

# SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

588 West Jindu Road, Songjiang District, Shanghai, China

Telephone: +86 (0) 21 6191 5666 Fax: +86 (0) 21 6191 5678

ee.shanghai@sgs.com

Report No.: SHEM130400052902

Page 1 of 38

### 1 Cover Page

# **FCC REPORT**

| Application No. :                                   | SHEM1304000529RF                                                         |  |
|-----------------------------------------------------|--------------------------------------------------------------------------|--|
| Applicant:                                          | AXESSTEL,INC.                                                            |  |
| FCC ID:                                             | PH7AX140                                                                 |  |
| Equipment Under Test (E<br>NOTE: The following samp | EUT):<br>ple(s) submitted was/were identified on behalf of the client as |  |
| Product Name:                                       | Home Alert                                                               |  |
| Brand Name:                                         | Axesstel                                                                 |  |
| Model:                                              | AX140                                                                    |  |
| Added Model:                                        | N/A                                                                      |  |
| Standards:                                          | 47 CFR Part 22 subpart H (2011)<br>47 CFR Part 24 subpart E (2011)       |  |
| Date of Receipt:                                    | April 07, 2013                                                           |  |
| Date of Test:                                       | April 15, 2013 to May 13, 2013                                           |  |
| Date of Issue:                                      | June 04, 2013                                                            |  |
| Test Result:                                        | PASS *                                                                   |  |

<sup>\*</sup>In the configuration tested, the EUT (Equipment under test) complied with the standards specified above.

Tony Wu

**E&E Section Manager** 

SGS-CSTC (Shanghai) Co., Ltd.

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

July 2013

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.



Page 2 of 38

## 2 Version

|                                      | Revision Record            |  |  |  |  |  |  |  |
|--------------------------------------|----------------------------|--|--|--|--|--|--|--|
| Version Chapter Date Modifier Remark |                            |  |  |  |  |  |  |  |
| 00                                   | / June 04, 2013 / Original |  |  |  |  |  |  |  |
|                                      |                            |  |  |  |  |  |  |  |
|                                      |                            |  |  |  |  |  |  |  |

| Authorized for issue by: |                      |              |
|--------------------------|----------------------|--------------|
| Engineer                 | Zenger Zhang         | Zenger Zhang |
|                          | Print Name           |              |
| Clerk                    | Susie Liu Print Name | Suire Lin    |
| Reviewer                 | Keny Xu Print Name   | Kony. xu     |

Page 3 of 38

## 3 Test Summary

| Test Item                                                   | FCC Requirement                                 | Test method                  | Result |  |  |  |
|-------------------------------------------------------------|-------------------------------------------------|------------------------------|--------|--|--|--|
| CDMA Cell 800                                               |                                                 |                              |        |  |  |  |
| Conducted output power                                      | Part 2.1046(a)/Part 22.913(a)                   | ITA-603-D-2010 Clause 2.2.1  | PASS   |  |  |  |
| Effective Radiated Power of Transmitter(ERP)                | Part 2.1046(a)/Part 22.913(a)                   | ITA-603-D-2010 Clause 2.2.17 | PASS   |  |  |  |
| 99% Occupied Bandwidth                                      | Part 2.1049(h)                                  | Part 22.917(b)               | PASS   |  |  |  |
| Band Edge at antenna terminals                              | Part 2.1051/Part 22.917(a)                      | Part 22.917(b)               | PASS   |  |  |  |
| Spurious emissions at antenna terminals                     | Part 2.1051/ Part 2.1057/<br>Part 22.917(a)(b)  | ITA-603-D-2010 Clause 2.2.13 | PASS   |  |  |  |
| Field strength of spurious radiation                        | Part 2.1053/ Part 2.1057/<br>Part 22.917(a)(b)  | ITA-603-D-2010 Clause 2.2.12 | PASS   |  |  |  |
| Frequency stability Part 2.1055/ Part 22.355 ITA-603-D-2010 |                                                 | ITA-603-D-2010 Clause 2.2.2  | PASS   |  |  |  |
|                                                             | CDMA PCS19                                      | 00                           |        |  |  |  |
| Conducted output power                                      | Part 2.1046(a) /Part 24.232(c)                  | ITA-603-D-2010 Clause 2.2.1  | PASS   |  |  |  |
| Peak-to-Average Ratio                                       | Part24.232(d)                                   | ITA-603-D-2010               | PASS   |  |  |  |
| Effective Radiated Power of Transmitter(EIRP)               | Part 2.1046(a) / Part 24.232(c)                 | ITA-603-D-2010 Clause 2.2.17 | PASS   |  |  |  |
| 99% Occupied Bandwidth                                      | Part 2.1049(h)                                  | Part 24.238(b)               | PASS   |  |  |  |
| Band Edge at antenna terminals                              | Part 2.1051/ Part 24.238(a)                     | Part 24.238(b)               | PASS   |  |  |  |
| Spurious emissions at antenna terminals                     | Part 2.1051/ Part 2.1057/<br>Part 24.238(a)(b)  | ITA-603-D-2010 Clause 2.2.13 | PASS   |  |  |  |
| Field strength of spurious radiation                        | Part 2.1053 /Part 2.1057 /<br>Part 24.238(a)(b) | ITA-603-D-2010 Clause 2.2.12 | PASS   |  |  |  |
| Frequency stability                                         | Part 2.1055/Part 24.235                         | ITA-603-D-2010 Clause 2.2.2  | PASS   |  |  |  |

Page 4 of 38

### 4 Contents

|   |                                                      | P                                                                                                                                                                                                               | Page        |
|---|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1 | CC                                                   | OVER PAGE                                                                                                                                                                                                       | 1           |
| 2 | VE                                                   | ERSION                                                                                                                                                                                                          | 2           |
| 3 | TF                                                   | EST SUMMARY                                                                                                                                                                                                     | 3           |
|   |                                                      | ONTENTS                                                                                                                                                                                                         |             |
| 4 |                                                      |                                                                                                                                                                                                                 |             |
| 5 | GE                                                   | ENERAL INFORMATION                                                                                                                                                                                              | 5           |
| 6 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8 | CLIENT INFORMATION GENERAL DESCRIPTION OF E.U.T. TECHNICAL SPECIFICATIONS: ACCESSORIES OF PRODUCT: SUPPORT EQUIPMENTS FOR TESTING. DETAILS OF TEST MODE TEST LOCATION TEST FACILITY  QUIPMENTS USED DURING TEST | 5<br>6<br>6 |
| 7 | TE                                                   | EST RESULTS AND MEASUREMENT DATA                                                                                                                                                                                | 10          |
|   | 7.1                                                  | CONDUCTED OUTPUT POWER                                                                                                                                                                                          | 10          |
|   | 7.2                                                  | PEAK-TO-AVERAGE RATIO                                                                                                                                                                                           | 12          |
|   | 7.3                                                  | EFFECTIVE RADIATED POWER OF TRANSMITTER (ERP/EIRP)                                                                                                                                                              |             |
|   | 7.4                                                  | 99%Occupied Bandwidth                                                                                                                                                                                           |             |
|   | 7.5                                                  | BAND EDGE AT ANTENNA TERMINALS                                                                                                                                                                                  |             |
|   | 7.6                                                  | SPURIOUS EMISSIONS AT ANTENNA TERMINALS                                                                                                                                                                         |             |
|   | 7.7                                                  | FIELD STRENGTH OF SPURIOUS RADIATION.                                                                                                                                                                           |             |
|   | 7.8                                                  | Frequency stability                                                                                                                                                                                             |             |
| 8 | PH                                                   | HOTOGRAPHS - EUT TEST SETUP                                                                                                                                                                                     | 38          |
| 9 | PH                                                   | HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS                                                                                                                                                                         | 38          |

