009

TaoYuan Hsien, Taiwan, R.O.C.

 Test Site :
 SAR01-HY

 Telephone Number :
 886-3-327-3456

 Fax Number :
 886-3-328-4978

2.2 Applicant

Company Name: Axesstel Inc.

Address: 6815 Flanders Drive Ste. 210 San Diego, CA 92121

2.3 Manufacturer

Company Name: Wistron NeWeb Corporation

Address: No. 10-1, Li-hsin Road I, Hsinchu Science Park, Hsinchu 300, Taiwan, R.O.C.

2.4 Application Details

Date of reception of application:Oct. 10, 2008Start of test:Nov. 18, 2008End of test:Dec. 08, 2008

3. General Information

3.1 <u>Description of Device Under Test (DUT)</u>

Product Feature & Specification					
DUT Type :	Axesstel HSUPA Mini ExpressCard				
Trade Name :	Axesstel				
Model Name :	EU230				
FCC ID :	PH7EU230				
Tx Frequency :	GSM850 : 824 MHz ~ 849 MHz GSM1900 : 1850 MHz ~1910 MHz WCDMA Band V : 824 MHz ~ 849 MHz WCDMA Band II : 1850 MHz ~ 1910 MHz				
Rx Frequency :	GSM850: 869 MHz ~ 894 MHz GSM1900: 1930 MHz ~ 1990 MHz WCDMA Band V: 869 MHz ~ 894 MHz WCDMA Band II: 1930 MHz ~ 1990 MHz				
Maximum Output Power to Antenna :	GSM850 : 31.78 dBm GSM1900 : 29.09 dBm WCDMA Band V : 22.94 dBm WCDMA Band II : 20.74 dBm				
Antenna Type :	Fixed External				
HW Version :	D81001-1				
SW Version :	D81.QD831400AC				
Type of Modulation :	GSM / GPRS : GMSK EDGE : 8PSK WCDMA : QPSK HSDPA : QPSK / 16QAM HSUPA : BPSK				
DUT Stage :	Production Unit				

Test Report No : FA8O1009

Note: This DUT has both Card Bus and USB interface and the antenna of DUT was designed to only pivot/swivel between 0 and 90 degrees in one direction.

3.2 Basic Description of Accessory

	Brand Name	N/A
USB Cable	Model Name	50.D8102.021
	Signal Line Type	0.5 meter shielded cable without ferrite core

Remark: Above EUT's information was declared by manufacturer. Please refer to the specifications of manufacturer or User's Manual for more detailed features description.

3.3 Product Photos

Refer to Appendix D.

3.4 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Axesstel HSUPA Mini ExpressCard is in accordance with the following standards:

Test Report No : FA8O1009

47 CFR Part 2 (2.1093)

IEEE C95.1-1999

IEEE C95.3-2002

IEEE P1528-2003

OET Bulletin 65 Supplement C (Edition 01-01)

Preliminary Guidance for Reviewing Applications for Certification of 3G Device. May 2006.

KDB 941225 D01 v02

KDB 447498 D01 v03r02

3.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.6 Test Conditions

3.6.1 Ambient Condition

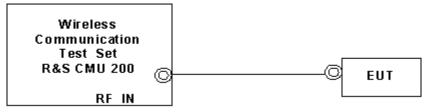
Ambient Temperature	20-24
Humidity	<60 %

3.6.2 Test Configuration

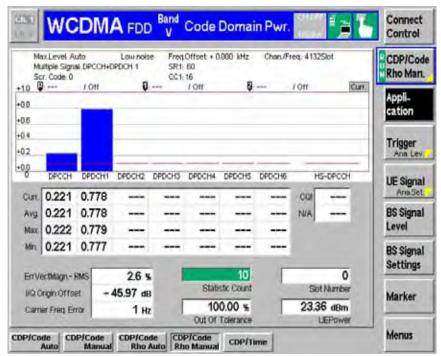
The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

Measurements were performed on the lowest, middle, and highest channel for each testing position. However, measurements were performed only on the middle channel if the SAR is below 3 dB of limit.

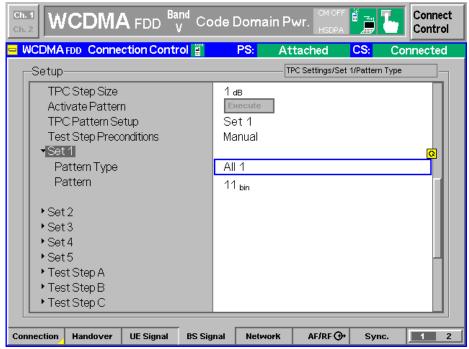
For SAR testing, EUT is in GPRS/EDGE or WCDMA/HSPA link mode. In GPRS/EDGE link mode, its crest factor is 2, because EUT is GPRS/EDGE multi-slot class 12 device with 4 uplink slots. In WCDMA/HSPA link mode, its crest factor is 1.

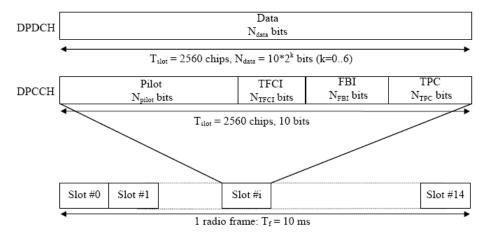


3.6.3 FCC 3G SAR Measurement Procedures


The EUT was tested according to the requirements of the FCC 3G procedures and the TS 34.121. The EUT's WCDMA and HSPA function is Release 6 version supporting HSDPA Category 8, and HSUPA Category 5.

WCDMA Setup Configuration:


- a. The EUT was connected to Base Station referred to the drawing of Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting
 - i. Data rates: Varied from RMC 12.2Kbps to 384Kbps for each measurement.
 - ii. RMC Test Loop=Loop Mode 1 RLC TM
 - iii. TPC with All Up.
- d. The transmitted maximum output power was recorded.


Setup Configuration

Single DPCCH with only one DPDCH at RMC 12.2Kbps (Symbol Rate 60 Kbps)

TPC with All "1" (Continuous transmitting)

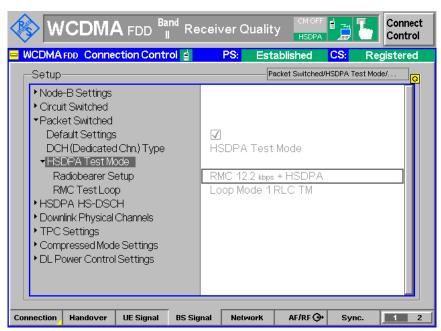
Frame structure for uplink DPDCH/DPCCH

The parameter K in the figure determines the number of bits per uplink DPDCH slot. It is related to the spreading factor SF of the DPDCH as $SF = 256/2^k$. The DPDCH spreading factor may range from 256 down to 4. The spreading factor of the uplink DPCCH is always equal to 256, i.e. there are 10 bits per uplink DPCCH slot.

	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
$DPDCH_1$	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640
DPDCH _n	960	960	4	1, 2, 3	640

Table 2 DPCCH and DPDCH

There is only one DPCCH per radio link. Data rates, channelization codes and spread factor information for DPCCH and DPDCH_n are indicated in the following Table. Spreading Rate (SF) * Symbol Rate = 3.84 Mcps.

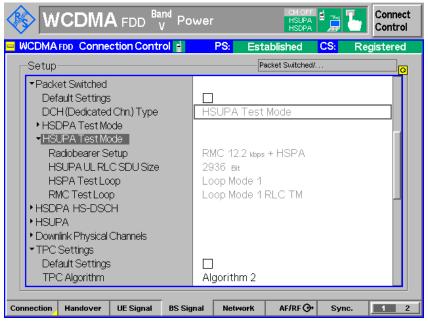

HSDPA Setup Configuration:

- a. The EUT was connected to Base Station referred to the drawing of Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set RMC12.2Kbps with HSDPA mode.
 - ii. RMC Test Loop=Loop Mode 1 RLC TM
 - iii. TPC with All Up
 - iv. Channel Configuration Type=FRC with H-set 1 (QPSK)
 - v. CQI Feedback Cycle=4ms, CQI Repetition Factor=2
 - vi. RV Coding Sequence {0.2.5.6}
 - vii. Gain Factors(β c,and β d) and parameters were set according to each specific sub-test in the following table, C10.1.4, quoted from the TS 34.121.
- d. The transmitted maximum output power was recorded.

Sub-test	βο	βd	β _d (SF)	β₀/β₀	β _{HS} (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)	
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0	
3	15/15	8/15	64	15/8	30/15	1.5	0.5	
4	15/15	4/15	64	15/4	30/15	1.5	0.5	
Note 2:	Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hz} = 30/15 * β_c . For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{hz} = 30/15 * β_c , and Δ_{CQI} = 24/15 with β_{hz} = 24/15 * β_c .							
	 CM = 1 for β_e/β_d =12/15, β_{he}/β_e=24/15. For all other combinations of DPDCH, DPCCH and HS- DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. 							
				for the TFC during n factors for the re				

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

RMC 12.2Kbps with HSDPA function


HSPA(HSPDA&HSUPA) Setup Configuration:

- a. The EUT was connected to Base Station referred to the drawing of Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set HSUPA mode.
 - ii. RMC Test Loop=Loop Mode 1 RLC TM
 - iii. Power control algorithm 2
 - iv. HS-DSCH Channel Configuration Type=FRC with H-set 1 (QPSK)
 - v. Gain Factors (βc,and βd)and parameters were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121.
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βο	βd	β₄ (SF)	β₀/β₀	βнs (Note1)	βω	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 2	Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{COI} = 30/15$ with $\beta_{Ac} = 30/15$ * β_{c} . Note 2: $CM = 1$ for $\beta_{d}/\beta_{d} = 12/15$, $\beta_{hd}/\beta_{e} = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. Note 3: For subtest 1 the β_{d}/β_{d} ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_{e} = 10/15$ and $\beta_{e} = 15/15$.												
	Note 4: For subtest 5 the β _c /β _c ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β _c = 14/15 and β _d = 15/15. Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.												
Note 6													

HSUPA function

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Test Report No : FA8O1009

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where $\,$ is the conductivity of the tissue, $\,$ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

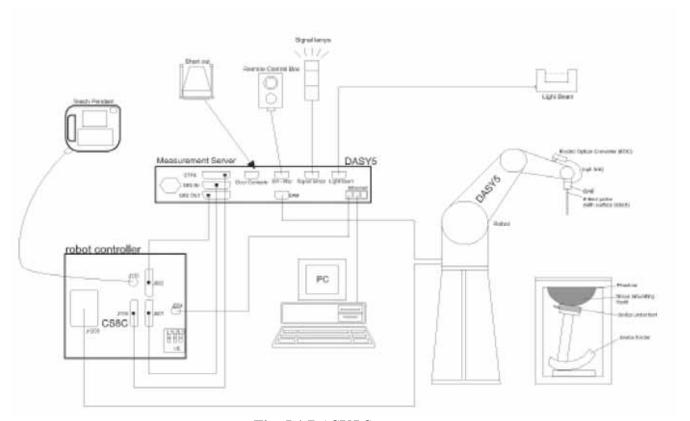


Fig. 5.1 DASY5 System

The DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY5 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- > The SAM twin phantom
- ➤ A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY5 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 ET3DV6 E-Field Probe Specification

<ET3DV6>

< <u>E13DV6></u>		
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents)	
Frequency	10 MHz to 3 GHz	
Directivity	± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation perpendicular to probe axis)	
Dynamic Range	5 μ W/g to 100mW/g; Linearity: ±0.2dB	
Surface Detection	\pm 0.2 mm repeatability in air and clear liquids on reflecting surface	
Dimensions	Overall length: 330mm Tip length: 16mm Body diameter: 12mm Tip diameter: 6.8mm Distance from probe tip to dipole centers: 2.7mm	
Application	General dosimetry up to 3GHz Compliance tests for mobile phones and Wireless LAN Fast automatic scanning in arbitrary phantoms	Fig. 5.2 Probe Setup on Robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

> ET3DV6 sn1788

Sensitivity	X axis : 1.7	⁷ 3 μV	Y ax	is : 1.59 μV	Z axis : 1.72 μV
Diode compression point	X axis : 95 mV		Y axis: 98 mV		Z axis: 91 mV
Conversion factor	Frequency (MHz)	X axis		Y axis	Z axis
(Head / Body)	800~1000	6.55 /	6.34	6.55 / 6.34	6.55 / 6.34
	1850~2050	5.13 /	4.73	5.13 / 4.73	5.13 / 4.73
Boundary effect	Frequency (MHz)	Alp	ha	Depth	
(Head / Body)	800~1000	0.44 /	0.50	2.65 / 2.48	
	1850~2050	0.75 /	0.74	1.75 / 1.99	

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 <u>DATA Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

Test Report No : FA8O1009

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used. The XL robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- ➤ High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ► 6-axis controller

5.4 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with 400 MHz CPU 128 MB chipdisk and 128 MB RAM.

