FCC Part 90 Test Report

Report No.: AGC02X120602F1

FCC ID : PH3DJ-A10

PRODUCT DESIGNATION: VHF FM HANDHELD TRANSCEIVER

BRAND NAME : ALINCO

MODEL NAME : DJ-A10

CLIENT : Alinco Incorporated, Electronics Division

DATE OF ISSUE : Aug.06, 2012

STANDARD(S) : FCC Part 90 Rules

REPORT VERSION: V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION: This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 1 of 52

VERIFICATION OF COMPLIANCE

	Alinco Incorporated, Electronics Division									
Applicant:	Yodoyabashi Dai-Bldg 13F, 4-4-9 Koraibashi, Chuo-Ku, Osaka 541-0043, Japan									
	Alinco Incorporated, Electronics Division									
Manufacturer:	Yodoyabashi Dai-Bldg 13F, 4-4-9 Koraibashi, Chuo-Ku, Osaka 541-0043, Japan									
Product Designation:	VHF FM HANDHELD TRANSCEIVER									
Brand Name:	ALINCO									
Model Name:	DJ-A10									
Hardware Version:	V2.02									
Software Version:	V2.02									
Report No.:	AGC02X120602F1									
Date of Test:	Jul.27,2012 to Aug.03, 2012									

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2003. The sample tested as described in this report is in compliance with the FCC Rules Part 90 requirements

The test results of this report relate only to the tested sample identified in this report.

Tested By

Bart Xie Aug. 06, 2012

Reviewed By

Forrest Lei Aug. 06, 2012

Approved By

Solger Zhang Aug. 06, 2012

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION	5 5
2. SYSTEM TEST CONFIGURATION	6
2.1 EUT CONFIGURATION	6
3. SUMMARY OF TEST RESULTS	7
4. DESCRIPTION OF TEST MODES	8
5. CONDUCTED LIMITS	g
5.1 PROVISIONS APPLICABLE	10
6. FREQUENCY TOLERANCE	13
6.1 PROVISIONS APPLICABLE	13 14 14
7. EMISSION BANDWIDTH	18
7.1 PROVISIONS APPLICABLE	18 18 18
8. UNWANTED RADIATION	
8.1 PROVISIONS APPLICABLE	20

	. ago
8.3 TEST SETUP BLOCK DIAGRAM	
8.4 MEASUREMENT EQUIPMENT USED:	
8.5 MEASUREMENT RESULTS:	
8.6 EMISSION MASK PLOT	25
9. MODULATION CHARACTERISTICS	26
9.1 PROVISIONS APPLICABLE	
9.2 MEASUREMENT METHOD	
9.3 MEASUREMENT INSTRUMENTS	
9.4 MEASUREMENT RESULT	
10.1 PROVISIONS APPLICABLE	30
10.2 TEST PROCEDURE	30
10.3 TEST INSTRUMENTS	30
10.4 TEST RESULT	
10.4 CONDUCT SPURIOUS PLOT	31
11. RANSMITTER FREQUENCY BEHAVIOR	
11.1 PROVISIONS APPLICABLE	32
11.2TEST METHOD	32
11.3TEST INSTRUMENTS	32
12. RADIATED EMISSION ON RECEIVING MODE	36
12.1 PROVISIONS APPLICABLE	36
12.2 TEST METHOD	36
12.3 TEST INSTRUMENTS	36
12.4 MEASURE RESULT (MEASURED AT 3M USING FCC PART15 B LIMITS)	37
13. AUDIO LOW PASS FILTER RESPONSE	39
13.1 LIMITS	39
13.2. METHOD OF MEASUREMENTS	39
13.3 TEST DATA	39
APPENDIX I	42
PHOTOGRAPHS OF SETUP	42
APPENDIX II	44
EXTERNAL VIEW OF FUT	44

Page 4 of 52

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a single channel VHF FM HANDHELD TRANSCEIVER designed for voice communication. It is designed by way of utilizing the FM modulation achieves the system operating.

A major technical description of EUT is described as following:

Thajor technical description of EoT is described as following.							
Communication Type	Voice / Tone only						
Modulation	FM						
Emission Type	F3E						
Emission Bandwidth	10.26kHz						
Peak Frequency Deviation	1.80 KHz						
Audio Frequency Response	9.15dB						
Maximum Transmitter Power	37.14dBm for 12.5 KHz Channel Separation						
Output power Modification	5W (It was fixed by the manufacturer, any individual can't arbitrarily change it)						
Antenna Designation	Detachable						
Power Supply	DC 7.4V by battery						
Limiting Voltage	DC 6.29V						
	Frequency Range:136MHz to 174MHz Channel Separation: 12.5KHz						
Operation Frequency Range and Channel	Top Channel: 173.975MHz, Centre Channel: 152.225MHz, Bottom Channel:136.225MHz,						
Frequency Tolerance	0.644ppm for 12.5 KHz Channel Separation						

NOTE: VHF: 136MHz to 174MHz

Page 5 of 52

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: PH3DJ-A10, filing to comply with the FCC Part 90 requirements.

1.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI C 63.4: 2009; TIA/EIA 603 and FCC CFR 47 Rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057.

1.4 TEST FACILITY

The test site used to collect the radiated data is located on the address of Attestation of Global Compliance (Shenzhen) Co., Ltd. 2F., No.2 Building, Huafeng No.1 Technical Industrial Park, Sanwei, Xixiang, Baoan District, Shenzhen. The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003 and IC requirements in documents RS212.

FCC register No.: 259865

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 6 of 52

2. SYSTEM TEST CONFIGURATION

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.3 GENERAL TECHNICAL REQUIREMENTS

- (1). Section 15.207: Conducted Limits
- (2). Section 90.205: Maximum ERP is dependent upon the station's antenna HAAT and required service area
- (3). Section 90.207: Modulation Characteristic
- (4). Section 90.209: Occupied Bandwidth
- (5). Section 90.210: Emission Mask
- (6). Section 90.213: Frequency Tolerance
- (7). Section 90.214: Transient Frequency Behavior
- (8). Section 15.109: Radiated Emission

2.4 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

EUT

Table 2-1 Equipment Used in Tested System

Item	Equipment	Model No.	Identifier	Note
1	VHF FM HANDHELD TRANSCEIVER	DJ-A10	FCC ID: PH3DJ-A10	EUT
2	Charger	EDC-189	N/A	Accessory
3	Battery	EBP-87	N/A	Accessory

Report No.: AGC02X120602F1 Page 7 of 52

3. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.207	Conducted Emission	Compliant
§90.205	Maximum Transmitter Power	Compliant
§90.207	Modulation Characteristic	Compliant
§90.209	Occupied Bandwidth	Compliant
§90.210	Emission Mask	Compliant
§90.213	Frequency Tolerance	Compliant
§90.214	Transient Frequency Behavior	Compliant
§15.109	Radiated Emission	Compliant

Page 8 of 52

4. DESCRIPTION OF TEST MODES

RF TEST MODES

The EUT (VHF FM HANDHELD TRANSCEIVER) has been tested under normal operating condition. (The top channel, the middle channel and the bottom channel) are chosen for testing at each channel separation (12.5 KHz).

