

W66 N220 Commerce Court ● Cedarburg, WI 53012 Phone: 262.375.4400 ● Fax: 262.375.4248

www.lsr.com

TEST REPORT #: C-986 LSR Job #: 310250

Compliance Testing of:		
2.4 GHz Transmitter		
Test Date(s):		

September 8th-20th, 2010

Prepared For:

DexCom, Inc.

Attn: Shawn Larvenz 6340 Sequence Drive San Diego, CA 92121

In accordance with:

Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.249
Industry Canada (IC) RSS 210 Annex 2
Transmitters Operating in the
Frequency Band 2400 – 2483.5 MHz

This Test Report is issued under the Authority of:				
Thomas T. Smith, Manager EMC Test Services				
Signature: 77 Dat	a· 10/20/2010			
Signature. January Dat	Signature: Date: 10/29/2010			
Quality Assurance by: Tested by:				
Thomas T. Smith, Manager EMC Test Services	Shane D. Rismeyer, EMC Engineer			
, 3				
Signature: Thomas TSmill Date: 10/29/2010	Signature: Date: 10/8/10			
5.g. 3.3.5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Date: 16/6/10			

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

IABL	E OF CONTENTS	
TABLE OF CONTENTS		
EXHIBIT 1. INTRODUCTION		4
1.1 - Scope		4
1.2 - Normative References		4
1.3 - LS Research, LLC in Review	V	5
EXHIBIT 2. PERFORMANCE ASSES	SMENT	6
2.1 - Client Information		6
2.2 – Equipment under Test (EUT) Information	6
2.4 - EUT Technical Specifications.		7
2.5 - Product Description		8
EXHIBIT 3. EUT OPERATING COND	ITIONS AND CONFIGURATION	9
3.1 – Climate Conditions During T	esting	9
3.2 – Applicability and Summary of	of EMC Emission Test Results	9
3.3 – Modifications Incorporated i	n the EUT for Compliance Purposes	s9
3.4 – Deviations and Exclusions f	rom Test Specifications	9
EXHIBIT 4. DECLARATION OF CONI	FORMITY	10
EXHIBIT 5. RADIATED EMISSIONS 1	TEST	11
5.1 - Test Setup		11
5.3 - Test Equipment Utilized		11
5.4 - Test Results		11
5.5 – Calculation of Radiated Emi	ssions Limits	12
5.6 - Radiated Emissions Test Da	ta Chart	13
5.7 - Test Setup Photo(s) – Radia	ted Emissions Test	15
5.8 - Screen Captures - Radiated	Emissions Test	16
EXHIBIT 6. OCCUPIED BANDWIDTH	l	21
6.1 - Limits		21
6.2 - Method of Measurements		21
6.3 - Test Data		21
6.4 - Screen Captures - Occupied	l Bandwidth	22
EXHIBIT 7. BAND-EDGE MEASUREM	MENTS	24
LS Research, LLC		Page 2 of 29
Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

7.1 - Method of Measurements	24
APPENDIX A: Test Equipment	26
APPENDIX B: Test Standards – Current Publication Dates Radio	28
APPENDIX C: Uncertainty Statement	29

LS Research, LLC Page 3 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

EXHIBIT 1. INTRODUCTION

1.1 - Scope

References:	FCC Part 15, Subpart C, Section 15.249 and 15.209 FCC Part 2, Section 2.1043 paragraph (b)1. RSS GEN and RSS 210 Annex 2
Title:	FCC: Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC: Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power License-Exempt Transmitters.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, Industrial or BusinessResidential

1.2 - Normative References

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations - Telecommunications
RSS 210	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.

LS Research, LLC Page 4 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

1.3 - LS Research, LLC in Review

As an EMC Testing Laboratory, our Accreditation and Assessments are recognized through the following:

<u> A2LA – American Association for Laboratory Accreditation</u>

Accreditation based on ISO/IEC 17025: 2005 with Electrical (EMC) Scope of Accreditation A2LA Certificate Number: 1255.01

Federal Communications Commission (FCC) – USA

Listing of 3 Meter Semi-Anechoic Chamber based on Title 47 CFR – Part 2.948 FCC Registration Number: 90756