Communication with the DAE4 electronic box

the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- *Water-sugar based liquid
- *Glycol based liquids

Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 <u>Device Holder for SAM Twin Phantom</u>

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $_{\rm r}$ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 <u>Data Storage and Evaluation</u>

5.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-less media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY5 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters : - Sensitivity Norm_i, a_{i0} a_{i1} , a_{i2}

- Conversion factor ConvF_i - Diode compression point dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

C SAR Test Report No : FA801009

The formula for each channel can be given as:

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 $dcp_i = diode\ compression\ point\ (DASY\ parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field probes : $E_i = \sqrt{\frac{V_i}{Norm_i ConvF}}$

H-field probes: $H_i = \sqrt{V_i} \frac{a_{i0+} a_{i1} f + a_{i2} f^2}{f}$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel *i* in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with

 P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

5.8 Test Equipment List

Manufacturer	Name of Equipment	Tyme/Model	Serial Number	Calibration		
Manufacturer	Name of Equipment	Type/Model	Seriai Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep. 23, 2008	Sep. 22, 2009	
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 17, 2008	Mar. 16, 2010	
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 28, 2008	Mar. 27, 2010	
SPEAG	Data Acquisition Electronics	DAE4	778	Sep. 22, 2008	Sep. 21, 2009	
SPEAG	Device Holder	N/A	N/A	NCR	NCR	
SPEAG	SAM Phantom	QD 000 P40 C	TP-1303	NCR	NCR	
SPEAG	SAM Phantom	QD 000 P40 C	TP-1446	NCR	NCR	
SPEAG	SAM Phantom	QD 000 P40 C	TP-1383	NCR	NCR	
SPEAG	ELI4 Phantom	QD 0VA 001 BA	1029	NCR	NCR	
Agilent	PNA Series Network Analyzer	E8358A	US40260131	Apr. 02, 2008	Apr. 01, 2009	
R&S	Universal Radio Communication Tester	CMU200	114256	Dec.11, 2007	Dec. 10, 2008	
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR	
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR	
AR	Power Amplifier	5S1G4M2	0328767	NCR	NCR	
R&S	Power Meter	NRVD	101394	Oct. 20, 2008	Oct. 19, 2009	
R&S	Power Sensor	NRV-Z1	100130	Oct. 20, 2008	Oct. 19, 2009	

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY5, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR)or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

Test Report No : FA8O1009

The following ingredients for tissue simulating liquid are used:

- ▶ Water: deionized water (pure H_20), resistivity $\ge 16M\Omega$ as basis for the liquid
- ➤ Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- > Salt: pure NaCl to increase conductivity
- ➤ Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- ➤ **Preservative**: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- ➤ **DGMBE**: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of body tissue simulating liquid for frequency band 850MHz and 1900 MHz.

Ingredient	MSL-850	MSL-1900
Water	631.68 g	716.56 g
Cellulose	0 g	0 g
Salt	11.72 g	4.0 g
Preventol D-7	1.2 g	0 g
Sugar	600.0 g	0 g
DGMBE	0 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	f=835 MHz	f= 1900 MHz
	$\varepsilon_{\rm r} = 55.2 \pm 5\%,$	$\varepsilon_{\rm f} = 53.3 \pm 5 \%$
	$\sigma = 0.97 \pm 5\% \text{ S/m}$	$\sigma = 1.52 \pm 5\% \text{ S/m}$

Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table 6.2 shows the measuring results for muscle simulating liquid.

Band	Temperature ()	Frequency (MHz)	Conductivity (σ)	Permittivity (ε_r)	Measurement Date
		824.2	0.944	52.7	
GSM850	21.3	836.4	0.957	52.6	Nov. 18, 2008
		848.8	0.969	52.5	
		1850.2	1.47	51.1	
GSM1900	21.3	1880.0	1.50	51.0	Nov. 18, 2008
		1909.8	1.53	50.9	
	21.3	826.4	0.947	52.7	
		836.4	0.957	52.6	Nov. 18, 2008
WCDMA Band V		846.6	0.967	52.5	
WCDMA Dallu V	21.3	826.4	0.944	52.8	
		836.4	0.954	52.7	Dec. 04, 2008
		846.6	0.964	52.6	
		1852.4	1.48	51.1	
WCDMA Band II	21.3	1880.0	1.50	51.0	Nov. 18, 2008
		1907.6	1.53	50.9	

Table 6.2 Measuring Results for Simulating Liquid

The measuring data are consistent with $\varepsilon = 55.2 \pm 5\%$ and $\sigma = 0.97 \pm 5\%$ for body GSM850 and WCDMA Band V, and $\varepsilon_r = 53.3 \pm 5\%$ and $\sigma = 1.52 \pm 5\%$ for body GSM1900 and WCDMA Band II.

7. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Test Report No : FA8O1009

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape	
Multiplying factor ^(a)	1/k (b)	1/ 3	1/ 6	1/ 2	

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY5 uncertainty Budget is showed in Table 7.2.

⁽b) is the coverage factor

Error Description	Uncertainty Value ± %	· ·		Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment				_		
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	∞
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	∞
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	∞
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	∞
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	∞
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	∞
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	∞
Phantom and Setup						_
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	∞
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	∞
Combined Standard Uncertainty					±10.9	387
Coverage Factor for 95 %		K=2				
Expanded uncertainty (Coverage factor = 2)					±21.9	

Table 7.2 Uncertainty Budget of DASY5

Test Report No : FA8O1009

8. SAR Measurement Evaluation

Each DASY5 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY5 software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Test Report No : FA8O1009

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

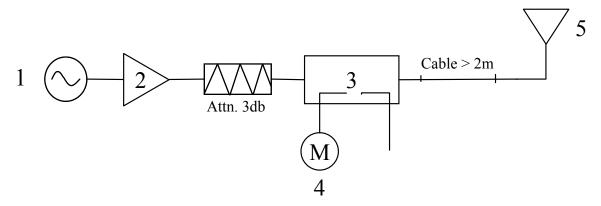


Fig. 8.1 System Setup for System Evaluation

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 835 MHz or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 <u>Validation Results</u>

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Frequency	SAR	Target (W/kg)	Measurement data (W/kg)	Variation	Measurement Date
	SAR (1g)	9.52	9.75	2.4 %	Nov. 18, 2008
835MHz	SAR (10g)	6.37	6.49	1.9 %	1NOV. 10, 2000
	SAR (1g)	9.52	9.62	1.1 %	Dag 04 2009
	SAR (10g)	6.37	6.41	0.6 %	Dec. 04, 2008
1000MHz	SAR (1g)	40.1	40.1	0.0 %	Nov. 19 2009
1900MHz	SAR (10g)	21.3	20.8	-2.3 %	Nov. 18, 2008

Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT has both Card Bus and USB interface and the antenna of DUT was designed to only pivot/swivel between 0 and 90 degrees in one direction.

Test Report No : FA8O1009

This DUT was tested in five different positions. They are "DUT Bottom with 1cm Gap with horizontal and vertical antennas in Card Bus mode", "DUT Bottom with 0.5cm Gap with horizontal and vertical antennas in USB Dongle mode", "DUT Left Side with 0.5cm Gap with horizontal and vertical antennas in USB Dongle mode", "DUT Right Side with 0.5cm Gap with horizontal antenna in USB Dongle mode" and "DUT Face with 0.5cm Gap with horizontal antenna in USB Dongle mode".

Remark: Please refer to Appendix E for the test setup photos.

10.Measurement Procedures

The measurement procedures are as follows:

- Linking DUT with base station emulator CMU200 in middle channel
- ➤ Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- ➤ Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY5 software
- Taking data for the middle channel on each testing position
- Finding out the largest SAR result on these testing positions of each band
- Measuring output power and SAR results for the low and high channels in this worst case testing position

Test Report No : FA8O1009

According to the OET Bulletin 65 Supplement C standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- > Power reference measurement
- Area scan
- > Zoom scan
- > Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the OET Bulletin 65 Supplement C standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY5, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Conducted Power

Band Channel	GSM 850 (dBm)			GSM 1900 (dBm)				
Mode	128	189	251	512	661	810		
GPRS 8	31.78	31.72	31.68	29.07	29.09	29.07		
GPRS 10	28.82	28.76	28.72	26.12	26.18	26.13		
GPRS 12	25.87	25.82	25.76	23.12	23.14	23.12		
EGPRS 8	27.50	27.41	27.37	26.67	26.72	26.73		
EGPRS 10	22.02	22.00	21.96	21.28	21.32	21.30		
EGPRS 12	19.04	19.07	18.99	18.33	18.35	18.32		

Test Report No : FA8O1009

	Band Channel	W	VCDMA Band (dBm)	V	WCDMA Band II (dBm)				
Mode	Channel	4132	4182	4233	9262	9400	9538		
12.2k	C C	22.74	22.80	22.94	20.66	20.74	20.35		
12.2K+HSDPA	Subtest-1	22.72	22.74	22.85	20.54	20.58	20.25		
	Subtest-2	21.94	22.04	22.23	20.26	20.33	19.91		
12.2KTHSDFA	Subtest-3	22.10	22.03	22.24	20.21	20.38	19.97		
	Subtest-4	21.51	21.47	21.54	19.82	19.91	19.55		
	Subtest-1	22.40	22.21	22.59	20.30	20.47	20.30		
	Subtest-2	19.98	19.81	20.08	18.22	18.23	18.01		
12.2K+HSUPA	Subtest-3	21.25	21.08	21.32	19.31	19.30	19.04		
	Subtest-4	20.77	20.58	20.81	18.66	18.93	18.60		
	Subtest-5	22.40	22.07	22.31	20.26	20.29	20.16		

11.2 Test Records for Body SAR Test

DUT		Antenna			Freq.		Limit	
Mode	Test Position	Status	Band	Ch.	(MHz)	SAR _{1g}	(W/kg)	Pass
CardBus	Bottom with 1cm Gap	Horizontal	GSM850 (GPRS12)	189	836.4	0.223	1.6	Pass
CardBus	Bottom with 1cm Gap	Vertical	GSM850 (GPRS12)	189	836.4	0.155	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	GSM850 (GPRS12)	189	836.4	0.389	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Vertical	GSM850 (GPRS12)	189	836.4	0.268	1.6	Pass
USB Dongle	Left Side with 0.5cm Gap	Horizontal	GSM850 (GPRS12)	189	836.4	0.116	1.6	Pass
USB Dongle	Left Side with 0.5cm Gap	Vertical	GSM850 (GPRS12)	189	836.4	0.450	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	GSM850 (GPRS12)	189	836.4	0.524	1.6	Pass
USB Dongle	Right Side with 0.5cm Gap	Horizontal	GSM850 (GPRS12)	189	836.4	0.185	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	GSM850 (GPRS10)	189	836.4	0.572	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	GSM850 (GPRS8)	189	836.4	0.575	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	GSM850 (EDGE12)	189	836.4	0.1	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	GSM850 (EDGE10)	189	836.4	0.094	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	GSM850 (EDGE8)	189	836.4	0.151	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	GSM850 (GPRS8)	128	824.2	0.531	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	GSM850 (GPRS8)	251	848.8	0.542	1.6	Pass
CardBus	Bottom with 1cm Gap	Horizontal	GSM1900 (GPRS12)	661	1880.0	0.26	1.6	Pass
CardBus	Bottom with 1cm Gap	Vertical	GSM1900 (GPRS12)	661	1880.0	0.215	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	GSM1900 (GPRS12)	661	1880.0	0.458	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Vertical	GSM1900 (GPRS12)	661	1880.0	0.37	1.6	Pass
USB Dongle	Left Side with 0.5cm Gap	Horizontal	GSM1900 (GPRS12)	661	1880.0	0.159	1.6	Pass
USB Dongle	Left Side with 0.5cm Gap	Vertical	GSM1900 (GPRS12)	661	1880.0	0.436	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	GSM1900 (GPRS12)	661	1880.0	0.378	1.6	Pass
USB Dongle	Right Side with 0.5cm Gap	Horizontal	GSM1900 (GPRS12)	661	1880.0	0.03	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	GSM1900 (GPRS10)	661	1880.0	0.443	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	GSM1900 (GPRS8)	661	1880.0	0.443	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	GSM1900 (EDGE12)	661	1880.0	0.145	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	GSM1900 (EDGE10)	661	1880.0	0.14	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	GSM1900 (EDGE8)	661	1880.0	0.235	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	GSM1900 (GPRS12)	512	1850.2	0.425	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	GSM1900 (GPRS12)	810	1909.8	0.426	1.6	Pass

