

SAR TEST REPORT						
Report Reference No	MTE/TAC/B17030506					
FCC ID:	PH3DJ-AXD1					
Compiled by						
(position+printed name+signature):	File administrators Chloe Cai Chloe					
Supervised by (position+printed name+signature):	File administrators Chloe Cai Chloe Project Engineer Henry Chen APPROVED Henry					
Approved by	A SAFETY *					
(position+printed name+signature):	RF Manager Yvette Zhou					
Date of issue	March ,15, 2017					
Representative Laboratory Name :	Most Technology Service Co., Ltd.					
Address	No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China					
Testing Laboratory Name: :	The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau					
Address	No.149,Gongye 7th Rd. Nanshan District, Shenzhen, China					
Applicant's name	Alinco Incorporated, Electronics Division					
Address	Yodoyabashi Dai Building 13F, 4-4-9 Koraibashi, Chuo-Ku, Osaka 541-0043, Japan					
Test specification:						
Standard	IEEE 1528:2013					
	47CFR §2.1093					
TRF Originator						
Technology Service Co., Ltd. as copyri	whole or in part for non-commercial purposes as long as the Most ght owner and source of the material. Most Technology Service Co., I not assume liability for damages resulting from the reader's					
Test item description	VHF DIGITAL TRANSCEIVER					
Trade Mark	ALINCO					
Manufacturer	Alinco Incorporated, Electronics Division					
Model/Type reference	DJ-AXD1					
Listed Models	1					
Ratings	DC 7.40V					
EUT Type	Production Unit					
Exposure category	Occupational /Controlled environment					
Result	PASS					

TEST REPORT

Test Report No. :	MTE/TAC/B17030506		March 15, 2017
Equipment under Test	:	VHF DIGITAL TRANSC	
Model /Type	:	DJ-AXD1	
Listed Models	:	1	
Applicant	:	Alinco Incorporated,	Electronics Division
Address	:	Yodoyabashi Dai Building 13F, 4-4-9 Koraibashi, Chuo- Ku, Osaka 541-0043, Japan	
Manufacturer	:	Alinco Incorporated,	Electronics Division
Address	:	Yodoyabashi Dai Buildir Ku, Osaka 541-0043, Ja	ng 13F, 4-4-9 Koraibashi, Chuo- apan

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modifited History **

Revison	Description	Issued Data	Remark	
Revsion 1.0	Initial Test Report Release	2017-03-15	Yvette Zhou	

V1.0

Contents

2.1. General Remarks 6 2.2. Product Description 6 2.3. Summary SAR Results 6 2.4. Equipment under Test 6 2.5. EUT operation mode 6 2.6. TEST Configuration 7 2.7. EUT configuration 7 3. TEST ENVIRONMENT 8 3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASYS E-field Probe System 11 4.3. Device Holder 12 4.4. Device Holder 13 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 5. TEST CONDITIONS AND RESULTS 23	<u>1.</u>	TEST STANDARDS	5
2.2. Product Description 6 2.3. Summary SAR Results 6 2.4. Equipment under Test 6 2.5. EUT operation mode 6 6. TEST Configuration 7 7. EUT configuration 7 3. TEST ENVIRONMENT 8 3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. Device Holder 12 4.3. Phantoms 12 4.4. Device Holder 13 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 5.8. TEST CONDITIONS AND RESULTS 23 5.1. Conducted Power Results 23	<u>2.</u>	SUMMARY	6
2.2. Product Description 6 2.3. Summary SAR Results 6 2.4. Equipment under Test 6 2.5. EUT operation mode 6 6. TEST Configuration 7 7. EUT configuration 7 3. TEST ENVIRONMENT 8 3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. Device Holder 12 4.3. Phantoms 12 4.4. Device Holder 13 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 5.8. TEST CONDITIONS AND RESULTS 23 5.1. Conducted Power Results 23			_
2.3. Summary SAR Results 6 2.4. Equipment under Test 6 2.5. EUT operation mode 6 2.6. TEST Configuration 7 2.7. EUT configuration 7 2.7. EUT configuration 7 3. TEST ENVIRONMENT 8 3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. Device Holder 12 4.3. Phantoms 12 5.4. Data Storage and Evaluation 14 4.3. SAR Measurement System 15 4.4. Device Holder 12 5.5. TEST CONDITIONS AND RESULTS 23 5.6. TEST CONDITIONS AND RESULTS			
2.4. Equipment under Test 6 2.5. EUT operation mode 6 2.6. TEST Configuration 7 2.7. EUT configuration 7 3. TEST ENVIRONMENT 8 3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASY5 E-field Probe System 11 4.3. Phantoms 12 4.4. Device Holder 12 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 4.8. System Check 17 4.9. Measurement Procedures 23 5.1. Conducted Power Results 23 5.2. Test reduction procedure 23			
2.5. EUT operation mode 6 2.6. TEST Configuration 7 2.7. EUT configuration 7 3. TEST ENVIRONMENT 8 3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASYS E-field Probe System 11 4.4. Device Holder 12 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 5. TEST CONDITIONS AND RESULTS 23 5.1. Conducted Power Results 23 5.2. Test reduction procedure 23 5.3. SAR Measurement Results 23 5.4. SAR Measurement No(30-300MHz) 25 5.6. System Ch			
2.6. TEST Configuration 7 2.7. EUT configuration 7 2.7. EUT configuration 7 3. TEST ENVIRONMENT 8 3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASY5 E-field Probe System 11 4.3. Phantoms 12 4.4. Dasyster field Probe System 11 4.5. Scanning Procedure 12 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 4.8. System Check 17 4.9. Measurement Procedures 23 5. TEST CONDITIONS AND RESULTS 23 5.1. Conducted Power Results 23 5.3. SAR Measurement Negults			
2.7. EUT configuration 7 3. TEST ENVIRONMENT 8 3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASY5 E-field Probe System 11 4.3. Phantoms 12 4.4. Device Holder 12 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 4.8. System Check 17 4.9. Measurement Procedures 18 5.1. Conducted Power Results 23 5.2. Test reduction procedure 23 5.3. SAR Measurement Variability 24 5.4. SAR Measurement Variability 24 5.5. System Check Results <td></td> <td></td> <td></td>			
3. TEST ENVIRONMENT 8 3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASY5 E-field Probe System 11 4.3. Phantoms 12 4.4. Device Holder 12 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 4.8. System Check 17 4.9. Measurement Procedures 23 5.1. Conducted Power Results 23 5.2. Test reduction procedure 23 5.3. SAR Measurement Variability 24 5.4. System Check Results 29 5.7. SAR Test G			
3.1. Address of the test laboratory 8 3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASY5 E-field Probe System 11 4.3. Phantoms 12 4.4. Device Holder 12 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 4.8. System Check 17 4.9. Measurement Procedures 18 5. TEST CONDITIONS AND RESULTS 23 5.1. Conducted Power Results 23 5.2. Test reduction procedure 23 5.3. SAR Measurement Variability 24 5.4. SAR Measurement Variability 24 5.5.	2.7.	EUT configuration	7
3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASY5 E-field Probe System 11 4.3. Phantoms 12 4.4. Device Holder 12 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 4.8. System Check 17 4.9. Measurement Procedures 18 5. TEST CONDITIONS AND RESULTS 23 5.1. Conducted Power Results 23 5.2. Test reduction procedure 23 5.3. SAR Measurement Results 23 5.4. SAR Measurement Variability 24 5.5. Measurement Variability 24 5.6. System Check Results 32 5.7. SAR Test Graph Res	<u>3.</u>	TEST ENVIRONMENT	8
3.2. Test Facility 8 3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASY5 E-field Probe System 11 4.3. Phantoms 12 4.4. Device Holder 12 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 4.8. System Check 17 4.9. Measurement Procedures 18 5. TEST CONDITIONS AND RESULTS 23 5.1. Conducted Power Results 23 5.2. Test reduction procedure 23 5.3. SAR Measurement Results 23 5.4. SAR Measurement Variability 24 5.5. Measurement Variability 24 5.6. System Check Results 29 5.7. SAR Test Graph Res	3.1.	Address of the test laboratory	8
3.3. Environmental conditions 8 3.4. SAR Limits 8 3.5. Equipments Used during the Test 9 4. SAR MEASUREMENTS SYSTEM CONFIGURATION 10 4.1. SAR Measurement Set-up 10 4.2. DASY5 E-field Probe System 11 4.3. Phantoms 12 4.4. Device Holder 12 4.5. Scanning Procedure 13 4.6. Data Storage and Evaluation 14 4.7. SAR Measurement System 15 4.8. System Check 17 4.9. Measurement Procedures 18 5. TEST CONDITIONS AND RESULTS 23 5.1. Conducted Power Results 23 5.2. Test reduction procedure 23 5.3. SAR Measurement Variability 24 5.4. SAR Measurement Variability 24 5.5. Measurement Variability 24 5.6. System Check Results 29 5.7. SAR Test Graph Results 32 6. CALIBR	3.2.		8
3.4.SAR Limits83.5.Equipments Used during the Test94.SAR MEASUREMENTS SYSTEM CONFIGURATION104.1.SAR Measurement Set-up104.2.DASY5 E-field Probe System114.3.Phantoms124.4.Device Holder124.5.Scanning Procedure134.6.Data Storage and Evaluation144.7.SAR Measurement System154.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.System Check Results235.5.System Check Results235.6.System Check Results235.7.SAR Measurement Variability245.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate506.3.DAE4 Calibration Certificate61	3.3.		
3.5.Equipments Used during the Test94.SAR MEASUREMENTS SYSTEM CONFIGURATION104.1.SAR Measurement Set-up104.2.DASY5 E-field Probe System114.3.Phantoms124.4.Device Holder124.5.Scanning Procedure134.6.Data Storage and Evaluation144.7.SAR Measurement System154.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.System Check Results235.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate50	3.4.	SAR Limits	8
4.1.SAR Measurement Set-up104.2.DASY5 E-field Probe System114.3.Phantoms124.4.Device Holder124.5.Scanning Procedure134.6.Data Storage and Evaluation144.7.SAR Measurement System154.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Variability245.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate60	3.5.	Equipments Used during the Test	
4.2.DASY5 E-field Probe System114.3.Phantoms124.4.Device Holder124.5.Scanning Procedure134.6.Data Storage and Evaluation144.7.SAR Measurement System154.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Variability245.5.Measurement Variability245.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate506.3.DAE4 Calibration Certificate506.3.DAE4 Calibration Certificate62	<u>4.</u>	SAR MEASUREMENTS SYSTEM CONFIGURATION	10
4.2.DASY5 E-field Probe System114.3.Phantoms124.4.Device Holder124.5.Scanning Procedure134.6.Data Storage and Evaluation144.7.SAR Measurement System154.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Results235.5.Measurement Variability245.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate506.3.DAE4 Calibration Certificate506.3.DAE4 Calibration Certificate62	4.1.	SAR Measurement Set-up	10
4.4.Device Holder124.5.Scanning Procedure134.6.Data Storage and Evaluation144.7.SAR Measurement System154.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Results235.5.Measurement Variability245.6.System Check Results295.7.SAR Test Graph Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate506.3.DAE4 Calibration Certificate62	4.2.	DASY5 E-field Probe System	11
4.5.Scanning Procedure134.6.Data Storage and Evaluation144.7.SAR Measurement System154.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Results235.5.Measurement Variability245.6.System Check Results295.7.SAR Test Graph Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate506.3.DAE4 Calibration Certificate506.3.DAE4 Calibration Certificate62	4.3.	Phantoms	12
4.6.Data Storage and Evaluation144.7.SAR Measurement System154.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Results235.5.Measurement Variability245.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate506.3.DAE4 Calibration Certificate50	4.4.	Device Holder	12
4.7.SAR Measurement System154.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Results235.5.Measurement Variability245.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62	4.5.	Scanning Procedure	13
4.8.System Check174.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Results235.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62	4.6.	Data Storage and Evaluation	14
4.9.Measurement Procedures185.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Variability245.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate506.3.DAE4 Calibration Certificate50	4.7.		15
5.TEST CONDITIONS AND RESULTS235.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Variability245.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62	4.8.	System Check	17
5.1.Conducted Power Results235.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Variability245.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62	4.9.		18
5.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Variability245.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62	<u>5.</u>	TEST CONDITIONS AND RESULTS	23
5.2.Test reduction procedure235.3.SAR Measurement Results235.4.SAR Measurement Variability245.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62	5.1.	Conducted Power Results	23
5.3.SAR Measurement Results235.4.SAR Measurement Variability245.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62			
5.4.SAR Measurement Variability245.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62		•	
5.5.Measurement Uncertainty (30-300MHz)255.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62		SAR Measurement Variability	
5.6.System Check Results295.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62			
5.7.SAR Test Graph Results326.CALIBRATION CERTIFICATE396.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62			
6.1.Probe Calibration Certificate396.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62			
6.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62	<u>6.</u>	CALIBRATION CERTIFICATE	39
6.2.CLA150 Dipole Calibration Certificate506.3.DAE4 Calibration Certificate62	6.1.	Probe Calibration Certificate	39
6.3.DAE4 Calibration Certificate62			
7. TEST SETUP PHOTOS 69			
	7.	TEST SETUP PHOTOS	69