Industry Canada

On file, 3 Meter Semi-Anechoic Chamber based on RSS-212 - Issue 1

File Number: IC 3088-A

On file, 3 and 10 Meter OATS based on RSS-212 - Issue 1

File Number: IC 3088

U. S. Conformity Assessment Body (CAB) Validation

Validated by the European Commission as a U. S. Competent Body operating under the U. S./EU, Mutual Recognition Agreement (MRA) operating under the European Union Electromagnetic Compatibility —Council Directive 2004/108/EC (formerly 89/336/EEC, Article 10.2)

Date of Validation: January 16, 2001

Validated by the European Commission as a U.S. Notified Body operating under the U.S. /EU, Mutual Recognition Agreement (MRA) operating under the European Union Telecommunication Equipment – Council Directive 99/5/EC, Annex V.

Date of Validation: November 20, 2002 Notified Body Identification Number: 1243

LS Research, LLC Page 5 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 - Client Information

Manufacturer Name:	DexCom, Inc.
Address:	6340 Sequence Drive
Contact Name:	Shawn Larvenz

2.2 - Equipment under Test (EUT) Information

The following information has been supplied by the applicant.

Product Name:	2.4 GHz Transmitter
Model Number:	9438-01
Serial Number:	60113

LS Research, LLC Page 6 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

2.4 - EUT Technical Specifications

Additional Information:

EUT Frequency Range (in MHz)	2424.9998 – 2477.2369 MHz
RF Power in Watts	0.05mW
Field Strength at 3 meters	93.6dBµV/m
Occupied Bandwidth	4.955 MHz
Type of Modulation	MSK
Emission Designator	440kG1D
Transmitter Spurious (worst case)	60.540
Frequency Tolerance %, Hz, ppm	< 20 ppm
Stepped (Y/N)	No
Step Value:	N/A
Microprocessor Model # (if applicable)	TI CC2510
Antenna Information	
Detachable/non-detachable	Non-detachable
Туре	Wideband Ceramic Chip
Gain (in dBi)	2.1 dBi
EUT will be operated under FCC Rule	15.249
Part(s)	
EUT will be operated under RSS Rule	RSS 210
Part(s)	
Modular Filing	☐ Yes ⊠ No
Portable or Mobile?	Portable

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	Χ	RF Evaluation

If <u>RF Evaluation</u> checked above, test engineer to complete the following:

•	Evaluated against exposure limits: General Public Use	Controlled Use
•	Duty Cycle used in evaluation: 100%	
•	Standard used for evaluation: OET 65	
•	Measurement Distance: 20 cm	
•	RF Value: 0.000358 ☐ V/m ☐ A/m ☐ mW/cm	2
	☐ Measured ☐ Computed ☐ Calculated	

LS Research, LLC Page 7 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

2.5 - Product Description

The G4-Global Transmitter is part of DexCom's G4-Global Continues Glucose Monitoring System. This system provides real-time continuous glucose readings every 5 minutes for up to 7 days. These readings will help the patient detect trends and patterns in your glucose levels.

The System is made up of three technologies that all work together: the Sensor, the Transmitter, and the Receiver. The main purpose of this over view is to describe the G4-Global Transmitter which as mentioned is part of the system and its purpose is to transmit information from the Sensor to a Receiver.

The G4-Global Transmitter uses radio frequency (RF) for the transmission of the sensor data to a receiver. The G4-Global Transmitter is re-usable for up to six months. It is powered by two internal is powered by two internal non-replaceable, non-rechargeable silver oxide batteries that will last for approximately six months when delivered to the patient.

LS Research, LLC Page 8 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATION

3.1 - Climate Conditions During Testing

Temperature:	22°C
Humidity:	35%
Pressure:	745 mmHg

3.2 - Applicability and Summary of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)
FCC : 15.207 IC : RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	N/A
IC : RSS GEN section 4.6.1	20 dB Bandwidth	Yes
FCC: 15.249(A) & 1.1310 IC: RSS 210 A2.9 (a)	Maximum Output Power	Yes
FCC: 1.1307, 1.1310, 2.1091 & 2.1093 IC: RSS 102	RF Exposure Limit	Yes
FCC : 15.249(a) IC : RSS 210 A2.9(a)	Transmitter harmonics	Yes
FCC: 15.249(d), 15.209 & 15.205 IC: RSS 210 A2.9(b),	Transmitter Radiated Emissions	Yes

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC). The Receiver Test Report is available upon request.