DUT Mode	Test Position	Antenna Status	Band	Ch.	Freq. (MHz)	SAR _{1g}	Limit (W/kg)	Pass
CardBus	Bottom with 1cm Gap	Horizontal	WCDMA850 (RMC12.2K)	4182	836.4	0.277	1.6	Pass
CardBus	Bottom with 1cm Gap	Vertical	WCDMA850 (RMC12.2K)	4182	836.4	0.209	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K)	4182	836.4	0.522	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Vertical	WCDMA850 (RMC12.2K)	4182	836.4	0.366	1.6	Pass
USB Dongle	Left Side with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K)	4182	836.4	0.132	1.6	Pass
USB Dongle	Left Side with 0.5cm Gap	Vertical	WCDMA850 (RMC12.2K)	4182	836.4	0.655	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K)	4182	836.4	0.872	1.6	Pass
USB Dongle	Right Side with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K)	4182	836.4	0.26	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K+HSDPA)	4182	836.4	0.842	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K+HSUPA)	4182	836.4	0.711	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K)	4132	826.4	0.92	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K)	4233	846.6	0.828	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K+HSDPA)	4132	826.4	0.826	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	WCDMA850 (RMC12.2K+HSDPA)	4233	846.6	0.695	1.6	Pass
USB Dongle	Face with 1.0cm Gap	Horizontal	WCDMA850 (RMC12.2K)	4132	826.4	0.374	1.6	Pass
CardBus	Bottom with 1cm Gap	Horizontal	WCDMA1900 (RMC12.2K)	9400	1880.0	0.471	1.6	Pass
CardBus	Bottom with 1cm Gap	Vertical	WCDMA1900 (RMC12.2K)	9400	1880.0	0.414	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	WCDMA1900 (RMC12.2K)	9400	1880.0	0.869	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Vertical	WCDMA1900 (RMC12.2K)	9400	1880.0	0.634	1.6	Pass
USB Dongle	Left Side with 0.5cm Gap	Horizontal	WCDMA1900 (RMC12.2K)	9400	1880.0	0.320	1.6	Pass
USB Dongle	Left Side with 0.5cm Gap	Vertical	WCDMA1900 (RMC12.2K)	9400	1880.0	0.783	1.6	Pass
USB Dongle	Face with 0.5cm Gap	Horizontal	WCDMA1900 (RMC12.2K)	9400	1880.0	0.630	1.6	Pass
USB Dongle	Right Side with 0.5cm Gap	Horizontal	WCDMA1900 (RMC12.2K)	9400	1880.0	0.065	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap_	Horizontal	WCDMA1900 (RMC12.2K+HSDPA)	9400	1880.0	0.799	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	WCDMA1900 (RMC12.2K+HSUPA)	9400	1880.0	0.621	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	WCDMA1900 (RMC12.2K)	9262	1852.4	0.874	1.6	Pass
USB Dongle	Bottom with 0.5cm Gap	Horizontal	WCDMA1900 (RMC12.2K)	9538	1907.6	0.826	1.6	Pass

Note: The enhanced energy coupling SAR was only performed on worst SAR position.

Test Engineer: Gordon Lin, Jason Wang, Robert Liu, Eric Huang, and A-Rod Chen

12.References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Test Report No : FA8O1009

- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DASY5 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

System Check_Body_835MHz_081118

DUT: Dipole 835 MHz

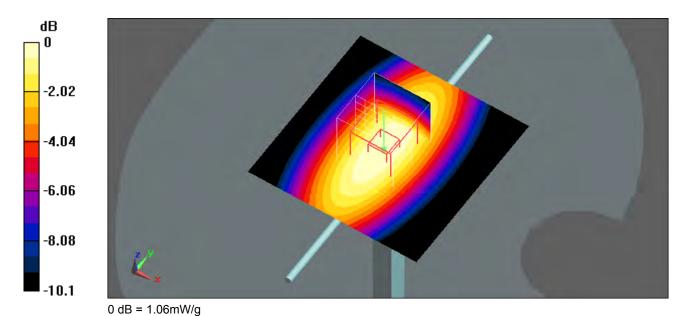
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 835 MHz; σ = 0.957 mho/m; ϵ_r = 53; ρ = 1000 kg/m³

Ambient Temperature: 22.4 ; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87


Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.06 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.9 V/m; Power Drift = -0.000928 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.975 mW/g; SAR(10 g) = 0.649 mW/g Maximum value of SAR (measured) = 1.06 mW/g

Test Report No : FA8O1009

CC SAR Test Report No : FA801009

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/12/4

System Check_Body_835MHz_081204

DUT: Dipole 835 MHz

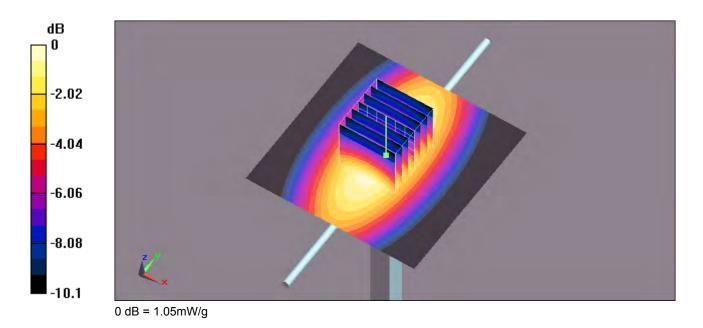
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.953$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87


Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.04 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.8 V/m; Power Drift = -0.00939 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.962 mW/g; SAR(10 g) = 0.641 mW/g Maximum value of SAR (measured) = 1.05 mW/g

FCC SAR Test Report No : FA801009

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

System Check_Body_1900MHz_081118

DUT: Dipole 1900 MHz

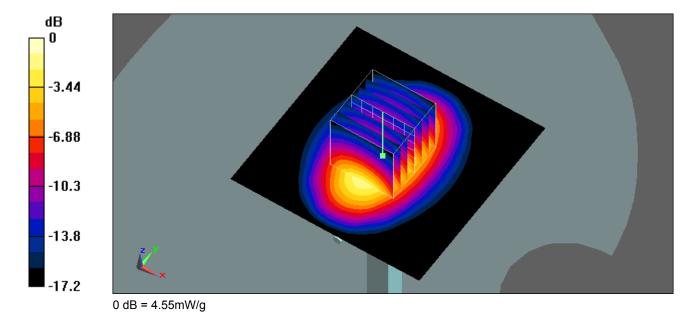
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL 1900 Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ϵ_r = 50.9; ρ = 1000 kg/m³

Ambient Temperature: 22.1; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87


Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.61 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.4 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 7.28 W/kg

SAR(1 g) = 4.01 mW/g; SAR(10 g) = 2.08 mW/g Maximum value of SAR (measured) = 4.55 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM850 Ch189_DUT Bottom with 1cm Gap_Horizontal Ant._GPRS12

DUT: 801009

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.958$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

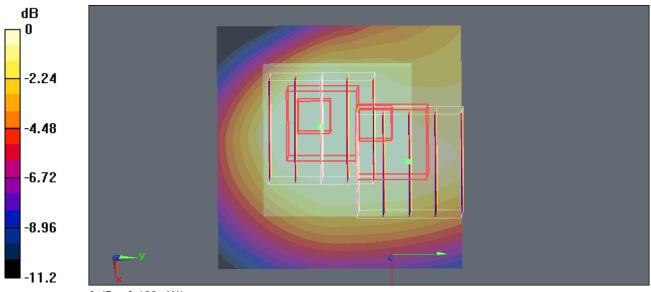
Ch189/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.246 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14 V/m; Power Drift = 0.112 dB

Peak SAR (extrapolated) = 0.327 W/kg


SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.146 mW/gMaximum value of SAR (measured) = 0.233 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14 V/m; Power Drift = 0.112 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.165 mW/g; SAR(10 g) = 0.119 mW/gMaximum value of SAR (measured) = 0.188 mW/g

0 dB = 0.188 mW/g

Test Report No : FA8O1009

FCC SAR Test Report No : FA8O1009

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM850 Ch189_DUT Bottom with 1cm Gap_Vertical Ant._GPRS12

DUT: 801009

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL 850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.958$ mho/m; $\varepsilon_r = 52.9$; $\rho = 1000$ kg/m³

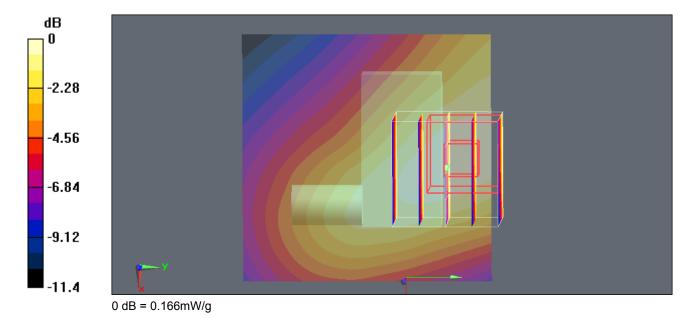
Ambient Temperature: 22.3; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch189/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.166 mW/g

maximum value of OAR (interpolated) = 0.100 mm/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.2 V/m; Power Drift = 0.137 dB

Peak SAR (extrapolated) = 0.210 W/kg

SAR(1 g) = 0.155 mW/g; SAR(10 g) = 0.106 mW/g

Maximum value of SAR (measured) = 0.166 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM850 Ch189_DUT Bottom with 0.5cm Gap_Horizontal Ant._GPRS12

DUT: 801009

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL 850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.957$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch189/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.465 mW/g

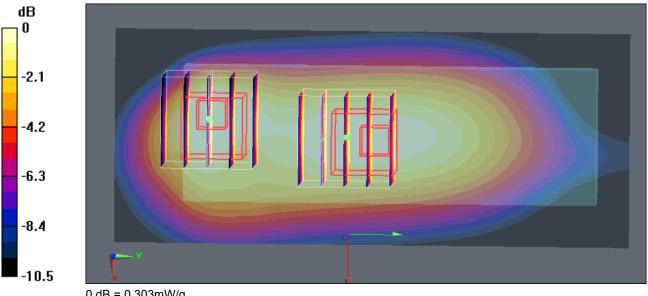
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.4 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 0.759 W/kg

SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.214 mW/g

Maximum value of SAR (measured) = 0.452 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.4 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 0.399 W/kg

SAR(1 g) = 0.284 mW/g; SAR(10 g) = 0.202 mW/g

Maximum value of SAR (measured) = 0.303 mW/g

0 dB = 0.303 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM850 Ch189_DUT Bottom with 0.5cm Gap_Vertical Ant._GPRS12

DUT: 801009

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL 850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.958$ mho/m; $\varepsilon_r = 52.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch189/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.292 mW/g