Page 5 of 38

### 5 General Information

### 5.1 Client Information

| Applicant:               | AXESSTEL, INC                                                        |  |  |
|--------------------------|----------------------------------------------------------------------|--|--|
| Address of Applicant:    | 6815 Flanders Drive, Ste 210, San Diego, CA92121, USA                |  |  |
| Manufacturer:            | Axesstel (Shanghai) Ltd.                                             |  |  |
| Address of Manufacturer: | Room 1101, Building 19, No.1515 Gumei Road, Xuhui District, Shanghai |  |  |
| Factory:                 | Eastcom incorporated Co., LTD.                                       |  |  |

### 5.2 General Description of E.U.T.

| Product Name         | Home Alert |
|----------------------|------------|
| Brand Name:          | Axesstel   |
| Model No:            | AX140      |
| Added Model:         | N/A        |
| Product Description: | Home Alert |

### 5.3 Technical Specifications:

| Operation Frequency: | CDMA Cell 800 and PCS1900                                                                   |
|----------------------|---------------------------------------------------------------------------------------------|
| Modulation:          | Fwd 1, Rvs1/SO2<br>Fwd 2, Rvs2/SO9<br>Fwd 3,Rvs3/SO55<br>Fwd 4,Rvs3/SO55<br>Fwd 5,Rvs4/SO55 |
| Power Supply:        | 9V DC Battery or 5V DC Charger.                                                             |
| Antenna Type         | Integral                                                                                    |

### 5.4 Accessories of Product:

| Battery: | Battery Type: | 9V DC                     |                 |  |
|----------|---------------|---------------------------|-----------------|--|
|          | Model No.:    | TA31-0502000              |                 |  |
| Adoptor  | Rated Input:  | AC 100V-240V 50-60Hz 0.4A |                 |  |
| Adapter: | Rated Output: | DC 5.0V 2.                | 0A              |  |
|          | Cable length: | DC port:                  | 180cm (2 wires) |  |

Page 6 of 38

### 5.5 Support equipments for Testing

The EUT has been tested independently.

### 5.6 Details of Test Mode

| Test Mode         | Description of Test Mode                    |  |
|-------------------|---------------------------------------------|--|
| Transmitting mode | Keep the EUT on continue transmitting mode. |  |

### 5.7 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab No.588 West Jindu Road, Songjiang District, Shanghai, China. 201612.

Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

No tests were sub-contracted.

### 5.8 Test Facility

### CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. Date of expiry: 2014-07-26.

### • FCC – Registration No.: 402683

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered and fully described in a report filed with the Federal Communications Commission (FCC). The acceptance letter from the FCC is maintained in our files. Registration No.: 402683, Expiry Date: 2015-02-22.

### Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A. Expiry Date: 2014-09-20.

### VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control



Page 7 of 38

Measures with Registration No.: R-3868 and C-4336 respectively. Date of Registration: 2012-05-29.

Date of Expiry: 2015-05-28.

Page 8 of 38

# 6 Equipments Used during Test

Conducted Emission

|      | 2 0011440104 Initiation                           |                 |           |            |            |               |  |
|------|---------------------------------------------------|-----------------|-----------|------------|------------|---------------|--|
| Item | Test Equipment                                    | Manufacturer    | Model No. | Serial No. | Cal. Date  | Cal. Due date |  |
| 1    | EMI test receiver                                 | Rohde & Schwarz | ESCS30    | 100086     | 2012-06-13 | 2013-06-12    |  |
| 2    | Line impedance<br>stabilization<br>network (LISN) | SCHWARZBECK     | NSLK8127  | 8127-490   | 2012-06-13 | 2013-06-12    |  |
| 3    | Line impedance<br>stabilization<br>network (LISN) | ETS             | 3816/2    | 00034161   | 2012-06-13 | 2013-06-12    |  |

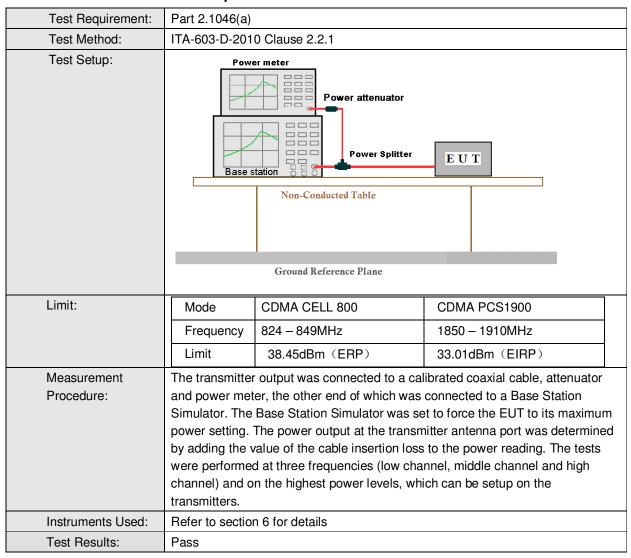
Radiated Spurious Emission

| Item | Test Equipment      | Manufacturer    | Model No. | Serial No. | Cal. Date  | Cal. Due date |
|------|---------------------|-----------------|-----------|------------|------------|---------------|
| 1    | EMI test receiver   | Rohde & Schwarz | ESU40     | 100109     | 2012-06-02 | 2014-06-01    |
| 2    | Antenna             | SCHWARZBECK     | VULB9168  | 9168-313   | 2012-08-15 | 2013-08-14    |
| 3    | CONTROLLER          | INNCO           | CO200     | 474        | /          | /             |
| 4    | Antenna             | SCHWARZBECK     | BBHA9120D | 9120D-679  | 2012-08-15 | 2013-08-14    |
| 5    | Antenna             | SCHWARZBECK     | BBHA9170  | 9170-373   | 2012-08-15 | 2013-08-14    |
| 6    | Low nosie amplifier | LNA6900         | TESEQ     | 71033      | 2012-08-15 | 2013-08-14    |

RF Conducted Test

| Item | Test Equipment            | Manufacturer                                  | Model No. | Serial No.      | Cal. Date  | Cal. Due date |
|------|---------------------------|-----------------------------------------------|-----------|-----------------|------------|---------------|
| 1    | EMI test receiver         | Rohde & Schwarz                               | ESU40     | 100109          | 2013-06-03 | 2014-06-01    |
| 2    | Horn Antenna              | SCHWARZBE<br>CK                               | BBHA9120D | 9120D-679       | 2013-06-03 | 2014-06-01    |
| 3    | Horn Antenna              | Rohde & Schwarz                               | HF906     | 100284          | 2013-06-03 | 2014-06-01    |
| 4    | ANTENNA                   | SCHWARZBE<br>CK                               | VULB9168  | 9168-313        | 2013-06-03 | 2014-06-01    |
| 5    | Horn Antenna              | SCHWARZBE<br>CK                               | BBHA 9170 | BBHA91703<br>73 | 2012-08-15 | 2013-08-14    |
| 6    | Ultra broadband antenna   | Rohde & Schwarz                               | HL562     | 100227          | 2012-10-09 | 2013-10-08    |
| 7    | Atmosphere pressure meter | Shanghai<br>ZhongXuan<br>Electronic<br>Co;Ltd | BY-2009P  |                 | 2012-10-09 | 2013-10-08    |




