

SAR Test Report

Report No.: AGC01284180603FH01

FCC ID : PH3DJ-MD5

PRODUCT DESIGNATION: VHF/UHF DUAL BAND TRANSCEIVER

BRAND NAME : ALINCO

MODEL NAME : DJ-MD5, DJ-MD5T, DJ-MD5TGP

CLIENT : Alinco Incorporated, Electronics Division

DATE OF ISSUE: Aug. 13,2018

IEEE Std. 1528:2013 FCC 47CFR § 2.1093

STANDARD(S) : FCC 47CFR § 2.1093

IEEE/ANSI C95.1:2005

REPORT VERSION : V1.1

Attestation of Global Compliance(Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 54

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	To Market and Con	July 25,2018	Invalid	Initial Release
V1.1	1st	Aug. 13,2018	Valid	Update the calibration date of DAE

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC01284180603FH01 Page 3 of 54

Test Report Certification Applicant Name Alinco Incorporated, Electronics Division Yodoyabashi Dai-Bldg 13F, 4-4-9 Koraibashi, Chuo-Ku, Osaka 541-0043, Applicant Address Japan Manufacturer Name Alinco Incorporated, Electronics Division Yodoyabashi Dai-Bldg 13F, 4-4-9 Koraibashi, Chuo-Ku, Osaka 541-0043,

Manufacturer Address Japan **Product Designation** VHF/UHF DUAL BAND TRANSCEIVER

Brand Name ALINCO

DJ-MD5, DJ-MD5T, DJ-MD5TGP **Different Description** All the same, except for the model name. The test name is DJ-MD5.

EUT Voltage DC7.4 V

Model Name

IEEE Std. 1528:2013 Applicable Standard FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005

Test Date July 04, 2018 to July 07,2018

AGCRT- US -PTT/SAR (2018-02-02) Report Template

Note: The results of testing in this report apply to the product/system which was tested only.

	Owen Xiao	
Tested By _	® Management of the state of th	SIO.
	Qwen Xiao(Xiao Qi)	July 07,2018
Checked By _	Angola li	
Checked by _	Angela Li(Li Jiao)	Aug. 13,2018
	-owesto ce	
Authorized By		liji:
	Forrest Lei(Lei Yonggang) Authorized Officer	Aug. 13,2018

The results spown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	
2. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	7
3.1. THE DASY5 SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS	
4. SAR MEASUREMENT PROCEDURE	
4.1. SPECIFIC ABSORPTION RATE (SAR)	
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	15 16
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR SYSTEM CHECK PROCEDURES	19
7. EUT TEST POSITION	20
7.1. BODY WORN POSITION	
8. SAR EXPOSURE LIMITS	21
9. TEST FACILITY	22
10. TEST EQUIPMENT LIST	23
11. MEASUREMENT UNCERTAINTY	24
12. POWER MEASUREMENT	28
13. TEST RESULTS	34
13.1. SAR Test Results Summary	
APPENDIX A. SAR SYSTEM CHECK DATA	38
APPENDIX B. SAR MEASUREMENT DATA	42
APPENDIX C. TEST SETUP PHOTOGRAPHS	52
	iuce – @

Page 5 of 54

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Highest Report standalone SAR Summary (50% duty cycle)

Frequency	Type of signal	Congration	Highest Reported 1g-SAR(W/Kg)			
Band	Type of signal	Separation	Face Up (with 25mm separation)	Back Touch		
450	Analog	12.5KHz	1.574	3.393		
450	450 Digital	12.5KHz	0.784	1.578		
# 4FO	Analog	12.5KHz	0.170	0.901		
150	Digital	12.5KHz	0.082	0.371		

This device is compliance with Specific Absorption Rate (SAR) for Occupational / Controlled Exposure Environment limits (8.0W/Kg) specified in 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1, and had been tested in accordance with measurement methods and procedures specified in IEEE 1528-2013 and the following specific FCC Test Procedures:

KDB447498 D01 General RF Exposure Guidance v06

KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04

KDB 643646 D01 SAR Test for PTT Radios v01r03

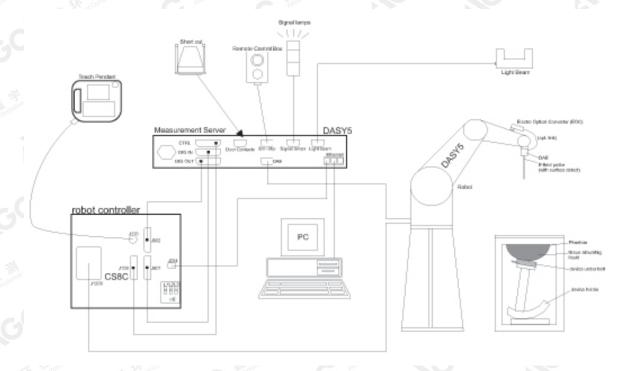
The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 6 of 54

2. GENERAL INFORMATION

2.1. EUT Description

General Information	
Product Name	VHF/UHF DUAL BAND TRANSCEIVER
Test Model	DJ-MD5
Hardware Version	V1.00
Software Version	V2.02
Exposure Category:	Occupational/Controlled Exposure
Device Category	UHF & VHF Portable Transceiver
Modulation Type	FM &4FSK
TX Frequency Range	400-480MHz/136-174MHz
Rated Power	5W/2.5W/1W/0.2W (It was fixed by the manufacturer, any individual can't arbitrarily change it)
Max. Average Power	UHF:36.83dBm, VHF:36.87dBm
Channel Spacing	12.5 KHz
Antenna Type	Detachable
Antenna Gain	2.15dBi
Body-Worn Accessories:	Belt Clip with headset
Face-Head Accessories:	None
Battery Type (s) Tested:	DC7.4V,1700mAh (by battery)
Note: The sample used for te	esting is end product.


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gett.com.

Page 7 of 54

3. SAR MEASUREMENT SYSTEM

3.1. The DASY5 system used for performing compliance tests consists of following items

- A standard high precision 6-axis robot with controller, teach pendant and software.
- Data acquisition electronics (DAE) which attached to the robot arm extension. The DAE consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock
- A dosimetric probe equipped with an optical surface detector system.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital Communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- A Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- Phantoms, device holders and other accessories according to the targeted measurement.

Page 8 of 54

3.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files, etc.)Under ISO17025.The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	ES3DV3	Allest		
Manufacture	SPEAG			
frequency	0.15GHz-3 GHz Linearity:±0.2dB(150MHz-3 GHz)	A STATE OF		of Globs
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.2dB			
Dimensions	Overall length:337mm Tip diameter:4mm Typical distance from probe tip to dipole centers:2mm		9955 00000	
Application	High precision dosimetric measurements in any (e.g., very strong gradient fields). Only probe who compliance testing for frequencies up to 3 GHz 30%.	hich enables		Allumation of Codea Community

3.3. Data Acquisition Electronics description

The data acquisition electronics (DAE) consist if a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement sever is accomplished through an optical downlink fir data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm		
The Inputs	Symmetrical and floating	O CODO	1204 BM
CC The second second	CC PC	E Sund	DAEA SANTAGE Made III SA
Common mode rejection	above 80 dB		is done
A F. W. C.	CC The N		

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC01284180603FH01 Page 9 of 54

3.4. Robot

The DASY system uses the high precision robots (DASY5:TX60) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from is used.

The XL robot series have many features that are important for our application:

- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- □ Low ELF interference (the closed metallic construction shields against motor control fields)
- □ 6-axis controller

3.5. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned prob.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. e, the same position will be reached with another aligned probe within 0

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a trp://www.ago.go.tt.com.

Page 10 of 54

3.6. Device Holder

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.7. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip-disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DAYS I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago. gent.com.