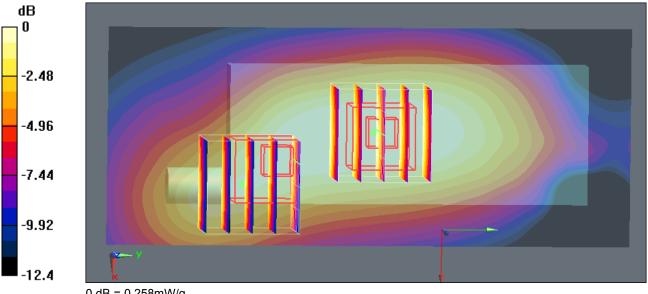
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.9 V/m; Power Drift = 0.140 dB

Peak SAR (extrapolated) = 0.344 W/kg

SAR(1 g) = 0.268 mW/g; SAR(10 g) = 0.188 mW/g

Maximum value of SAR (measured) = 0.285 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.9 V/m; Power Drift = 0.140 dB

Peak SAR (extrapolated) = 0.355 W/kg

SAR(1 g) = 0.227 mW/g; SAR(10 g) = 0.141 mW/g

Maximum value of SAR (measured) = 0.258 mW/g

0 dB = 0.258 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM850 Ch189_DUT Left Side with 0.5cm Gap_Horizontal Ant._GPRS12

DUT: 801009

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL 850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.957$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch189/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.124 mW/g

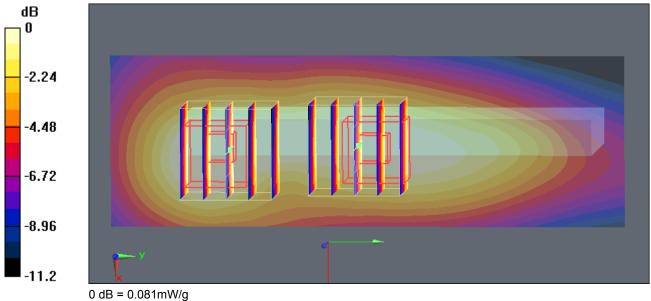
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.98 V/m; Power Drift = -0.197 dB

Peak SAR (extrapolated) = 0.202 W/kg

SAR(1 g) = 0.116 mW/g; SAR(10 g) = 0.065 mW/g

Maximum value of SAR (measured) = 0.125 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.98 V/m; Power Drift = -0.197 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.075 mW/g; SAR(10 g) = 0.050 mW/g

Maximum value of SAR (measured) = 0.081 mW/g

0 db - 0.00 mivv/g

FCC SAR Test Report No : FA8O1009

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM850 Ch189_DUT Left Side with 0.5cm Gap_Vertical Ant._GPRS12

DUT: 801009

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL 850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.957$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

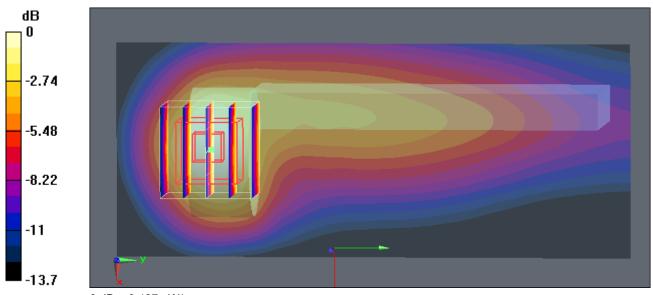
Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch189/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.542 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.9 V/m; Power Drift = -0.117 dB

Peak SAR (extrapolated) = 0.710 W/kg

SAR(1 g) = 0.450 mW/g; SAR(10 g) = 0.264 mW/g

Maximum value of SAR (measured) = 0.487 mW/g

0 dB = 0.487 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM850 Ch189_DUT Right Side with 0.5cm Gap_Horizontal Ant._GPRS12

DUT: 801009

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL 850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.957$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch189/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.203 mW/g

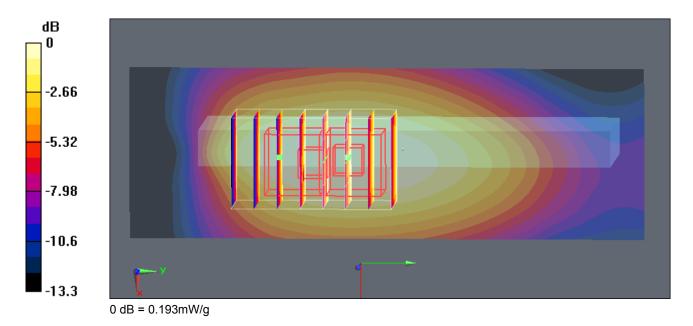
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = -0.190 dB

Peak SAR (extrapolated) = 0.236 W/kg

SAR(1 g) = 0.185 mW/g; SAR(10 g) = 0.132 mW/g

Maximum value of SAR (measured) = 0.198 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = -0.190 dB

Peak SAR (extrapolated) = 0.232 W/kg

SAR(1 g) = 0.178 mW/g; SAR(10 g) = 0.118 mW/g

Maximum value of SAR (measured) = 0.193 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM850 Ch189_DUT Face with 0.5cm Gap_Horizontal Ant._GPRS8

DUT: 801009

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

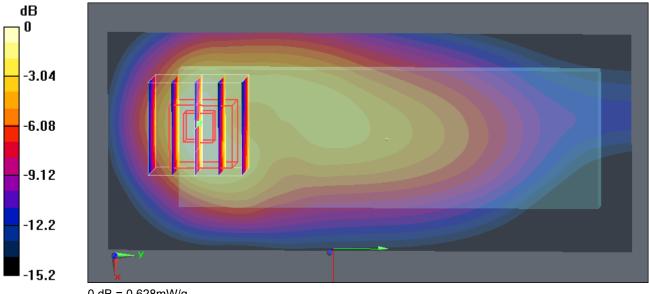
Medium: MSL 850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.957$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch189/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.667 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.1 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 0.946 W/kg

SAR(1 g) = 0.575 mW/g; SAR(10 g) = 0.330 mW/g

Maximum value of SAR (measured) = 0.628 mW/g

0 dB = 0.628 mW/g

FCC SAR Test Report No : FA8O1009

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM1900 Ch661_DUT Bottom with 1cm Gap_Horizontal Ant._GPRS12

DUT: 801009

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

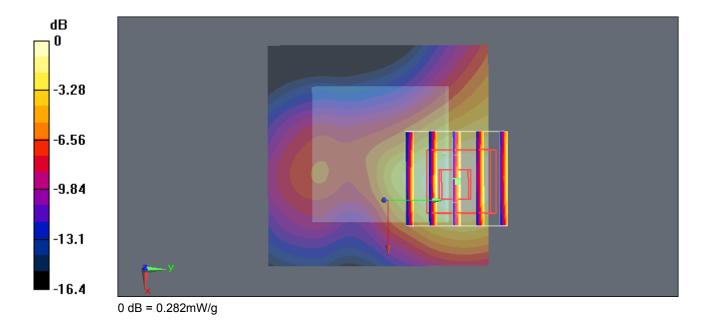
Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch661/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.296 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12 V/m; Power Drift = -0.135 dB

Peak SAR (extrapolated) = 0.430 W/kg

SAR(1 g) = 0.260 mW/g; SAR(10 g) = 0.152 mW/g Maximum value of SAR (measured) = 0.282 mW/g

FCC SAR Test Report No : FA801009

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM1900 Ch661_DUT Bottom with 0.5cm Gap_Horizontal Ant._GPRS12

DUT: 801009

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

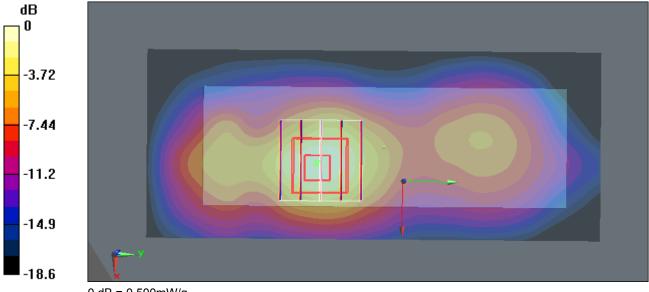
Ambient Temperature: 22.2; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch661/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.510 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.36 V/m; Power Drift = -0.138 dB

Peak SAR (extrapolated) = 0.811 W/kg

SAR(1 g) = 0.458 mW/g; SAR(10 g) = 0.241 mW/g

Maximum value of SAR (measured) = 0.500 mW/g

0 dB = 0.500 mW/g

FCC SAR Test Report No : FA801009

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM1900 Ch661_DUT Bottom with 0.5cm Gap_Vertical Ant._GPRS12

DUT: 801009

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

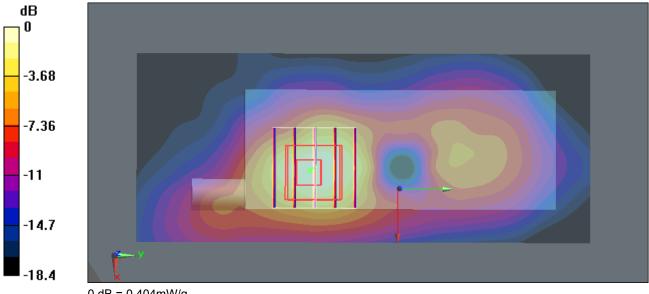
Ambient Temperature: 22.4; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch661/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.397 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.1 V/m; Power Drift = -0.139 dB

Peak SAR (extrapolated) = 0.823 W/kg

SAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.192 mW/g

Maximum value of SAR (measured) = 0.404 mW/g

0 dB = 0.404 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM1900 Ch661_DUT Left Side with 0.5cm Gap_Horizontal Ant._GPRS12

DUT: 801009

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

Ambient Temperature: 22.3; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch661/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.176 mW/g

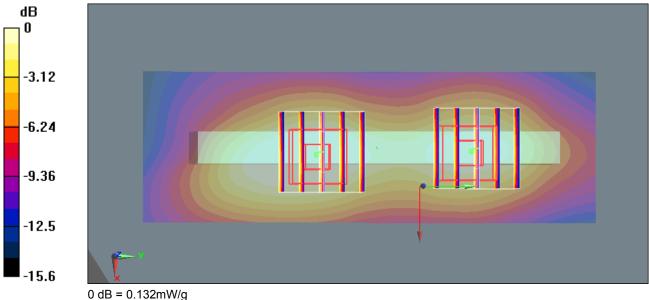
Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.25 V/m; Power Drift = -0.123 dB

Peak SAR (extrapolated) = 0.279 W/kg

SAR(1 g) = 0.159 mW/g; SAR(10 g) = 0.090 mW/g

Maximum value of SAR (measured) = 0.173 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.25 V/m; Power Drift = -0.123 dB

Peak SAR (extrapolated) = 0.203 W/kg

SAR(1 g) = 0.122 mW/g; SAR(10 g) = 0.071 mW/g

Maximum value of SAR (measured) = 0.132 mW/g

0 db - 0.132111V/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM1900 Ch661_DUT Left Side with 0.5cm Gap_Vertical Ant._GPRS12

DUT: 801009

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

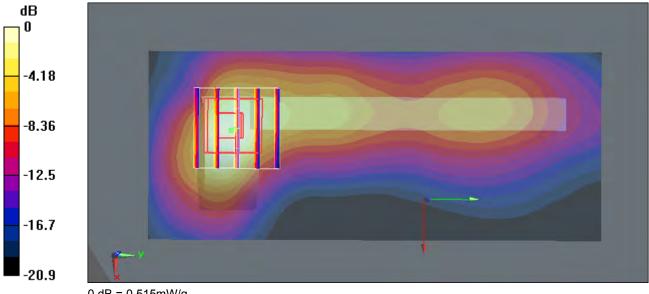
Ambient Temperature: 22.2; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch661/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.575 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.07 V/m; Power Drift = 0.108 dB

Peak SAR (extrapolated) = 0.739 W/kg

SAR(1 g) = 0.436 mW/g; SAR(10 g) = 0.210 mW/g

Maximum value of SAR (measured) = 0.515 mW/g

0 dB = 0.515 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM1900 Ch661_DUT Right Side with 0.5cm Gap_Horizontal Ant._GPRS12