No.	TEST MODES	CHANNEL SEPARATION
1	Low Channel	12.5 KHz
2	Middle Channel	12.5 KHz
3	High Channel	12.5 KHz

EMC TEST MODES

No.	TEST MODES
1	Standby Mode + (Charging)

Note: only the result of the worst case was recorded in the report.

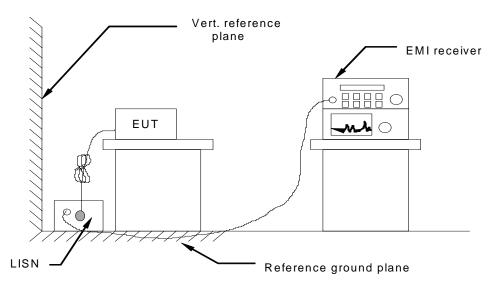
Page 9 of 52

5. CONDUCTED LIMITS

5.1 PROVISIONS APPLICABLE

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the, the radio frequency voltage that is conducted back onto the AC power line on any frequencies within the band 150 KHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50uH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted Limit(dBuV)				
	Quasi-Peak	Average			
0.15 – 0.5	66 to 56 *	56 to 46 *			
0.5 – 5	56	46			
5 – 30	60	50			


^{*} Decreases with the logarithm of the frequency.

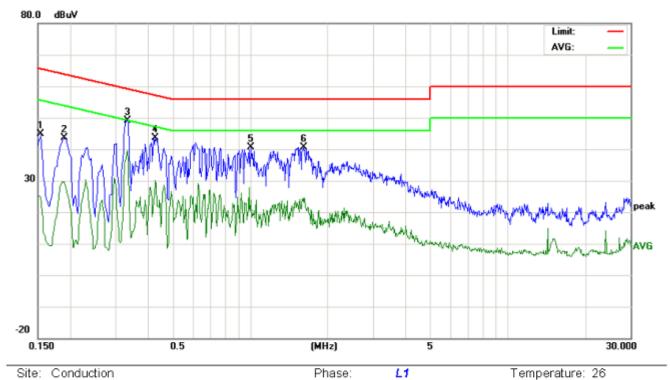
5.2 MEASUREMENT PROCEDURE

- (1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- (2) Support equipment, if needed, was placed as per ANSI C63.4.
- (3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- (4) The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- (5) All support equipments received AC power from a second LISN, if any.
- (6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- (7) Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. During the above scans, the emissions were maximized by cable manipulation.

Report No.: AGC02X120602F1 Page 10 of 52

5.3 TEST SETUP BLOCK DIAGRAM

5.4 TEST EQUIPMENT USED


Conducted Emission Test Site										
Name of Equipment Manufacturer Model Serial Number Cal. I										
TEST RECEIVER	R&S	ESCI	N/A	2012.07						
LISN	R&S	ESH3-Z5	N/A	2012.07						

Report No.: AGC02X120602F1 Page 11 of 52

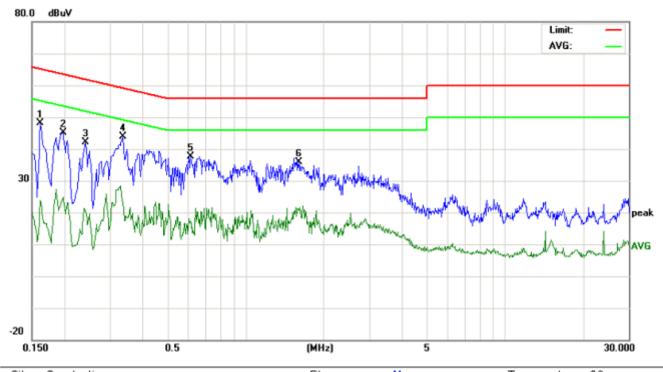
Humidity: 60 %

5.5 TEST RESULT

LINE CONDUCTED EMISSION TEST-L

Limit: FCC Class B Conduction(QP)

EUT: VHF FM HANDHELD TRANSCEIVER


M/N: DJ-A10 Mode: Charging

Note:

No.	Freq.	Reading_Level (dBuV)		Correct Factor	Measurement (dBuV)		Limit (dBuV)		1	rgin IB)	P/F	Comment		
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1539	34.78		14.76	10.16	44.94		24.92	65.78	55.78	-20.84	-30.86	Р	
2	0.1900	33.39		19.39	10.20	43.59		29.59	64.03	54.03	-20.44	-24.44	Р	
3	0.3339	38.86		29.35	10.30	49.16		39.65	59.35	49.35	-10.19	-9.70	Ρ	
4	0.4300	33.39		19.72	10.35	43.74		30.07	57.25	47.25	-13.51	-17.18	Ρ	
5	1.0100	30.17		13.57	10.37	40.54		23.94	56.00	46.00	-15.46	-22.06	٩	
6	1.6180	30.28		14.38	10.34	40.62		24.72	56.00	46.00	-15.38	-21.28	Α	

Power:

LINE CONDUCTED EMISSION TEST-N

Site: Conduction Phase: N Temperature: 26
Limit: FCC Class B Conduction(QP) Power: Humidity: 60 %

EUT: VHF FM HANDHELD TRANSCEIVER

M/N: DJ-A10 Mode: Charging

Note:

No.	Freq.	Rea	ding_L (dBuV)		Correct Factor		asuren (dBuV)			nit uV)	1	rgin IB)	P/F	Comment
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1620	38.06		13.78	10.17	48.23		23.95	65.36	55.36	-17.13	-31.41	Ρ	
2	0.1980	34.83		14.56	10.21	45.04		24.77	63.69	53.69	-18.65	-28.92	Р	
3	0.2420	31.97		10.38	10.26	42.23		20.64	62.02	52.02	-19.79	-31.38	Р	
4	0.3379	33.64		12.48	10.31	43.95		22.79	59.25	49.25	-15.30	-26.46	Р	
5	0.6140	27.30		7.05	10.32	37.62		17.37	56.00	46.00	-18.38	-28.63	Ρ	
6	1.6019	25.60		10.57	10.35	35.95		20.92	56.00	46.00	-20.05	-25.08	Ρ	

Page 13 of 52

6. FREQUENCY TOLERANCE

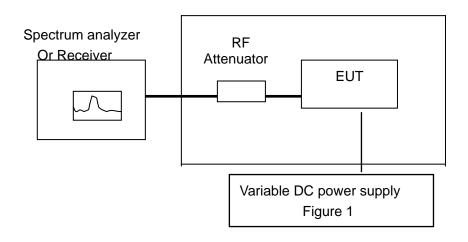
6.1 PROVISIONS APPLICABLE

- a). According to FCC Part 2 Section 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from −30°C to +50°C centigrade.
- b). According to FCC Part 2 Section 2.1055(d)(2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacturer.
- c). According to FCC Part 90 Section 90.213, the frequency tolerance must be maintained within 0.00025% for 12.5KHz channel separation.

6.2 MEASUREMENT PROCEDURE

6.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth
 to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz.Record this
 frequency as reference frequency.
- 3. Set the temperature of chamber to 50℃. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10° C decreased per stage until the lowest temperature -30°C is measured, record all measured frequencies on each temperature step.