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>IEEE 1528-2013 (2014-06)</u>: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

<u>IEEE Std. C95-3 (2002)</u>: IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave

<u>IEEE Std. C95-1 (1992)</u>: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

<u>IEC 62209-2 (2010):</u> Human exposure to radio frequency fields from hand-held and body mounted wireless communication devices. Human models, instrumentation, and procedures. Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

KDB865664D01v01r04 (Augest 7, 2015):SAR Measurement Requirements for 100 MHz to 6 GHzKDB865664D02v01r02 (October 23, 2015):RF Exposure Compliance Reporting and DocumentationConsiderations

KDB 643646 D01 SAR Test for PTT Radios v01r03 (October 23, 2015): SAR Test Reduction Considerations for Occupational PTT Radios

KDB 447498 D01 General RF Exposure Guidance v06 (October 23, 2015): Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies

<u>2015 October TCB Workshop:</u> SAR may be scaled if radio is tested at lower power without overheating as invalid SAR results cannot be scaled to compensate for power droop

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	January 05, 2017
Testing commenced on	:	March ,02, 2017
Testing concluded on	:	March ,15, 2017

2.2. Product Description

EUT Name	: VHF DIGITAL TRANSCEIVER	
Model Number	: DJ-AXD1	
Trade Mark	: ALINCO	
EUT function description	: Please reference user manual of this device	
Power supply	: DC 7.40V from battery	
Operation frequency range	: 136 MHz – 174 MHz	
Modulation type	: 4FSK(Digital)	
RF Rated Output power	5W/1W	
Emission type	: F1W/F1D(Digital)	
Antenna Type	: External	
Date of Receipt	: 2017/01/12	
Device Type	: Portable	
Sample Type	: Prototype Unit	
Exposure category:	: Occupational exposure / Controlled environment	
Test Frequency:	: 136.05MHz – 144.50MHz – 152.05MHz –157.50MHz-165.5MHz-173.95MHz	

2.3. Summary SAR Results

	FCC						
Mode	Channel	Frequency	Position	Maximum Report SAR Results (W/Kg)			
Mode	Separation	(MHz)	Position	50% duty cycle			
VHF	12.5KHz	136.05	Face-held	1.28			
VHF	12.5KHz	136.05	Body-Worn	3.69			

2.4. Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

<u>DC 7.40 V</u>

2.5. EUT operation mode

The spatial peak SAR values were assessed for UHF systems. Battery and accessories shell be specified by

the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain

uniform power output.

2.6. TEST Configuration

Face-Held Configuration

Face-held Configuration- per FCC KDB447498 page 22: "A test separation distance of 25 mm must be applied for in-front-of the face SAR test exclusion and SAR measurements."

Per FCC KDB643646 Apppendix Head SAR Test Considerations: "Passive body-worn and audio accessories generally do not apply to the head SAR of PTT radios. Head SAR is measured with the front surface of the radio positioned at 2.5cm paralled to a flat phantom. A phantom shell thicines of 2mm is required. When the front of the radio has a contour or non-uniform surface with a variation of 1.0cm or more, the average distance of such variations is used to establish the 2.5cm test separartion from the phantom.

Body-worn Configuration

Body-worn measurements-per FCC KDB447498 page 22 "When body-worn accessory SAR testing is required, the body-worn accessory requirements in section 4.2.2 should be applied. PTT two-way radios that support held-to-ear operating mode must also be tested according to the exposure configurations required for handsets. This generally does not apply to cellphones with PTT options that have already been tested in more conservative configurations in applicable wireless modes for SAR compliance at 100% duty factor." According to KDB643646 D01 for Body SAR Test Considerations for Body-worn Accessoires: Body SAR is measured with the radio placed in a body-worn accessory, positioned against a flat plantom, representative of the normal operating conditions expected by users and typically with a standard default audio accessory supplied with the radio, may be designed to operate with a subset of the combinations of antennas, batteries and body-worn accessores, when a default audio accessory does not fully support all accessory must be selected to be the default audio accessory for body-worn accessories testing. If an alternative audio accessory cannot be identified, body-worn accessories should be tested without any body accessories should be tested without any audio. In general, all sides of the radio that may be positioned facing the user when using a body-worn accessory must be condisered for SAR compliance.