9 of 38 Page

|    | •                                          | T.                          |                                           |          |            |            |
|----|--------------------------------------------|-----------------------------|-------------------------------------------|----------|------------|------------|
| 8  | CLAMP METER                                | FLUKE                       | 316                                       | 86080010 | 2013-06-03 | 2014-06-01 |
| 9  | Thermo-Hygrometer                          | ZHICHEN                     | ZC1-2                                     | 01050033 | 2012-10-09 | 2013-10-08 |
| 11 | High-low temperature cabinet               | Shanghai<br>YuanZhen        | GW2050                                    |          | 2013-06-03 | 2014-06-01 |
| 12 | Tunable Notch Filter                       | Wainwright instruments      | WRCT1800.<br>0/<br>2000.0-<br>0.2/40-5SSK | 11       | 2013-06-03 | 2014-06-01 |
| 13 | Tunable Notch Filter                       | Wainwright instruments Gmbh | WRCT800.0/<br>880.0-<br>0.2/40-5SSK       | 9        | 2013-06-03 | 2014-06-01 |
| 14 | High pass Filter                           | FSCW                        | HP 12/2800-<br>5AA2                       | 19A45-02 | 2013-06-03 | 2014-06-01 |
| 15 | Low nosie amplifier                        | TESEQ                       | LNA6900                                   | 70133    | 2013-06-03 | 2014-06-01 |
| 16 | EMI test receiver                          | Rohde & Schwarz             | ESCS30                                    | 100086   | 2013-06-03 | 2014-06-01 |
| 17 | Line impedance<br>stabilization<br>network | SCHWARZBE<br>CK             | NSLK8127                                  | 8127-490 | 2013-06-03 | 2014-06-01 |
| 18 | Universal radio communication              | Agilent                     | E5515C                                    | 45361045 | 2013-06-03 | 2014-06-01 |
| 19 | Power meter                                | Rohde & Schwarz             | NRP                                       | 101641   | 2013-02-23 | 2014-02-22 |

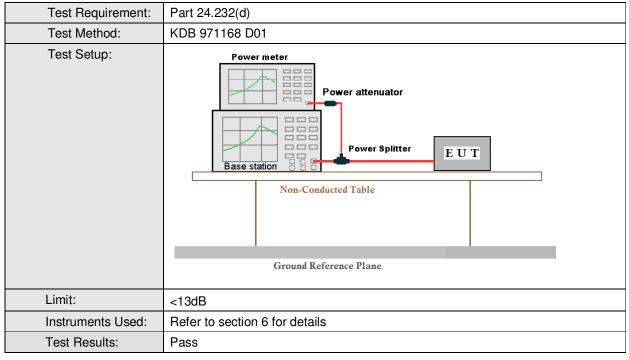
Page 10 of 38

### 7 Test results and Measurement Data

### 7.1 Conducted Output Power



Page 11 of 38

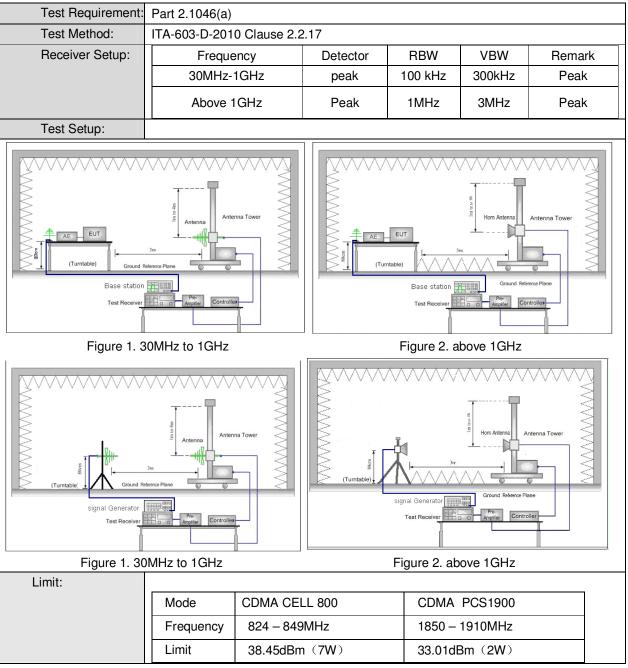

### Measurement results:

|                           | Cell 800    |                 |                              |  |  |  |  |  |
|---------------------------|-------------|-----------------|------------------------------|--|--|--|--|--|
| Center Frequency<br>(MHz) | Channel No. | Test Mode       | RF Power output dBm(Average) |  |  |  |  |  |
| 824.70                    | 1013        | Fwd 1, Rvs1/SO2 | 24.32                        |  |  |  |  |  |
| 835.89                    | 363         | Fwd 1,Rvs1/SO2  | 24.44                        |  |  |  |  |  |
| 848.31                    | 777         | Fwd 1,Rvs1/SO2  | 24.12                        |  |  |  |  |  |
| 824.70                    | 1013        | Fwd 2,Rvs2/SO9  | 24.28                        |  |  |  |  |  |
| 835.89                    | 363         | Fwd 2,Rvs2/SO9  | 24.36                        |  |  |  |  |  |
| 848.31                    | 777         | Fwd 2,Rvs2/SO9  | 24.36                        |  |  |  |  |  |
| 824.70                    | 1013        | Fwd 3,Rvs3/SO55 | 24.26                        |  |  |  |  |  |
| 835.89                    | 363         | Fwd 3,Rvs3/SO55 | 24.41                        |  |  |  |  |  |
| 848.31                    | 777         | Fwd 3,Rvs3/SO55 | 24.29                        |  |  |  |  |  |
| 824.70                    | 1013        | Fwd 4,Rvs3/SO55 | 24.38                        |  |  |  |  |  |
| 835.89                    | 363         | Fwd 4,Rvs3/SO55 | 24.31                        |  |  |  |  |  |
| 848.31                    | 777         | Fwd 4,Rvs3/SO55 | 24.33                        |  |  |  |  |  |
| 824.70                    | 1013        | Fwd 5,Rvs4/SO55 | 24.37                        |  |  |  |  |  |
| 835.89                    | 363         | Fwd 5,Rvs4/SO55 | 24.51                        |  |  |  |  |  |
| 848.31                    | 777         | Fwd 5,Rvs4/SO55 | 24.48                        |  |  |  |  |  |

|                           | US PCS1900  |                 |                              |  |  |  |
|---------------------------|-------------|-----------------|------------------------------|--|--|--|
| Center Frequency<br>(MHz) | Channel No. | Test Mode       | RF Power output dBm(Average) |  |  |  |
| 1851.25                   | 25          | Fwd 1, Rvs1/SO2 | 23.20                        |  |  |  |
| 1880.00                   | 600         | Fwd 1,Rvs1/SO2  | 23.33                        |  |  |  |
| 1908.75                   | 1175        | Fwd 1,Rvs1/SO2  | 23.01                        |  |  |  |
| 1851.25                   | 25          | Fwd 2,Rvs2/SO9  | 23.31                        |  |  |  |
| 1880.000                  | 600         | Fwd 2,Rvs2/SO9  | 23.24                        |  |  |  |
| 1908.75                   | 1175        | Fwd 2,Rvs2/SO9  | 23.26                        |  |  |  |
| 1851.25                   | 25          | Fwd 3,Rvs3/SO55 | 23.31                        |  |  |  |
| 1880.00                   | 600         | Fwd 3,Rvs3/SO55 | 23.28                        |  |  |  |
| 1908.75                   | 1175        | Fwd 3,Rvs3/SO55 | 23.15                        |  |  |  |
| 1851.25                   | 25          | Fwd 4,Rvs3/SO55 | 23.38                        |  |  |  |
| 1880.00                   | 600         | Fwd 4,Rvs3/SO55 | 23.18                        |  |  |  |
| 1908.75                   | 1175        | Fwd 4,Rvs3/SO55 | 23.19                        |  |  |  |
| 1851.25                   | 25          | Fwd 5,Rvs4/SO55 | 23.36                        |  |  |  |
| 1880.00                   | 600         | Fwd 5,Rvs4/SO55 | 23.37                        |  |  |  |
| 1908.75                   | 1175        | Fwd 5,Rvs4/SO55 | 23.34                        |  |  |  |