6.2.2 Frequency stability versus input voltage

- Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15℃ to 25℃.
 Otherwise, an environment chamber set for a temperature of 20℃ shall be used. The EUT shall be powered by DC 7.4V
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

Report No.: AGC02X120602F1 Page 14 of 52

6.3 TEST SETUP BLOCK DIAGRAM

Temperature Chamber

6.4 TEST EQUIPMENT USED:

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
Receiver	R&S	ESCI	N/A	2012.07
Climate Chamber	EXPERY	TN-400	N/A	2012.07

6.5 TEST RESULT

Report No.: AGC02X120602F1 Page 15 of 52

(1) Frequency stability versus input voltage (Supply nominal voltage is 7.4V)

Bottom Channel @ 12.5 KHz Channel Separation

Reference Frequency:	136.225 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 7.4 V	136.225059	0.433
40	DC 7.4 V	136.225041	0.301
30	DC 7.4 V	136.225031	0.228
20	DC 7.4 V	136.225029	0.213
10	DC 7.4 V	136.225011	0.081
0	DC 7.4 V	136.225007	0.051
-10	DC 7.4 V	136.225004	0.029
-20	DC 7.4 V	136.225002	0.015
-30	DC 7.4 V	136.225013	0.095

Middle Channel @ 12.5 KHz Channel Separation

Reference Frequency:	152.225 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 7.4 V	152.225073	0.480
40	DC 7.4 V	152.225062	0.407
30	DC 7.4 V	152.225053	0.348
20	DC 7.4 V	152.225033	0.217
10	DC 7.4 V	152.225031	0.204
0	DC 7.4 V	152.225027	0.177
-10	DC 7.4 V	152.225021	0.138
-20	DC 7.4 V	152.225018	0.118
-30	DC 7.4 V	152.225011	0.072

Top Channel @ 12.5KHz Channel Separation

Reference Frequency:	173.975 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 7.4 V	173.975074	0.425
40	DC 7.4 V	173.975069	0.397
30	DC 7.4 V	173.975058	0.333
20	DC 7.4 V	173.975043	0.247
10	DC 7.4 V	173.975048	0.276
0	DC 7.4 V	173.975042	0.241
-10	DC 7.4 V	173.975038	0.218
-20	DC 7.4 V	173.975029	0.167
-30	DC 7.4 V	173.975015	0.086

Report No.: AGC02X120602F1 Page 16 of 52

(2) Frequency stability versus input voltage (Battery limiting voltage is 6.29V)

Bottom Channel @ 12.5 KHz Channel Separation

Reference Frequency:	136.225 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 6.29 V	136.225081	0.595
40	DC 6.29 V	136.225076	0.558
30	DC 6.29 V	136.225059	0.433
20	DC 6.29 V	136.225052	0.382
10	DC 6.29 V	136.225043	0.316
0	DC 6.29 V	136.225035	0.257
-10	DC 6.29 V	136.225032	0.235
-20	DC 6.29 V	136.225021	0.154
-30	DC 6.29 V	136.225011	0.081

Middle Channel @ 12.5 KHz Channel Separation

Reference Frequency:	152.225 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 6.29 V	152.225098	0.644
40	DC 6.29 V	152.225076	0.499
30	DC 6.29 V	152.225069	0.453
20	DC 6.29 V	152.225058	0.381
10	DC 6.29 V	152.225047	0.309
0	DC 6.29 V	152.225045	0.296
-10	DC 6.29 V	152.225034	0.223
-20	DC 6.29 V	152.225021	0.138
-30	DC 6.29 V	152.225021	0.138

Top Channel @ 12.5KHz Channel Separation

Reference Frequency:	173.975 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 6.29 V	173.975091	0.523
40	DC 6.29 V	173.975089	0.512
30	DC 6.29 V	173.975076	0.437
20	DC 6.29 V	173.975043	0.247
10	DC 6.29 V	173.975032	0.184
0	DC 6.29 V	173.975023	0.132
-10	DC 6.29 V	173.975027	0.155
-20	DC 6.29 V	173.975026	0.149
-30	DC 6.29 V	173.975025	0.144

Report No.: AGC02X120602F1
Page 17 of 52

(3) Frequency stability versus input voltage (Battery Fully Charged voltage is 8.51V)

Bottom Channel @ 12.5 KHz Channel Separation

Reference Frequency:	136.225 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 8.51 V	136.225083	0.609
40	DC 8.51 V	136.225072	0.529
30	DC 8.51 V	136.225052	0.382
20	DC 8.51 V	136.225051	0.374
10	DC 8.51 V	136.225021	0.154
0	DC 8.51 V	136.225033	0.242
-10	DC 8.51 V	136.225032	0.235
-20	DC 8.51 V	136.225019	0.139
-30	DC 8.51 V	136.225013	0.095

Middle Channel @ 12.5 KHz Channel Separation

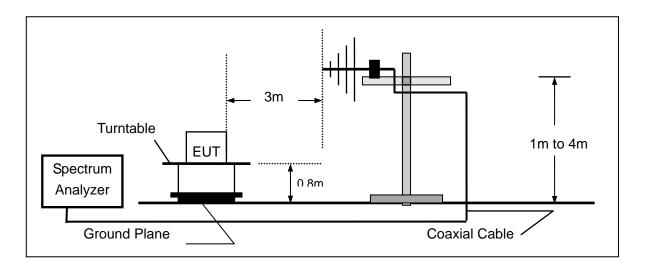
Reference Frequency:	152.225 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 8.51 V	152.225093	0.611
40	DC 8.51 V	152.225073	0.480
30	DC 8.51 V	152.225065	0.427
20	DC 8.51 V	152.225054	0.355
10	DC 8.51 V	152.225046	0.302
0	DC 8.51 V	152.225043	0.282
-10	DC 8.51 V	152.225033	0.217
-20	DC 8.51 V	152.225027	0.177
-30	DC 8.51 V	152.225023	0.151

Top Channel @ 12.5KHz Channel Separation

Reference Frequency:	173.975 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 8.51 V	173.975097	0.558
40	DC 8.51 V	173.975081	0.466
30	DC 8.51 V	173.975071	0.408
20	DC 8.51 V	173.975042	0.241
10	DC 8.51 V	173.975033	0.190
0	DC 8.51 V	173.975029	0.167
-10	DC 8.51 V	173.975022	0.126
-20	DC 8.51 V	173.975023	0.132
-30	DC 8.51 V	173.975028	0.161

Page 18 of 52

7. EMISSION BANDWIDTH


7.1 PROVISIONS APPLICABLE

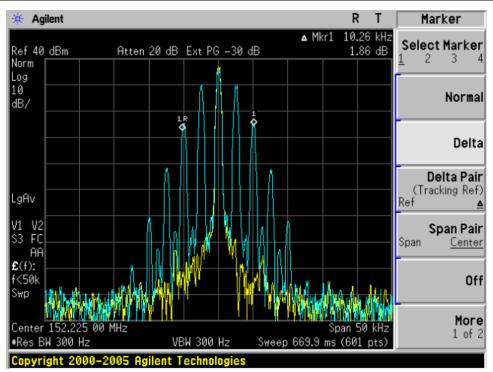
According to FCC Part 90 Section 90.209: The authorized bandwidth shall be 11.25 KHz for 12.5 KHz

7.2 MEASUREMENT PROCEDURE

- 1). The EUT was placed on a turn table which is 0.8m above ground plane.
- 2). The EUT was modulated by 2.5 KHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing) and
 - 3). Set SPA Center Frequency = fundamental frequency, RBW=VBW= 300 Hz, Span =50 KHz.
 - 4). Set SPA Max hold. Mark peak, -26 dB.