2.7. EUT configuration

Accessory name	Internal Identification	Model	Description	Remark
Antenna	A1	N/A	External Antenna	performed
Battery	B1	N/A	Intrinsically Safe Li-ion Battery	performed
Audio accessory	D1	N/A	Audio accessory	performed

The following peripheral devices and interface cables were connected during the measurement:

AE ID: is used to identify the test sample in the lab internally.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau

No.149, Gongye 7th Rd. Nanshan District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L2872

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.4. SAR Limits

FCC Limit (1g Tissue)					
	SAR (W/kg)			
Exposure Limits	(General Population /	(Occupational /			
Exposure Limits	Uncontrolled Exposure	Controlled Exposure			
	Environment)	Environment)			
Spatial Average	0.08	0.4			
(averaged over the whole body)	0.08	0.4			
Spatial Peak	1.60	8.0			
(averaged over any 1 g of tissue)	1.00	0.0			
Spatial Peak	4.0	20.0			
(hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

				Calib	ration
Test Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	760	2016/06/24	1
E-field Probe	SPEAG	EX3DV4	3842	2017/02/23	1
System Validation Dipole CLA150	SPEAG	CLA150	4019	2016/02/11	3
Network analyzer	Agilent	8753E	US37390562	2016/03/05	1
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/
Power meter	Agilent	E4417A	GB41292254	2016/12/14	1
Power sensor	Agilent	8481H	MY41095360	2016/12/14	1
Power sensor	Agilent	8481H	MY41095361	2016/12/14	1
Signal generator	IFR	2032	203002/100	2016/12/14	1
Amplifier	AR	75A250	302205	2016/12/14	1

3.5. Equipments Used during the Test

Note:

1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 50 Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

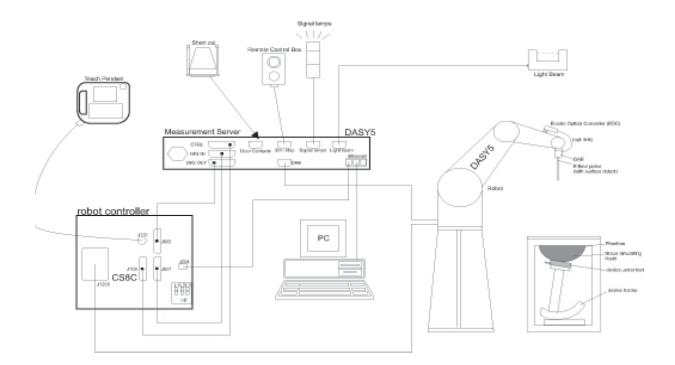
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

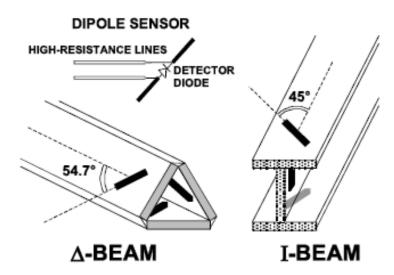
Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification


Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

V1.0

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with the IEC 62209-2 standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can beintegrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurementgrids, by teaching three points. The phantom is compatible with all SPEAGdosimetric probes and dipoles.

ELI Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

4.6. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With	Vi = compensated signal of channel i	(i = x, y, z)
	Ui = input signal of channel i	(i = x, y, z)
	cf = crest factor of exciting field	(DASY parameter)
	dcpi = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

		E - field probes :	$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$
		H-field probes:	$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$
With	Vi Normi	 compensated signal of channel i sensor sensitivity of channel i [mV/(V/m)2] for E-field Probes 	(i = x, y, z) (i = x, y, z)
	ConvF aij f Ei Hi	 sensitivity enhancement in solution sensor sensitivity factors for H-field carrier frequency [GHz] electric field strength of channel i in magnetic field strength of channel i 	V/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with	SAR Etot σ	 local specific absorption rate in mW/g total field strength in V/m conductivity in [mho/m] or [Siemens/m] 	r
	ρ	= equivalent tissue density in g/cm3	

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7. SAR Measurement System

The SAR measurement system being used is the DASY5 system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

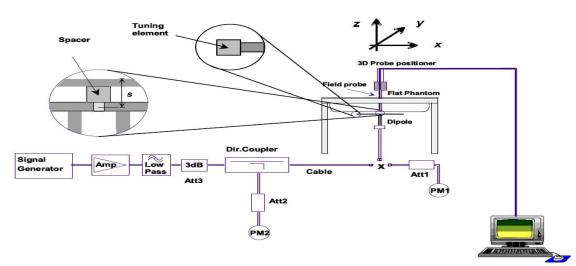
In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

4.7.1 Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Target Frequency	Не	ad	Bo	ody
(MHz)	٤ _r	σ(S/m)	٤ _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)


Tissue	Measured	Target	Tissue		Measure	d Tissue		Liquid		
Туре	Frequency (MHz)	٤r	σ	٤r	Dev. %	σ	Dev. %	Temp.	Test Data	
150H	150	52.3	0.76	53.5	2.29	0.77	1.32	22.2 degree	2017-03-02	
150B	150	61.9	0.80	60.7	-1.94	0.79	-1.25	22.2 degree	2017-03-02	

4.8. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 1 W before dipole is connected.

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

System Check in Head Tissue Simulating Liquid											
Freq	Test Date	Dielectric Parameters		Temp	1W Measured		1W Target		Limit (±10% Deviation)		
		ε _r	σ(s/m)	_	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}	
150MHz	2017-03-02	53.5	0.77	22.2	3.85	2.56	3.79	2.52	1.58%	1.59%	

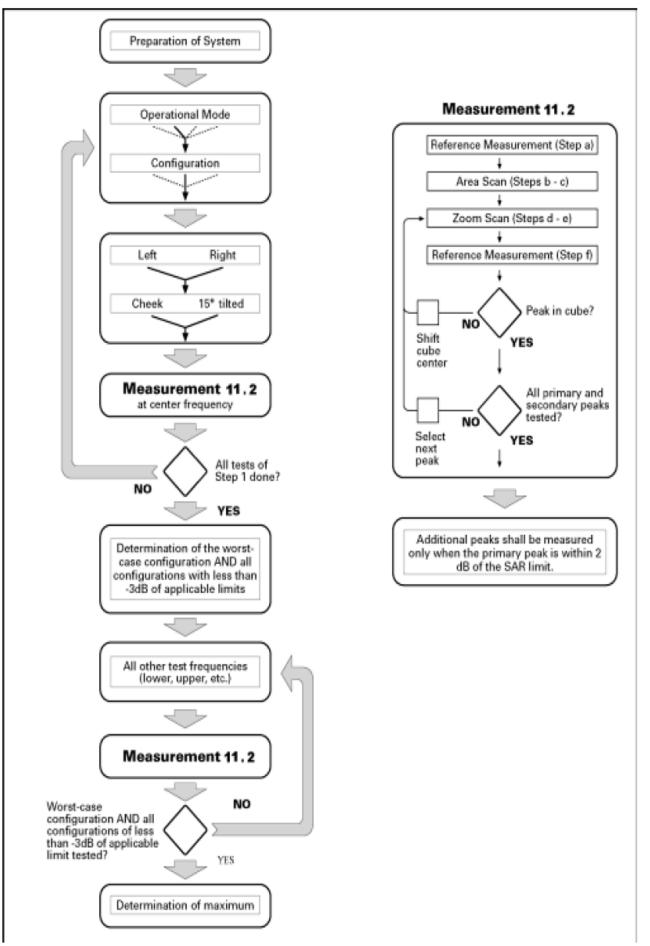
System Check in Head Tissue Simulating Liquid

Freq	Test Date		ectric neters	Temp	1W Normalized		W Normalized 1W Target		Limit (±10% Deviation)	
		٤ _r	σ(s/m)	-	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}
150MHz	2017-03-02	60.7	0.79	22.2	3.96	2.68	3.89	2.59	1.80%	3.47%

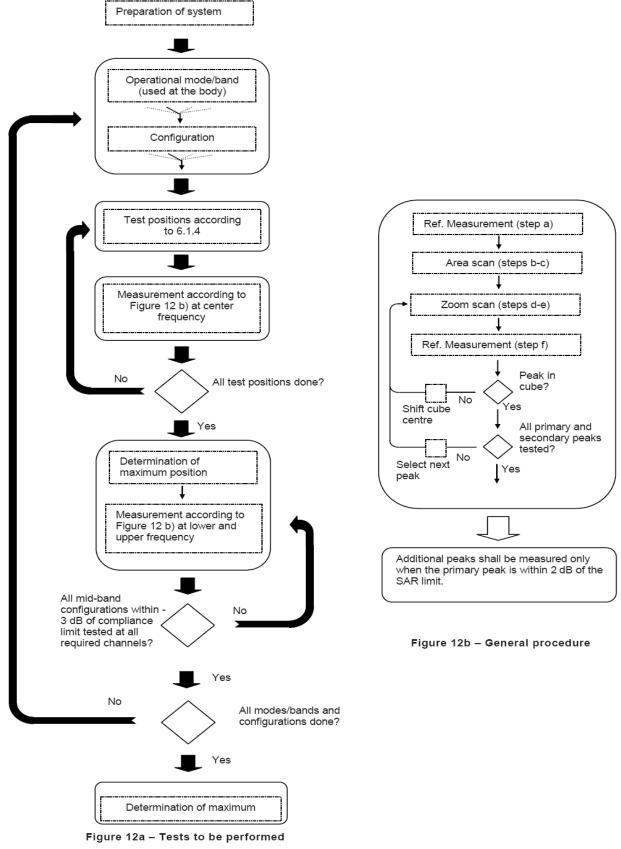
System Check in Body Tissue Simulating Liquid

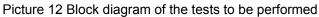
4.9. Measurement Procedures

Tests to be performed


In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.
- d) If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.


Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 11 Block diagram of the tests to be performed

Measurement procedure

The following procedure shall be performed for each of the test conditions (see Picture 11) described in 11.1:

a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.

- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and on (2)/2 mm for frequencies of 3 GHz and greater, whereois the plane wave skin depth and ln(x) is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ±1 mm for frequencies below 3 GHz and ±0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional measurement distance to the phantom inner surface shorter than the probe diameter, additional measurement distance to the phantom inner surface shorter than the probe diameter, additional measurement distance to the phantom inner surface shorter than the probe diameter, additional
- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;
- d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step
- e) The horizontal grid step shall be (24 / f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δis the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5. If this cannot be achieved an additional uncertainty evaluation is needed.
- f) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

Measurement procedure

The following procedure shall be performed for each of the test conditions (see Picture 11) described in 11.1:

- g) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.
- h) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and \dollan(2)/2 mm for frequencies of 3 GHz and greater, where\dolla is the plane wave skin depth and ln(x) is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ±1 mm for frequencies below 3 GHz and ±0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional measurement distance to the phantom inner surface shorter than the probe diameter, additional
- From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;
- j) Measure the three-dimensional SAR distribution at the local maxima locations identified in step
- k) The horizontal grid step shall be (24 / f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm

or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and ln(x) is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5. If this cannot be achieved an additional uncertainty evaluation is needed.

I) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 2 to Table 6 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v05r01Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

SAR may be scaled if radio is tested at lower power without overheating as invalid SAR results cannot be scaled to compensate for power droop according to October 2015 TCB Workshop.

				Transmitter Power				
Modulation Type	Channel Separation	Test Channel	Test Rated High power Rated Lower power level			r power level		
	-			(dBm)	(Watts)	(dBm)	(Watts)	
	12.5KHz	Ch1	136.05	36.69	4.67	30.22	1.05	
		Ch2	144.50	36.68	4.66	30.52	1.13	
Digital/4FSK		Ch3	152.05	36.67	4.65	30.94	1.24	
Digital/4FSK		Ch4	157.50	36.74	4.72	30.63	1.16	
		Ch5	165.50	36.82	4.81	30.55	1.14	
		Ch6	173.95	36.87	4.86	30.3	1.07	

5.2. Test reduction procedure

The maximum power level, $P_{max,m}$, that can be transmitted by a device before the SAR averaged over a mass, m, exceeds a given limit, SAR_{lim}, can be defined. Any device transmitting at power levels below $P_{max,m}$ can then be excluded from SAR testing. The lowest possible value for $P_{max,m}$ is: $P_{max,m} = SAR_{lim}^* m$.

5.3. SAR Measurement Results

Test Fr	requency	Mod		Allowed	Allowed	Conduceted Power	Test Configuratio	Measurement SAR _{1-g} (W/Kg)		Power	Scaling	Reported SAR _{1-g} (W/kg)		SAR limit 1g (W/kg)	Ref.
Chann el	MHz	e	Power (dBm)	(dBm)	n	100% Duty Cycle	50% Duty Cycle	drift	Factor	100% Duty Cycle	50% Duty Cycle	Plot			
				The EUT disp	lay towards gro	und for 12.5	KHz (Digi	tal, face he	eld)						
Ch1	136.05	PTT	37.00	36.69	Face Held	2.38	1.19	0.02	1.07	2.56	1.28	8.00	1		
			The EUT	display toward	s ground for 12.	5 KHz with A	A1, B1 and	D1 (Digita	ıl, Body-Wor	'n)					
Ch1	136.05	PTT	37.00	36.69	Body Worn	6.86	3.43	-0.11	1.07	7.37	3.69	8.00	2		
Ch2	144.50	PTT	37.00	36.68	Body Worn	6.42	3.21	-0.11	1.08	6.91	3.46	8.00	3		
Ch3	152.05	PTT	37.00	36.67	Body Worn	6.33	3.17	-0.02	1.08	6.83	3.42	8.00	4		
Ch4	157.50	PTT	37.00	36.74	Body Worn	6.19	3.10	-0.18	1.06	6.57	3.29	8.00	5		
Ch5	165.50	PTT	37.00	36.82	Body Worn	6.27	3.14	-0.14	1.04	6.54	3.27	8.00	6		
Ch6	173.95	PTT	37.00	36.87	Body Worn	6.31	3.16	-0.18	1.03	6.50	3.25	8.00	7		

- When devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, must be tested for SAR compliance using a conservative minimum test separation distance ≤ 5 mm to support compliance refer to KDB447498.
- 2. Except when area scan based 1-g SAR estimation applies, a zoom scan measurement is required at the highest peak SAR location determined in the area scan to determine the 1-g SAR. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR refer to KDB865664D01v01r04.
- 3. When the highest reported SAR is <6.0 W/Kg (based on 50% Duty Cycle), PBA is not required according to KDB643646 and KDB388624 D02;
- 4. Testing antennas with the default battery: Starting by testing a PTT radio with a standard battery (default battery) that is supplied with the radio to measure the head SAR of each antenna on the highest output power channel, according to test channels required by KDB447498 and in the frequency range covered by each antenna within the operating frequency bands of the radio. When multiple standard batteries are supplied with a radio, the battery with the highest capacity is considered the default battery for making head SAR measurements:

When the head SAR of antenna tested in above description is:

- a. <3.5 W/Kg. testing of all other required channels is not necessary for that antenna;
- b. >3.5 W/Kg and ≤4.0 W/Kg, testing of the required immediately adjacent channel(s) is not necessary, testing of the other required channels maybe still be required.
- c. >4.0 W/Kg and ≤6.0 W/Kg, Head SAR should be measured for that antenna on the required immediately adjacent channel(s) is not necessary, testing of the other required channels still needs consideration.
- d. >6.0 W/Kg, test all required channels for that antenna.
- e. For the remaining channels that cannot be excluded in b) and c), which still require consideration, the 3.5 W/Kg exclusion in a) and 4.0 W/Kg exclusion in b) may be applied recursively with respect to the highest output power channel among the remaining channels; measure the SAR for the remaining channels that cannot be excluded.
 - i) If an immediately adjacent channel measured in c) or a remaining channel measured in e) is >6.0 W/Kg, test all required channels for that antenna.
- 5. Testing antennas with the default battery: Starting by testing a PTT radio with the thinnest battery and standard (default) body-worn accessory that are both supplied with the radio and if applicable, a default audio accessory, to measure the body SAR of each antenna on the highest output power channel, according to test channels required by KDB447498 and in the frequency range covered by each antenna within the operating frequency bands of the radio. When multiple standard body-worn accessories are supplied with a radio, the standard body-worn accessory expected to result in the highest SAR based on its condtruction and exposure conditions is considered the default body-worn accessory for making body-worn SAR measurements:

When the head SAR of antenna tested in above description is:

- a. <3.5 W/Kg. testing of all other required channels is not necessary for that antenna;
- b. >3.5 W/Kg and ≤4.0 W/Kg, testing of the required immediately adjacent channel(s) is not necessary, testing of the other required channels maybe still be required.
- c. >4.0 W/Kg and ≤6.0 W/Kg, Head SAR should be measured for that antenna on the required immediately adjacent channel(s) is not necessary, testing of the other required channels still needs consideration.
- d. >6.0 W/Kg, test all required channels for that antenna.
- e. For the remaining channels that cannot be excluded in b) and c), which still require consideration, the 3.5 W/Kg exclusion in a) and 4.0 W/Kg exclusion in b) may be applied recursively with respect to the highest output power channel among the remaining channels; measure the SAR for the remaining channels that cannot be excluded.
 - ii) If an immediately adjacent channel measured in c) or a remaining channel measured in e) is >6.0 W/Kg, test all required channels for that antenna.

5.4. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

Thus the following procedures are applied to determine if repeated measurements are required for occupational exposure.