Page 12 of 38

### 7.2 Peak-to-Average Ratio




### Measurement results:

| Measurement results.      | US PCS1900            |                 |                             |  |  |  |
|---------------------------|-----------------------|-----------------|-----------------------------|--|--|--|
| Center Frequency<br>(MHz) | Channel No. Test Mode |                 | Peak-to-Average Ratio<br>dB |  |  |  |
|                           |                       | Fwd 1, Rvs1/SO2 | 2.56                        |  |  |  |
|                           |                       | Fwd 2,Rvs2/SO9  | 2.21                        |  |  |  |
| 1851.25                   | 25                    | Fwd 3,Rvs3/SO55 | 2.36                        |  |  |  |
|                           |                       | Fwd 4,Rvs3/SO55 | 3.25                        |  |  |  |
|                           |                       | Fwd 5,Rvs4/SO55 | 3.39                        |  |  |  |
|                           | 600                   | Fwd 1, Rvs1/SO2 | 2.17                        |  |  |  |
|                           |                       | Fwd 2,Rvs2/SO9  | 2.83                        |  |  |  |
| 1880.00                   |                       | Fwd 3,Rvs3/SO55 | 2.88                        |  |  |  |
|                           |                       | Fwd 4,Rvs3/SO55 | 3.64                        |  |  |  |
|                           |                       | Fwd 5,Rvs4/SO55 | 3.91                        |  |  |  |
|                           |                       | Fwd 1, Rvs1/SO2 | 3.35                        |  |  |  |
|                           |                       | Fwd 2,Rvs2/SO9  | 3.56                        |  |  |  |
| 1908.75                   | 1175                  | Fwd 3,Rvs3/SO55 | 3.55                        |  |  |  |
|                           |                       | Fwd 4,Rvs3/SO55 | 4.07                        |  |  |  |
|                           |                       | Fwd 5,Rvs4/SO55 | 4.04                        |  |  |  |

Page 13 of 38

## 7.3 Effective Radiated Power of Transmitter (ERP/EIRP)





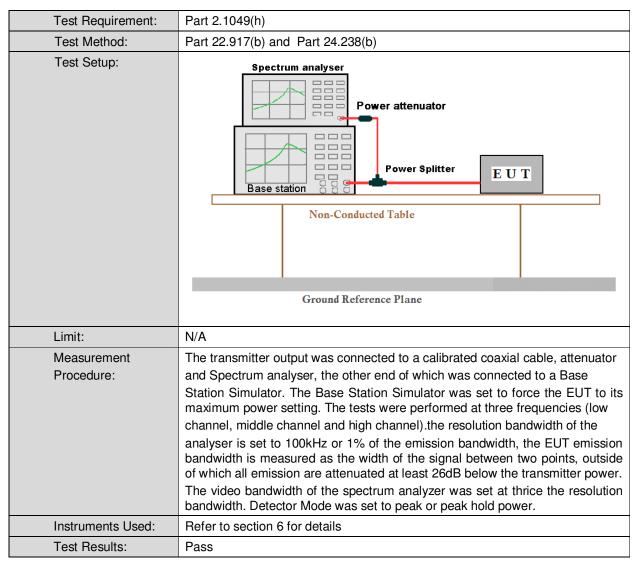
# SGS-CSTC Standards Technical Services (Shanghai)Co., Ltd.

Report No.: SHEM130400052902

14 of 38 Page

| Measurement       | Below 1GHz test procedure as below:                                             |
|-------------------|---------------------------------------------------------------------------------|
| Procedure:        | 1). The EUT was powered ON and placed on a 0.8m high table in the               |
|                   | chamber. The antenna of the transmitter was extended to its maximum             |
|                   | length.                                                                         |
|                   | 2). The disturbance of the transmitter was maximized on the test receiver       |
|                   | display by raising and lowering from 1m to 4m the receive antenna and by        |
|                   | rotating through 360° the turntable. After the fundamental emission was         |
|                   | maximized, a field strength measurement was made.                               |
|                   | 3). Steps 1) and 2) were performed with the EUT and the receive antenna in      |
|                   | both vertical and horizontal polarization.                                      |
|                   | 4). The transmitter was then removed and replaced with another antenna. The     |
|                   | center of the antenna was approximately at the same location as the center      |
|                   | of the transmitter.                                                             |
|                   | 5). A signal at the disturbance was fed to the substitution antenna by means of |
|                   | a non-radiating cable. With both the substitution and the receive antennas      |
|                   | horizontally polarized, the receive antenna was raised and lowered to           |
|                   | obtain a maximum reading at the test receiver. The level of the signal          |
|                   | generator was adjusted until the measured field strength level in step 2) is    |
|                   | obtained for this set of conditions.                                            |
|                   | 6). The output power into the substitution antenna was then measured.           |
|                   | 7). Steps 5) and 6) were repeated with both antennas polarized.                 |
|                   | 8). Calculate power in dBm by the following formula:                            |
|                   | ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)                       |
|                   | where:                                                                          |
|                   | Pg is the generator output power into the substitution antenna.                 |
|                   | Above 1GHz test procedure as below:                                             |
|                   | 1). Different between above is the test site, change from Semi- Anechoic        |
|                   | Chamber to fully Anechoic Chamber                                               |
|                   | 2). Calculate power in dBm by the following formula:                            |
|                   | EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)                      |
|                   | EIRP=ERP+2.15dB                                                                 |
|                   | where:                                                                          |
|                   | Pg is the generator output power into the substitution antenna.                 |
|                   | 3). Test the EUT in the lowest channel, the middle channel the Highest          |
|                   | channel                                                                         |
|                   | 4). The radiation measurements are performed in X, Y, Z axis positioning. And   |
|                   | found the X axis positioning which it is worse case, Only the test worst case   |
|                   | mode is recorded in the report.                                                 |
|                   | 5). Repeat above procedures until all frequencies measured was complete.        |
| Instruments Used: | Refer to section 6 for details                                                  |
| Test Results:     | Pass                                                                            |
|                   |                                                                                 |




15 of 38 Page

### **Measurement Data**

| EUT<br>mode | Frequency<br>(MHz) | СН   | EUT<br>Pol. | Antenna<br>Pol. | SPA<br>Reading<br>(dBuV) | S.G.<br>output<br>(dBm) | Antenna<br>Gain<br>(dBd) | Cable<br>loss<br>(dB) | ERP<br>(dBm)  | Limit<br>(dBm) |
|-------------|--------------------|------|-------------|-----------------|--------------------------|-------------------------|--------------------------|-----------------------|---------------|----------------|
|             |                    |      |             | V               | 99.78                    | 18.24                   | 8.40                     | 3.32                  | 23.32         | 38.45          |
|             | 824.70             | 1013 | Н           | Н               | 100.12                   | 19.13                   | 8.40                     | 3.32                  | 24.21         | 38.45          |
| Cell        |                    |      |             | V               | 99.35                    | 19.24                   | 8.42                     | 3.40                  | 24.26         | 38.45          |
| 800         | 835.89             | 363  | Н           | Н               | 99.98                    | 18.78                   | 8.42                     | 3.40                  | 23.80         | 38.45          |
|             |                    |      |             | V               | 100.24                   | 18.63                   | 8.47                     | 3.43                  | 23.67         | 38.45          |
|             | 848.31             | 777  | Н           | Н               | 101.17                   | 18.89                   | 8.47                     | 3.43                  | 23.93         | 38.45          |
| EUT<br>mode | Frequency<br>(MHz) | СН   | EUT<br>Pol. | Antenna<br>Pol. | SPA<br>Reading<br>(dBuV) | S.G.<br>output<br>(dBm) | Antenna<br>Gain<br>(dBi) | Cable<br>loss<br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) |
|             |                    |      |             | V               | 98.54                    | 17.36                   | 9.15                     | 4.15                  | 22.36         | 33             |
|             | 1851.25            | 25   | Н           | Н               | 101.62                   | 17.08                   | 9.15                     | 4.15                  | 22.08         | 33             |
| PCS<br>1900 |                    |      |             | V               | 97.64                    | 17.39                   | 9.22                     | 4.28                  | 22.33         | 33             |
|             | 1880.00            | 600  | Н           | Н               | 102.78                   | 16.86                   | 9.22                     | 4.28                  | 21.80         | 33             |
|             |                    |      |             | V               | 99.33                    | 17.58                   | 9.25                     | 4.41                  | 22.42         | 33             |
|             | 1908.75            | 1175 | Н           | Н               | 100.69                   | 16.92                   | 9.25                     | 4.41                  | 21.76         | 33             |