7.3 TEST SETUP BLOCK DIAGRAM

7.4 MEASUREMENT EQUIPMENT USED:


NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
SPECTRUM ANALYZER	AGILENT	E4440A	US44300399	2012.07
MODULATION ANALYZER	HP	8920B	3104A03367	2012.07
BROADBAND ANT.	A.H.	SAS-521-4	A0304224	2012.07

Page 19 of 52

7.5 MEASUREMENT RESULT:

26 dB Bandwidth Measurement Result					
Operating Frequency	12.5 KHz Channel Separation				
Operating Frequency	Test Data	Limits	Result		
136.225MHz	10.21 KHz	11.25 KHz	Pass		
152.225MHz	10.26KHz	11.25 KHz	Pass		
173.975MHz	10.21 KHz	11.25 KHz	Pass		

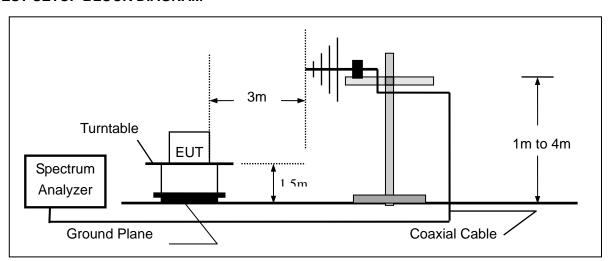
Occupied bandwidth of Middle Channel (Maximum) @ 12.5KHz Channel Separation

Page 20 of 52

8. UNWANTED RADIATION

8.1 PROVISIONS APPLICABLE

- 8.1.1 According to Section 90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with 12.5 KHz channel bandwidth:
- (1).On any frequency removed from the center of the authorized bandwidth fo to 5.625 KHz removed from fo: Zero dB
- (2).On any frequency removed from the center of the authorized bandwidth by a displacement frequency(fd in KHz)fo of more than 5.625 KHz but no more than 12.5 KHz: At least 7.27(fd-2.88 KHz) dB
- (3).On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in KHz)fo of more than 12.5 KHz: At least 50+10 log(P) dB or 70 dB, which ever is lesser attenuation.

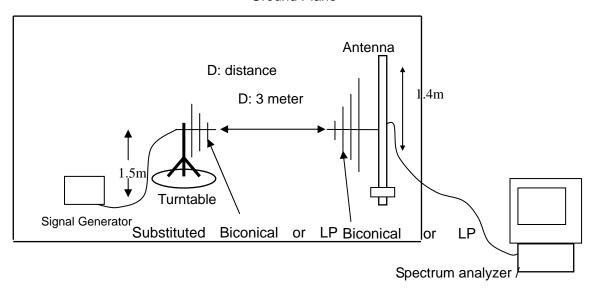

8.2 MEASUREMENT PROCEDURE

- (1)On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- (2) The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.
- (3)The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- (4) The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- (5) The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
- (6) The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- (7)The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
- (8) The maximum signal level detected by the measuring receiver shall be noted.
- (9) The measurement shall be repeated with the test antenna set to horizontal polarization.
- (10) Replace the antenna with a proper Antenna (substitution antenna).
- (11) The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
- (12) The substitution antenna shall be connected to a calibrated signal generator.
- (13)If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

Page 21 of 52

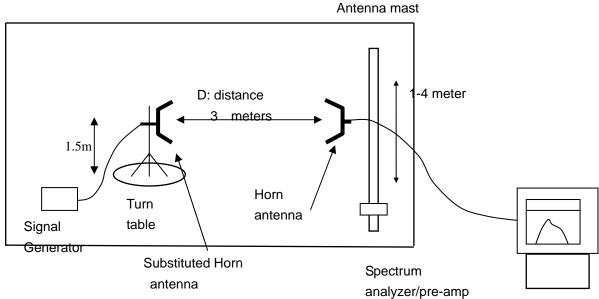
- (14)The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- (15)The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- (16)The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- (17)The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

8.3 TEST SETUP BLOCK DIAGRAM



Report No.: AGC02X120602F1 Page 22 of 52

SUBSTITUTION METHOD: (Radiated Emissions)


Radiated Below 1GHz

Ground Plane

Radiated Above 1 GHz

Ground plane

Page 23 of 52

8.4 MEASUREMENT EQUIPMENT USED:

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
SPECTRUM ANALYZER	AGILENT	E4440A	US44300399	2012.07
TEST RECEIVER	R&S	ESIC	A0304218	2012.07
LOOP ANTENNA	A.H.	SAS-562B	A0304220	2012.07
HORN ANT.	EM	EM-AH-10180	100150	2012.07
BROADBAND ANT.	A.H.	SAS-521-4	A0304224	2012.07

8.5 MEASUREMENT RESULTS:

Measurement Result for 12.5 KHz Channel Separation-5W

On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in KHz)fo of more than 12.5 KHz: At least 50+10 log(P) dB or 70 dB, which ever is lesser attenuation.

Limit: At least 50+10 log (P) =50+10log(5)=57

Measurement Result For 25 KHz Channel Separation-5W

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43+10Log(P) dB.

Limit: At least 43+10 log (P) =43+10log(5)=50

Page 24 of 52

Measurement Result for 12.5 KHz Channel Separation @ 136.225MHz

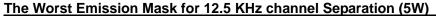
Emission	Ant.	Measurement		
Frequency	Polarity(H/V)	Result	Limit	Result(P/F)
(MHz)		Below carrier(dBc)		
136.225	V	0		pass
272.450	V	77.67(-40.67dBm)	50	pass
408.68	V	74.22(-37.22dBm)	50	pass
544.900	V	76.01(-39.01dBm)	50	pass
681.125	V	84.24	50	pass
817.350	V	82.78	50	pass
953.575	V	92.54	50	pass
1089.800	V	91.76	50	pass
1226.025	V	92.43	50	pass
1362.250	V	92.24	50	pass

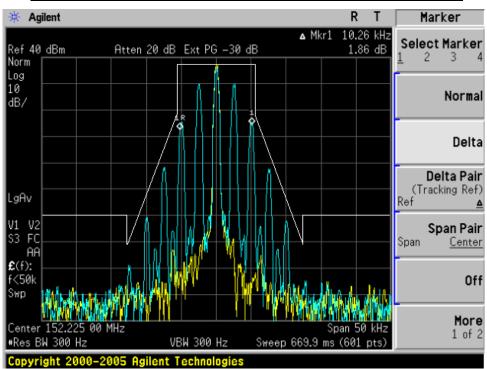
Measurement Result for 12.5 KHz Channel Separation @ 152.225MHz