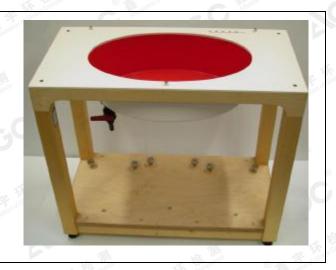
Page 11 of 54

3.8. PHANTOM SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

□ Right head


□ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

ELI4 Phantom

☐ Flat phantom a fiberglass shell flat phantom with 2mm+/- 0.2 mm shell thickness. It has only one measurement area for Flat phantom

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 12 of 54

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt} \Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;

E is the r.m.s. value of the electric field strength in the tissue in volts per meter;

σ is the conductivity of the tissue in siemens per metre;

ρ is the density of the tissue in kilograms per cubic metre;

ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t=0 is the initial time derivative of temperature in the tissue in kelvins per second

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 13 of 54

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528 and IEC62209 standards, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

≤3 GHz	> 3 GHz
5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
30° ± 1°	20° ± 1°
≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test dimeasurement point on the test.	on, is smaller than the above, nust be ≤ the corresponding levice with at least one
	5 ± 1 mm 30° ± 1° ≤2 GHz: ≤15 mm 2 - 3 GHz: ≤12 mm When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Page 14 of 54

Zoom Scan Parameters extracted from KDB865664 D01 SAR Measurement 100MHz to 6GHz

			50%	Co. Supplemental Control
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	graded	\(\Delta z_{Zoom}(1):\) between 1st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 15 of 54

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Sugar	HEC	Bactericide	DGBE	1,2- Propanediol	Triton X-100
450 Head (100%)	38.56	3.95	56.32	0.98	0.19	0.0	0.0	0.0
450 Body (100%)	51.16	1.49	46.78	0.52	0.05	0.0	0.0	0.0

The 150MHz liquid has been provided by SPEAG and they do not provide the composition as it is a secret issue.

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency		head	k	oody
(MHz)	εr	σ (S/m)	٤r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	51.6	2.73

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 16 of 54

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and R&S Network Analyzer ZVL6.

	Tissue Stimulan	t Measurement for 150MHz		
	Dielectric Par	Dielectric Parameters (±5%)		
Fr.	H	Tissue Temp	Test time	
(MHz)	εr52.30(49.685 – 54.915)	δ[s/m]0.76(0.722 - 0.798)	[°C]	一
136.025	54.44	0.73	Global Consolla	July 07,2018
145.525	52.93	0.75	lion o.	
150.000	52.11	0.77	24.5	
155.025	51.67	0.77	21.5	
164.500	50.56	0.78		
173.975	50.25	0.78	® A station	
::::::::::::::::::::::::::::::::::::::	Dielectric Par	rameters (±5%)	Tissue	Test time
Fr. (MHz)	B Attendation C	ody	Temp	
(IVII IZ)	er 61.9(58.805 -64.995)	δ[s/m]0.80(0.76 - 0.84)	[°C]	
136.025	64.27	0.77	Clopal Coun	® # ion of Global
145.525	62.91	0.78		Attestan
150.000	62.02	0.80	24.6	July 07 0040
155.025	61.38	0.81	21.6	July 07,2018
164.500	60.21	0.82		Manuface .
173.975	59.89	0.82		Opal Co.

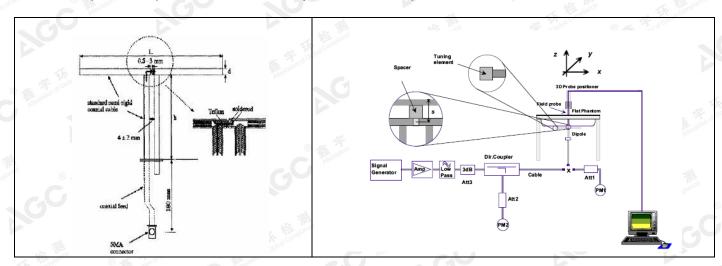
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a state of the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a state of the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a state of the sample (s) are retained for 30 days only. The document is issued by AGC, this document is issued by AGC.

Page 17 of 54

	34451 300	nt Measurement for 450MHz	® 45 1100 01	77.70 status	
Fr.	-1111 - GIODA	rameters (±5%) Head	Tissue Temp	Test time	
(MHz)	εr43.50(41.325 - 45.675)	δ[s/m]0.87(0.8265 - 0.9135)	[°C]	The terminance	
400.025	45.06	0.84	(succe	The state of Grand	
416.025	44.63	0.85	Z.C	Allee	
432.025	43.50	0.86			
448.025	43.02	0.87	21.3	July 04,2018	
450.000	42.75	0.87	KEL Marce	0 A 3	
464.025	41.98	0.89	F of Global Comp	Altestation	
479.975	41.60	0.90	ation of	G	
® # Grant of GI	Dielectric Pa	rameters (±5%)	Tissue		
Fr. (MHz)		Body	Temp	Test time	
(IVITZ)	er56.7(53.865 to 59.535)	δ[s/m] 0.94(0.893 to 0.987)	[°C]	K Vist Compliant	
400.025	58.75	0.90	® ## estation		
416.025	57.98	0.91			
432.025	56.85	0.92		31	
448.025	56.42	0.93	21.5	July 04,2018	
450.000	56.05	0.93	Glopal Comp.	® # Global C	
464.025	54.85	0.95		Allesta	
479.975	54.29	0.96			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document to confirmed at attp://www.agc.gett.com.

Page 18 of 54

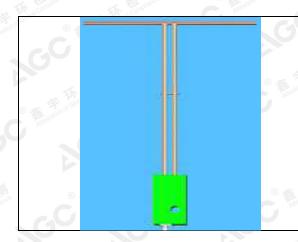

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each DASY system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.



The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 19 of 54

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical specifications for the dipoles

The Loop Antenna used is based on the IEEE-1528 standard, the table below provides details for the mechanical and electrical. Specifications for the Loop Antenna.

Frequency	R/L (mm)	R/h (mm)	d (mm)
450MHz	290	166.7	6.35
150MHz	222	222	97

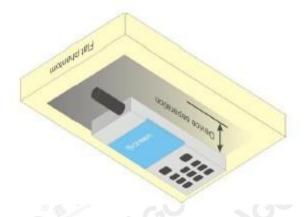
6.2.2. System Check Result

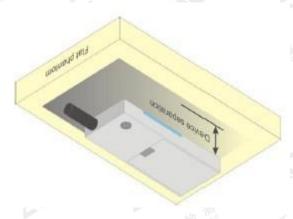
System Perf	ormance	Check at	150MHz & 450	MHz				
Validation K	it: CLA15	0 SN 400	8& SN 46/11DIF	OG450-184				
Frequency	Target Value(W/Kg)		-\{\mathread}		Normalized to 1W(W/Kg)		Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	
150 head	3.89	2.59	3.501-4.279	2.331-2.849	3.86	2.70	21.5	July 07,2018
150 body	4.03	2.67	3.627-4.433	2.403-2.937	3.94	2.74	21.6	July 07,2018
450 head	4.74	3.12	4.266-5.214	2.808-3.432	4.44	3.06	21.3	July 04,2018
450 body	4.78	3.19	4.302-5.258	2.871-3.509	4.68	3.25	21.5	July 04,2018

Note:

(1) We use a CW signal of 23dBm(150MHz),18dBm(450MHz)for system check, and then all SAR value are normalized to 1W forward power. The result must be within ±10% of target value.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Page 20 of 54


7. EUT TEST POSITION

This EUT was tested in Front Face and Rear Face.

7.1. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to **25mm** while used in front of face, and body back touch with belt clip.

Page 21 of 54

8. SAR EXPOSURE LIMITS

Limits for Occupational / Controlled Exposure Environment

1/1/2		G (0)			
Type Exposure L	_imits	Occupational /	Controlled Exp	oosure Enviror	nment(W/Kg)
Spatial Average SAR (v	whole body)		8.0		A June

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed et attp://www.agc.gett.com.