Page 16 of 38

### 7.4 99%Occupied Bandwidth

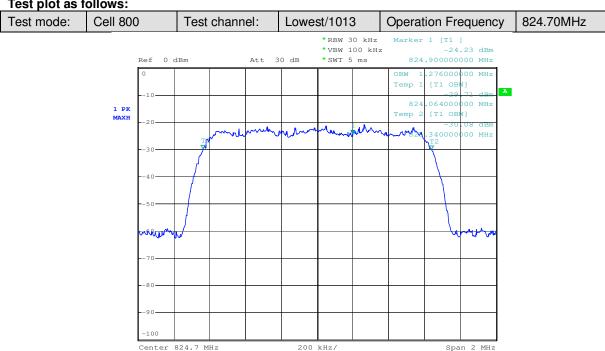




Page 17 of 38

### **Measurement Data**

| Measurement Data     |                    |                        |        |  |  |  |
|----------------------|--------------------|------------------------|--------|--|--|--|
| Cell 800             |                    |                        |        |  |  |  |
| Test channel         | Frequency (MHz)    | 99% Emission Bandwidth | Result |  |  |  |
| Lowest/1013          | Lowest/1013 824.70 |                        | Pass   |  |  |  |
| Middle/363           | Middle/363 835.89  |                        | Pass   |  |  |  |
| Highest/777 848.31   |                    | 1.272MHz               | Pass   |  |  |  |
|                      | PCS 1900           |                        |        |  |  |  |
| Test channel         | Frequency (MHz)    | 99% Emission Bandwidth | Result |  |  |  |
| Lowest/25            | Lowest/25 1851.25  |                        | Pass   |  |  |  |
| Middle/600           | Middle/600 1880.00 |                        | Pass   |  |  |  |
| Highest/1175 1908.75 |                    | 1.268MHz               | Pass   |  |  |  |



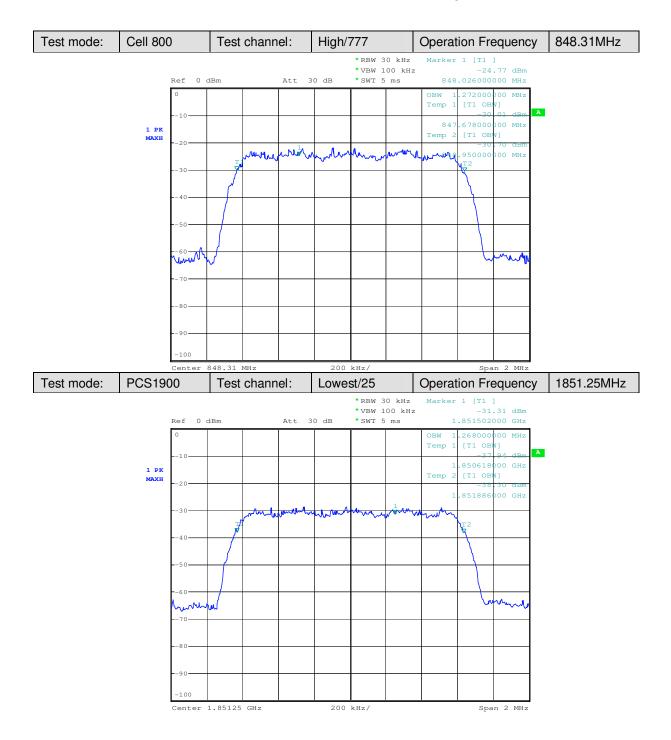

**SGS-CSTC Standards** 

Report No.: SHEM130400052902

Page 18 of 38

Test plot as follows:



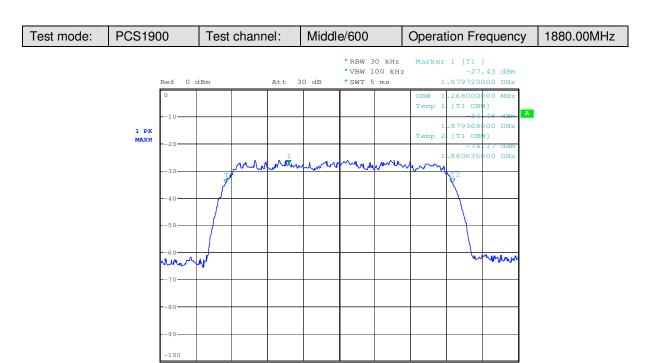


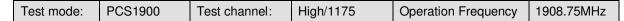


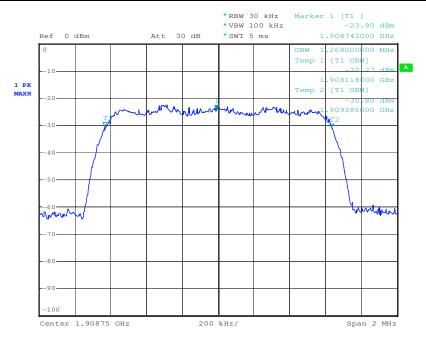

# **SGS-CSTC Standards** Technical Services (Shanghai)Co., Ltd.

Report No.: SHEM130400052902

Page 19 of 38

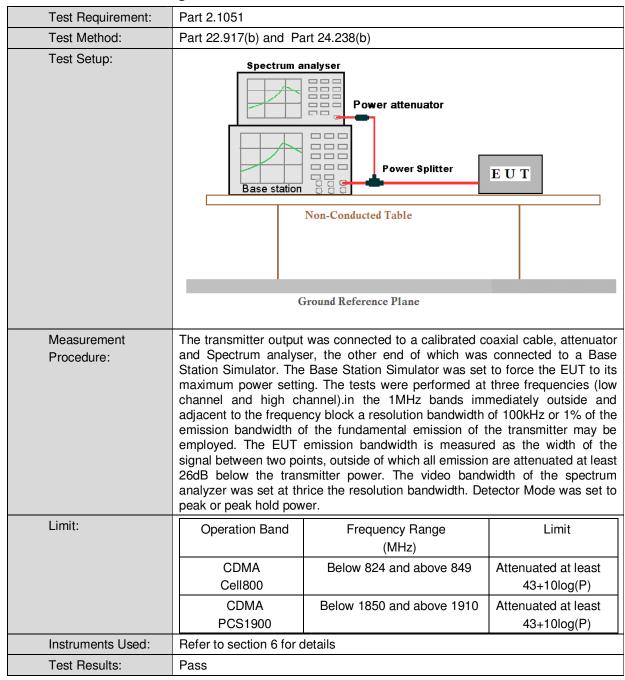




# **SGS-CSTC Standards**

Report No.: SHEM130400052902

Page 20 of 38





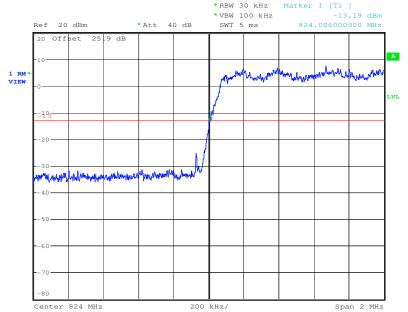



Page 21 of 38

### 7.5 Band Edge at antenna terminals






# SGS-CSTC Standards Technical Services (Shanghai)Co., Ltd.

Report No.: SHEM130400052902

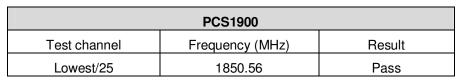

Page 22 of 38

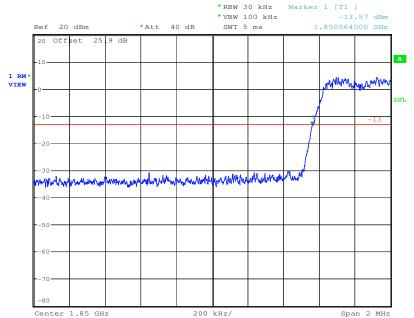
### **Measurement Data**

| Cell800      |                 |        |  |  |
|--------------|-----------------|--------|--|--|
| Test channel | Frequency (MHz) | Result |  |  |
| Lowest/1013  | 824.006         | Pass   |  |  |