Emission	Ant.	Measurement		
Frequency	Polarity(H/V)	Result	Limit	Result(P/F)
(MHz)		Below carrier(dBc)		
152.225	V	0		pass
304.450	V	75.44(-38.44dBm)	50	pass
456.675	V	79.39	50	pass
608.900	V	81.46	50	pass
761.125	V	85.65	50	pass
913.350	V	90.31	50	pass
1065.575	V	93.11	50	pass
1217.800	V	94.12	50	pass
1370.025	V	94.21	50	pass
1522.250	V	94.26	50	pass

Measurement Result for 12.5 KHz Channel Separation @ 469.95MHz

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result Below carrier(dBc)	Limit	Result(P/F)
469.950	V	0		pass
939.900	V	76.43(-39.43dBm)	50	pass
1409.850	V	83.34	50	pass
1879.800	V	85.64	50	pass
2349.750	V	87.27	50	pass
2819.700	V	91.65	50	pass
3289.650	V	92.15	50	pass
3759.600	V	94.21	50	pass
4229.550	V	95.21	50	pass
4699.500	V	97.22	50	pass


Notes: The emissions were scanned from 30 MHz to 10th harmonics; The worst case for Transmitter spurious is 37dBm-74.22dBc=-37.22dBm


Page 25 of 52

8.6 EMISSION MASK PLOT

The detailed procedure employed for Emission Mask measurements are specified as following:

- The transmitter shall be modulated by a 2.5 kHz audio signal,
- The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing)

Page 26 of 52

9. MODULATION CHARACTERISTICS

9.1 PROVISIONS APPLICABLE

According to CFR 47 section 2.1047(a), for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

9.2 MEASUREMENT METHOD

9.2.1 Modulation Limit

- (1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- (2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

9.2.2 Audio Frequency Response

- (1). Configure the EUT as shown in figure 1.
- (2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).
- (3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.
- (4). Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 KHz reference).

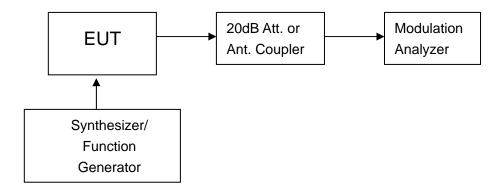
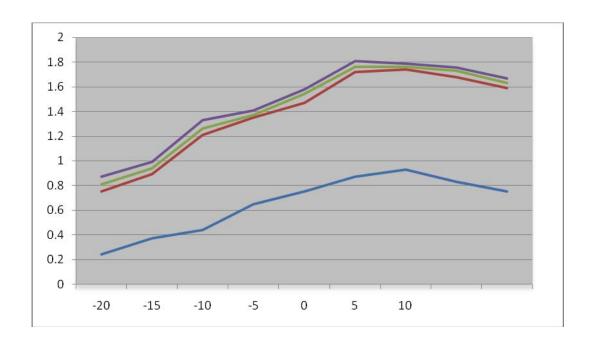


Figure 1: Modulation characteristic measurement configuration

9.3 MEASUREMENT INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
Modulation Analyzer	HP	8920B	3104A03367	2012.07

NOTE: 8920B can generate audio modulation frequency.


Report No.: AGC02X120602F1 Page 27 of 52

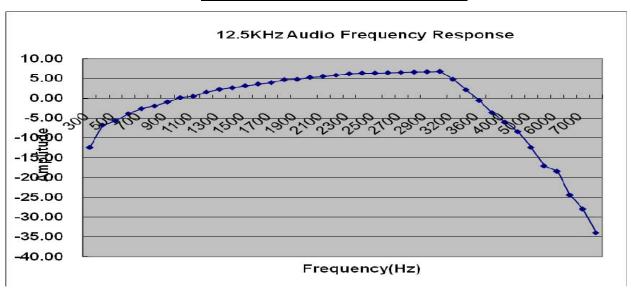
9.4 MEASUREMENT RESULT

(a). Modulation Limit:

Middle Channel @ 12.5 KHz Channel Separations

Modulation Level (dB)	Peak Freq. Deviation At 300 Hz	Peak Freq. Deviation At 1000 Hz	Peak Freq. Deviation At 1500 Hz	Peak Freq. Deviation At 3000 Hz
-20	0.24	0.74	0.82	0.86
-15	0.35	0.87	0.94	0.98
-10	0.44	1.21	1.26	1.35
-5	0.64	1.34	1.37	1.43
0	0.76	1.48	1.55	1.57
+5	0.87	1.72	1.76	1.80
+10	0.93	1.74	1.76	1.78
+15	0.83	1.68	1.73	1.76
+20	0.76	1.57	1.64	1.68

Report No.: AGC02X120602F1 Page 28 of 52


(b). Audio Frequency Response:

12.5 KHz Channel Separations

Frequency (Hz)	12.5 KHz Channel Separation Deviation (KHz)	Audio Frequency
. , ,	,	Response(dB)
100		
200		
300	0.12	-12.40
400	0.23	-6.74
500	0.26	-5.68
600	0.32	-3.88
700	0.37	-2.62
800	0.4	-1.94
900	0.45	-0.92
1000	0.51	0.17
1200	0.53	0.51
1400	0.6	1.58
1600	0.65	2.28
1800	0.68	2.67
2000	0.72	3.17
2400	0.76	3.64
2500	0.79	4.97
2800	0.86	5.71
3000	0.87	7.81
3200	0.92	9.15
3600	0.95	5.15
4000	0.98	4.50
4500	1.02	4.20
5000	1.04	3.02
5500	1.04	0.48
6000	1.05	-8.91
6500	1.06	-15.40
7000	1.07	-22.44
7500	1.08	-24.94
9000		
10000		
14000		
18000		
20000		
30000		

Report No.: AGC02X120602F1 Page 29 of 52

Frequency Response of Middle Channel

Page 30 of 52

10. MAXIMUMN TRANSMITTER POWER (CONDUCTED OUTPUT POWER)

10.1 PROVISIONS APPLICABLE

Per FCC §2.1046 and §90.205 AND RSS 119 Part 4.1: Maximum ERP is dependent upon the station's antenna HAAT and required service area.

10.2 TEST PROCEDURE

The RF output of Two-way Radio was conducted to a spectrum analyzer through an appropriate attenuator.

