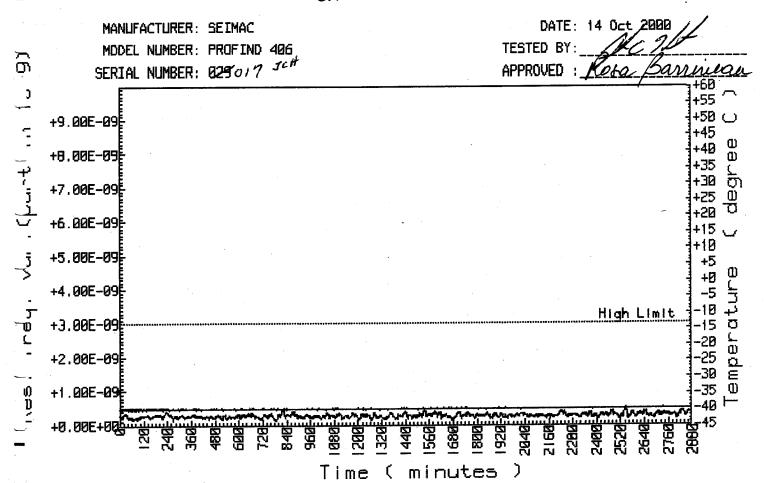
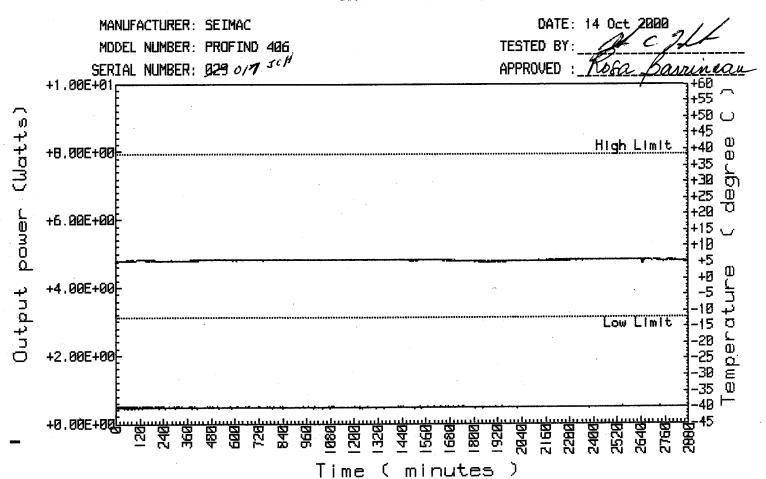

BEACON SHORT TERM STABILITY

SAFT BATTERY


BEACON MEDIUM TERM STABILITY

SAFT BATTERY


BEACON MEDIUM TERM STABILITY

406 SIGNAL OUTPUT POWER

SAFT BATTERY

ANNEX 5. SELF-TEST MODE

Low Temperature

WSMAR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 029 BEACON CERTIFICATION TEST RESULTS - SELF TEST VERIFICATION - 16 W TEMP MEASUREMENT DATE: 4 Oct 2000 TIME: 14:43:21 TESTED BY: APPROVED BY: ROSA Barringan
. f
FRAME SYNCHRONIZATION BIT #: 16 17 18 19 20 21 22 23 24
Should be: 0 1 1 0 1 0 0 0 0 Decoded: 0 1 1 0 1 0 0 0 0
NUMBER OF BURST DURING SELF TEST CYCLE:
53 Se Burd delay. Flash rete 20 pmin.

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 029
BEACON CERTIFICATION TEST RESULTS - SELF TEST VERIFICATION -LOW TEMP
MEASUREMENT DATE: 4 Oct 2000 TIME: 14:45:09
TESTED BY: Hosa Barringan
BEACON DIGITAL MESSAGE VERIFICATION
SYNCHRONIZATION BIT #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Should be: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Decoded: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*** BIT SYNCHRONIZATION OK ***
FRAME SYNCHRONIZATION BIT #: 16 17 18 19 20 21 22 23 24
Should be: 0 0 0 1 0 1 1 1 1
Decoded: 0 1 1 0 1 0 0 0 0
*** ERROR IN FRAME SYNCHRONIZATION *** SEIS TEST VENTIRE
MESSAGE TYPE: SHORT MESSAGE (bit 25 = 0)
DIGITAL MESSAGE IN HEXADECIMAL: A D C D 0 0 0 0 4 4 0 4 0 1 0 0 A A 9 A
BEACON BCH CODE VERIFICATION
BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06
Should be: 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1
Decoded: 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1

*** BCH CODE OK ***

Ambient Temperature

STED BY:	Bet 2 Oct 2000	TT	MIC :	- 21	1 * (3)	: 54				_	- And Bar	
					1		:					
•					NA)						•	
AME SYNCHRONI	ZATION BIT #:	16	17	18	19	20	21	22	23.	24		
	Should be:	¬; 0	1	1	0	1	0	0	0	0 .		
	Decoded:	0	1	1	0	1	0	0	0	0		
NUMBER OF B	URST DURING SE											