- 5) Repeated measurement is not required when the original highest measured SAR is < 4.00 W/kg; steps 6) through 8) do not apply.
- 6) When the original highest measured SAR is \geq 4.00 W/kg, repeat that measurement once.
- 7) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 6.00 or when the original or repeated measurement is ≥ 7.25 W/kg (~ 10% from the 1-g SAR limit).
- 8) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 7.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

		A	ccording to I	EC62209-1/IE	EE 15	28:201	3			
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measuremen					-	-	-			-
1	Probe calibration	В	6.65%	Ν	1	1	1	6.65%	6.65%	œ
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	8
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	8
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	8
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	œ
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	œ
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	œ
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	8
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	œ

5.5. Measurement Uncertainty (30-300MHz)

	-	-	-						-	
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
Test Sample	Related									
15	Test sample positioning	А	1.86%	Ν	1	1	1	1.86%	1.86%	8
16	Device holder uncertainty	А	1.70%	Ν	1	1	1	1.70%	1.70%	8
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
Phantom and	d Set-up									
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
20	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	8
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
22	Liquid cpermittivity (meas.)	A	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	8
Combined standard uncertainty	$u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$		1	1	1	1	1	10.32%	10.12%	œ
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		1	R	K=2	/	/	20.64%	20.24%	8

	According to IEC62209-2/2010										
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom	
Measuremer	Measurement System										
1	Probe calibration	В	6.65%	Ν	1	1	1	6.65%	6.65%	∞	
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞	
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	8	
4	Boundary Effects	В	2.00%	R	$\sqrt{3}$	1	1	1.20%	1.20%	8	
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞	
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8	
7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8	
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	~	
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8	
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	~	
11	RF Ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	~	

r	1					1	1	1	1	
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8
13	Probe positioning with respect to phantom shell	В	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	8
14	Max.SAR Evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
15	Modulation Response	В	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	8
Test Sample	Related									
16	Test sample positioning	А	1.86%	Ν	1	1	1	1.86%	1.86%	8
17	Device holder uncertainty	А	1.70%	Ν	1	1	1	1.70%	1.70%	8
18	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
Phantom and	d Set-up									
19	Phantom uncertainty	В	6.10%	R	$\sqrt{3}$	1	1	3.50%	3.50%	8
20	SAR correction	В	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	8
21	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
22	Liquid conductivity (meas.)	A	0.50%	Ν	1	0.64	0.43	0.32%	0.26%	8
23	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
24	Liquid cpermittivity (meas.)	A	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	8
25	Temp.Unc Conductivity	В	3.40%	R	$\sqrt{3}$	0.78	0.71	1.50%	1.40%	8
26	Temp.Unc Permittivity	В	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	8
Combined standard uncertainty	$u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$		/	/	/	/	/	12.95%	12.72%	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		1	R	K=2	1	1	25.90%	25.44%	8

	Uncertainty of a System Performance Check with DASY5 System										
	According to IEC62209-2/2010										
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom	
Measuremer	Measurement System										
1	Probe calibration	В	6.65%	Ν	1	1	1	6.65%	6.65%	∞	
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	8	
3	Hemispherical	В	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	8	

	isotropy									
4	Boundary	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
	Effects Probe									
5	Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	8
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	~
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
11	RF Ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
12	Probe positioned mech. restrictions	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8
13	Probe positioning with respect to phantom shell	В	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	8
14	Max.SAR Evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
15	Modulation Response	В	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	œ
Test Sample									11	
16	Test sample positioning	А	0.00%	Ν	1	1	1	0.00%	0.00%	8
17	Device holder uncertainty	А	2.00%	N	1	1	1	2.00%	2.00%	8
18	Drift of output power	В	3.40%	R	$\sqrt{3}$	1	1	2.00%	2.00%	8
Phantom and										
19	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
20	SAR correction	В	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	~
21	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	8
22	Liquid cpermittivity (meas.)	A	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	œ
23	Temp.Unc Conductivity	В	1.70%	R	$\sqrt{3}$	0.78	0.71	0.80%	0.80%	8
24	Temp.Unc Permittivity	В	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	8
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u}$	2	/	1	/	/	/	12.95%	12.72%	∞
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		1	R	K=2	/	/	25.90%	25.44%	8

5.6. System Check Results

System Performance Check at 150 MHz Head TSL

DUT: Dipole150 MHz; Type: CLA150; Serial: 4019

Date: 2017-03-02

Communication System: DuiJiangJi; Frequency: 150 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 150 MHz; σ = 0.77 S/m; ε_r = 53.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3842;ConvF(11.84,11.84,11.84); Calibrated: 23/02/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn760; Calibrated: 24/06/2016

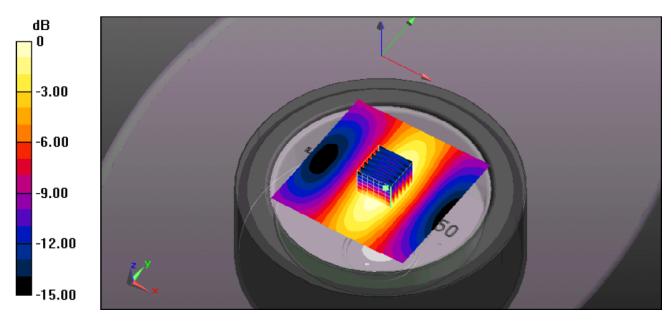
Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

System Performance Check at 150MHz/Area Scan (61x201x1): Interpolated grid: dx=1.500 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 4.19 W/Kg

System Performance Check at 150MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 25.0 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 6.22 W/kg

SAR(1 g) = 3.85 mW/g; SAR(10 g) = 2.56 mW/g

Maximum value of SAR (measured) = 4.17 mW/g

Page 30 of 70

System Performance Check 150MHz Head 1 W

System Performance Check at 150 MHz Body TSL

DUT: Dipole150 MHz; Type: CLA150; Serial: 4019

Date: 2017-03-02

Communication System: DuiJiangJi; Frequency: 150 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 150 MHz; σ = 0.79 S/m; ϵ_r = 60.7; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3842;ConvF(10.86,10.86,10.86); Calibrated: 23/02/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection)

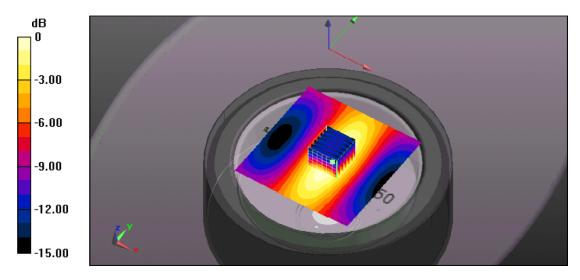
Electronics: DAE4 Sn760; Calibrated: 24/06/2016

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

System Performance Check at 150MHz/Area Scan (61x201x1): Interpolated grid: dx=1.500 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 4.28 W/Kg


System Performance Check at 150MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.33 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 6.36 W/kg

SAR(1 g) = 3.96 mW/g; SAR(10 g) = 2.68 mW/g

Maximum value of SAR (measured) = 4.42 mW/g

System Performance Check 150MHz Body 1 W

5.7. SAR Test Graph Results

Face Held for Digital Modulation at 12.5KHz Channel Separation, Front towards Phantom 136.05MHz

Communication System: PTT 150; Frequency: 136.05MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 136.05MHz; σ = 0.76 S/m; ϵ_r = 54.43; ρ = 1000 kg/m³

Phantom section: Flat Section

Probe: EX3DV4 - SN3842;ConvF(11.84,11.84,11.84); Calibrated: 23/02/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection)

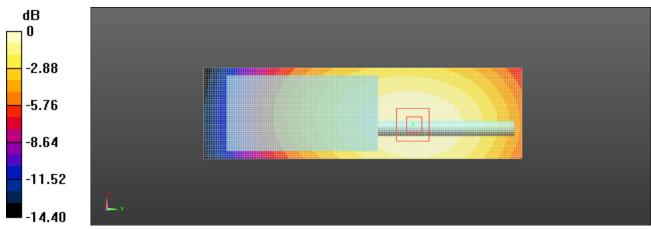
Electronics: DAE4 Sn760; Calibrated: 24/06/2016

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.40 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.115 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.109 mW/g

SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.75 mW/g

Maximum value of SAR (measured) = 2.51 W/kg

Date: 2017-03-02

Figure 1: Face held for Digital Modulation at 12.5KHz Channel Separation Front towards Phantom 136.05 MHz

Body- Worn Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1, Front towards Ground 136.05MHz

Communication System: PTT150; Frequency: 136.05MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 136.05MHz; σ = 0.78 S/m; ε_r = 61.4; ρ = 1000 kg/m³

Phantom section : Flat Section

Probe: EX3DV4 - SN3842;ConvF(10.86,10.86,10.86); Calibrated: 23/02/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection)

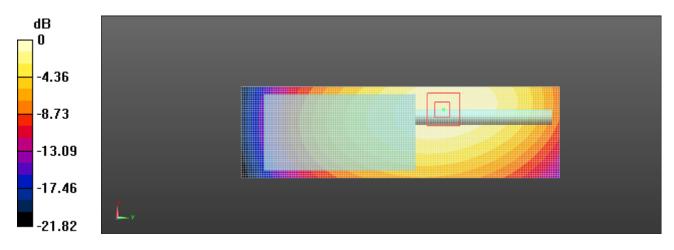
Electronics: DAE4 Sn760; Calibrated: 24/06/2016

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan(41x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 10.4 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.476 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 11.243 mW/g

SAR(1 g) = 6.86 mW/g; SAR(10 g) = 5.04 mW/g

Maximum value of SAR (measured) = 7.89 W/kg

Date: 2017-03-02

Plot 2: Body-worn for Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1; Front towards Ground 136.05MHz

Body- Worn Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1, Front towards Ground 144.50MHz

Communication System: PTT150; Frequency: 144.50 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 144.50 MHz; σ = 0.79S/m; ϵ_r = 61.21; ρ = 1000 kg/m³