Page 22 of 54

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

Page 23 of 54

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date
Stäubli Robot	Stäubli-TX60	F13/5Q2UD1/A/01	N/A	N/A
Robot Controller	Stäubli-CS8	139522	N/A	N/A
E-Field Probe	Speag- ES3DV3	SN:3337	Nov. 23,2017	Nov. 22,2018
SAM Twin Phantom	Speag-SAM	1790	N/A	N/A
ELI4 Phantom	ELI V5.0	1210	N/A	N/A
Device Holder	Speag-SD 000 H01 KA	SD 000 H01 KA	N/A	N/A
DAE4	Speag-SD 000 D04 BM	1398	Feb. 08,2018	Feb. 07,2019
SAR Software	Speag-DASY5	DASY52.8	N/A	N/A
Liquid	SATIMO	- Alles anon	N/A	N/A
Loop Antenna	Speag-CLA150	SN 4008	Jan. 19,2017	Jan. 18,2020
Dipole	SATIMO SID450	SN46/11 DIP 0G450-184	Mar. 10,2017	Mar. 09,2020
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019
Directional Couple	Werlatone/ C5571-10	SN99463	Jun. 12,2018	Jun. 11,2019
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019
Power Viewer	R&S	V2.3.1.0	N/A	N/A

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Page 24 of 54

11. MEASUREMENT UNCERTAINTY

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table as follow.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor(a)	1/k(b)	1/√3	1/√6	1/√2

- (a) Standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 13.1 Standard Uncertainty for Assumed Distribution (above table)

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

IGC 8

Page 25 of 54

		DAS	SY5 Ui	ncerta	ainty				
Measuremen	t uncertai			3GHz a	averaged ov	ver 1 gram	1 may 200		
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System	C Attes	-C	Altesta						11111:
Probe calibration	E.2.1	6.65	N	1	1	1	6.65	6.65	∞
Axial Isotropy	E.2.2	0.25	R	$\sqrt{3}$	1 June 1	工人 idention	0.14	0.14	8
Hemispherical Isotropy	E.2.2	1.3	R	$\sqrt{3}$	a com 1 _{® 4}	Fond 1	0.75	0.75	-
Linearity	E.2.4	0.3	R	$\sqrt{3}$	-10	1	0.17	0.17	8
Probe modulation	E.2.5	1.65	R	$\sqrt{3}$	(1)	1	0.95	0.95	8
Detection limits	E.2.4	0.9	R	$\sqrt{3}$	1	1	0.52	0.52	~ ∞
Boundary effect	E.2.3	0.9	R	$\sqrt{3}$	1 1 Millions	1 🥳	0.52	0.52	∞
Readout Electronics	E.2.6	0.2	N	1 ®	E Talor 1	1 Mestatio	0.20	0.20	∞
Response Time	E.2.7	0.0	R	$\sqrt{3}$	1(1	0.00	0.00	∞
Integration Time	E.2.8	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
RF ambient Conditions-noise	E.6.1	0.9	R	√3	1	The Tomphance	0.52	0.52	8
RF ambient Conditions-reflections	E.6.1	0.9	R	√3		1	0.52	0.52	8
Probe positioned mech. restrictions	E.6.2	0.7	R	√3	1	1	0.40	0.40	∞ .
Probe positioning with respect to phantom shell	E.6.3	6.5	R	√3	1	1 4	3.75	3.75	∞
Post-processing	E.5	3.8	R	$\sqrt{3}$	cobal 1	1	2.19	2.19	∞
Test sample related	npins	Attestation	C	Allesta				•	
Device holder uncertainty	E.4.1	3.6	N	1	1	1	3.60	3.60	M-1
Test sample positioning	E.4.2	3.2	N	-1	1 ,	1	3.20	3.20	M-1
SAR scaling	E.6.5	0	R	$\sqrt{3}$	I The spot of	1	0.00	0.00	∞
Drift of output power(measured SAR drift)	E.2.9	5.0	R	$\sqrt{3}$	Alles 1	100	2.89	2.89	8
Phantom and set-up	station								- FILL
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	in The state of th	The state of the s	0.03	0.03	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	E.3.2	1.9	N	Altestation of 1	CIC	0.84	1.90	1.60	8
Liquid conductivity (meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	M-1
Liquid permittivity (meas.)	E.3.3	5	N 🐠	1	0.23	0.26	1.15	1.30	М
Liquid permittivity – temperature uncertainty	E.3.4	5	R	$\sqrt{3}$	0.78	0.71	2.25	2.05	∞
Liquid conductivity – temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	~
Combined Standard Uncertainty		THE STATE OF	RSS	C KE TILL	(8) Affin	The Complian	10.65	10.39	e _a C
Expanded Uncertainty (95% Confidence interval)	8 %	of Global Compile	© ak	Slobal Ob	GC m	C	21.30	20.78	

Page 26 of 54

System v	/alidation	for 150 M	Hz to 3G	Hz aver	aged over 1	I gram / 10	gram.		
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System	® ##	n of Global	F Glob	alCo	60	7.0	1	160	
Probe calibration	E.2.1	6.65	N	1	1	1	6.65	6.65	∞
Axial Isotropy	E.2.2	0.25	R	$\sqrt{3}$	1	1	0.14	0.14	∞
Hemispherical Isotropy	E.2.2	1.3	R	$\sqrt{3}$	1 1	1版 The	0.75	0.75	
Linearity	E.2.4	0.3	R	$\sqrt{3}$	Comprise 1	F of Calcoll	0.17	0.17	∞
Probe modulation	E.2.5	1.65	R	$\sqrt{3}$	12, 7	estation 1	0.95	0.95	~
Detection limits	E.2.4	0.9	R	$\sqrt{3}$	(01	1	0.52	0.52	∞
Boundary effect	E.2.3	0.9	R	$\sqrt{3}$	1 :	1	0.52	0.52	∞
Readout Electronics	E.2.6	0.2	N.	1	1 131 comp	1	0.20	0.20	∞
Response Time	E.2.7	0.0	R	$\sqrt{3}$	1	C1 Statio	0.00	0.00	∞
Integration Time	E.2.8	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
RF ambient Conditions-noise	E.6.1	0.9	R	$\sqrt{3}$	1	1	0.52	0.52	∞
RF ambient Conditions-reflections	E.6.1	0.9	R	$\sqrt{3}$	1	on of Global Tompilla	0.52	0.52	8
Probe positioned mech. restrictions	E.6.1	0.7	R	$\sqrt{3}$		10	0.40	0.40	8
Probe positioning with respect to phantom shell	E.6.2	6.5	R	$\sqrt{3}$	1	1	3.75	3.75	8
Post-processing	E.6.3	3.8	R	$\sqrt{3}$	KEL TO	1 5	2.19	2.19	∞
System validation source(d	lipole)	T. F.	obal Compile	- 4	Slopal Co.	Allestatio		Aire	
Deviation of the experimental source from numerical source	E6.4	5.3	N	1	1	1	5.30	5.30	∞
Source to liquid distance	8,E.6.6	1.0	R	$\sqrt{3}$	1 / 1	Jance 1	0.58	0.58	∞
Drift of output power(measured SAR drift)	8,6.6.4	5.0	R	√3	The state of the s	1	2.89	2.89	8
Phantom and set-up	Fon of Global	a.C	Attes			10			- All
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	√3	11111111111111111111111111111111111111	1 1	0.03	0.03	80
Algorithm for correcting SAR for deviations in permittivity and conductivity	E.3.2	1.9	N [®]	Allesto Troj de	-10	0.84	1.90	1.60	∞
Liquid conductivity (meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	М
Liquid permittivity (meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	M
Liquid permittivity – temperature uncertainty	E.3.4	5	R	$\sqrt{3}$	0.78	0.71	2.25	2.05	∞
Liquid conductivity – temperature uncertainty	E.3.4	5	R	$\sqrt{3}$	0.23	0.26	0.66	0.75	~
Combined Standard Uncertainty			RSS	100		IN Compliance	10.90	10.635	
Expanded Uncertainty (95% Confidence interval)	22.	The terminance	k	Slopal Compliance	® Alle	ation of Gloud	21.79	21.270	