DUT: 801009

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

Ambient Temperature: 22.3; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch661/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.034 mW/g

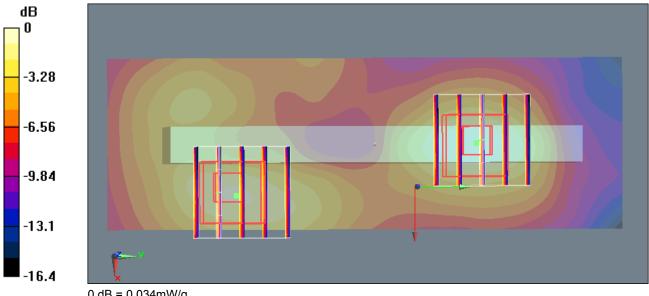
Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.5 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 0.057 W/kg

SAR(1 g) = 0.030 mW/g; SAR(10 g) = 0.016 mW/g

Maximum value of SAR (measured) = 0.036 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.5 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 0.056 W/kg

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.015 mW/g

Maximum value of SAR (measured) = 0.027 mW/g

0 dB = 0.034 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_GSM1900 Ch661_DUT Face with 0.5cm Gap_Horizontal Ant._GPRS12

DUT: 801009

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

Ambient Temperature: 22.2; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch661/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.434 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.116 dB

Peak SAR (extrapolated) = 0.666 W/kg

SAR(1 g) = 0.378 mW/g; SAR(10 g) = 0.200 mW/g

Maximum value of SAR (measured) = 0.418 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.116 dB

Peak SAR (extrapolated) = 0.619 W/kg

SAR(1 g) = 0.322 mW/g; SAR(10 g) = 0.159 mW/g

Maximum value of SAR (measured) = 0.363 mW/g

0 dB = 0.363 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA850 Ch4182_DUT Bottom with 1cm Gap_Horizontal Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; σ = 0.957 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³

Ambient Temperature: 22.5; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch4182/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.307 mW/g

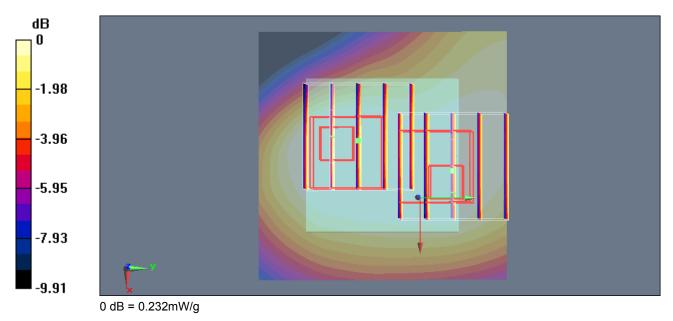
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.3 V/m; Power Drift = -0.192 dB

Peak SAR (extrapolated) = 0.413 W/kg

SAR(1 g) = 0.277 mW/g; SAR(10 g) = 0.183 mW/g

Maximum value of SAR (measured) = 0.303 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.3 V/m; Power Drift = -0.192 dB

Peak SAR (extrapolated) = 0.296 W/kg

SAR(1 g) = 0.219 mW/g; SAR(10 g) = 0.157 mW/g

Maximum value of SAR (measured) = 0.232 mW/g

FCC SAR Test Report No : FA801009

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA850 Ch4182_DUT Bottom with 1cm Gap_Vertical Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

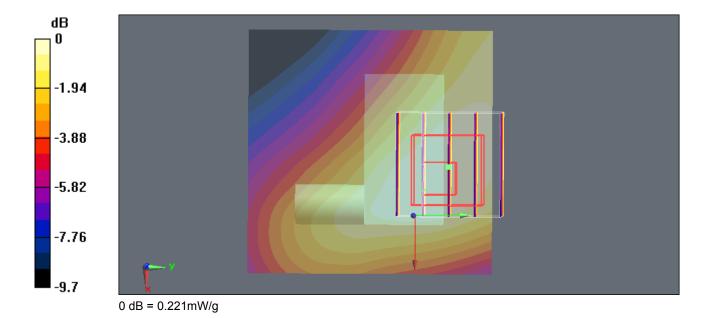
Medium: MSL 850 Medium parameters used: f = 836.4 MHz; σ = 0.957 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³

Ambient Temperature: 22.5; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch4182/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.232 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.2 V/m; Power Drift = -0.155 dB

Peak SAR (extrapolated) = 0.277 W/kg

SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.145 mW/g Maximum value of SAR (measured) = 0.221 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA850 Ch4182_DUT Bottom with 0.5cm Gap_Horizontal Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; σ = 0.957 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature: 22.4 ; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch4182/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.595 mW/g

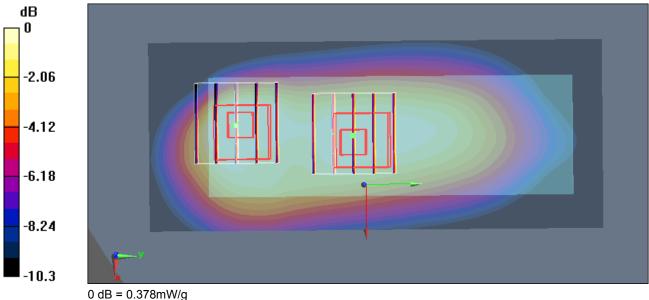
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.1 V/m; Power Drift = 0.00374 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.522 mW/g; SAR(10 g) = 0.290 mW/g

Maximum value of SAR (measured) = 0.608 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.1 V/m; Power Drift = 0.00374 dB

Peak SAR (extrapolated) = 0.477 W/kg

SAR(1 g) = 0.361 mW/g; SAR(10 g) = 0.255 mW/g

Maximum value of SAR (measured) = 0.378 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA850 Ch4182_DUT Bottom with 0.5cm Gap_Vertical Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; σ = 0.957 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature: 22.6; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch4182/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.396 mW/g

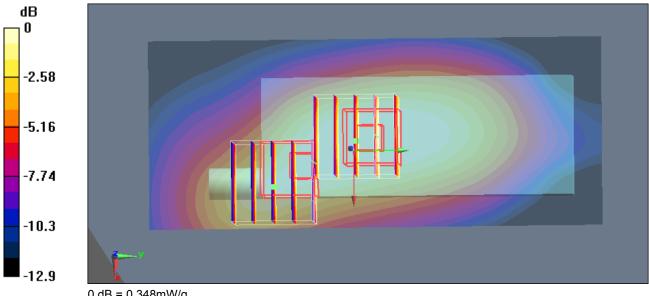
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.8 V/m; Power Drift = 0.116 dB

Peak SAR (extrapolated) = 0.486 W/kg

SAR(1 g) = 0.366 mW/g; SAR(10 g) = 0.255 mW/g

Maximum value of SAR (measured) = 0.391 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.8 V/m; Power Drift = 0.116 dB

Peak SAR (extrapolated) = 0.480 W/kg

SAR(1 g) = 0.300 mW/g; SAR(10 g) = 0.184 mW/g

Maximum value of SAR (measured) = 0.348 mW/g

0 dB = 0.348 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA850 Ch4182_DUT Left Side with 0.5cm Gap_Horizontal Ant._RMC12.2k

DUT: 801009

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; σ = 0.957 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature: 22.6; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch4182/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.161 mW/g

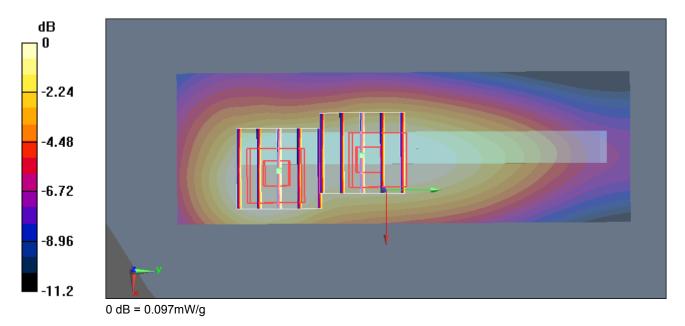
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.173 dB

Peak SAR (extrapolated) = 0.211 W/kg

SAR(1 g) = 0.132 mW/g; SAR(10 g) = 0.078 mW/g

Maximum value of SAR (measured) = 0.146 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.173 dB

Peak SAR (extrapolated) = 0.139 W/kg

SAR(1 g) = 0.092 mW/g; SAR(10 g) = 0.061 mW/g

Maximum value of SAR (measured) = 0.097 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA850 Ch4182_DUT Left Side with 0.5cm Gap_Vertical Ant._RMC12.2K

DUT: 801009

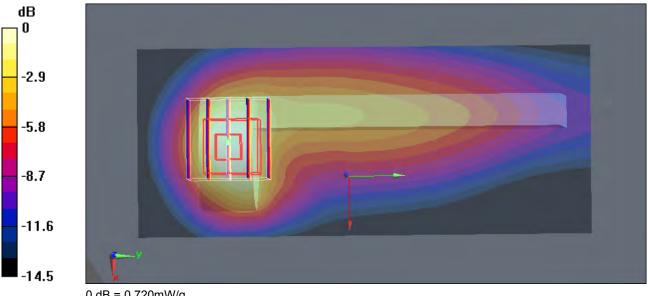
Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; σ = 0.957 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature: 22.6; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87


Ch4182/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.764 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.4 V/m; Power Drift = 0.143 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.655 mW/g; SAR(10 g) = 0.378 mW/gMaximum value of SAR (measured) = 0.720 mW/g

0 dB = 0.720 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA850 Ch4182_DUT Right Side with 0.5cm Gap_Horizontal Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; σ = 0.957 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

Ambient Temperature: 22.5; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch4182/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.276 mW/g

, , ,

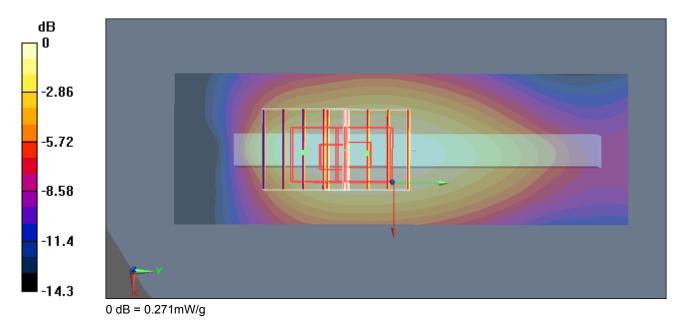
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.9 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 0.334 W/kg

SAR(1 g) = 0.260 mW/g; SAR(10 g) = 0.182 mW/g

Maximum value of SAR (measured) = 0.275 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.9 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 0.349 W/kg

SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.158 mW/g

Maximum value of SAR (measured) = 0.271 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/19

Body_WCDMA850 Ch4132_DUT Face with 0.5cm Gap_Horizontal Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 826.4 MHz; $\sigma = 0.947$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

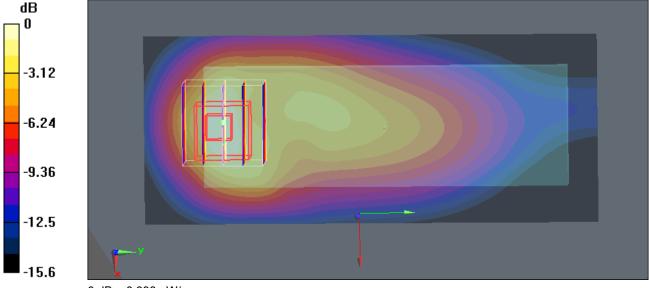
Ambient Temperature: 22.5; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch4132/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.05 mW/g


Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.920 mW/g; SAR(10 g) = 0.523 mW/g

Maximum value of SAR (measured) = 0.998 mW/g

0 dB = 0.998 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/12/4

Body_WCDMA850 Ch4132_ DUT Face with 1.0cm Gap_Horizontal Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 826.4 MHz; σ = 0.944 mho/m; ϵ_r = 52.8; ρ = 1000 kg/m³