Phantom section : Flat Section

Probe: EX3DV4 - SN3842;ConvF(10.86,10.86,10.86); Calibrated: 23/02/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection)

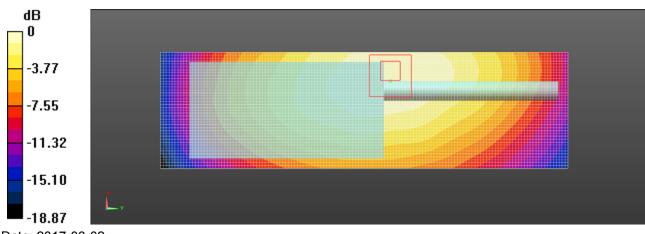
Electronics: DAE4 Sn760; Calibrated: 24/06/2016

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 7.55 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.427 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 11.114 mW/g

SAR(1 g) = 6.42 mW/g; SAR(10 g) = 4.68 mW/g

Maximum value of SAR (measured) =7.51 W/kg

Date: 2017-03-02

Plot 3: Body-worn for Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1; Front towards Ground 144.50 MHz

Body- Worn Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1, Front towards Ground 152.05 MHz

Communication System: PTT150; Frequency: 152.05 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 152.05 MHz; σ = 0.79 S/m; ϵ_r = 60.07; ρ = 1000 kg/m³

Phantom section : Flat Section

Probe: EX3DV4 - SN3842;ConvF(10.86,10.86,10.86); Calibrated: 23/02/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection)

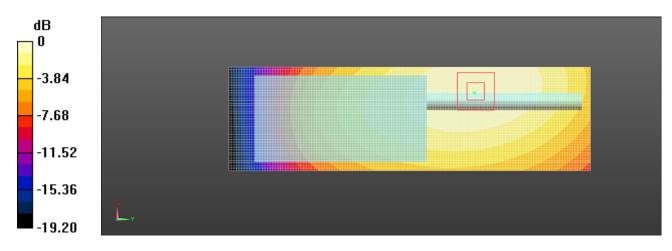
Electronics: DAE4 Sn760; Calibrated: 24/06/2016

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan(41x151x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 7.15 W/kg


Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value = 88.674 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 10.758 mW/g

SAR(1 g) = 6.33 mW/g; SAR(10 g) = 4.67 mW/g

Maximum value of SAR (measured) = 7.12 W/kg

Date: 2017-03-02

Plot 4: Body-worn for Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1; Front towards Ground 152.05 MHz

Body- Worn Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1, Front towards Ground 157.50MHz

Communication System: PTT150; Frequency: 157.50 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 157.50MHz; σ = 0.79 S/m; ϵ_r = 60.6; ρ = 1000 kg/m³

Phantom section : Flat Section

Probe: EX3DV4 - SN3842;ConvF(10.86,10.86,10.86); Calibrated: 23/02/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection)

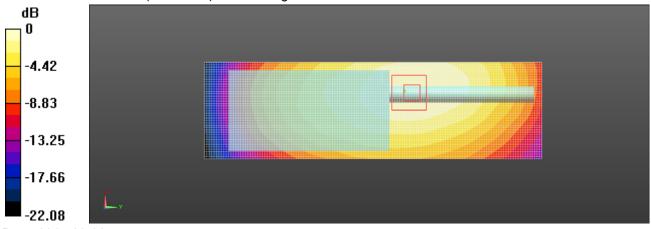
Electronics: DAE4 Sn760; Calibrated: 24/06/2016

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Towards Ground /Area Scan (51x161x1): Interpolated grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) =7.14 W/Kg


Towards Ground /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.472 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 9.741 mW/g

SAR(1 g) = 6.19 mW/g; SAR(10 g) = 4.55 mW/g

Maximum value of SAR (measured) = 7.18 W/kg

Date: 2017-03-02

Plot 5: Body-worn for Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1; Front towards Ground 157.50 MHz

Body- Worn Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1, Front towards Ground165.50MHz

Communication System: PTT150; Frequency: 165.50 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f =165.50 MHz; σ = 0.80 S/m; ϵ_r = 60.51; ρ = 1000 kg/m³

Phantom section : Flat Section

Probe: EX3DV4 - SN3842;ConvF(10.86,10.86,10.86); Calibrated: 23/02/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection)

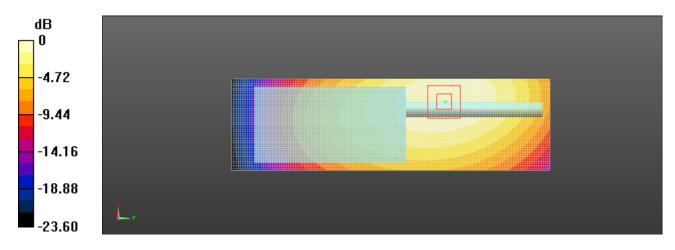
Electronics: DAE4 Sn760; Calibrated: 24/06/2016

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Towards Ground /Area Scan (51x161x1): Interpolated grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 7.19 W/Kg


Towards Ground /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.856 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 10.526 mW/g

SAR(1 g) = 6.27 mW/g; SAR(10 g) = 4.60 mW/g

Maximum value of SAR (measured) = 7.22 W/kg

Date: 2017-03-02

Plot 6: Body-worn for Digital Modulation at 12.5KHz Channel Separation With A1, B1and D1; Front towards Ground 165.50 MHz

Body- Worn Digital Modulation at 12.5KHz Channel Separation With A1, B1 and D1, Front towards Ground173.95MHz

Communication System: PTT150; Frequency: 173.95 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f =173.95 MHz; σ = 0.80 S/m; ϵ_r = 60.32; ρ = 1000 kg/m³

Phantom section : Flat Section

Probe: EX3DV4 - SN3842;ConvF(10.86,10.86,10.86); Calibrated: 23/02/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection)

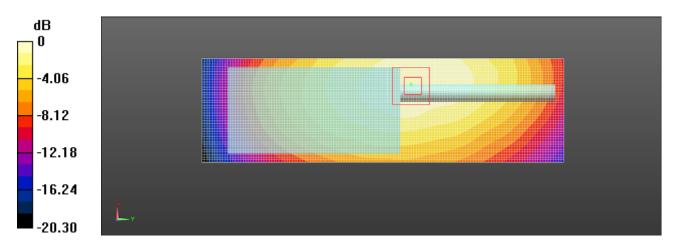
Electronics: DAE4 Sn760; Calibrated: 24/06/2016

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Towards Ground /Area Scan (51x161x1): Interpolated grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 7.38 W/Kg


Towards Ground /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.157 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 10.128 mW/g

SAR(1 g) = 6.31 mW/g; SAR(10 g) =4.64 mW/g

Maximum value of SAR (measured) = 7.25 W/kg

Date: 2017-03-02

Plot 7: Body-worn for Digital Modulation at 12.5KHz Channel Separation With A1, B1and D1; Front towards Ground 173.95 MHz

6. Calibration Certificate

6.1. Probe Calibration Certificate

chmid & Partner Engineering AG _{ughausstrasse} 43, 8004 Zuri	ry of	Contraction of the second seco	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
credited by the Swiss Accredit	ce is one of the signatories t	to the EA	editation No.: SCS 0108
ultilateral Agreement for the nine CIQ (Auden)	recognition of calibration ce		EX3-3842_Feb17
CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:3842	2	
Calibration procedure(s)		A CAL-12.v9, QA CAL-23.v5, QA ure for dosimetric E-field probes	CAL-25.v6
Calibration date:	February 23, 2017		
		bability are given on the following pages and a facility: environment temperature $(22 \pm 3)^{\circ}$ C a	
All calibrations have been condu	ucted in the closed laboratory	facility: environment temperature (22 ± 3)°C a	nd humidity < 70%.
All calibrations have been conducted in the conducted of	ucted in the closed laboratory &TE critical for calibration)	facility: environment temperature (22 ± 3)°C a	nd humidity < 70%.
All calibrations have been conducted in the conducted of	ID SN: 104778	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289)	nd humidity < 70%. Scheduled Calibration Apr-17
All calibrations have been conducted in a conducted in a conducted in the	ID SN: 104778 SN: 103244	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17
All calibrations have been conducted in Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID SN: 104778 SN: 103244 SN: 103245	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17
All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x)	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17
All calibrations have been conducted Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID SN: 104778 SN: 103244 SN: 103245	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2	ID SN: 104778 SN: 103245 SN: 03245 SN: 3013	facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02283) 31-Dec-16 (No. ES3-3013_Dec16)	Apr-17 Apr-17 Apr-17 Dec-17
All calibrations have been conducted Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Dec-17
All calibrations have been conducted Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660 ID	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Dec-17 Dec-17 Scheduled Check
All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B	ID ID SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 3013 SN: 660 ID SN: 660 ID SN: 6B41293874	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	ID SN: 104778 SN: 103245 SN: 103245 SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-19 (in house check Jun-16) 04-Aug-99 (in house check Jun-16)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID SN: 104778 SN: 104778 SN: 103245 SN: 103245 SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210	facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
All calibrations have been conducted Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-19 (in house check Jun-16) 04-Aug-99 (in house check Jun-16)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	ID SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 660 ID SN: GB41293874 SN: 000110210 SN: 00110210 SN: US3642U01700 SN: US37390585	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (In Duse check Jun-16) 06-Apr-16 (In house) 06-Apr-16 (In house check Jun-16) 04-Aug-99 (In house check Jun-16) 04-Aug-99 (In house check Jun-16) 04-Aug-91 (In house check Jun-16)	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Cot-17
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	ID SN: 104778 SN: 104778 SN: 103245 SN: 303245 SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Jun-16) Teuction	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Cot-17
All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: 104778 SN: 104778 SN: 103245 SN: 303245 SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	facility: environment temperature (22 ± 3)*C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Jun-16) Teuction	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Dec-17 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 5600 ID SN: GB41293874 SN: W741498087 SN: WY41498087 SN: WY41498087 SN: 00110210 SN: US3642U01700 SN: US3642U01700 SN: US37390585 Name Jeton Kastrati	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 31-Dec-16 (No. E33-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 18-Oct-01 (in house check Jun-16) 18-Oct-01 (in house check Jun-16) 18-Oct-01 (in house check Oct-16) Function Laboratory Technician	nd humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Oct-17