3.3 – Modifications Incorpo	orated in the EUT for Comp	liance Purposes
⊠ None ☐ Yes (expla	nin below)	
2.4 Deviations and Evalu	aiona from Taat Specificati	
	<u>sions from Test Specificati</u>	<u>ons</u>
⊠ None	nn below)	
LS Research, LLC		Page 9 of 29
Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.249, and Industry Canada RSS-210, Annex 2.9.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

LS Research, LLC Page 10 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 - Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuously transmitting modulated mode using power as provided by a battery. The unit has the capability to operate on 3 channels, controllable using a laptop and programming board.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three standard channels: 2425 MHz, 2450 MHz and 2477 MHz to comply with FCC Part 15.35.

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz. In the frequency range of 30 MHz to 4 GHz, the maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height while for the range of 4 GHz to 10 GHz the antenna was raised and lowered between 1 and 1.8 meters in height. In addition, the polarity of the antenna was switched between horizontal and vertical polarity. The EUT was positioned in three orthogonal positions for the test.

5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 - Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.249 and Canada RSS-210, Annex 2.9. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

LS Research, LLC Page 11 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

5.5 – Calculation of Radiated Emissions Limits

Field Strength of Fundamental Frequencies:

The fundamental emissions for an intentional radiator in the 2425-2477 MHz band, operating under FCC part 15.249 and RSS 210 A2.9 limits must have electric field strength of no greater than 50 mV/m, for the fundamental frequency, when measured at 3 meters, and harmonic field strength of no greater than 500 μ V/m, when measured at 3 meters. Spurious emissions outside the 2425-2477 MHz band shall be attenuated by at least 50 dB below the level of the fundamental, or meet the limits expressed in FCC part 15.209 under general emission limits.

Field Strength of Fundamental Frequencies is Limited to 50,000 μ V/m, or 94 dB μ V/m. Field Strength of Harmonic and Spurious Frequencies is Limited by FCC 15.249 a and d The harmonic limit of –50 dBc with respect to the fundamental limit would be:

 $94 \text{ dB}\mu\text{V/m} - 50 \text{ dB} = 44 \text{ dB}\mu\text{V/m},$

with the exception of where FCC 15.209 allows for a higher limit to be used.

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)
902-928	50,000	94.0
30-88 ; 88-216	159	44.0
216-902 ; 928-960	500	46.0*
960-40,000	500	54.0*

The following table depicts the general radiated emission limits obtained from Title 47 CFR, part 15.209a, for radiated emissions measurements, including restricted band limits as expressed in 47 CFR, part 15.205.

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-40,000	500	54.0

Sample conversion from field strength μV/m to dBμV/m:

 $dB\mu V/m = 20 \log_{10} (3m limit)$

from 30 - 88 MHz for example: $dB\mu V/m = 20 \log_{10} (100)$ 40.0 $dB\mu V/m = 20 \log_{10} (100)$

For measurements made at 1 meter, a 9.5 dB correction may be been invoked.

960 MHz to 40,000 MHz 500 μ V/m or 54.0 dB μ V/m at 3 meters 54.0 + 9.5 = 63.5 dB μ V/m at 1 meter

Note: Limits are conservatively rounded to the nearest tenth of a whole number.

LS Research, LLC Page 12 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

5.6 - Radiated Emissions Test Data Chart

Measurements of Electromagnetic Radiated Emissions Frequency Range Inspected: 30 MHz to 25000 MHz

Manufacturer:	DexCo	om, Inc.				
Date(s) of Test:	9/8/10					
Project Engineer:	Shane	Rismeyer				
Voltage:	3VDC					
Operation Mode:	CW					
Environmental		Temr	nerati	ıre: 23°C		
Conditions in the				nidity: 34%		
Lab:			<u> </u>			
EUT Power:		Single Phase 120 VAC		3 Phase	<u> </u>	/AC
EUT FOWEI.		Battery	X	Other	: 3VD	С
EUT Placement:	х	80cm non-conductive table		10cm Spacers		
EUT Test Location:	Х	3 Meter Semi-Anechoic FCC Listed Chamber		3/10m OATS		
Measurements:		Pre-Compliance		Preliminary	Х	Final
Detectors Used:	Х	Peak	Χ	Quasi-Peak	Χ	Average