10.3 TEST INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
SPECTRUM ANALYZER	AGILENT	E4440A	US44300399	2012.07

10.4 TEST CONFIGURATION

10.5 TEST RESULT

The maximum Conducted Power (CP) is

5 W for 12.5 KHz Channel Separation

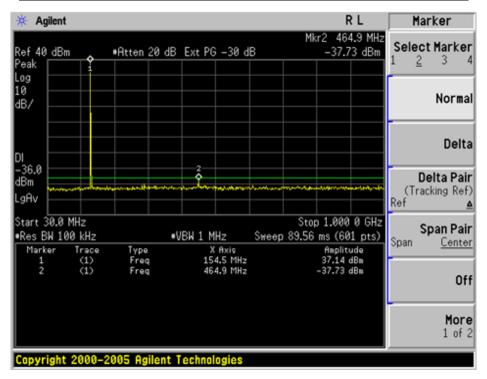
Calculation Formula: CP = R + A + L

* Note:

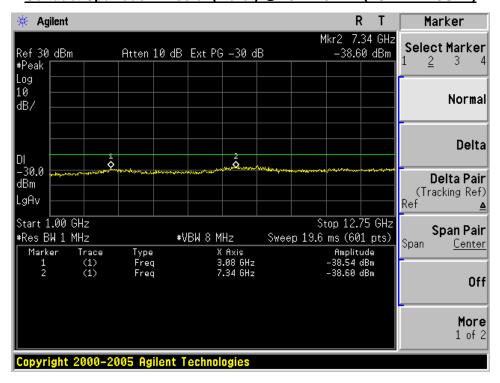
CP: The final Conducted Power

R : The reading value from spectrum analyzer

A: The attenuation value of the used attenuator


L: The loss of all connection cables

Conducted Power Measurement Results					
Channel Seneration	Channel	Measurement Result (dBm)			
Channel Separation	Channel	For 37dBm(5W)			
12.5 KHz	Bottom(136.225MHz)	37.13			
	Middle(152.225MHz)	37.14			
	Top (173.975MHz)	37.11			


Report No.: AGC02X120602F1 Page 31 of 52

10.4 CONDUCT SPURIOUS PLOT

Conducted Spurious Emission(worst) @ 152.225MHz (30MHz-1GHz)

Conduct Spurious Emission(worst) @ 152.225MHz (1GHz-12.75GHz)

Page 32 of 52

11. RANSMITTER FREQUENCY BEHAVIOR

11.1 PROVISIONS APPLICABLE

Section 90.214

	Maximum fraguanay	All equipment	
Time intervals 1. 2	Maximum frequency difference ³	150 to 174 MHz	421 to 512 MHz
Transient Frequency Behavior for Equipm	ent Designed to Operate	on 25 kHz Channels	•
t ₁ ⁴	± 25.0 kHz ± 12.5 kHz ± 25.0 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms
Transient Frequency Behavior for Equipme	nt Designed to Operate	on 12.5 kHz Channels	
t ₁ ⁴ t ₂ t ₃ ⁴ t ₄ t ₃ ⁴ t ₄ t ₃ ⁴ t ₄	± 12.5 kHz ± 6.25 kHz ± 12.5 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms
Transient Frequency Behavior for Equipme	nt Designed to Operate	on 6.25 kHz Channels	•
t ₁ ⁴	± 6.25 kHz ± 3.125 kHz ± 6.25 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms

11.2TEST METHOD

TIA/EIA-603 2.2.19

11.3TEST INSTRUMENTS

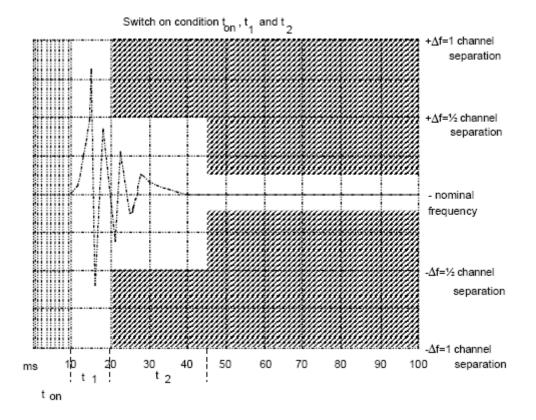
NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
Signal Generator	AGILENT	E4412B	LR114196	2012.07
Storage Oscilloscope	Tektronix	TDS3052	B017447	2012.07

 $^{^{1}}t_{on}$ is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t_{1} is the time period immediately following t_{on} . t_{2} is the time period immediately following t_{1} . t_{3} is the time period from the instant when the transmitter is turned off until t_{off} . t_{off} is the instant when the 1 kHz test signal starts to rise. 2 During the time from the end of t_{2} to the beginning of t_{3} , the frequency difference must not exceed the limits specified in t_{3} . § 90.213.

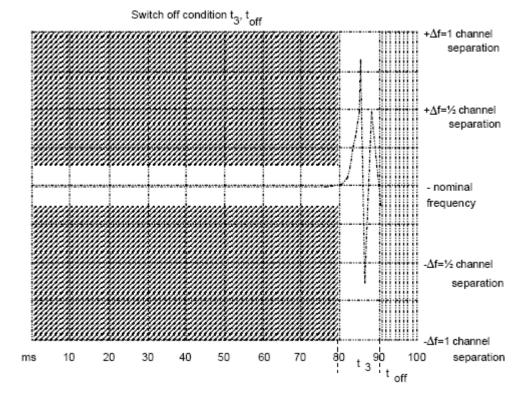
 ³ Difference between the actual transmitter frequency and the assigned transmitter frequency.
 4 If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

Page 33 of 52

11.4 DESCRIBE LIMIT LINE OF RANSMITTER FREQUENCY BEHAVIOR

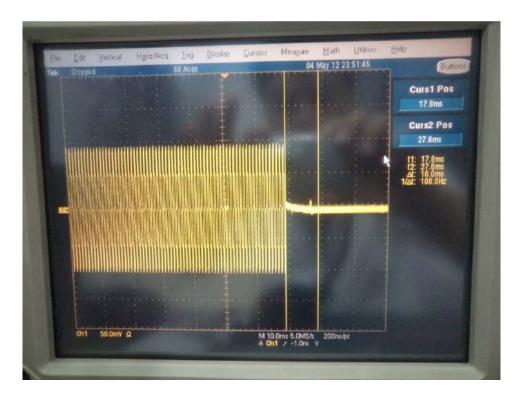

ton: The switch-on instant ton of a transmitter is defined by the condition when the output power, measured at the antenna terminal, exceeds 0,1 % of the full output power (-30 dBc).

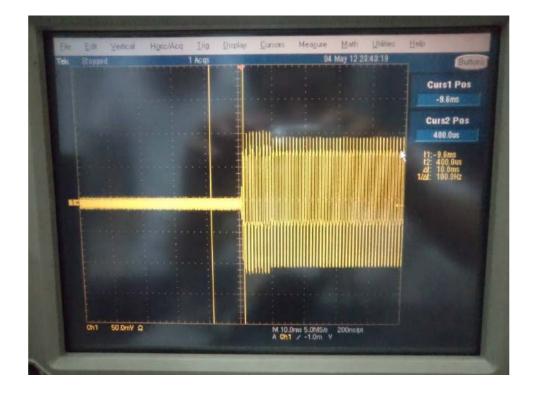
t1: period of time starting at ton and finishing according to above 11.1


t2: period of time starting at the end of t1 and finishing according to above 11.1

toff: switch-off instant defined by the condition when the output power falls below 0,1 % of the full output power (-30 dBc).