Ambient Temperature: 22.5; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch4132/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.453 mW/g

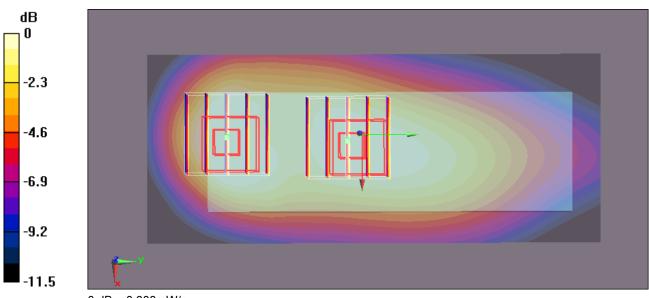
Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19 V/m; Power Drift = -0.166 dB

Peak SAR (extrapolated) = 0.544 W/kg

SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.231 mW/g

Maximum value of SAR (measured) = 0.409 mW/g


Ch4132/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19 V/m; Power Drift = -0.166 dB

Peak SAR (extrapolated) = 0.367 W/kg

SAR(1 g) = 0.292 mW/g; SAR(10 g) = 0.209 mW/g

Maximum value of SAR (measured) = 0.308 mW/g

0 dB = 0.308 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA1900 Ch9400_DUT Bottom with 1cm Gap_Horizontal Ant_RMC12.2K

DUT: 801009

Communication System: WCDMA Band 2; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 51$; $\rho = 1000$ kg/m³

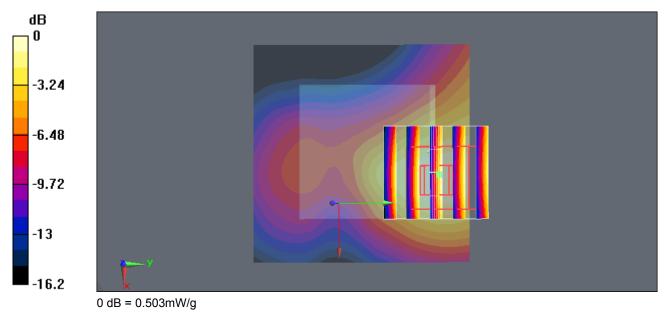
Ambient Temperature: 22.3; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch9400/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.520 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = 0.170 dB

Peak SAR (extrapolated) = 0.792 W/kg

SAR(1 g) = 0.471 mW/g; SAR(10 g) = 0.273 mW/g

Maximum value of SAR (measured) = 0.503 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA1900 Ch9400_DUT Bottom with 1cm Gap_Vertical Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA Band 2; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 51$; $\rho = 1000$ kg/m³

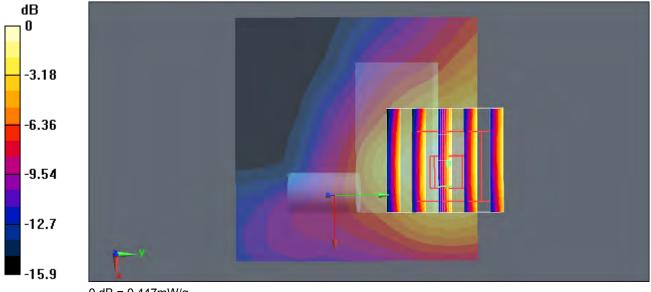
Ambient Temperature: 22.1; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch9400/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.448 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.6 V/m; Power Drift = 0.188 dB

Peak SAR (extrapolated) = 0.738 W/kg

SAR(1 g) = 0.414 mW/g; SAR(10 g) = 0.241 mW/g

Maximum value of SAR (measured) = 0.447 mW/g

0 dB = 0.447 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA1900 Ch9262_DUT Bottom with 0.5cm Gap_Horizontal Ant._RMC12.2K

DUT: 801009

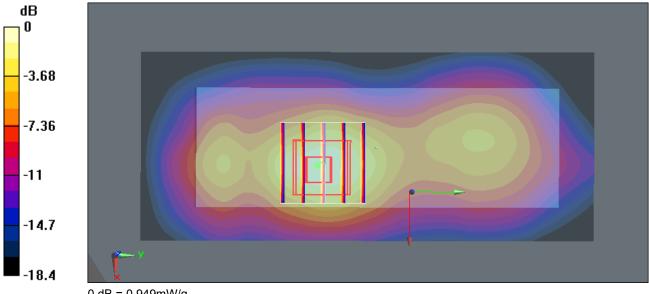
Communication System: WCDMA Band 2; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1852.4 MHz; σ = 1.48 mho/m; ϵ_r = 51.1; ρ = 1000 kg/m³

Ambient Temperature: 22.1; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch9262/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.958 mW/g


Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = -0.088 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.874 mW/g; SAR(10 g) = 0.465 mW/g

Maximum value of SAR (measured) = 0.949 mW/g

0 dB = 0.949 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA1900 Ch9400_DUT Bottom with 0.5cm Gap_Vertical Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA Band 2; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 51$; $\rho = 1000$ kg/m³

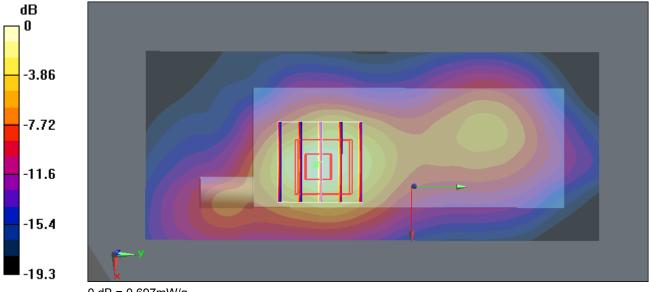
Ambient Temperature: 22.1; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch9400/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.670 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = 0.193 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.634 mW/g; SAR(10 g) = 0.329 mW/g

Maximum value of SAR (measured) = 0.697 mW/g

0 dB = 0.697 mW/g

FCC SAR Test Report No : FA801009

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA1900 Ch9400_DUT Left Side with 0.5cm Gap_Horizontal Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA Band 2; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

Ambient Temperature: 22.0; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch9400/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.346 mW/g

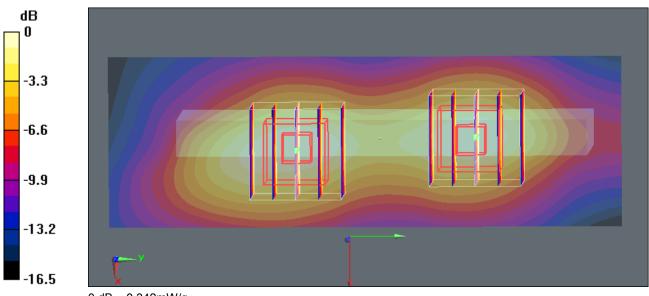
Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = -0.062 dB

Peak SAR (extrapolated) = 0.568 W/kg

SAR(1 g) = 0.320 mW/g; SAR(10 g) = 0.180 mW/g

Maximum value of SAR (measured) = 0.351 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = -0.062 dB

Peak SAR (extrapolated) = 0.535 W/kg

SAR(1 g) = 0.316 mW/g; SAR(10 g) = 0.181 mW/g

Maximum value of SAR (measured) = 0.342 mW/g

0 dB = 0.342 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA1900 Ch9400_DUT Left Side with 0.5cm Gap_Vertical Ant_RMC12.2K

DUT: 801009

Communication System: WCDMA Band 2; Frequency: 1880 MHz; Duty Cycle: 1:1

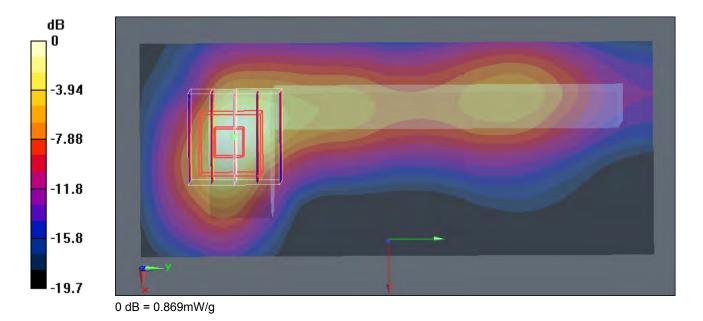
Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

Ambient Temperature: 22.0; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch9400/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.833 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.8 V/m; Power Drift = 0.108 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.783 mW/g; SAR(10 g) = 0.386 mW/g Maximum value of SAR (measured) = 0.869 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA1900 Ch9400_DUT Right Side with 0.5cm Gap_Horizontal Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA Band 2; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

Ambient Temperature: 22.2; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch9400/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.066 mW/g

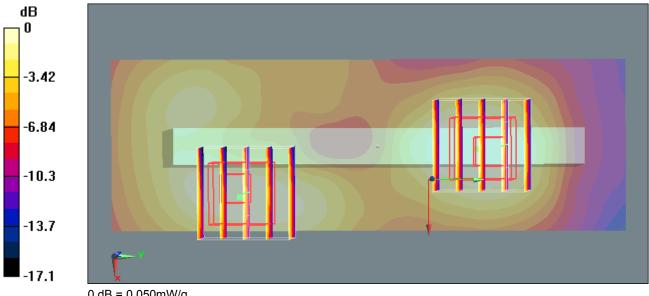
Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.17 V/m; Power Drift = 0.127 dB

Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.065 mW/g; SAR(10 g) = 0.036 mW/g

Maximum value of SAR (measured) = 0.069 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.17 V/m; Power Drift = 0.127 dB

Peak SAR (extrapolated) = 0.075 W/kg

SAR(1 g) = 0.047 mW/g; SAR(10 g) = 0.028 mW/g

Maximum value of SAR (measured) = 0.050 mW/g

0 dB = 0.050 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA1900 Ch9400_DUT Face with 0.5cm Gap_Horizontal Ant._RMC12.2K

DUT: 801009

Communication System: WCDMA Band 2; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

Ambient Temperature: 22.1; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Ch9400/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.849 mW/g

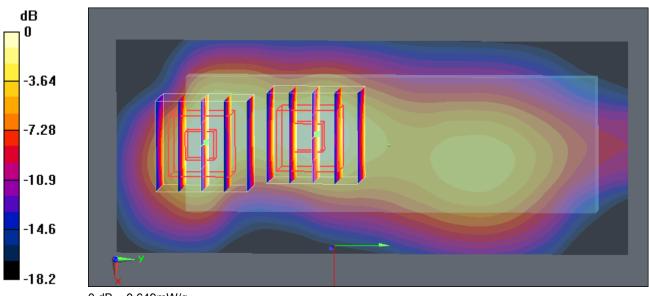
Ch9400/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.2 V/m; Power Drift = -0.179 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.630 mW/g; SAR(10 g) = 0.335 mW/g

Maximum value of SAR (measured) = 0.681 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.2 V/m; Power Drift = -0.179 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.601 mW/g; SAR(10 g) = 0.309 mW/g

Maximum value of SAR (measured) = 0.649 mW/g

0 dB = 0.649 mW/g

Date: 2008/11/18

Body_GSM850 Ch189_DUT Face with 0.5cm Gap_Horizontal Ant._GPRS8_2D

DUT: 801009

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: MSL 850 Medium parameters used: f = 836.4 MHz; σ = 0.957 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³

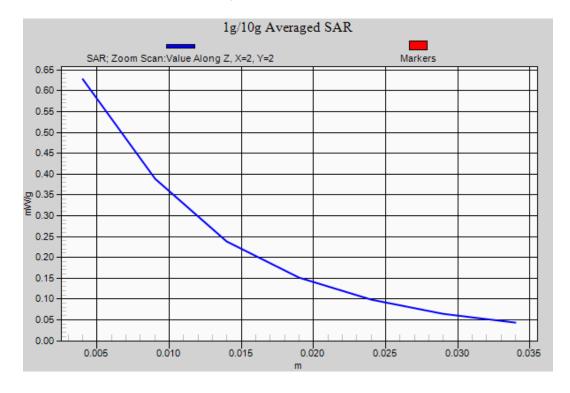
Ambient Temperature: 22.4; Liquid Temperature: 21.3