The following table depicts the level of radiated fundamental:

Frequency (MHz)	Antenna	EUT	Height (m)	Azimuth (0° - 360°)	Peak (dBuV/m)	QP (dBuV/m)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	Н	V	1.06	0	81.0	80.8	80.6	125.2	44.6
	V	V	1.46	67	85.7	85.6	85.4	125.2	39.8
2425	V	S	1.00	106	83.5	83.3	83.2	125.2	42.0
2423	Н	S	1.06	0	90.2	90.1	90.0	125.2	35.2
	Н	F	1.15	87	90.8	90.7	90.7	125.2	34.5
	V	F	1.02	0	82.9	82.7	82.5	125.2	42.7
	Н	V	1.00	0	82.4	82.2	82.0	125.2	43.2
	V	V	1.15	130	90.3	90.2	90.1	125.2	35.1
2450	V	S	1.23	82	84.5	84.4	84.2	125.2	41.0
2430	Н	S	1.07	3960	91.6	91.5	91.4	125.2	33.8
	Н	F	1.45	82	92.4	92.3	92.2	125.2	33.0
	V	F	1.37	173	86.2	86.1	86.0	125.2	39.2
	Н	V	1.06	348	80.5	80.3	80.0	125.2	45.2
	V	V	1.13	55	89.2	89.1	89.0	125.2	36.2
2475	V	S	1.27	263	84.3	84.1	84.0	125.2	41.2
	Н	S	1.07	329	92.81	92.75	92.72	125.2	32.5
	Н	F	1.09	61	93.76	93.7	93.64	125.2	31.6
	V	F	1.25	347	83.65	83.47	83.29	125.2	41.9

LS Research, LLC Page 13 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

Radiated Emissions Data Chart (continued)

The following table depicts the level of harmonic emissions seen on the low channel:

Frequency (MHz)	Ant./EUT Polarity	Height (cm)	Azimuth (degrees)	Avg EFI (dBμV/m)	Limit (dB _µ V/m)	Margin (dB)
9700.0	H/V	102.6	12.6	56.369	63.5	7.13
9700.0	V/V	102.9	245.5	52.202	63.5	11.30
4850.0	V/V	107.5	56.9	47.114	63.5	16.39
9699.9	V/S	115.1	38.7	60.540	63.5	2.96
9699.9	H/S	117.7	309.1	49.637	63.5	13.86
4850.2	H/S	103.0	34.4	48.909	63.5	14.59
7275.3	H/S	123.8	38.0	43.896	63.5	19.60
9700.0	H/F	102.6	12.6	56.369	63.5	7.13
9700.0	V/F	102.9	245.5	52.202	63.5	11.30
4850.0	V/F	107.5	56.9	47.114	63.5	16.39

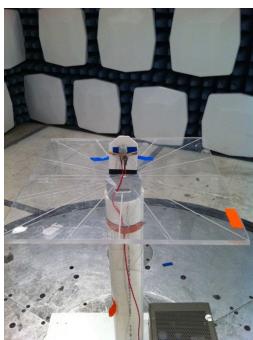
The following table depicts the level of harmonic emissions seen on middle channel:

Frequency (MHz)	Ant./EUT Polarity	Height (cm)	Azimuth (degrees)	Avg EFI (dBμV/m)	Limit (dB _µ V/m)	Margin (dB)
9799.9	V/V	100.0	243.9	52.338	63.5	11.16
9799.9	H/V	99.7	5.7	57.962	63.5	5.54
9800.1	H/S	102.5	172.2	52.835	63.5	10.67
4899.9	H/S	99.7	345.1	46.055	63.5	17.45
9799.9	V/S	109.4	37.9	59.732	63.5	3.77
4900.0	V/S	99.1	7.5	48.196	63.5	15.30
9799.9	H/F	117.7	308.0	53.361	63.5	10.14
9800.1	V/F	124.6	293.2	50.274	63.5	13.23

The following table depicts the level of harmonic emissions seen on high channel:

Frequency (MHz)	Ant./EUT Polarity	Height (cm)	Azimuth (degrees)	Avg EFI (dBμV/m)	Limit (dB _µ V/m)	Margin (dB)
9909.1	H/V	103.0	8.5	54.268	63.5	9.23
9908.9	H/V	106.0	257.6	49.775	63.5	13.73
9909.1	V/S	106.5	34.7	56.149	63.5	7.35
4954.5	V/S	124.2	99.7	39.992	63.5	23.51
9909.0	H/S	102.7	139.6	51.929	63.5	11.57
4954.5	H/S	120.9	72.4	44.785	63.5	18.72
9909.2	H/F	111.6	48.8	52.107	63.5	11.39
9908.9	V/F	122.5	220.7	45.977	63.5	17.52

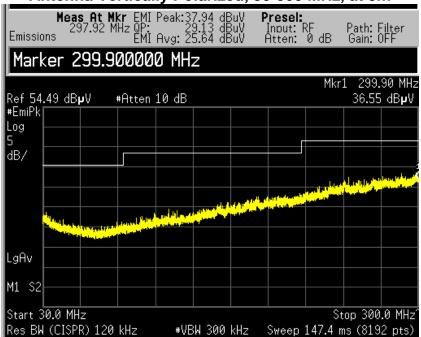
Notes:


- 1) A Peak Detector was used in measurements above 1 GHz, for average measurement, the peak detector was used with lower VBW. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.
- 2) Measurements above 4 GHz were made at 1 meter of separation from the EUT.
- 3) All other measurements not appearing in the table were greater than 20dB from the limit.

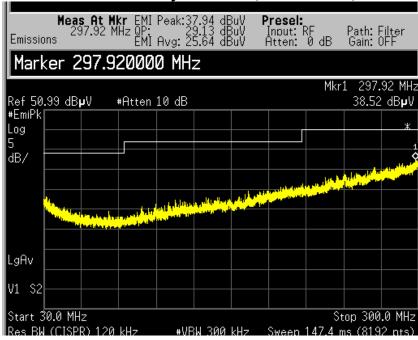
LS Research, LLC Page 14 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

5.7 - Test Setup Photo(s) - Radiated Emissions Test

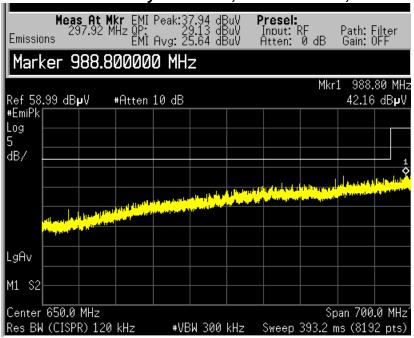

LS Research, LLC Page 15 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

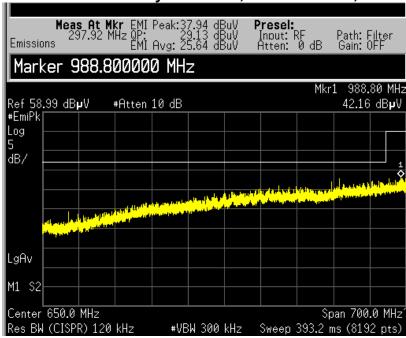

5.8 - Screen Captures - Radiated Emissions Test

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a peak detector with video averaging is utilized when measuring frequencies above 1 GHz.

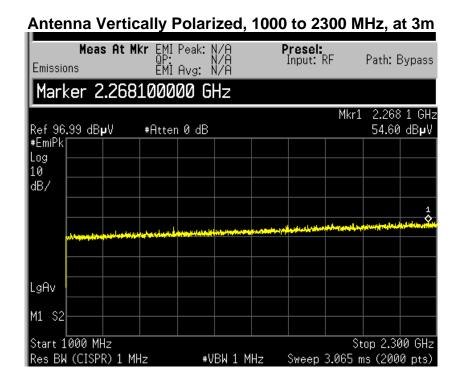
Antenna Horizontally Polarized, 30-300 MHz, at 3m