Page 27 of 54

System	check fo	r 150 MH:	z to 3GH:	z averag	jed over 1 g	gram / 10 g	ram.		
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System	® ##	of Globai	F Glob	alos	60	7.0	, "	60	
Probe calibration drift	E.2.1.3	2.0	N	1	1	1	6.00	6.00	∞
Axial Isotropy	E.2.2	0.25	R	$\sqrt{3}$	0	0	0	0	∞
Hemispherical Isotropy	E.2.2	1.3	R	$\sqrt{3}$	0	0	0	0	
Linearity	E.2.4	0.3	R	$\sqrt{3}$	0	0	0	0	∞
Probe modulation	E.2.5	1.65	R	$\sqrt{3}$	0	0	0	0	~
Detection limits	E.2.4	0.9	R	$\sqrt{3}$	0	0	0	0	∞
Boundary effect	E.2.3	0.9	R	√3	0	0	0	0	∞
Readout Electronics	E.2.6	0.2	N _{-ml}	1	0	0	0	0	∞
Response Time	E.2.7	0	R	$\sqrt{3}$	0	0	0	0	∞
Integration Time	E.2.8	0.0	R	$\sqrt{3}$	0	0	0	0	8
RF ambient Conditions-noise	E.6.1	0.9	R	√3	0	0	0	0	8
RF ambient Conditions-reflections	E.6.1	0.9	R	√3	0	on of Clot O	0	adobat Coo	8
Probe positioned mech. restrictions	E.6.2	0.7	R	√3		10	0.40	0.40	8
Probe positioning with respect to phantom shell	E.6.3	6.5	R	$\sqrt{3}$	1	1	3.75	3.75	∞
Post-processing	E.5	3.8	R	$\sqrt{3}$	0	0 %	0	O on of Gliv	∞
System check source(dipol	e)	T. F.	opal Combilia	7 F	V. Corr.	Allestand		Atte	9
Deviation of the experimental source from numerical source	E6.4	5.3	N	1	1	1	5.30	5.30	8
Source to liquid distance	8,E.6.6	1.0	R	$\sqrt{3}$	1 및	niance 1	0.58	0.58	∞
Drift of output power(measured SAR drift)	8,6.6.4	5.0	R	√3	The state of the s	1	2.89	2.89	∞
Phantom and set-up	High of Global C	a.C	Attess		1				lin
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	√3	11111111111111111111111111111111111111	1	0.03	0.03	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	E.3.2	1.9	N [®]	Altesta Tool Glo	-10	0.84	1.90	1.60	8
Liquid conductivity (meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	М
Liquid permittivity (meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	M
Liquid permittivity – temperature uncertainty	E.3.4	5	R	$\sqrt{3}$	0.78	0.71	2.25	2.05	∞
Liquid conductivity – temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	∞
Combined Standard Uncertainty	P.C		RSS	1117:		下 将 in	8.11	7.86	
Expanded Uncertainty (95% Confidence interval)	20.	A Aliance	k	A Kin Compliance	® Aire	ation of Glo-	16.22	15.52	

Page 28 of 54

12. POWER MEASUREMENT

UHF: Analog

Frequency Channel Spacing					
		Chainlei Spacing	(dBm)		
5W	Fot Clopal Cour,	20 ZO			
400.0	25		36.74		
416.0	25		36.71		
432.0	25	12.5KHz	36.76		
448.0	25	12.5KHZ	36.75		
464.0	25		36.69		
479.9	75		36.77		
2.5W					
400.0	25		33.74		
416.0	25	1 Γ	33.71		
432.0	25	12.5KHz	33.69		
448.0	25	12.5KH2	33.72		
464.0	25]	33.75		
479.9	75]	33.77		
1W		·			
400.0	25		29.78		
416.0	25]	29.72		
432.0	25	40.51/1-	29.68		
448.0	25	- 12.5KHz	29.70		
464.0	25	1	29.81		
479.9	75	1	29.82		
0.2W					
400.0	25		22.84		
416.0	25	1	22.76		
432.0	25	10.5%	22.70		
448.0	25	- 12.5KHz -	22.74		
464.0	25	1	22.81		
479.9	479.975				

Report No.: AGC01284180603FH01 Page 29 of 54

UHF:	Digital
~	- 191ta:

Channel Spacing	Max. Output Power (dBm)						
	20 20 20						
	36 R3						
	ኛ ስ ጸኛ						
-	36.80						
12.5KHz	36.79						
-	36.68						
_	36.73						
	36.72						
	36.74						
	36.71						
12 5KHz	36.68						
12.51(1)2	36.72						
	36.73						
	36.79						
::::	The state of the s						
	33.88						
	33.86						
12.5KHz	33.82						
	2.5KHz 33.79						
	33.76						
	33.78						
	33.83						
	33.82						
40 5141	33.72						
12.5KHZ	33.71						
	33.65						
	33.76						
,	The state of the s						
	29.83						
	29.80						
<u> </u>	29.77						
12.5KHz	29.65						
	29.73						
	29.79						
I							
	29.84						
ļ	29.81						
ŀ	29.79						
12.5KHz	29.75						
ŀ	29.70						
ŀ	29.79						
	12.5KHz						

Page 30 of 54

UHF: Digital- Continue

Offic Digital- Continue							
Frequency (MHz)	Channel Spacing	Max. Output Power (dBm)					
(Data + voice):0.2W	® # Julion d Gibbs						
400.025		22.84					
416.025	40 51/11-	22.81 22.79					
432.025							
448.025	12.5KHz	22.85					
464.025		22.80					
479.975		22.87					
(Data):0.2W	•						
400.025		22.84					
416.025		22.81					
432.025	10 EKU -	22.75					
448.025	12.5KHz	22.73					
464.025		22.70					
479.975		22.73					

Page 31 of 54

VHF: Analog

Frequency (MHz)	Channel Spacing	Max. Output Power (dBm)				
5W	® ## Julion of Cooks					
136.025		36.82				
145.500		36.77				
155.025	12.5KHz	36.85				
165.500		36.81				
173.975		36.75				
2.5W	·					
136.025	12.5KHz	33.79				
145.500		33.75				
155.025		33.88				
165.500		33.85				
173.975		33.71				
1W	·					
136.025		29.83				
145.500		29.81				
155.025	12.5KHz	29.72				
165.500		29.76				
173.975		29.84				
0.2W	·					
136.025		22.89				
145.500		22.85				
155.025	12.5KHz	22.91				
165.500		22.88				
173.975		22.86				

Report No.: AGC01284180603FH01 Page 32 of 54

VHF: Digital

Frequency (MHz)	Channel Spacing	Max. Output Power (dBm)				
(Data + voice):5W	© # antion of Class					
136.025		36.83				
145.500		36.81				
155.025	12.5KHz	36.87				
165.500		36.75				
173.975		36.71				
(Data):5W	100 100					
136.025		36.74				
145.500		36.79				
155.025	12.5KHz	36.86				
165.500		36.70				
173.975		36.72				
(Data + voice):2.5W						
136.025		33.78				
145.500		33.75				
155.025	12.5KHz	33.89				
165.500		33.85				
173.975		33.73				
(Data):2.5W						
136.025		33.85				
145.500		33.82				
155.025	12.5KHz	33.79				
165.500		33.77				
173.975		33.82				
(Data + voice):1W						
136.025		29.84				
145.500		29.81				
155.025	12.5KHz	29.85				
165.500		29.80				
173.975		29.75				
(Data):1W	<u>, </u>					
136.025		29.77				
145.500		29.72				
155.025	12.5KHz	29.89				
165.500		29.83				
173.975		29.76				

Page 33 of 54

VHF: Digital- Continue

VIII. Digital- Continue		Max. Output Power (dBm)					
Frequency (MHz)	Channel Spacing						
(Data + voice):0.2W							
136.025		22.79					
145.500		22.75					
155.025	12.5KHz	22.88					
165.500		22.86					
173.975		22.71					
(Data):0.2W							
136.025		22.75					
145.500		22.73					
155.025	12.5KHz	22.79					
165.500		22.65					
173.975		22.82					

Page 34 of 54

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

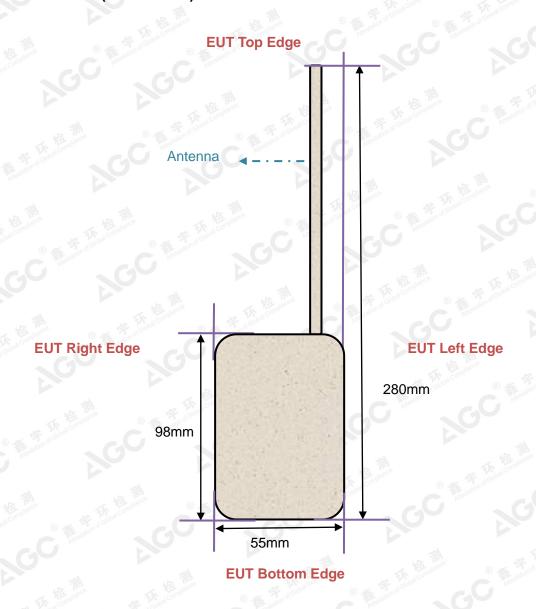
Face up SAR was performed with the device configured in the positions according to KDB 643646 and Body SAR was performed with the device configured with all accessories close to the Flat Phantom.