Certificate No: EX3-3842_Feb17

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL sensitivity in free space sensitivity in TSL / NORMx,y,z NORMx,y,z ConvF DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ o rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., 9 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system **Connector Anale**

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement a)
- Absorption Rate (SAR) in the Human read from Witeless Communications Devices indext and the Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices b)
- c) used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- d)

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y.z. DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3842_Feb17

Page 2 of 11

EX3DV4 - SN:3842

February 23, 2017

Probe EX3DV4

SN:3842

Manufactured: Calibrated:

October 25, 2011 February 23, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3842_Feb17

Page 3 of 11

EX3DV4-SN:3842

February 23, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.34	0.51	0.41	± 10.1 %
DCP (mV) ^B	101.5	101.2	100.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	146.8	±3.0 %
		Y	0.0	0.0	1.0		140.3	
		Z	0.0	0.0	1.0		143.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3842_Feb17

Page 4 of 11

EX3DV4- SN:3842

February 23, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.84	11.84	11.84	0.00	1.00	± 13.3 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters.
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

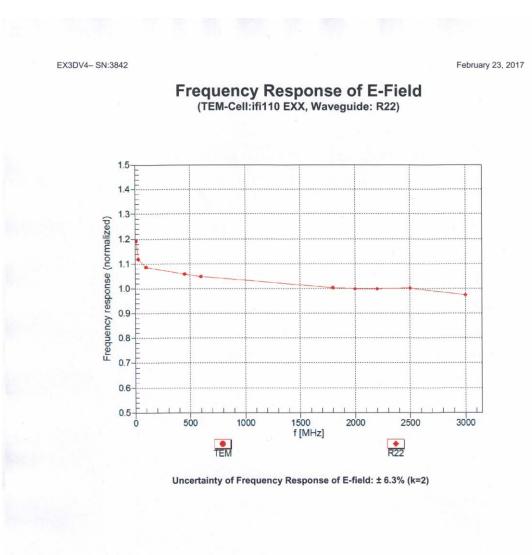
Certificate No: EX3-3842_Feb17

Page 5 of 11

EX3DV4- SN:3842

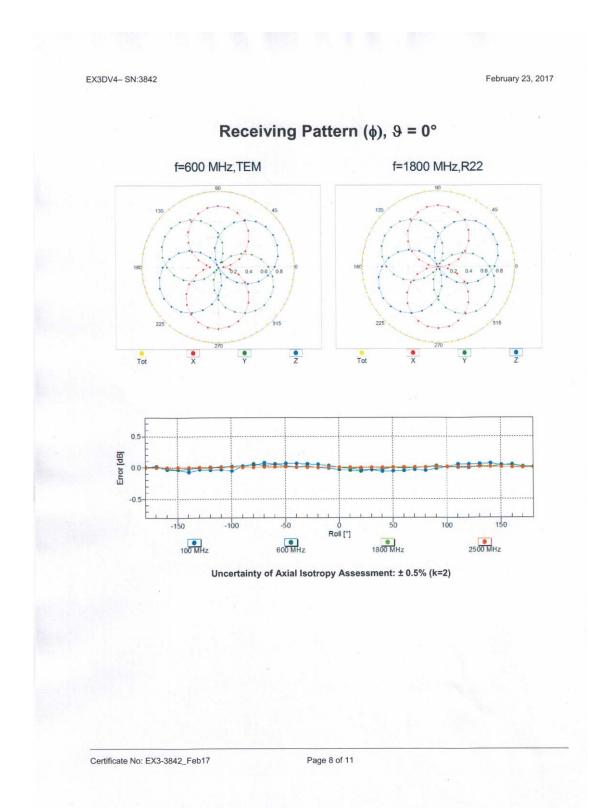
February 23, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

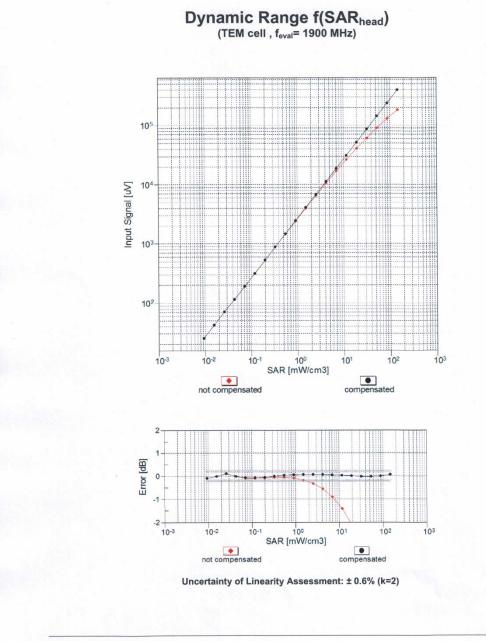

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	10.86	10.86	10.86	0.00	1.00	± 13.3 %

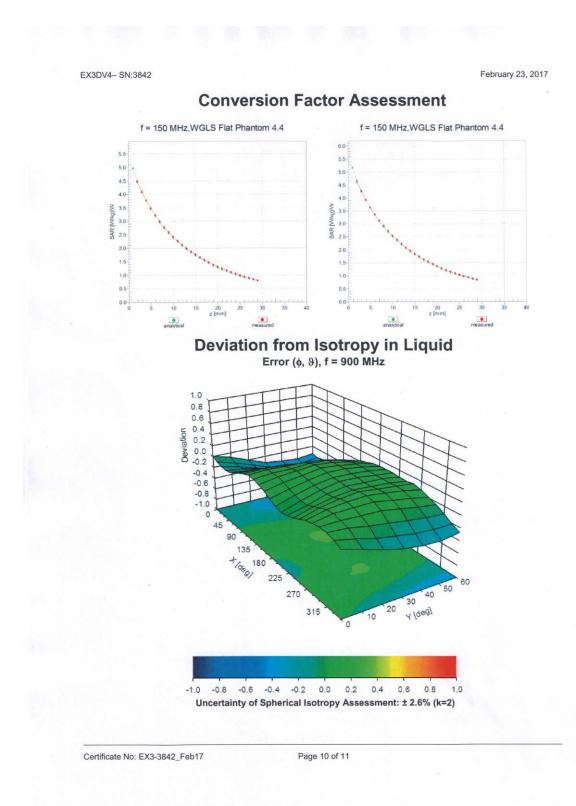
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. The validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^(a) Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: EX3-3842_Feb17

Page 6 of 11


Certificate No: EX3-3842_Feb17

Page 7 of 11


EX3DV4- SN:3842

February 23, 2017

Certificate No: EX3-3842_Feb17

Page 9 of 11

EX3DV4-SN:3842

February 23, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	70.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3842_Feb17

Page 11 of 11

6.2. CLA150 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CIQ (Auden)

Certificate No: CLA150-4019 Feb16

Object	CLA150 - SN: 40	019	
Calibration procedure(s)	QA CAL-15.v8 Calibration proce	edure for system validation sourc	es below 700 MHz
	· In Action Services		
Calibration date:	February 11, 201	16	a substantion of the second
	in the second		
		성 지원 것이 없는 것 같은 것	
This calibration certificate docum	nents the traceability to nat	tional standards, which realize the physical un	its of measurements (SI).
The measurements and the unce	ertainties with confidence p	probability are given on the following pages an	nd are part of the certificate.
All calibrations have been conduc	ctod in the classed laborate		
	cted in the closed laborato	ory facility: environment temperature (22 ± 3)°	C and humidity < 70%.
		bry facility: environment temperature (22 ± 3)°(C and humidity < 70%.
		ny facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)	ny facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
Calibration Equipment used (M& Primary Standards	TE critical for calibration)	Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter E4419B	TE critical for calibration)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128)	
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration) ID # GB41293874 MY41498087	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128)	Scheduled Calibration Mar-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128)	Scheduled Calibration Mar-16 Mar-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129)	Scheduled Calibration Mar-16 Mar-16 Mar-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: S047.2 / 06327	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: S047.2 / 06327 SN: 3877	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-3877_Dec15) 08-Jul-15 (No. DAE4-654_Jul15)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 3877 SN: 654	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-3877_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator HP 8648C	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID #	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-3877_Dec15) 08-Jul-15 (No. DAE4-654_Jul15)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator HP 8648C	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # US3642U01700 US37390585	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-3877_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55058 (20k) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-3877_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # US3642U01700 US37390585	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-3877_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55058 (20k) SN: 5047.2 / 06327 SN: 654 ID # US3642U01700 US37390585 Name Jeton Kastrati	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function Laboratory Technician	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55058 (20k) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-3877_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function	Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16