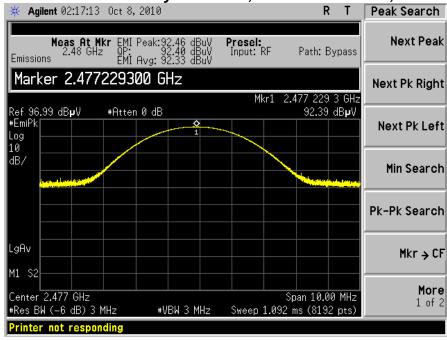


LS Research, LLC Page 16 of 29


Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

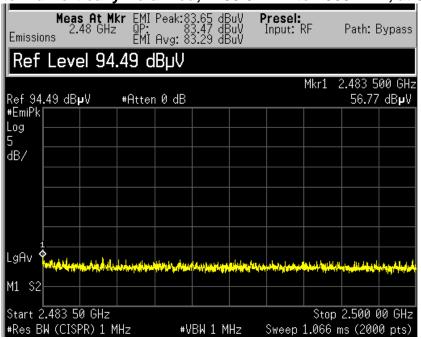
Screen Captures - Radiated Emissions Testing (continued)

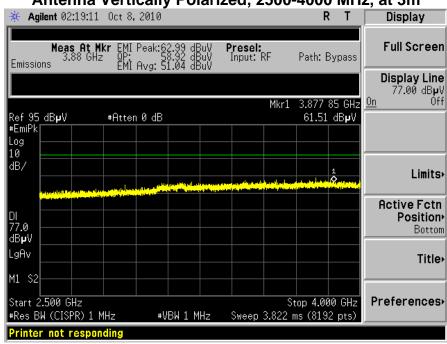

Antenna Horizontally Polarized, 300-1000 MHz, at 3m


LS Research, LLC Page 17 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

Screen Captures - Radiated Emissions Testing (continued)

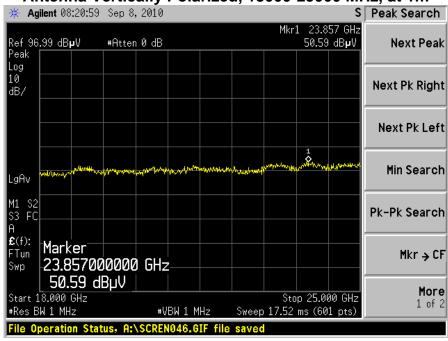



LS Research, LLC Page 18 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

Antenna Vertically Polarized, 2483.5 MHz to 2500 MHz, at 3m

Antenna Vertically Polarized, 2500-4000 MHz, at 3m


LS Research, LLC Page 19 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

Antenna Vertically Polarized, 4000-18000 MHz, at 1m

Antenna Vertically Polarized, 18000-25000 MHz, at 1m

LS Research, LLC Page 20 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

EXHIBIT 6. OCCUPIED BANDWIDTH

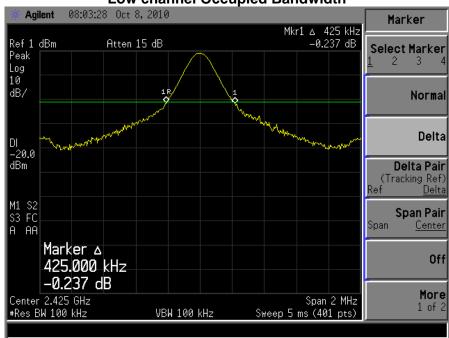
<u>6.1 - Limits</u>

There are no limits specified. The occupied bandwidth need only be reported.

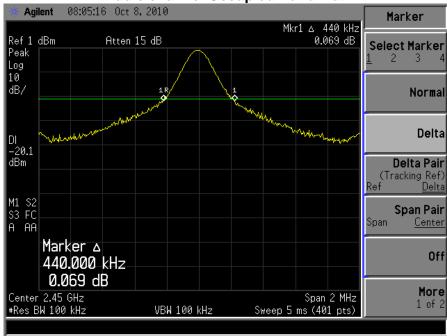
6.2 - Method of Measurements

For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to the Agilent E4446A spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct measurements, without the need for any further corrections. The resolution bandwidth set to 100 kHz for this portion of the tests. The EUT was configured to run in a continuous transmit mode and the spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.