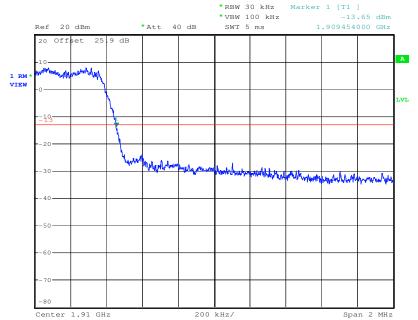


| OCHECL OLI IIIL | 200 11127       | opan z miz |
|-----------------|-----------------|------------|
| Test channel    | Frequency (MHz) | Result     |
| Highest/777     | 849.006         | Pass       |



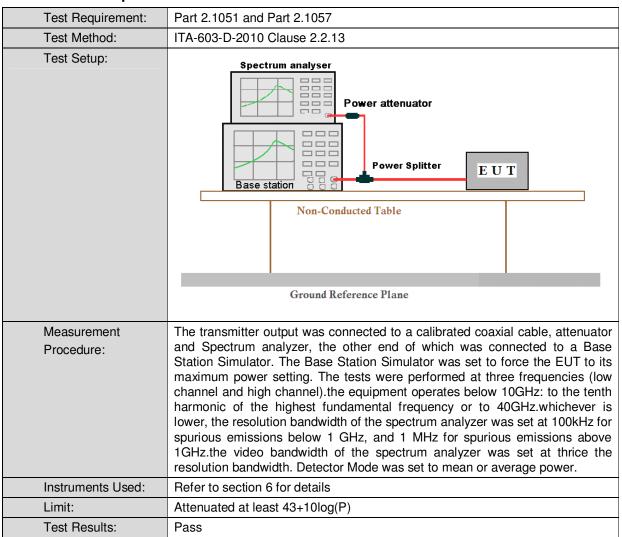




# SGS-CSTC Standards Technical Services (Shanghai)Co., Ltd.


Report No.: SHEM130400052902

Page 23 of 38





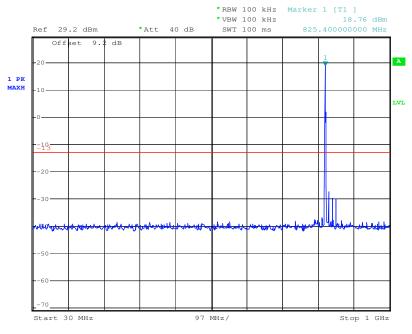

| Test channel | Frequency (MHz) | Result |
|--------------|-----------------|--------|
| Highest/1175 | 1909.45         | Pass   |



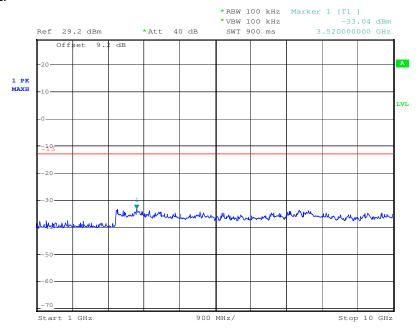
Page 24 of 38

### 7.6 Spurious emissions at antenna terminals





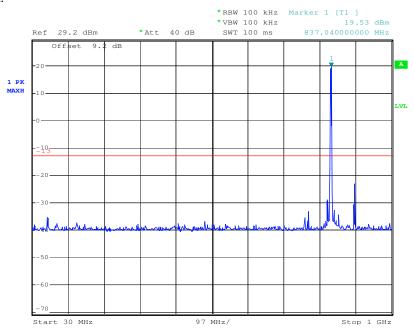

25 of 38 Page


Test plot as follows:

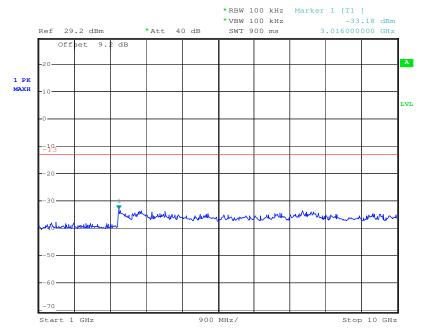
| Test mode: Cel | II 800 Test channel: | Lowest/1013 | Operation Frequency | 824.7MHz |
|----------------|----------------------|-------------|---------------------|----------|
|----------------|----------------------|-------------|---------------------|----------|

For 30MHz-1GHz:




For 1GHz-10GHz:

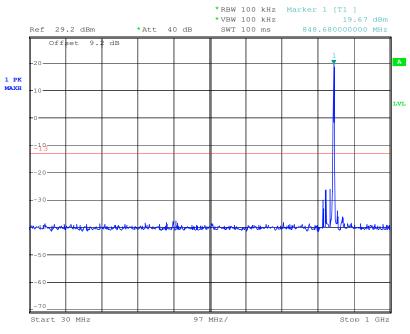



Page 26 of 38

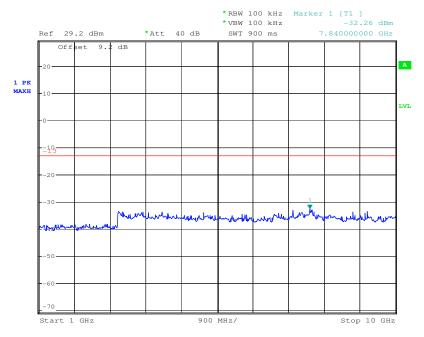
| Test mode: | Cell 800 | Test channel: | Middle/363 | Operation Frequency | 835.89MHz |
|------------|----------|---------------|------------|---------------------|-----------|
|------------|----------|---------------|------------|---------------------|-----------|

### For 30MHz-1GHz:




### For 1GHz-10GHz:



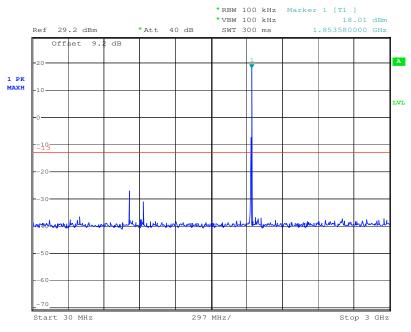

Page 27 of 38

| Test mode: Cell 8 | 0 Test channel: | High/777 | Operation Frequency | 848.31MHz |
|-------------------|-----------------|----------|---------------------|-----------|
|-------------------|-----------------|----------|---------------------|-----------|

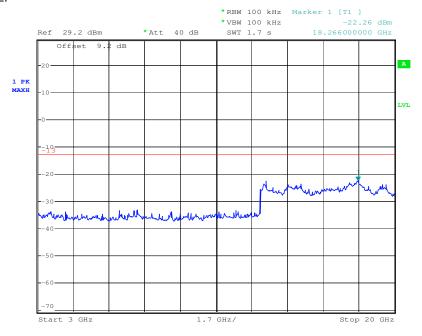
### For 30MHz-1GHz:



### For 1GHz-10GHz:



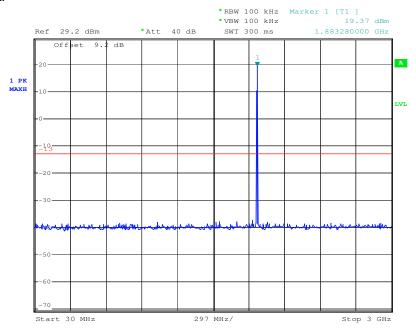




Page 28 of 38

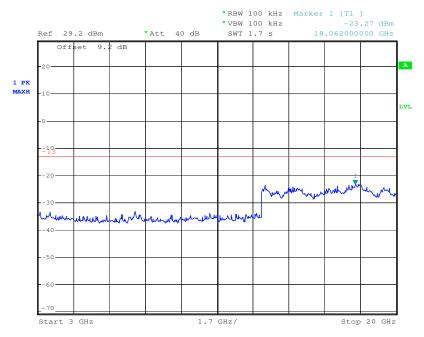
Test mode: PCS 1900 Test channel: Lowest/25 Operation Frequency 1851.25MHz

### For 30MHz-3GHz:



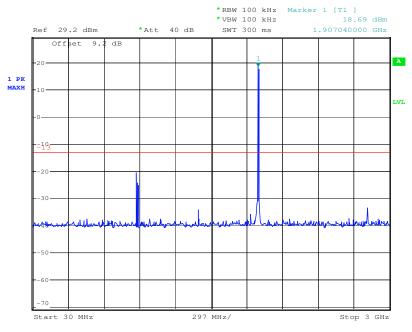

### For 3GHz-20GHz:



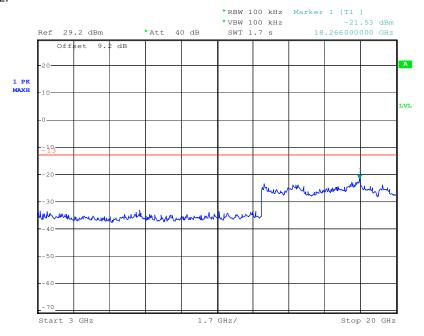

Page 29 of 38

| Test mode: | PCS 1900 | Test channel: | Middle/600 | Operation Frequency | 1880.00MHz |
|------------|----------|---------------|------------|---------------------|------------|
|------------|----------|---------------|------------|---------------------|------------|

### For 30MHz-3GHz:



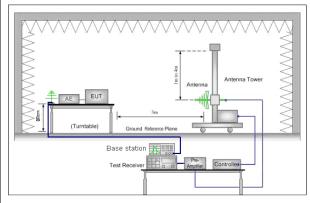

### For 3GHz-20GHz:




Page 30 of 38

### For 30MHz-3GHz:




### For 3GHz-20GHz:



Page 31 of 38

### 7.7 Field strength of spurious radiation

| Test Requirement: | Part 2.1053 and Part 2.1057       |      |         |        |      |   |  |
|-------------------|-----------------------------------|------|---------|--------|------|---|--|
| Test Method:      | ITA-603-D-2010 Clause 2.2.12      |      |         |        |      |   |  |
| Receiver Setup:   | Frequency Detector RBW VBW Remark |      |         |        |      |   |  |
|                   | 30MHz-1GHz                        | Peak | 100 kHz | 300kHz | Peak |   |  |
|                   | Above 1GHz                        | Peak | 1MHz    | 3MHz   | Peak |   |  |
|                   |                                   |      |         |        |      | • |  |
| Test Setup:       |                                   |      |         |        |      |   |  |



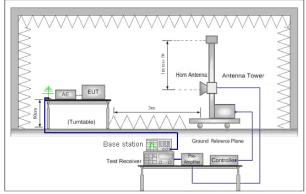



Figure 2. 30MHz to 1GHz

Figure 3. above 1GHz

# Measurement Procedure:

### Below 1GHz test procedure as below:

- 1). The EUT was powered ON and placed on a 1.70m high table in the chamber. The antenna of the transmitter was extended to its maximum length.
- 2). The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 3). Steps 1) and 2) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 4). The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 5). A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in



32 of 38 Page

|                   | step 2) is obtained for this set of conditions.                              |
|-------------------|------------------------------------------------------------------------------|
|                   | 6). The output power into the substitution antenna was then measured.        |
|                   | 7). Steps 5) and 6) were repeated with both antennas polarized.              |
|                   | 8) Calculate power in dBm by the following formula:                          |
|                   | ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)                    |
|                   | where:                                                                       |
|                   | Pg is the generator output power into the substitution antenna.              |
|                   | Above 1GHz test procedure as below:                                          |
|                   | 1) Different between above is the test site, change from Semi- Anechoic      |
|                   | Chamber to fully Anechoic Chamber                                            |
|                   | 2) Calculate power in dBm by the following formula:                          |
|                   | EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)                   |
|                   | EIRP=ERP+2.15dB                                                              |
|                   | where:                                                                       |
|                   | Pg is the generator output power into the substitution antenna.              |
|                   | 3.Test the EUT in the lowest channel, the middle channel the Highest channel |
|                   | 4. The radiation measurements are performed in X, Y, Z axis positioning.     |
|                   | And found the X axis positioning which it is worse case, Only the test       |
|                   | worst case mode is recorded in the report.                                   |
|                   | 5. Repeat above procedures until all frequencies measured was complete.      |
| Instruments Used: | Refer to section 6 for details                                               |
| Limit:            | Attenuated at least 43+10log(P)                                              |
| Test Results:     | Pass                                                                         |
| •                 |                                                                              |

| Test mode: Cell 800 Test channel: L | _ow/1013 |
|-------------------------------------|----------|
|-------------------------------------|----------|

| Frequency<br>(MHz) | Ant.Pol.<br>H/V | ERP/<br>EIRP<br>(dBm) | Limit<br>(dBm) | Safe<br>Margin<br>(dB) |
|--------------------|-----------------|-----------------------|----------------|------------------------|
| 1646.00            | Н               | -39.50                | -13.           | 26.50                  |
| 2472.60            | Н               | -47.63                | -13            | 34.63                  |
| 1646.00            | V               | -38.58                | -13            | 25.58                  |
| 2472.9             | V               | -44.19                | -13            | 31.19                  |



## SGS-CSTC Standards Technical Services (Shanghai)Co., Ltd.

Report No.: SHEM130400052902

Page 33 of 38

Test mode: Cell 800 Test channel: Middle/363

| Frequency<br>(MHz) | Ant.Pol.<br>H/V | ERP/<br>EIRP<br>(dBm) | Limit<br>(dBm) | Safe<br>Margin<br>(dB) |
|--------------------|-----------------|-----------------------|----------------|------------------------|
| 1663.00            | Н               | -41.47                | -13.           | 28.47                  |
| 2507.67            | Н               | -43.58                | -13            | 30.58                  |
| 1663.00            | V               | -41.50                | -13            | 28.50                  |
| 2507.67            | V               | -42.36                | -13            | 29.36                  |

| Test mode: | Cell 800 | Test channel: | High/777 |  |  |
|------------|----------|---------------|----------|--|--|
|------------|----------|---------------|----------|--|--|

| Frequency<br>(MHz) | Ant.Pol.<br>H/V | ERP/<br>EIRP<br>(dBm) | Limit<br>(dBm) | Safe<br>Margin<br>(dB) |
|--------------------|-----------------|-----------------------|----------------|------------------------|
| 1697.00            | Н               | -42.69                | -13.           | 29.69                  |
| 2544.93            | Н               | -44.46                | -13            | 31.46                  |
| 1697.00            | V               | -46.65                | -13            | 33.65                  |
| 2544.93            | V               | -47.75                | -13            | 34.75                  |

| Test mode: | PCS 1900 | Test channel: | Low/25 |  |
|------------|----------|---------------|--------|--|

| Frequency<br>(MHz) | Ant.Pol.<br>H/V | ERP/<br>EIRP<br>(dBm) | Limit<br>(dBm) | Safe<br>Margin<br>(dB) |
|--------------------|-----------------|-----------------------|----------------|------------------------|
| 3702.50            | Н               | -44.60                | -13.           | 31.60                  |
| 5553.75            | Н               | -34.41                | -13            | 21.41                  |
| 3702.50            | V               | -36.92                | -13            | 23.92                  |
| 5553.75            | V               | -41.86                | -13            | 28.86                  |