13.1.2. Operation Mode

- Set the EUT to maximum output power level and transmit on lower, middle and top channel with 100% duty cycle individually during SAR measurement.
- Per KDB 447498D01 v06 (Chapter 4.1 6) For UHF the number of channels to be assessed is 6.For VHF the number of channels to be assessed is 5.
- Per KDB 643646 D01, Passive body-worn and audio accessories generally do not apply to the head SAR of PTT radios. Head SAR is measured with the front surface of the radio positioned at 2.5 cm parallel to a flat phantom.

When testing antennas with the default battery:

- a. When the SAR≤ 3.5 W/kg, testing of all other required channels is not necessary for that antenna;
- b. When the SAR > 3.5 W/kg and ≤ 4.0 W/kg, testing of the required immediately channel(s) is not necessary; testing of the other required channels may still be required.
- c. When the SAR > 4.0 W/kg and ≤ 6.0 W/kg, SAR should be measured for that antenna on the all required channels;
- d. When the highest scaled SAR is ≤ 6.0 W/kg, PBA is not required
- Per KDB 643646 D01, Body SAR is measured with the radio placed in a body-worn accessory, positioned against a flat phantom, representative of the normal operating conditions expected by users and typically with a standard default audio accessory supplied with the radio.


When testing antennas with the default battery: the same test measurement with head part.

• The EUT only contains the Testing antenna, Standard battery and default body-worn accessory specified by customer. The earphone is only for testing

Page 35 of 54

13.1.3. Antenna Location: (back view)

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type of the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type of the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission.

Page 36 of 54

13.1.4. SAR Test Results Summary UHF

SAR MEASUREME	TV									
Depth of Liquid (cm):>15				Relative	Relative Humidity (%): 49.9					
Product: VHF/UHF DUAL BAND TRANSCEIVER										
Test Mode: Hold to F	Test Mode: Hold to Face with 2.5 cm separation & body back touch with clip									
Position	Freq. (MHz)	Separa tion (KHz)	Power Drift (±0.2dB)	SAR 1g with 100% duty Cycle (W/kg)	SAR 1g with 50% duty cycle (W/Kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg	
Analog								不		
Face Up	479.975	12.5	-0.96	2.4	1.2	36.99	36.77	1.574	8.0	
Back Touch +Belt Clip + headset	479.975		-0.33	5.98	2.99	36.99	36.77	3.393	8.0	
Digital San Control of the Control o										
Face Up	400.025	12.5	-0.49	1.35	0.675	36.99	36.83	0.784	8.0	
Back Touch +Belt Clip + headset	400.025		-0.03	3.02	1.51	36.99	36.83	1.578	8.0	

Note:

- 1. During the test, EUT power is 5 W with 100% duty cycle;
- 2. There is just default battery and antenna in this project;

3. Max_ Scaled = SAR
$$_meas*10^{\frac{-\text{Drift}}{10}}*\frac{P_\max}{P_\text{int}}*DC$$

P_max = Maximum Power(W)

P_ int = Initial Power(W)

Drift = DASY drift results(dB)

SAR_meas=Measured 10-g Avg.SAR

DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation.

For conservative results, the following are applied:

If P_ int > P_ max, then P_ max/P_ int =1. Drift = 1 for positive drift

Page 37 of 54

VHF

SAK WEASUKEWE	IN I									
Depth of Liquid (cm):>15				Relative	Relative Humidity (%): 56.4					
Product: VHF/UHF	DUAL BAN	D TRANS	CEIVER							
Test Mode: Hold to	Face with 2	2.5 cm se	paration & b	oody back to	uch with cli	р				
Position	Freq. (MHz)	Separa tion (KHz)	Power Drift (±0.2dB)	SAR 1g with 100% duty Cycle (W/kg)	SAR 1g with 50% duty cycle (W/Kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg	
Analog	of Global Co	60			100					
Face Up	155.025	12.5	-0.28	0.307	0.1535	36.99	36.85	0.170	8.0	
Back Touch +Belt Clip + headset	155.025		-0.43	1.58	0.79	36.99	36.85	0.901	8.0	
Digital	plian	Compliance	I Thomas	ompilio de la compilio della compilio della compilio de la compilio de la compilio della compilia della compilio della compili	Attestation C	Alleste		0		
Face Up	155.025	12.5	-0.12	0.155	0.0775	36.99	36.87	0.082	8.0	
Back Touch +Belt Clip + headset	155.025		-0.02	0.718	0.359	36.99	36.87	0.371	8.0	

Note:

1. During the test, EUT power is 5 W with 100% duty cycle;

2. There is just default battery and antenna in this project;

3. Max_ Scaled = SAR
$$_meas*10^{\frac{-Drift}{10}}*\frac{P_max}{P_int}*DC$$

P_ max = Maximum Power(W)

P_ int = Initial Power(W)

Drift = DASY drift results(dB)

SAR_ meas=Measured 10-g Avg.SAR

DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation. For conservative results, the following are applied:

If P_ int > P_ max, then P_ max/P_ int =1. Drift = 1 for positive drift

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 38 of 54

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Test date: July 07,2018

System Check Head 150MHz DUT: Dipole 150 MHz Type: SID 150

Communication System: CW; Communication System Band: CW; Duty Cycle: 1:1;

Frequency: 150MHz; Medium parameters used: f = 150MHz; $\sigma = 0.77$ mho/m; $\epsilon r = 52.11$; $\rho = 1000$ kg/m³;

Phantom Type: Elliptical Phantom; Input Power=23dBm Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.5

DASY Configuration:

Probe: ES3DV3 – SN3337; ConvF(7.88, 7.88, 7.88); Calibrated: Nov. 23,2017;

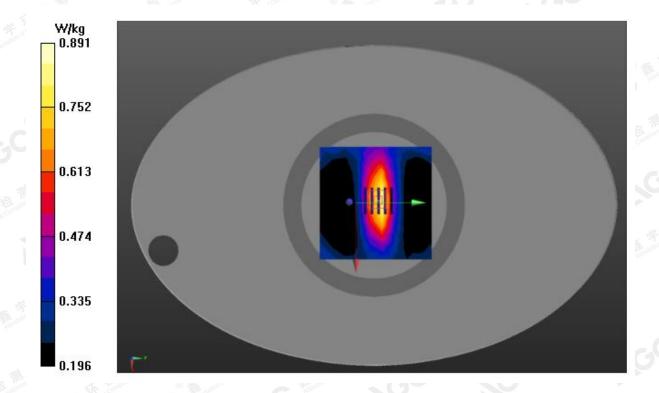
• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,

· Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 150MHz Head /Area Scan (10x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.849 W/kg


Configuration/System Check 150MHz Head /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 32.506 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.770 W/kg; SAR(10 g) = 0.539 W/kg Maximum value of SAR (measured) = 0.891 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Test date: July 07,2018

Page 39 of 54

Test Laboratory: AGC Lab System Check Body 150MHz DUT: Dipole 150 MHz Type: SID 150

Communication System: CW; Communication System Band: CW; Duty Cycle: 1:1;