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87


Ch189/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.667 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.1 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 0.946 W/kg

SAR(1 g) = 0.575 mW/g; SAR(10 g) = 0.330 mW/g Maximum value of SAR (measured) = 0.628 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Test Report No : FA8O1009

Body_GSM1900 Ch661_DUT Bottom with 0.5cm Gap_Horizontal Ant._GPRS12_2D

DUT: 801009

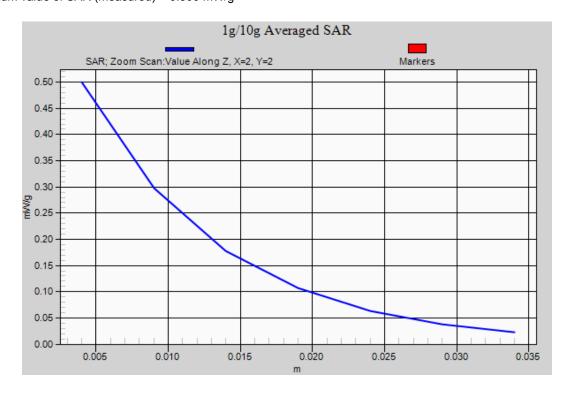
Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL 1900 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 51; ρ = 1000 kg/m³

Ambient Temperature: 22.2; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87


Ch661/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.510 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.36 V/m; Power Drift = -0.138 dB

Peak SAR (extrapolated) = 0.811 W/kg

SAR(1 g) = 0.458 mW/g; SAR(10 g) = 0.241 mW/g Maximum value of SAR (measured) = 0.500 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/19

Test Report No : FA8O1009

Body_WCDMA850 Ch4132_DUT Face with 0.5cm Gap_Horizontal Ant._RMC12.2K_2D

DUT: 801009

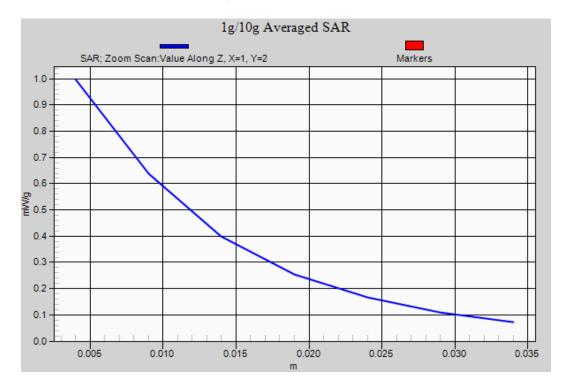
Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 826.4 MHz; $\sigma = 0.947$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.34, 6.34, 6.34); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM Front; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87


Ch4132/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.05 mW/g

Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.920 mW/g; SAR(10 g) = 0.523 mW/g Maximum value of SAR (measured) = 0.998 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/11/18

Body_WCDMA1900 Ch9262_DUT Bottom with 0.5cm Gap_Horizontal Ant._RMC12.2K_2D

DUT: 801009

Communication System: WCDMA Band 2; Frequency: 1852.4 MHz; Duty Cycle: 1:1

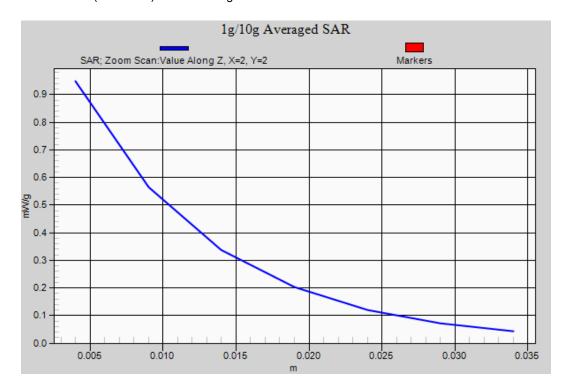
Medium: MSL 1900 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³

Test Report No : FA8O1009

Ambient Temperature: 22.1; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.73, 4.73, 4.73); Calibrated: 2008/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2008/9/22
- Phantom: SAM-Back; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87


Ch9262/Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.958 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = -0.088 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.874 mW/g; SAR(10 g) = 0.465 mW/g Maximum value of SAR (measured) = 0.949 mW/g

Appendix C - Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Test Report No : FA8O1009

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: D835V2-499 Mar08

Object	D835V2 - SN: 499		
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 17, 2008		
Condition of the calibrated item	In Tolerance		
	Table 1	Cal Date (Calibrated by Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 3025	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-97 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAF4-909, Sep07)	Scheduled Calibration Oct-08 Oct-08 Aug-08 Mar-09 Sen-08
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2	ID# G837480704 US37292783 SN: 5086 (20g)	04-Oct-07 (METAS, No. 217-00736) 04-Oct-97 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718)	Oct-08 Oct-08 Aug-08
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909	04-Oct-07 (METAS, No. 217-00736) 04-Oct-97 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07)	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID# MY41092317	04-Oct-07 (METAS, No. 217-00736) 04-Oct-97 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909	04-Oct-07 (METAS, No. 217-00736) 04-Oct-97 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07)	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID# MY41092317 100005	04-Oct-07 (METAS, No. 217-00736) 04-Oct-97 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08
Calibration Equipment used (M&i Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer HP 8753E Calibrated by: Approved by:	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 Name	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 03-Sep-07 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 04-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07) Function	Oct-08 Oct-08 Aug-08 Mar-09 Sep-08 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08

Certificate No: D835V2-499_Mar08

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Test Report No : FA8O1009

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- . Measurement Conditions; Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss; These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499 Mar08

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	+
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		-

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.29 mW/g
SAR normalized	normalized to 1W	9.16 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.16 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.50 mW/g
SAR normalized	normalized to 1W	6.00 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.00 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-499_Mar08

Page 3 of 9

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	20,000	

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 mW/g
SAR normalized	normalized to 1W	9.84 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.52 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.63 mW/g
SAR normalized	normalized to 1W	6.52 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.37 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-499_Mar08

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 2.3 jΩ
Return Loss	- 28.9 dB

Test Report No : FA8O1009

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 3.3 jΩ	
Return Loss	- 29.3 dB	

General Antenna Parameters and Design

1:392 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 10, 2003	

Certificate No: D835V2-499_Mar08

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 17.03.2008 11:32:45

Test Report No : FA8O1009

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

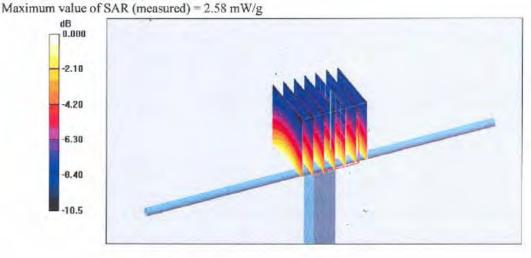
Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025; ConvF(6.09, 6.09, 6.09); Calibrated: 01.03.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

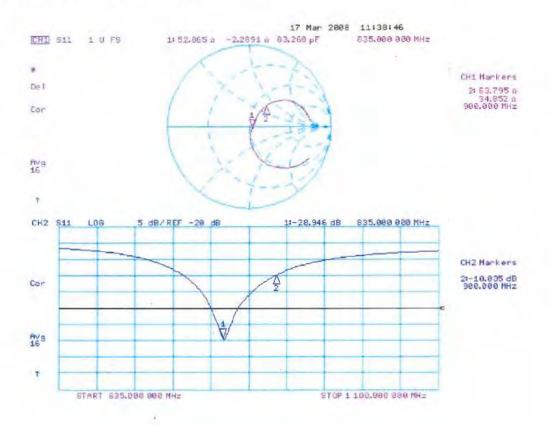
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172


Unnamed procedure/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.9 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 3.34 W/kg


SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.5 mW/g

0 dB = 2.58 mW/g

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-499_Mar08

Page 7 of 9

C SAR Test Report Test Report No : FA8O1009

DASY4 Validation Report for Body TSL

Date/Time: 10.03.2008 12:48:36

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900;

Medium parameters used: f = 835 MHz; $\sigma = 1 \text{ mho/m}$; $\varepsilon_r = 54$; $\rho = 1000 \text{ kg/m}^3$

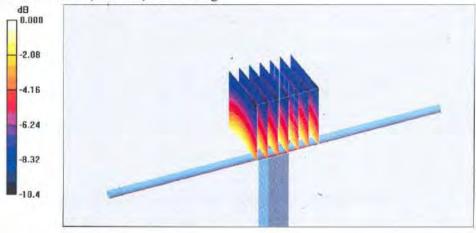
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.85, 5.85, 5.85); Calibrated: 01.03.2008
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

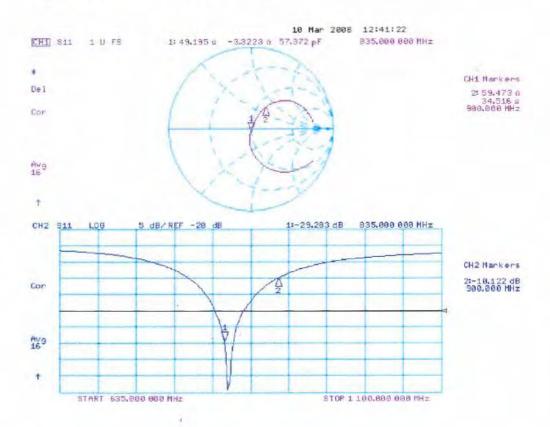
Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.63 mW/g


Maximum value of SAR (measured) = 2.64 mW/g

0 dB = 2.64 mW/g

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-499_Mar08

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: D1900V2-5d041_Mar08

Accreditation No.: SCS 108

Object	D1900V2 - SN: 5d041		
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 18, 2008		
Condition of the calibrated item	In Tolerance		
Calibration Equipment used (M&	ID#		
		Cal Date (Calibrated by Certificate No.)	Scheduled Calibration
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r)	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718)	Scheduled Calibration Oct-08 Oct-08 Aug-08 Aug-08
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2	GB37480704 US37292783 SN: 5086 (20g)	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718)	Oct-08 Oct-08 Aug-08
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Power meter EPM-442A	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-08 In house check: Oct-09 In house check: Oct-08
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Power meter EPM-442A	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 GB37480704	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07) 04-Oct-07 (METAS, No. 217-00736)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-08 In house check: Oct-08 Oct-08 Signature
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 GB37480704	04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07) 04-Oct-07 (METAS, No. 217-00736)	Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-08 In house check: Oct-09 In house check: Oct-08 Oct-08

Certificate No: D1900V2-5d041_Mar08

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Test Report No : FA8O1009

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

idinateral Agreement to the recognition of

Glossary:

TSL tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

July 2001

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d041_Mar08

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	1.47 mho/m ± 6 %
Head TSL temperature during test	(21.1 ± 0.2) °C		_

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.1 mW/g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.20 mW / g
SAR normalized	normalized to 1W	20.8 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.6 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d041_Mar08

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature during test	(21.4 ± 0.2) °C		-

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mW/g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	40.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.44 mW / g
SAR normalized	normalized to 1W	21.8 mW/g
SAR for nominal Body TSL parameters ²	normalized to 1W	21.3 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d041_Mar08

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.0 \Omega + 5.1 j\Omega$	
Return Loss	- 24.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.0 \Omega + 6.1 j\Omega$
Return Loss	- 23.6 dB

General Antenna Parameters and Design

parameter and the same and the	
Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 04, 2003

Certificate No: D1900V2-5d041_Mar08

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 18.03.2008 12:05:10

Test Report No : FA8O1009

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

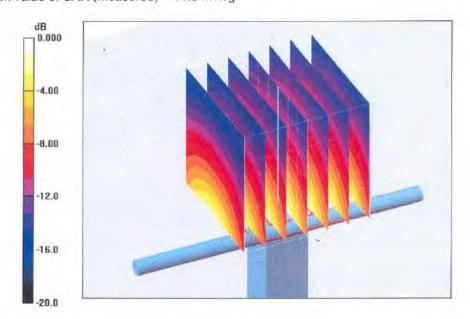
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 01.03.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