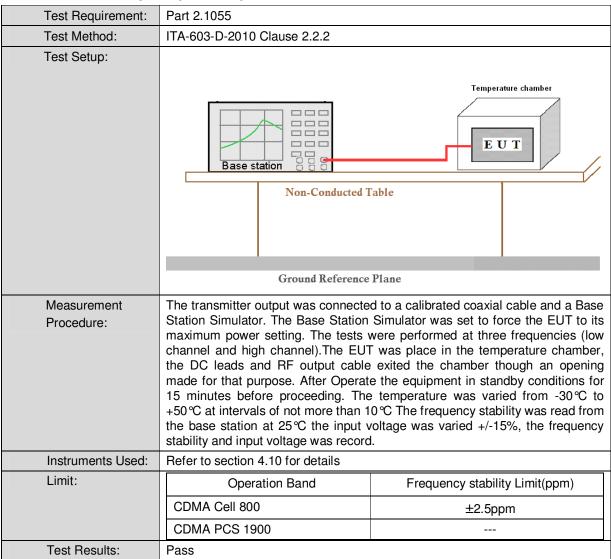


## SGS-CSTC Standards Technical Services (Shanghai)Co., Ltd.

Report No.: SHEM130400052902

Page 34 of 38

Test mode: PCS 1900 Test channel: Middle/600


| Frequency<br>(MHz) | Ant.Pol.<br>H/V | ERP/<br>EIRP<br>(dBm) | Limit<br>(dBm) | Safe<br>Margin<br>(dB) |
|--------------------|-----------------|-----------------------|----------------|------------------------|
| 3760.00            | Н               | -40.48                | -13.           | 27.48                  |
| 5640.00            | Н               | -32.39                | -13            | 19.39                  |
| 3760.00            | V               | -31.70                | -13            | 18.70                  |
| 5640.00            | V               | -40.90                | -13            | 27.90                  |

| Test mode: | PCS 1900 | Test channel: | High/1175 |  |  | ı |
|------------|----------|---------------|-----------|--|--|---|
|------------|----------|---------------|-----------|--|--|---|

| Frequency<br>(MHz) | Ant.Pol.<br>H/V | ERP/<br>EIRP<br>(dBm) | Limit<br>(dBm) | Safe<br>Margin<br>(dB) |
|--------------------|-----------------|-----------------------|----------------|------------------------|
| 3817.50            | Н               | -33.54                | -13.           | 20.54                  |
| 5726.25            | Н               | -41.09                | -13            | 28.09                  |
| 3817.50            | V               | -35.44                | -13            | 22.44                  |
| 5726.25            | V               | -38.77                | -13            | 25.77                  |

Page 35 of 38

### 7.8 Frequency stability





36 of 38 Page

| Cell 800        |                     |                |                    |            |          |       |
|-----------------|---------------------|----------------|--------------------|------------|----------|-------|
| Power<br>Supply | Environment         | Test Channel   |                    | Freq Delta | Freq Dev | Limit |
| Vdc             | Temperature<br>(°C) | Channel<br>No. | Frequency<br>(MHz) | (Hz)       | (ppm)    | (ppm) |
| 120             | -20                 | 1013           | 824.70             | 10         | 0.01     | ±2.5  |
| 120             | -20                 | 777            | 848.31             | 18         | 0.02     | ±2.5  |
| 120             | -10                 | 1013           | 824.70             | 36         | 0.04     | ±2.5  |
| 120             | -10                 | 777            | 848.31             | -22        | -0.03    | ±2.5  |
| 120             | 0                   | 1013           | 824.70             | 34         | 0.04     | ±2.5  |
| 120             | 0                   | 777            | 848.31             | 36         | 0.04     | ±2.5  |
| 120             | 10                  | 1013           | 824.70             | -22        | -0.03    | ±2.5  |
| 120             | 10                  | 777            | 848.31             | 34         | 0.04     | ±2.5  |
| 120             | 20                  | 1013           | 824.70             | 37         | 0.04     | ±2.5  |
| 120             | 20                  | 777            | 848.31             | 59         | 0.07     | ±2.5  |
| 120             | 30                  | 1013           | 824.70             | 57         | 0.07     | ±2.5  |
| 120             | 30                  | 777            | 848.31             | -48        | -0.06    | ±2.5  |
| 120             | 40                  | 1013           | 824.70             | -27        | -0.03    | ±2.5  |
| 120             | 40                  | 777            | 848.31             | 57         | 0.07     | ±2.5  |
| 120             | 50                  | 1013           | 824.70             | -32        | -0.04    | ±2.5  |
| 120             | 50                  | 777            | 848.31             | 28         | 0.03     | ±2.5  |
| 138             | 20                  | 1013           | 824.70             | -22        | -0.03    | ±2.5  |
| 138             | 20                  | 777            | 848.31             | 56         | 0.07     | ±2.5  |
| 102             | 20                  | 1013           | 824.70             | -36        | -0.04    | ±2.5  |
| 102             | 20                  | 777            | 848.31             | -34        | -0.04    | ±2.5  |



37 of 38 Page

| PCS 1900        |                     |                |                    |            |          |       |
|-----------------|---------------------|----------------|--------------------|------------|----------|-------|
| Power<br>Supply | Environment         | Test Channel   |                    | Freq Delta | Freq Dev | Limit |
| Vdc             | Temperature<br>(°C) | Channel<br>No. | Frequency<br>(MHz) | (Hz)       | (ppm)    | (ppm) |
| 120             | -20                 | 25             | 1851.25            | 38         | 0.02     | ±2.5  |
| 120             | -20                 | 1175           | 1908.75            | 22         | 0.01     | ±2.5  |
| 120             | -10                 | 25             | 1851.25            | -19        | -0.01    | ±2.5  |
| 120             | -10                 | 1175           | 1908.75            | -33        | -0.02    | ±2.5  |
| 120             | 0                   | 25             | 1851.25            | 28         | 0.02     | ±2.5  |
| 120             | 0                   | 1175           | 1908.75            | -17        | -0.01    | ±2.5  |
| 120             | 10                  | 25             | 1851.25            | -45        | -0.02    | ±2.5  |
| 120             | 10                  | 1175           | 1908.75            | 33         | 0.02     | ±2.5  |
| 120             | 20                  | 25             | 1851.25            | -27        | -0.01    | ±2.5  |
| 120             | 20                  | 1175           | 1908.75            | 58         | 0.03     | ±2.5  |
| 120             | 30                  | 25             | 1851.25            | 22         | 0.01     | ±2.5  |
| 120             | 30                  | 1175           | 1908.75            | -43        | -0.02    | ±2.5  |
| 120             | 40                  | 25             | 1851.25            | 33         | 0.02     | ±2.5  |
| 120             | 40                  | 1175           | 1908.75            | 26         | 0.01     | ±2.5  |
| 120             | 50                  | 25             | 1851.25            | -18        | -0.01    | ±2.5  |
| 120             | 50                  | 1175           | 1908.75            | 43         | 0.02     | ±2.5  |
| 138             | 20                  | 25             | 1851.25            | -33        | -0.02    | ±2.5  |
| 138             | 20                  | 1175           | 1908.75            | 24         | 0.01     | ±2.5  |
| 102             | 20                  | 25             | 1851.25            | -32        | -0.02    | ±2.5  |
| 102             | 20                  | 1175           | 1908.75            | 22         | 0.01     | ±2.5  |

Page 38 of 38

## 8 Photographs - EUT Test Setup

Refer to the < AX140--Test Setup photos>.

# 9 Photographs - EUT Constructional Details

Refer to the < AX140--External Photos > & < AX140--Internal Photos >.