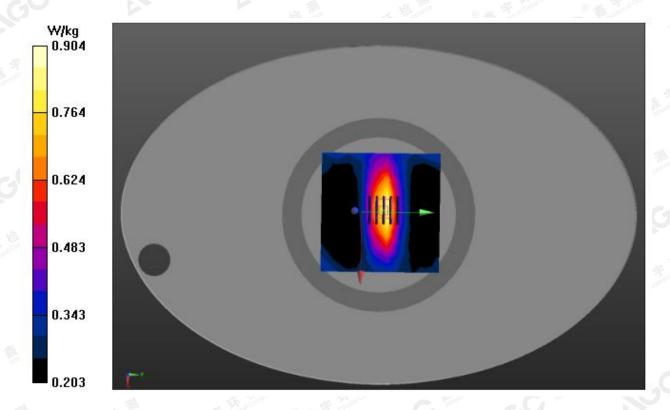
Frequency: 150MHz; Medium parameters used: f = 150MHz; $\sigma = 0.80$ mho/m; $\epsilon r = 62.02$; $\rho = 1000$ kg/m³;

Phantom Type: Elliptical Phantom; Input Power=23dBm Ambient temperature ($^{\circ}$): 22.1, Liquid temperature ($^{\circ}$): 21.6

DASY Configuration:

•Probe: ES3DV3 – SN3337; ConvF(7.37, 7.37, 7.37); Calibrated: Nov. 23,2017;

- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,
- Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018
- · Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Configuration/System Check 150MHz Body /Area Scan (10x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.884 W/kg

Configuration/System Check 150MHz Body /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.839 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.786 W/kg; SAR(10 g) = 0.547 W/kg Maximum value of SAR (measured) = 0.904 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

GC

Test date: July 04,2018

Page 40 of 54

Test Laboratory: AGC Lab System Check Head 450MHz DUT: Dipole 450 MHz Type: SID 450

Communication System: CW; Communication System Band: CW; Duty Cycle: 1:1;

Frequency: 450MHz; Medium parameters used: f = 450MHz; $\sigma = 0.87$ mho/m; $\epsilon r = 42.75$; $\rho = 1000$ kg/m³;

Phantom Type: Elliptical Phantom; Input Power=18dBm Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.3

DASY Configuration:

Probe: ES3DV3 – SN3337; ConvF(7.06, 7.06, 7.06); Calibrated: Nov. 23,2017;

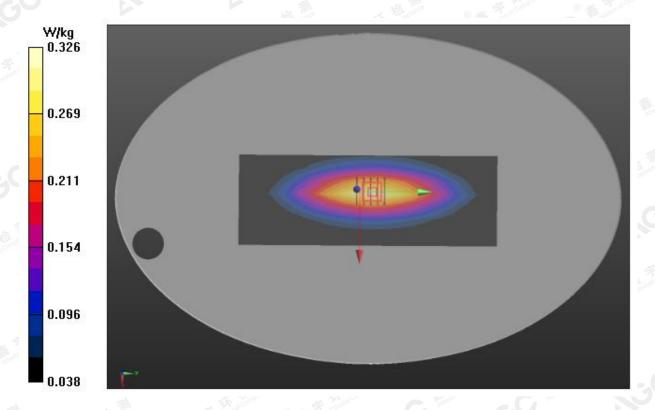
· Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,

Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 450MHz Head/Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.315 W/kg


Configuration/System Check 450MHz Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 19.162 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.437 W/kg

SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.193 W/kg Maximum value of SAR (measured) = 0.326 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Test date: July 04,2018

Page 41 of 54

Test Laboratory: AGC Lab System Check Body 450MHz DUT: Dipole 450 MHz Type: SID 450

Communication System: CW; Communication System Band: CW; Duty Cycle: 1:1;

Frequency: 450MHz; Medium parameters used: f = 450MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 56.05$; $\rho = 1000$ kg/m³;

Phantom Type: Elliptical Phantom; Input Power=18dBm Ambient temperature (°C): 21.8, Liquid temperature (°C): 21.5

DASY Configuration:

Probe: ES3DV3 – SN3337; ConvF(7.27, 7.27, 7.27); Calibrated: Nov. 23,2017;

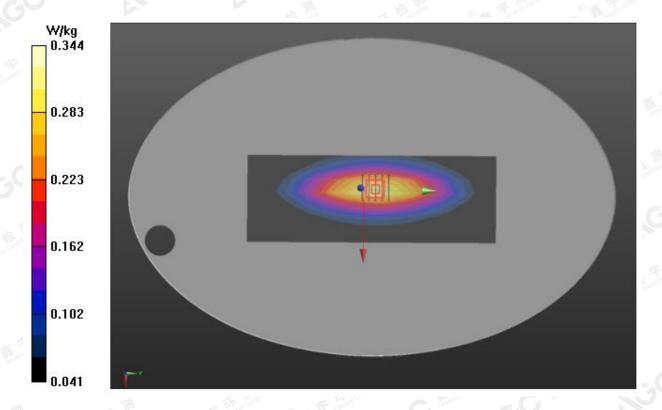
· Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,

Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check 450MHz Body/Area Scan (8x21x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.336 W/kg


Configuration/System Check 450MHz Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 19.075 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.463 W/kg

SAR(1 g) = 0.295 W/kg; SAR(10 g) = 0.205 W/kg Maximum value of SAR (measured) = 0.344 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 42 of 54

APPENDIX B. SAR MEASUREMENT DATA

UHF Analog

Test Laboratory: AGC Lab Date: July 04,2018

450 High-face up 2.5cm (12.5 KHz)

DUT: VHF/UHF DUAL BAND TRANSCEIVER; Type: DJ-MD5

Communication System: 450; Communication System Band: D450 (450.0 MHz); Duty Cycle: 1:1;

Frequency:479.975 MHz; Medium parameters used: f = 450MHz; $\sigma = 0.90 \text{ mho/m}$; $\epsilon r = 41.60$; $\rho = 1000 \text{ kg/m}^3$;

Phantom Type: Elliptical Phantom

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.3

DASY Configuration:

Probe: ES3DV3 – SN3337; ConvF(7.06, 7.06, 7.06); Calibrated: Nov. 23,2017;

• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,

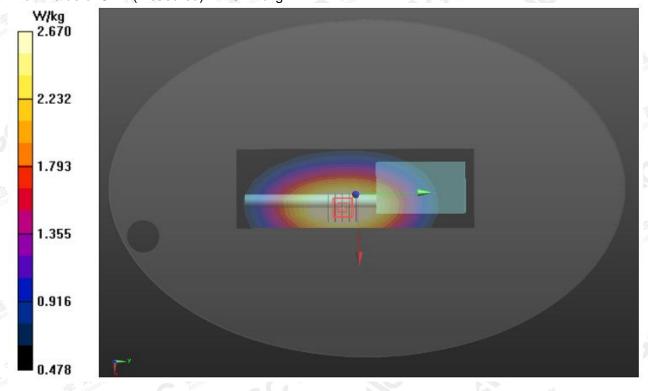
Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

A-12.5K-FACE UP /3/Area Scan (7x19x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.91 W/kg


A-12.5K-FACE UP /3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.918 V/m; Power Drift = -0.96 dB

Peak SAR (extrapolated) = 3.17 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.8 W/kg

Maximum value of SAR (measured) = 2.67 W/kg

The results spough this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

Attestation of Global Compliance

GC

Page 43 of 54

Test Laboratory: AGC Lab Date: July 04,2018

450 High-Body -Touch (12.5 KHz)

DUT: VHF/UHF DUAL BAND TRANSCEIVER; Type: DJ-MD5

Communication System: 450; Communication System Band: D450 (450.0 MHz); Duty Cycle: 1:1;

Frequency:479.975 MHz; Medium parameters used: f = 450 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.29$; $\rho = 1000$ kg/m;

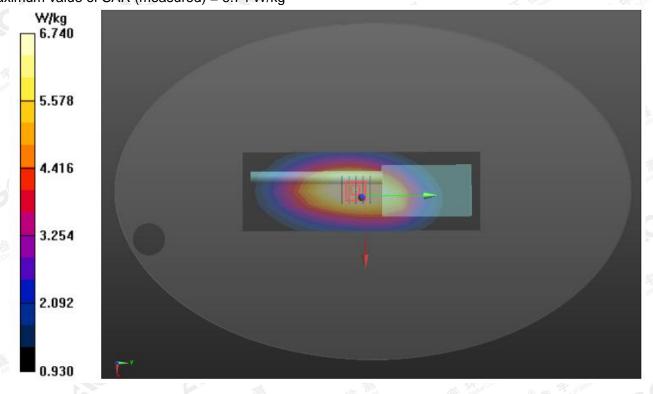
Phantom Type: Elliptical Phantom

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.5

DASY Configuration:

- Probe: ES3DV3 SN3337; ConvF(7.27, 7.27, 7.27); Calibrated: Nov. 23,2017;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,
- · Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

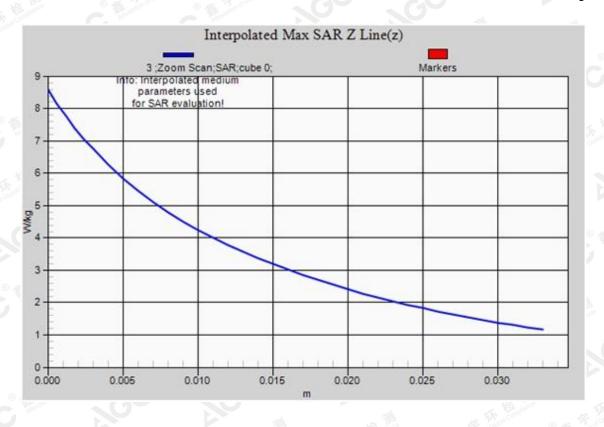
A-12.5K-BACK/3/Area Scan (7x19x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 7.58 W/kg

A-12.5K-BACK/3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 94.921 V/m; Power Drift = -0.33 dB

Peak SAR (extrapolated) = 8.58 W/kg


SAR(1 g) = 5.98 W/kg; SAR(10 g) = 4.32 W/kg Maximum value of SAR (measured) = 6.74 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 44 of 54

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type and the sample (s) are retained for 30 days only. The document is issued by AGC, this document is issued by AGC.

Page 45 of 54

Digital

Test Laboratory: AGC Lab Date: July 04,2018

450 Low- face up 2.5cm (12.5 KHz)

DUT: VHF/UHF DUAL BAND TRANSCEIVER; Type: DJ-MD5

Communication System: 450; Communication System Band: D450 (450.0 MHz); Duty Cycle: 1:1;

Frequency: 400.025 MHz; Medium parameters used: f = 450MHz; $\sigma = 0.84$ mho/m; $\epsilon r = 45.06$; $\rho = 1000$ kg/m³:

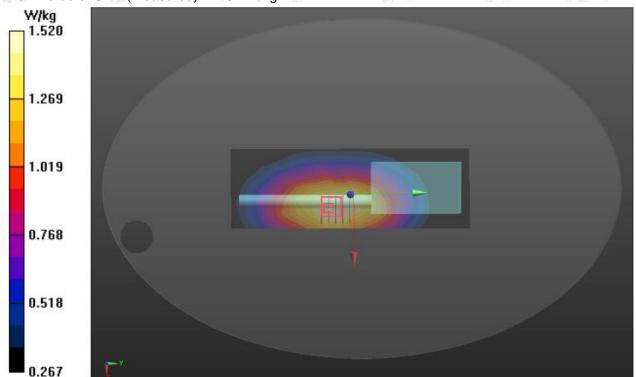
Phantom Type: Elliptical Phantom

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.3

DASY Configuration:

- Probe: ES3DV3 SN3337; ConvF(7.06, 7.06, 7.06); Calibrated: Nov. 23,2017;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,
- · Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

D-12.5K FACE UP/4/Area Scan (7x19x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.51 W/kg

D-12.5K FACE UP/4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 39.877 V/m; Power Drift = -0.49 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 1.35 W/kg; SAR(10 g) = 1.01 W/kg Maximum value of SAR (measured) = 1.52 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Attestation of Global Compliance

Page 46 of 54

Test Laboratory: AGC Lab Date: July 04,2018

450 Low -Body -Touch (12.5 KHz)

DUT: VHF/UHF DUAL BAND TRANSCEIVER; Type: DJ-MD5

Communication System: 450; Communication System Band: D450 (450.0 MHz); Duty Cycle: 1:1;

Frequency: 400.025 MHz; Medium parameters used: f = 450 MHz; $\sigma = 0.90$ mho/m; $\epsilon r = 58.75$; $\rho = 1000$ kg/m;

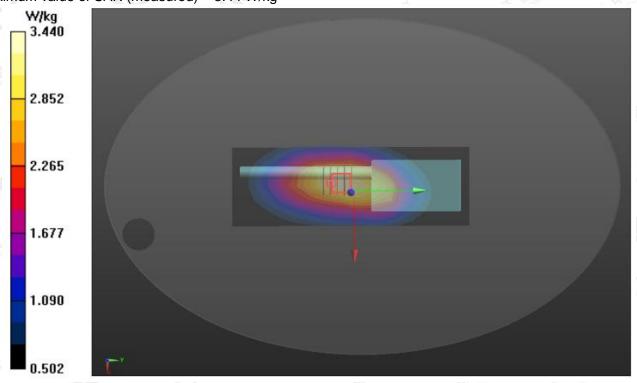
Phantom Type: Elliptical Phantom

Ambient temperature ($^{\circ}$ C): 21.8, Liquid temperature ($^{\circ}$ C): 21.5

DASY Configuration:

- Probe: ES3DV3 SN3337; ConvF(7.27, 7.27, 7.27); Calibrated: Nov. 23,2017;
- · Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,
- Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

D-12.5K-BACK/4/Area Scan (7x19x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 3.39 W/kg

D-12.5K-BACK/4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 59.096 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 4.26 W/kg

SAR(1 g) = 3.02 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 3.44 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Page 47 of 54

VHF Analog

Test Laboratory: AGC Lab Date: July 07,2018

150 Mid- face up 2.5cm (12.5 KHz)

DUT: VHF/UHF DUAL BAND TRANSCEIVER; Type: DJ-MD5

Communication System: 150; Communication System Band: D150 (150.0 MHz); Duty Cycle: 1:1;

Frequency: 155.025 MHz; Medium parameters used: f = 150 MHz; $\sigma = 0.77 mho/m$; $\epsilon r = 51.67$; $\rho = 1000 kg/m^3$;

Phantom Type: Elliptical Phantom

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.5

DASY Configuration:

Probe: ES3DV3 – SN3337; ConvF(7.88, 7.88, 7.88); Calibrated: Nov. 23,2017;

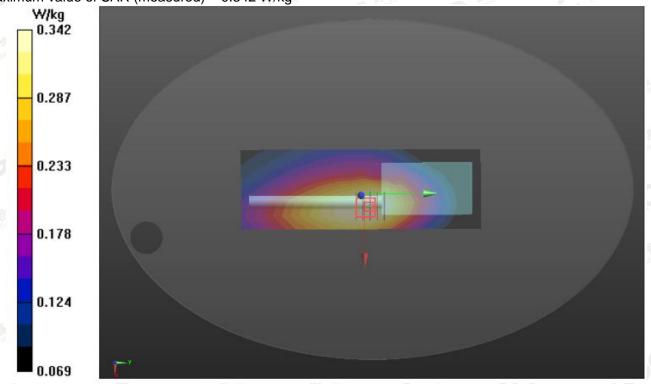
· Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,

Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108

· DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

A-12.5K-FACE UP /2/Area Scan (7x19x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.361 W/kg

A-12.5K-FACE UP /2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.161 V/m; Power Drift = -0.28 dB

Peak SAR (extrapolated) = 0.449 W/kg

SAR(1 g) = 0.307 W/kg; SAR(10 g) = 0.233 W/kg Maximum value of SAR (measured) = 0.342 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Attestation of Global Compliance

GC

Date: July 07,2018

Page 48 of 54

Test Laboratory: AGC Lab 150 Mid -Body –Touch (12.5 KHz)

DUT: VHF/UHF DUAL BAND TRANSCEIVER; Type: DJ-MD5

Communication System: 150; Communication System Band: D150 (150.0 MHz); Duty Cycle: 1:1;

Frequency: 155.025 MHz; Medium parameters used: f = 150 MHz; $\sigma = 0.81$ mho/m; $\epsilon r = 61.38$; $\rho = 1000$ kg/m