t3: period of time that finishing at toff and starting according to above 11.1


Page 34 of 52


Report No.: AGC02X120602F1 Page 35 of 52

11.5 MEASURE RESULT

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation--Off to On

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation--On to Off

Report No.: AGC02X120602F1 Page 36 of 52

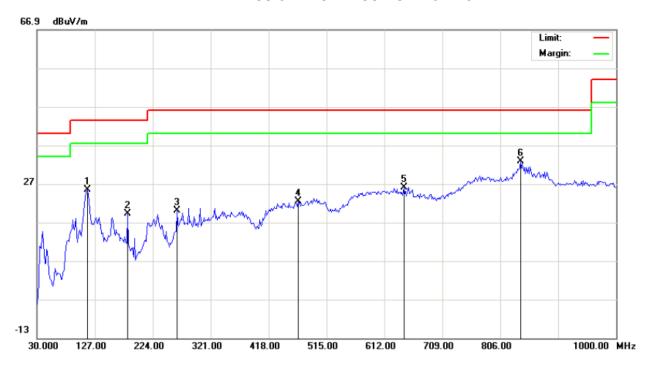
12. Radiated Emission on Receiving Mode

PROVISIONS APPLICABLE 12.1

FCC Part 15 Subpart B Section 15.109

12.2 **TEST METHOD**

ANSI C 63.4: 2003


12.3 **TEST INSTRUMENTS**

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CAL. DATE
SPECTRUM ANALYZER	AGILENT	E4440A	US44300399	2012.07
TEST RECEIVER	R&S	ESIC	A0304218	2012.07
LOOP ANTENNA	A.H.	SAS-562B	N/A	2012.07
HORN ANT.	EM	EM-AH-10180	100150	2012.07
BROADBAND ANT.	A.H.	SAS-521-4	A0304224	2012.07

Report No.: AGC02X120602F1

Page 37 of 52

12.4 MEASURE RESULT (MEASURED AT 3M USING FCC PART15 B LIMITS) RADIATED EMISSION TEST RESULTS – HORIZONTAL

Site: site #1

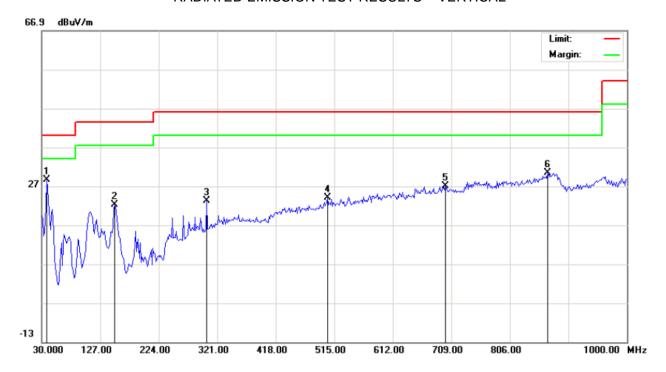
Limit: FCC Class B 3M Radiation

EUT: VHF FM HANDHELD TRANSCEIVER

M/N: DJ-A10 Mode: Receive

Note:

Polarization:	Horizontal	Temperature: 26
Power: D0	C 7.4V	Humidity: 60 %


Distance: 3m

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		114.0667	13.16	12.23	25.39	43.50	-18.11	peak			
2		181.9667	7.92	11.35	19.27	43.50	-24.23	peak			
3		264.4166	5.38	14.71	20.09	46.00	-25.91	peak			
4		468.1167	0.79	21.58	22.37	46.00	-23.63	peak			
5		644.3333	1.50	24.54	26.04	46.00	-19.96	peak			
6	*	839.9500	1.40	31.34	32.74	46.00	-13.26	peak		·	

Report No.: AGC02X120602F1

Page 38 of 52

RADIATED EMISSION TEST RESULTS - VERTICAL

Site: site #1 Polarization: Vertical Temperature: 26 Limit: FCC Class B 3M Radiation Power: DC 7.4V Humidity: 60 %

Distance: 3m

EUT: VHF FM HANDHELD TRANSCEIVER

M/N: DJ-A10 Mode: Receive

Note:

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	38.0833	22.15	6.37	28.52	40.00	-11.48	peak			
2		151.2500	3.59	18.55	22.14	43.50	-21.36	peak			
3		303.2167	6.06	17.21	23.27	46.00	-22.73	peak			
4		503.6833	1.07	23.02	24.09	46.00	-21.91	peak			
5		699.3000	0.40	26.60	27.00	46.00	-19.00	peak		·	
6		869.0500	0.64	29.71	30.35	46.00	-15.65	peak			

Report No.: AGC02X120602F1

Page 39 of 52

13. Audio Low Pass Filter Response

13.1 LIMITS

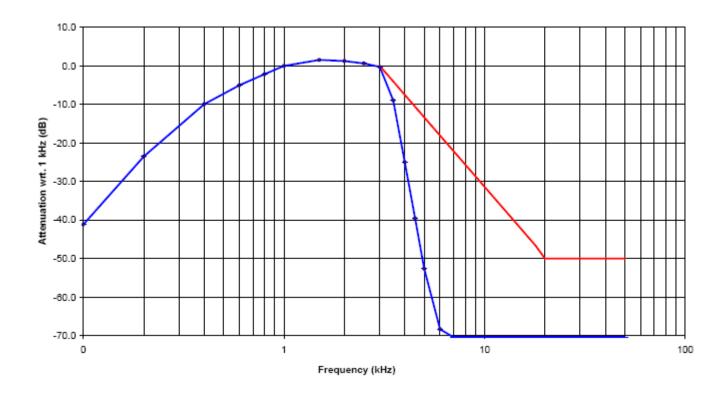
2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

90.242(b)(8): Recommended audio filter attenuation characteristics are given below:

Audio band	Minimum Attenuation Rel. to 1 KHz Attenuation	
3 –20 KHz	60 log ₁₀ (f/3) dB where f is in KHz	
20 – 30 KHz	50dB	

13.2. METHOD OF MEASUREMENTS

The rated audio input signal was applied to the input of the audio low-pass filter (or of all modulation stages) using an audio oscillator, this input signal level and its corresponding output signal were then measured and recorded using the FFT Digital Spectrum Analyzer. Tests were repeated at different audio signal frequencies from 0 to 50 KHz.