6.3 - Test Data

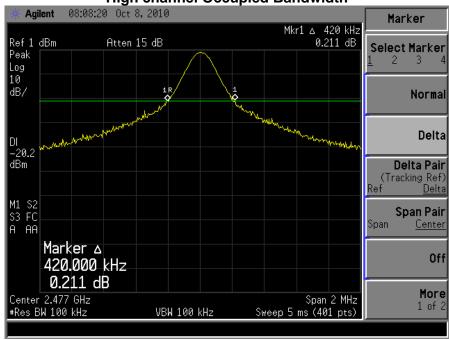

Center Frequency	Measured -20 dBc OB
(MHz)	(kHz)
2425	425
2450	440
2477	420

LS Research, LLC Page 21 of 29


Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

6.4 - Screen Captures - Occupied Bandwidth

Low channel Occupied Bandwidth


Middle channel Occupied Bandwidth

LS Research, LLC Page 22 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

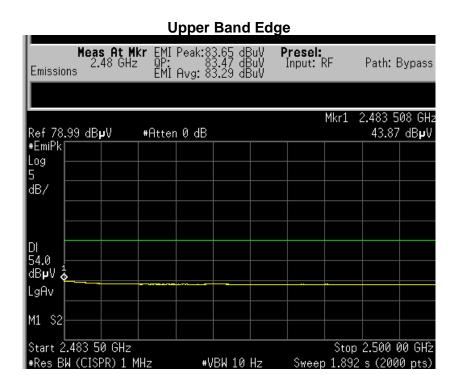
LS Research, LLC Page 23 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

EXHIBIT 7. BAND-EDGE MEASUREMENTS

7.1 - Method of Measurements

FCC 15.209(b) and 15.249(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 2400-2483.5 MHz Band-Edges. The EUT was operated in continuous transmit mode. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge (2425 MHz), and at the highest channel for the investigation of the higher Band-Edge (2477 MHz).


Screen Capture Demonstrating Compliance at the Band-Edges

Meas At Mkr EMI 297.92 MHz QP; Presel: Input: RF Path: Bypass Emissions Mkr1 2.390 013 GHz Ref 73.49 dB**µ**V #Atten 0 dB 43.01 dBpV #EmiPk Log dB/ LgAv M1 S2 Start 2.300 0 GHz Stop 2.400 0 GHz Sweep 11.47 s (8192 pts)

Lower Band Edge

LS Research, LLC Page 24 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

LS Research, LLC Page 25 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

APPENDIX A: Test Equipment

Job # : <u>C-986</u> Date : 8-Sep-2010 Type Test : Radiated Emissions

Prepared By: Shane Rismeyer Customer: Egret Technologies, Inc. Quote #: 310250

No.	Asset#	Description	Manufacturer	Model#	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
3	EE 960130	Multi-Device Controller	ETS	2090	45968	XXX	XXX	Cal Not Required
4	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration
5	AA 960150	Bicon Antenna	ETS	3110B	0003-3346	11/3/2009	11/3/2010	Active Calibration
6	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	11/10/2009	11/10/2010	Active Calibration
7	EE 960147	Pre-Amp	Adv. Micro	VLA612	123101	12/28/2009	12/28/2010	Active Calibration

Project Engineer: Quality Assurance: Quality Assurance:

Date : 8-Sep-2010 Job#: <u>C-986</u> Type Test: Band-Edge

Prepared By: Shane Rismeyer Customer: Egret Technologies, Inc. Quote #: 310250

No	Asset #	Description	Manufacturer	Model#	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
3	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	11/10/2009	11/10/2010	Active Calibration

Project Engineer: Quality Assurance: Quality Assurance:

Type Test: Occupied Bandwidth (6dB & 20dB) Date: 8-Sep-2010 Job #: C-986

Prepared By: Shane Rismeyer Quote #: 310250 Customer: Egret Technologies, Inc.

No). Asset#	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
3	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	11/10/2009	11/10/2010	Active Calibration

Date : 8-Sep-2010 Type Test : Power Spectral Density Job # : <u>C-986</u>

Prepared By: Shane Rismeyer Customer: Egret Technologies, Inc. Quote #: 310250

Description Manufacturer Model # Serial # No. Asset# Cal Date Cal Due Date Equipment Status EE 960073 Spectrum Analyzer 9/22/2011 Active Calibration 9/22/2012 Active Calibration AA 960143 Phaseflex EKD01D01048.0 5546519 9/22/2011

Project Engineer:

LS Research, LLC Page 26 of 29

Prepared For: DexCom, Inc. Model Number: 9438-01 Report #: 310250 **EUT: 2.4 GHz Transmitter** LSR Job #: C-986 Serial Number: 60113

 Date: 8-Sep-2010
 Type Test: Spurious Emissions
 Job #: C-986

 Prepared By: Shane Rismeyer
 Customer:
 Egret Technologies, Inc.
 Quote #: 310250