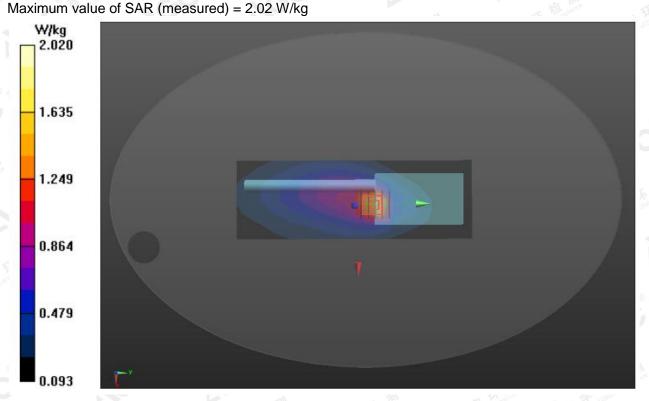
Phantom Type: Elliptical Phantom

Ambient temperature ($^{\circ}$ C): 22.1, Liquid temperature ($^{\circ}$ C): 21.6

DASY Configuration:

- Probe: ES3DV3 SN3337; ConvF(7.37, 7.37, 7.37); Calibrated: Nov. 23,2017;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,
- · Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

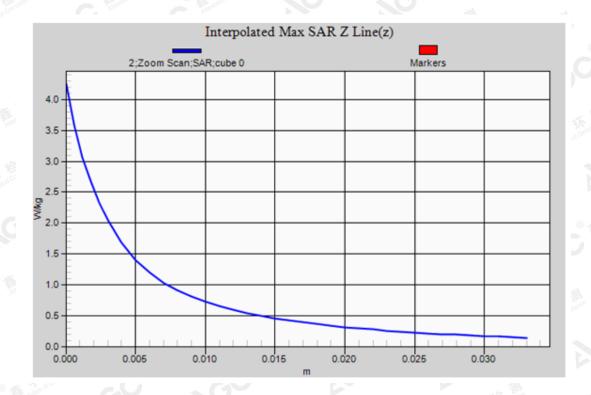
A-12.5K-BACK/2/Area Scan (7x19x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.78 W/kg

A-12.5K-BACK/2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 45.054 V/m; Power Drift = -0.43 dB

Peak SAR (extrapolated) = 4.25 W/kg


SAR(1 g) = 1.58 W/kg; SAR(10 g) = 0.818 W/kg

The results specified this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.gett.com.

Page 49 of 54

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc cent.com.

Page 50 of 54

Digital

Test Laboratory: AGC Lab Date: July 07,2018

150 Mid- face up 2.5cm (12.5 KHz)

DUT: VHF/UHF DUAL BAND TRANSCEIVER; Type: DJ-MD5

Communication System: 150; Communication System Band: D150 (150.0 MHz); Duty Cycle: 1:1;

Frequency: 155.025 MHz; Medium parameters used: f = 150 MHz; $\sigma = 0.77 mho/m$; $\epsilon r = 51.67$; $\rho = 1000 kg/m^3$;

Phantom Type: Elliptical Phantom

Ambient temperature ($^{\circ}$ C): 22.1, Liquid temperature ($^{\circ}$ C): 21.5

DASY Configuration:

Probe: ES3DV3 – SN3337; ConvF(7.88, 7.88, 7.88); Calibrated: Nov. 23,2017;

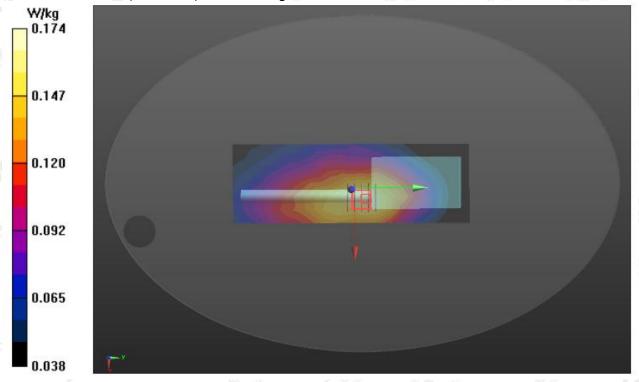
• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,

· Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108

· DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

D-12.5K-FACE UP/5/Area Scan (7x19x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.174 W/kg

D-12.5K-FACE UP/5/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.869 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.234 W/kg

SAR(1 g) = 0.155 W/kg; SAR(10 g) = 0.117 W/kg Maximum value of SAR (measured) = 0.174 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Page 51 of 54

Test Laboratory: AGC Lab

150 Mid -Body –Touch (12.5 KHz)

Date: July 07,2018

DUT: VHF/UHF DUAL BAND TRANSCEIVER; Type: DJ-MD5

Communication System: 150; Communication System Band: D150 (150.0 MHz); Duty Cycle: 1:1;

Frequency: 155.025 MHz; Medium parameters used: f = 150 MHz; $\sigma = 0.81 \text{ mho/m}$; $\epsilon r = 61.38$; $\rho = 1000 \text{ kg/m}$;

Phantom Type: Elliptical Phantom

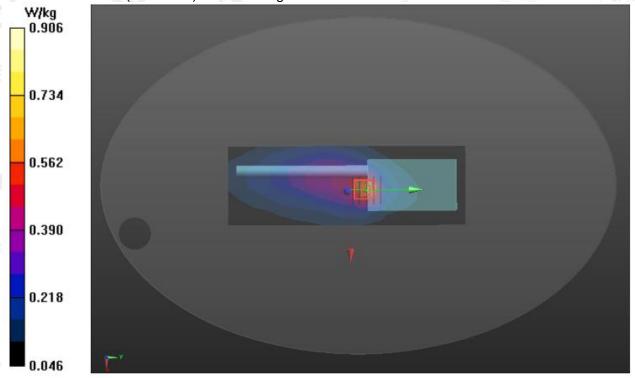
Ambient temperature ($^{\circ}$ C): 22.1, Liquid temperature ($^{\circ}$ C): 21.6

DASY Configuration:

Probe: ES3DV3 – SN3337; ConvF(7.37, 7.37, 7.37); Calibrated: Nov. 23,2017;

- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0,
- Electronics: DAE4 SN1398; Calibrated: Feb. 08,2018
- · Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1108
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

D-12.5K-BACK/5/Area Scan (7x19x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.658 W/kg

D-12.5K-BACK/5/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.032 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 0.718 W/kg; SAR(10 g) = 0.386 W/kg Maximum value of SAR (measured) = 0.906 W/kg

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

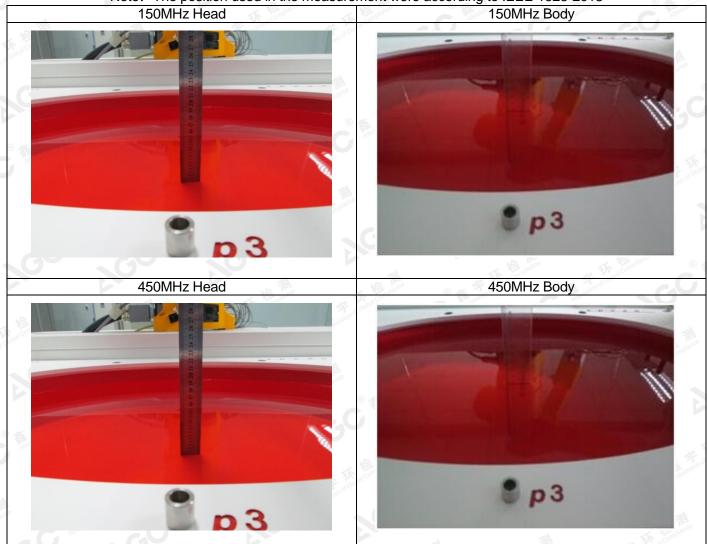
Page 52 of 54

APPENDIX C. TEST SETUP PHOTOGRAPHS

Face Up with 2.5 cm Separation Distance.

Body Back Touch with all accessories

The thickness of EUT is 3.5cm


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

Page 53 of 54

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2013

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 54 of 54

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CE), this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed et attp://www.agc.gett.com.