Certificate No: CLA150-4019_Feb16

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	the bell blacksee
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	150 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	50.4 ± 6 %	0.78 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.90 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.79 W/kg ± 18.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 1 W input power	2.59 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	61.9	0.80 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	60.4 ± 6 %	0.84 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	1 W input power	4.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.89 W/kg ± 18.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 1 W input power	2.70 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.4 Ω - 5.3 jΩ	
Return Loss	- 24.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.9 Ω - 8.0 jΩ		
Return Loss	- 22.0 dB		

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	November 25, 2015	

Page 4 of 8

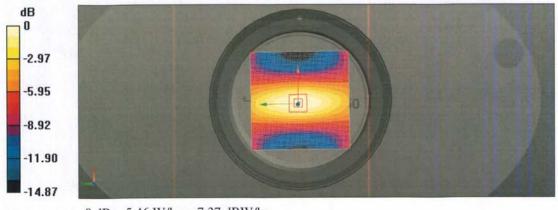
DASY5 Validation Report for Head TSL

Date: 11.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4019

Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; σ = 0.78 S/m; ε_r = 50.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

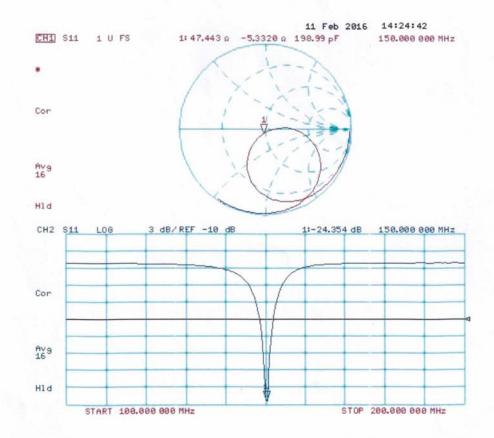

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(12.02, 12.02, 12.02); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.13 W/kg

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 83.28 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 7.21 W/kg SAR(1 g) = 3.9 W/kg; SAR(10 g) = 2.59 W/kg Maximum under a f SAB (measured) = 5.45 W/kg

Maximum value of SAR (measured) = 5.45 W/kg



Certificate No: CLA150-4019_Feb16

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: CLA150-4019_Feb16

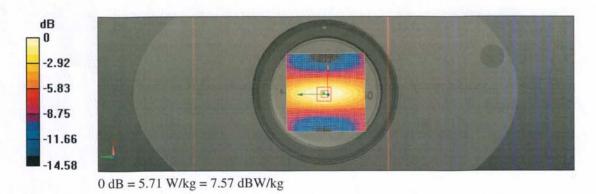
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 11.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

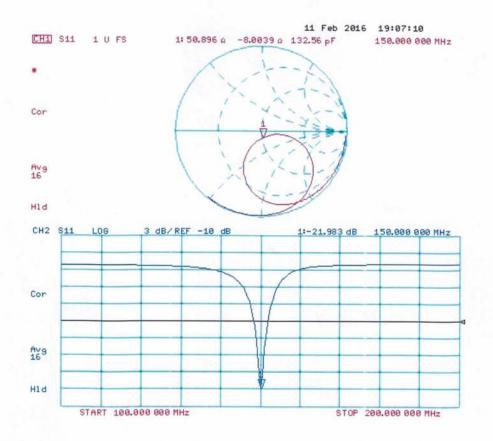
DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4019


Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; σ = 0.84 S/m; ε_r = 60.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(11.44, 11.44, 11.44); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.71 W/kg


CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 82.17 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 7.49 W/kg SAR(1 g) = 4.06 W/kg; SAR(10 g) = 2.7 W/kg Maximum value of SAR (measured) = 5.65 W/kg

Certificate No: CLA150-4019_Feb16

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: CLA150-4019_Feb16

Page 8 of 8

6.3. DAE4 Calibration Certificate

Tel: +86-10-62: E-mail: cttl@ch	eyuan Road, Haidian D 804633-2218 Fax	NTION LABORATORY District, Beijing, 100191, China : +86-10-62304633-2209 D://www.chinattl.en	The Andrews	No: Z16-97100	中国认可 国际互认 校准 CALIBRATIO CNAS L0570
CALIBRATION	CERTIFICA	TE			
Object	DAE4	I - SN: 760			6
Calibration Procedure(s)	FD-Z	11-2-002-01 ration Procedure for the x)	Data Acquisit	ion Electronics	
Calibration date:	June	24, 2016			
measurements(SI). The pages and are part of the	measurements an e certificate.	e traceability to national s d the uncertainties with co the closed laboratory f	on <mark>f</mark> idence proba	bility are given on th	ne following
Calibration Equipment us	sed (M&TE critical	for calibration)			
Primary Standards	ID# C	al Date(Calibrated by, Ce	rtificate No.)	Scheduled Calibr	ation
Process Calibrator 753	1971018	06-July-15 (CTTL, No:J	15X04257)	July-16	
	Name	Function		Signature	
Calibrated by:	Yu Zongying	SAR Test Enginee	r	Ant	
Reviewed by:	Qi Dianyuan	SAR Project Leade	er	20	E.
Approved by:	Lu Bingsong	Deputy Director of		M. M. J.	7
This calibration certificate	e shall not be repr	oduced except in full with			

Certificate No: Z16-97100

Page 1 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2218Fax: +86-10-62304633-2209E-mail: cttl@chinattl.comHttp://www.chinattl.cn

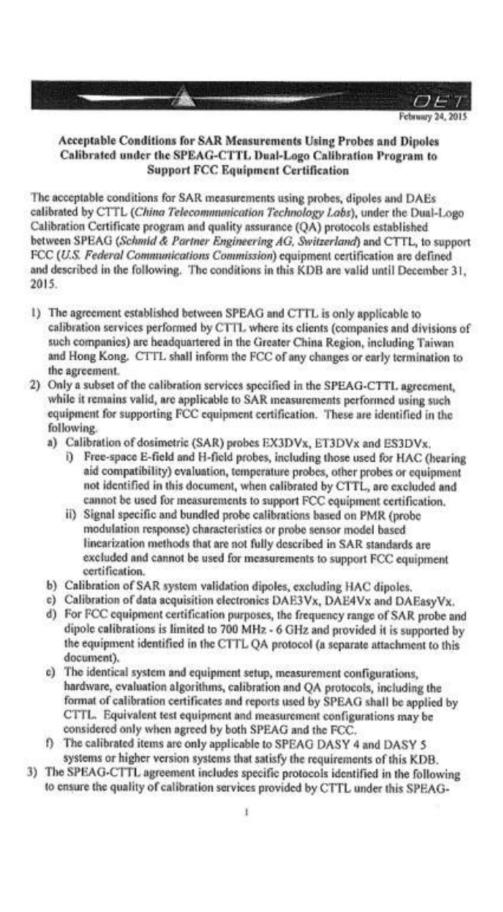
DC Voltage Measurement

 A/D - Converter Resolution nominal High Range:
 1LSB =
 6.1μV , full range =
 -100...+300 mV Low Range:

 Low Range:
 1LSB =
 61nV , full range =
 -1.....+3mV

 DASY measurement parameters:
 Auto Zero Time: 3 sec; Measuring time: 3 sec

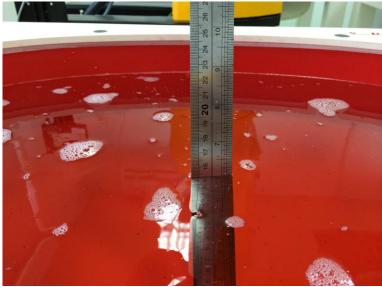
Calibration Factors	X	Y	z
High Range	403.785 ± 0.15% (k=2)	405.082 ± 0.15% (k=2)	405.373 ± 0.15% (k=2)
Low Range	3.97148 ± 0.7% (k=2)	3.98467 ± 0.7% (k=2)	3.96141 ± 0.7% (k=2)


Connector Angle

Connector Angle to be used in DASY system

248.5°±1°

Page 3 of 3



7. <u>Test Setup Photos</u>

Photograph of the depth in the Head Phantom (150MHz)

Photograph of the depth in the Body Phantom (150MHz)

Face-held, the front of the EUT towards phantom (The distance was 25mm)

Body-worn, the front of the EUT towards ground with A1, B1 and D1 (The distance was 0mm)

.....End of Report.....