13.3 TEST DATA

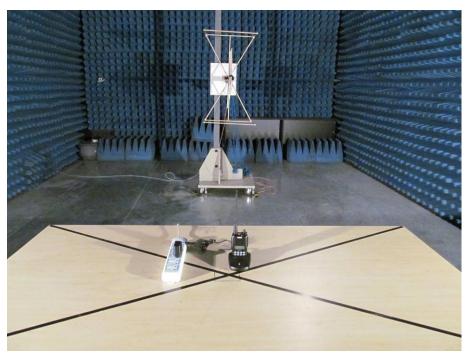
12.5 KHz Channel Spacing, F3E, Frequency of All Modulation States

Frequency	Audio In	Audio out	Attenuation	Attenuation	Recommended Attenuation
(KHz)	(dBV)	(dBV)	(0ut_In)	Rel.to 3 KHz	(dB)
			dB	(dB)	
0. 1	-75. 79	-30. 25	45.6	-36. 7	
0.2	-75. 79	-18.83	57. 1	-25.5	
0.4	-75. 79	-5. 27	70. 4	-12.0	
0.6	-75. 79	0. 24	76. 1	-6.4	
0.8	-75. 79	4.08	79. 7	-2 . 6	
1.0	-75. 79	6.68	82.6	0.0	
1.5	-75. 79	8.75	84. 3	2. 1	
2.0	-75. 79	8. 57	84. 4	1.9	
2. 5	-75. 79	7. 13	82.9	0.5	
3.0	-75. 79	5. 33	81. 2	-1.3	0
3. 5	-75. 79	2.02	77.8	-4.2	-4
4.0	-75. 79	-2.62	73. 2	-9.5	-7
4. 5	<i>−</i> 75. 79	-8.41	67. 5	-15.2	-11
5.0	<i>−</i> 75. 79	-14.05	61.7	−20 . 5	-13
6.0	<i>−</i> 75. 79	-22.68	53. 2	-29.4	-18
7.0	<i>−</i> 75. 79	-30.62	45.4	−37 . 5	-22
8.0	<i>−</i> 75. 79	-38.95	36. 7	-45.5	-26
9.0	<i>−</i> 75. 79	-60.00	15.8	−66 . 7	-29
10.0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-31
12.0	<i>−</i> 75. 79	-60.00	15.8	−66 . 7	-36
14.0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-40
16.0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-44
18.0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-47
20.0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-50
25. 0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-50
30.0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-50
35. 0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-50
40.0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-50
45.0	<i>−</i> 75. 79	-60.00	15.8	-66.7	-50
50.0	<i>−</i> 75. 79	-60.00	15.8	-66. 7	-50

Report No.: AGC02X120602F1 Page 41 of 52

Note: Due to the difficulty of measuring the Frequency Response of the internal low-pass filter, the Frequency Response of All Modulation States is performed to show the roll-off at 3 KHz in comparison with the recommended audio filter attenuation.

Report No.: AGC02X120602F1 Page 42 of 52


APPENDIX I PHOTOGRAPHS OF SETUP

Report No.: AGC02X120602F1 Page 43 of 52

CONDUCTED EMISSION TEST SETUP

RADIATED TEST SETUP

Report No.: AGC02X120602F1 Page 44 of 52

APPENDIX II EXTERNAL VIEW OF EUT

Report No.: AGC02X120602F1 Page 45 of 52

TOTAL VIEW OF EUT

Report No.: AGC02X120602F1 Page 46 of 52

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

Report No.: AGC02X120602F1 Page 47 of 52

FRONT VIEW OF EUT

BACK VIEW OF EUT

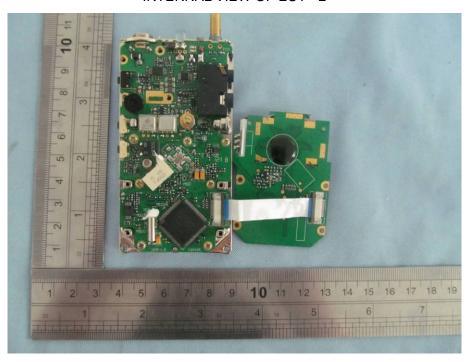
Report No.: AGC02X120602F1 Page 48 of 52

LEFT VIEW OF EUT

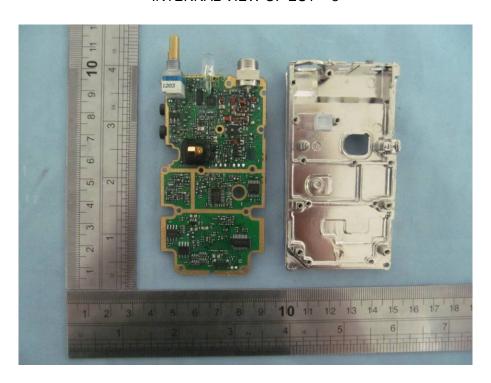
RIGHT VIEW OF EUT

Report No.: AGC02X120602F1 Page 49 of 52

OPEN VIEW OF EUT

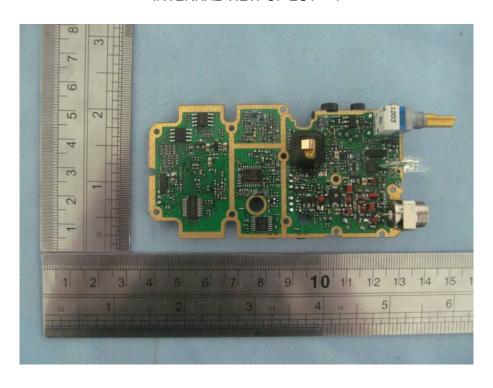


INTERNAL VIEW OF EUT - 1

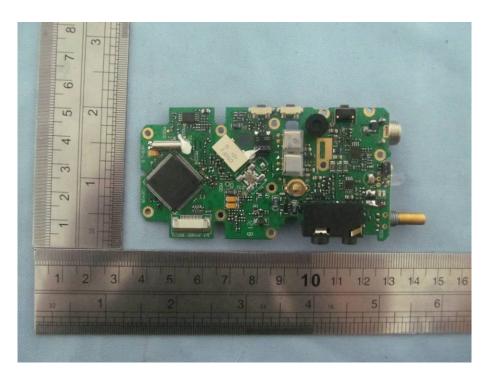


Report No.: AGC02X120602F1 Page 50 of 52

INTERNAL VIEW OF EUT - 2

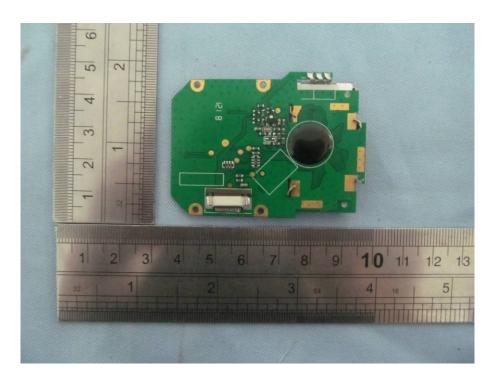


INTERNAL VIEW OF EUT – 3

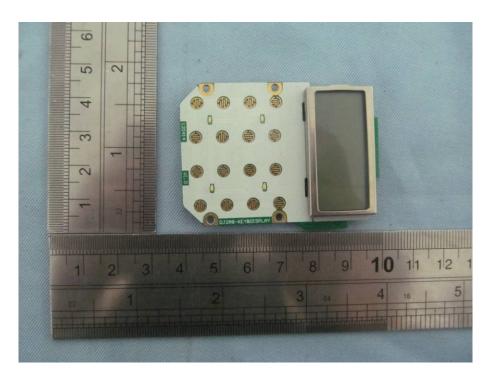


Report No.: AGC02X120602F1 Page 51 of 52

INTERNAL VIEW OF EUT – 4



INTERNAL VIEW OF EUT – 5



Report No.: AGC02X120602F1 Page 52 of 52

INTERNAL VIEW OF EUT – 6

INTERNAL VIEW OF EUT – 7

----END OF REPORT----