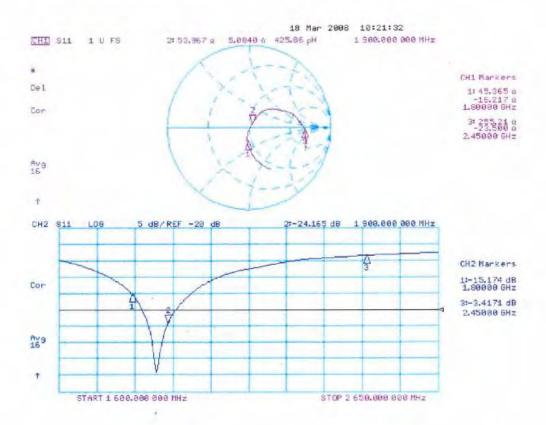

- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.7 V/m: Power Drift = 0.013 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.2 mW/g Maximum value of SAR (measured) = 11.8 mW/g


0 dB = 11.8 mW/g

Certificate No: D1900V2-5d041_Mar08

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d041_Mar08

Page 7 of 9

DASY4 Validation Report for Body TSL

Date/Time: 14.03.2008 13:22:24

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

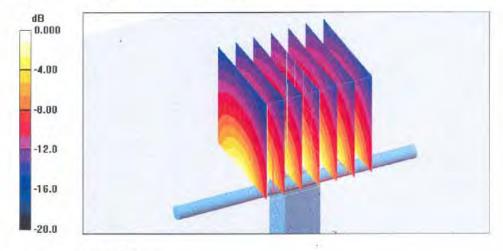
Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

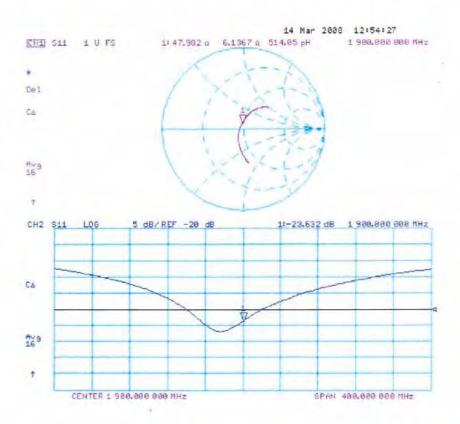

- Probe: ES3DV2 SN3025; ConvF(4.5, 4.5, 4.5); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.7 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.44 mW/g Maximum value of SAR (measured) = 12.0 mW/g


0 dB = 12.0 mW/g

Certificate No: D1900V2-5d041 Mar08

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d041_Mar08

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Test Report No : FA8O1009

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: DAE4-778 Sep08 Sporton (Auden) **CALIBRATION CERTIFICATE** DAE4 - SD 000 D04 BG - SN: 778 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) September 22, 2008 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID# Fluke Process Calibrator Type 702 SN: 6295803 04-Oct-07 (No: 6467) Oct-08 Oct-08 03-Oct-07 (No: 6465) SN: 0810278 Keithley Multimeter Type 2001 Secondary Standards Check Date (in house) Scheduled Check In house check: Jun-09 SE UMS 006 AB 1004 06-Jun-08 (in house check) Calibrator Box V1.1 Name Function Calibrated by: Andrea Guntil Technician R&D Director Approved by: Fin Bomholt Issued: September 22, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 5

Certificate No: DAE4-778_Sep08

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Test Report No : FA8O1009

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Glossary

DAE data acquisition electronics

Multilateral Agreement for the recognition of calibration certificates

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-778_Sep08

Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV. 1LSB = 61nV, Low Range:

full range = -100...+300 mV full range = -1.....+3mV

Test Report No : FA8O1009

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.686 ± 0.1% (k=2)	403.490 ± 0.1% (k=2)	405.045 ± 0.1% (k=2)
Low Range	3.99455 ± 0.7% (k=2)	3.96369 ± 0.7% (k=2)	3.99417 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	309°±1°
Connector Angle to be used in Driet System	000 = 1

Certificate No: DAE4-778_Sep08

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	200000	200000.3	0.00
Channel X + Input	20000	20004.24	0.02
Channel X - Input	20000	-20002.46	0.01
Channel Y + Input	200000	200000.4	0.00
Channel Y + Input	20000	20002.60	0.01
Channel Y - Input	20000	-20002.26	0.01
Channel Z + Input	200000	200000.6	0.00
Channel Z + Input	20000	20000.78	0.00
Channel Z - Input	20000	-20005.75	0.03

Low Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000	0.00
Channel X + Input	200	199.37	-0.31
Channel X - Input	200	-200.28	0.14
Channel Y + Input	2000	2000	0.00
Channel Y + Input	200	199.63	-0.19
Channel Y - Input	200	-200.88	0.44
Channel Z + Input	2000	2000.1	0.00
Channel Z + Input	200	198.60	-0.70
Channel Z - Input	200	-201.07	0.53

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-7.46	-6.40
	- 200	10.00	6.86
Channel Y	200	-2.73	-2.45
	- 200	0.84	0.43
Channel Z	200	-10.91	-10.94
	- 200	7.89	8.22

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (µV)
Channel X	200	-	3.08	-1.34
Channel Y	200	1.18	9	4.64
Channel Z	200	-1.74	1.44	1

Certificate No: DAE4-778_Sep08

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16048	16021
Channel Y	16167	15166
Channel Z	16416	15977

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.13	-0.88	0.92	0.33
Channel Y	-0.88	-2.47	0.72	0.55
Channel Z	-1.16	-2.17	-0.19	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)	
Channel X	0.2000	201.1	
Channel Y	0.2000	201.0	
Channel Z	0.2001	201.7	

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VD	C)	
Supply (+ Vcc)	7	+7,9	
Supply (- Vcc)	10	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.0	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Test Report No : FA8O1009

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden) Client

Certificate No: ET3-1788 Sep08

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE ET3DV6 - SN:1788 Object QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: September 23, 2008 In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration GB41293874 Power meter E4419B 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Reference 3 dB Attenuator Jul-09 SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09 SN: S5129 (30b) Reference 30 dB Attenuator 1-Jul-08 (No. 217-00866) .hut-09 2-Jan-08 (No. ES3-3013 Jan08) Reference Probe ES3DV2 SN: 3013 Jan-09 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Signature Name Function Katja Pokovic Technical Manager Calibrated by: Approved by: Fin Bombott R&D Director Issued: September 24, 2008

Certificate No: ET3-1788_Sep08

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Test Report No : FA8O1009

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization

representation of tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
or rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization § = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788 Sep08 Page 2 of 9

Probe ET3DV6

SN:1788

Manufactured:

May 28, 2003

Last calibrated:

September 26, 2007

Test Report No : FA8O1009

September 23, 2008

Recalibrated:

September 23, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep08

Page 3 of 9

September 23, 2008

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Free Space ^A			Diode C	ompression ^B
NormX	1.73 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.59 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	98 mV
NormZ	1.72 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	91 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	9	00 MHz	Typical SAR gradient: 5 %	per mm	
	Sensor Center	r to Phante	3,7 mm	4.7 mm	
	SAR _{be} [%]	Withou	t Correction Algorithm	10.6	6.8
	SAR _{be} [%]	With C	orrection Algorithm	0.8	0.3
TSL	1750 MHz Typical SAR gradient: 10			% per mm	

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.8	4.9
SAR _{be} [%]	With Correction Algorithm	0.7	0.6

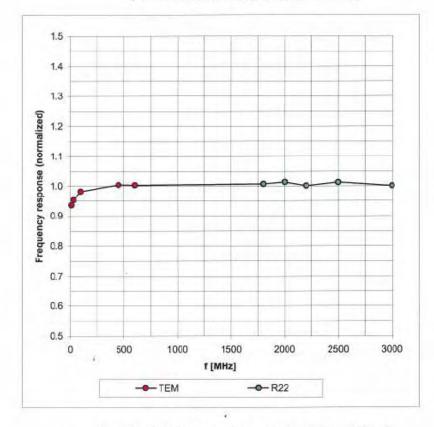
Sensor Offset

Probe Tip to Sensor Center 2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1788_Sep08

Page 4 of 9


A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

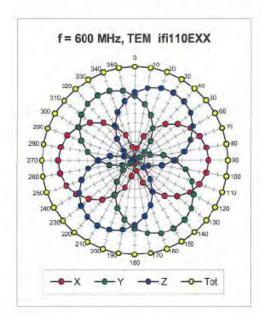
^B Numerical linearization parameter: uncertainty not required.

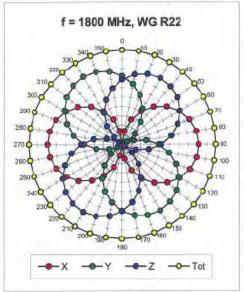
September 23, 2008

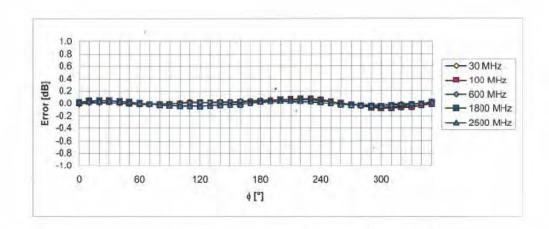
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ET3-1788_Sep08


Page 5 of 9

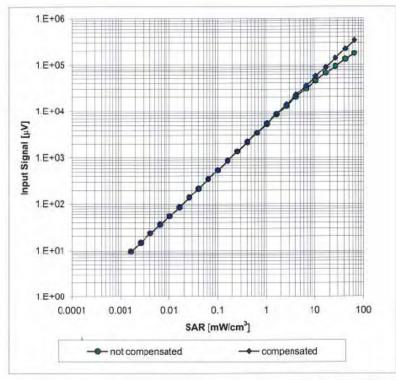


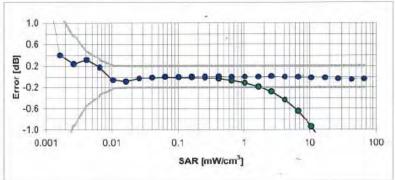
September 23, 2008

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1788_Sep08


Page 6 of 9

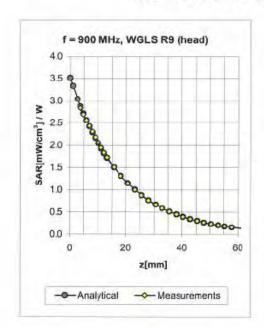


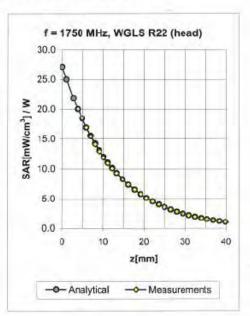
September 23, 2008

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1788_Sep08


Page 7 of 9

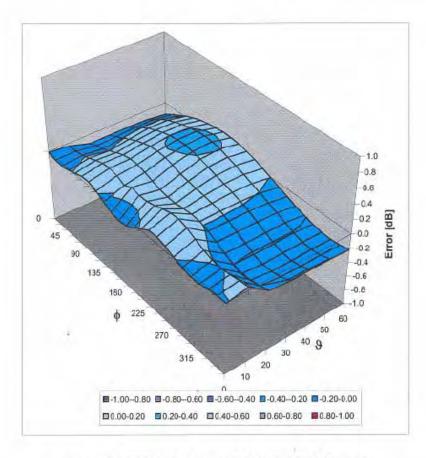
September 23, 2008

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.44	2.65	6.55 ± 11.0% (k=2)
1750	±50/±100	Head	40.1 ± 5%	$1.37\pm5\%$	0.68	1.98	5.59 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	$1.40 \pm 5\%$	0.75	1.75	5.13 ±11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	$1.80\pm5\%$	0.80	1.45	4.68 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.50	2.48	6.34 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	$53.4\pm5\%$	$1.49\pm5\%$	0.63	2.33	4.87 ±11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	$1.52\pm5\%$	0.74	1.99	4.73 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	$1.95 \pm 5\%$	0.94	1.75	3.98 ±11.0% (k=2)

Certificate No: ET3-1788 Sep08

Page 8 of 9


^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

September 23, 2008

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep08

Page 9 of 9