 No.
 Asset #
 Description
 Manufacturer
 Model #
 Serial #
 Cal Date
 Cal Due Date
 Equipment Status

 1
 EE 960073
 Spectrum Analyzer
 Agilent
 E4446A
 US45300564
 9/22/2010
 9/22/2011
 Active Calibration

Project Engineer:

Quality Assurance:

LS RESEARCH LLC
Wireless Product Development
Equipment Calibration

 Date:
 8-Sep-2010
 Type Test:
 RF Radiation Exposure Limits
 Job#:
 C-986

 Prepared By:
 Customer:
 Egret Technologies, Inc.
 Quote #: 310250

No. Asset# Manufacturer Model# Cal Date Description Serial # Cal Due Date Equipment Status 1 EE 960158 2 EE 960157 RF Preselecter 3Hz-13.2GHz Spectrum Analyzer Agilent Agilent 6/7/2011 6/7/2011 Active Calibration Active Calibration N9039A MY46520110 6/7/2010 MY48250225 6/7/2010 E4445A AA 960007 Double Ridge Horn Antenna EMCO 9311-4138 11/10/2009 11/10/2010 Active Calibration

Project Engineer: Kanny

Quality Assurance:

LS Research, LLC Page 27 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

APPENDIX B: Test Standards – Current Publication Dates Radio

STANDARD#	DATE	Am. 1	Am. 2
ANSI C63.4	2009		
ANSI C63.10	2009		
CISPR 11	2009-05	2009-12 P	
CISPR 12	2007-05		
CISPR 14-1	2005-11	2008-11	
CISPR 14-2	2001-11	2001-11	2008-05
CISPR 16-1-1 Note 1	2010-01		
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008-09		
CISPR 24	1997-09	2001-07	2002-10
EN 55011	2007-05		
EN 55014-1	2006		
EN 55014-2	1997		
EN 55022	2006	2007	
EN 60601-1-2	2007-03		
EN 61000-3-2	2006-05		
EN 61000-3-3	2008-12		
EN 61000-4-2	2009-05		
EN 61000-4-3	2006-07	2008-05	
EN 61000-4-4	2004		
EN 61000-4-5	2006-12		
EN 61000-4-6	2009-05		
EN 61000-4-8	1994	2001	
EN 61000-4-11	2004-10		
EN 61000-6-1	2007-02		
EN 61000-6-2	2005-12		
EN 61000-6-3	2007-02		
EN 61000-6-4	2007-02		
FCC 47 CFR, Parts 0-15, 18, 90, 95	2009		
FCC Public Notice DA 00-1407	2000		
FCC ET Docket # 99-231	2002		
FCC Procedures	2007		
ICES 001	2006-06		
ICES 002	2009-08		
ICES 003	2004-02		
IEC 60601-1-2 Note 1	2007-03		
IEC 61000-3-2	2005-11	2008-03	2009-02
IEC 61000-3-3	2008-06		
IEC 61000-4-2	2008-12		
IEC 61000-4-3	2008-04	incl in 2008- 04	2009-12 FD

STANDARD#	DATE	Am. 1	Am. 2
IEC 61000-4-4	2004-07	2010-10	
IEC 61000-4-5	2005-11		
IEC 61000-4-6	2008-10		
IEC 61000-4-8	2009-09		
IEC 61000-4-11	2004-03		
IEC 61000-6-1	2005-03		
IEC 61326-1	2006-06		
ISO 14982	1998-07		
MIL Std. 461E	1999-08		
RSS GEN	2007-06		
RSS 119	2007-06		
RSS 123	1999-11		
RSS 125	2000-03		
RSS 131	2003-07		
RSS 136	2002-10		
RSS 137	2009-02		
RSS 210	2007-06		
RSS 213	2005-12		
RSS 243	2005-11		
RSS 310	2007-06		
	on LSR Scope		

Updated on 02-03-10
P=Project FD= Final Draft

LS Research, LLC Page 28 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986

APPENDIX C: Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

LS Research, LLC Page 29 of 29

Prepared For: DexCom, Inc.	Model Number: 9438-01	Report #: 310250
EUT: 2.4 GHz Transmitter	Serial Number: 60113	LSR Job #: C-986