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA SERIAL NO: 029 MODEL NO: PROFIND 406 BEACON CERTIFICATION TEST RESULTS - SELF TEST VERIFICATION - AMBICAT MEASUREMENT DATE: 2 Oct 2000 TIME: 20:10:25 APPROVED BY: TESTED BY: BEACON DIGITAL MESSAGE VERIFICATION SYNCHRONIZATION BIT #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Should be: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Decoded: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *** BIT SYNCHRONIZATION OK *** FRAME SYNCHRONIZATION BIT #: 16 17 18 19 20 21 22 23 24 $0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1$ Should be: 0 1 0 0 0 0 0 1 1 Decoded: *** ERROR IN FRAME SYNCHRONIZATION *** SELF TEST Verifiation MESSAGE TYPE: SHORT MESSAGE (bit 25 = 0) DIGITAL MESSAGE IN HEXADECIMAL: A D C D 0 0 0 0 4 4 0 4 0 1 0 0 A A 9 A BEACON BCH CODE VERIFICATION

BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06

*** BCH CODE OK ***

Maximum Temperature

BY:	CB		000	- ' · · · · · · · · · · · · · · · · · ·		A	PPR	OVE	D B	Y:	Tol	al	Bar
						·	· · · · · · · · · · · · · · · · · · ·						
			· ·										
SYNCHRO	NIZATI(ON BIT	#:	16	17	18	19	20	21	22	23	24	
	. 51	hould b	d:	Ö	ī	1	Ŏ	1	0	0	0	0	
MBER OF	F BURST	DURING	SELF	TE	ST	CYC	LE:	1					
		7.5							•	15		3 C	

ESTED BY: C.	Bal		<u> </u>		;	i	A	PPR	OVE	D B	Y: _	Mo	sa	Ba	Mi	ne	au	·		
					- 121 - 1															
EACON DIGITAL	MESSAGE	VE	RIF	LCA		N														
											v									
YNCHRONIZATION	BIT #:	1	2	· 3	4	5 	6 	7 	8	9 	10	11 	12	13	14 	15 				
	ld be: coded:		1		1	1 1	1	1	1 1	1	1 1		1	_	1	1				
	*** BIT	SY	NCH	RON	IZA	TIO	и о	K *	**			,								
				×.											•					
RAME SYNCHRONI	ZATION	BII	: #:		16	17	18	19 	20	21	22	23 	24							
	Shou	ld	be:		0	0	-		0 1		1 0	1 0	0							
	*** ERR	OR	IN	FRA	ME	SYN	ICHE	ONI	[ZA]	IOI	7 **	*	56	LF	TE	5T	Ve	mti	cal	O
MESSAGE TYPE: S	SHORT ME	SSZ	AGE	(bi	it 2	25 =	= 0)			•										
DIGITAL MESSAGE	E IN HEX	(AD	ECIN	ÆL:	: <i>I</i>	A D	CI	0 0	0 (0	0 4	4	0 4	. 0	1 0	0	A A	. 9 .	A .	
BEACON BCH CODE	verif	CA'	TION	1						•										
BCH CODE BIT #	: 86 87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	03	04	05 	06
Should be Decoded	: 0 0	0	0	0	 0,		0	1		1	0	1	0	1	0	1	0	0	1	1
	+++ B(1	T ($\cap \Gamma$	OK	**	*	1.		1											

APPENDIX B. SEIMAC ANTENNA CHARACTERISTICS @ 406.028 MHz

TABLE B-1. VERTICAL POLARIZATION RECEIVED SIGNAL LEVELS (PV, in dBm)

AZIMUTH		ELEVA	TION ANGLE (d	degrees)	
ANGLE (degrees)	10	20	30	40	50
0	-16.17	-15.00	-15.17	-15.50	-18.83
30	-17.17	-15.00	-15.17	-15.50	-20.33
60	-17.17	-15.50	-14.83	-15.33	-19.17
90	-17.50	-15.83	-14.17	-16.17	-20.50
120	-17.33	-15.50	-15.50	-16.00	-20.33
150	-17.50	-15.83	-14.50	-16.00	-20.67
180	-17.83	-16.50	-14.83	-17.17	-21.17
210	-18.17	-15.67	-15.50	-15.33	-20.50
240	-17.83	-16.00	-16.17	-16.00	-18.67
270	-17.67	-15.50	-15.50	-15.67	-18.33
300	-16.83	-15.83	-15.50	-15.83	-20.33
330	-17.67	-16.33	-14.83	-15.50	-19.00

TABLE B-2. HORIZONTAL POLARIZATION RECEIVED SIGNAL LEVELS (PH, in dBm)

AZIMUTH		ELEVA	TION ANGLE (degrees)	
ANGLE (degrees)	10	20	30	40	50
0	-40.17	-39.00	-41.83	-43.33	-38.33
30	-47.67	-45.67	-33.83	-44.33	-33.50
60	-38.00	-38.67	-39.83	-36.83	-40.50
90	-44.33	-43.33	-39.67	-37.00	-32.67
120	-46.50	-43.00	-47.17	-40.00	-36.83
150	-50.17	-44.33	-49.67	-41.50	-42.17
180	-43.00	-48.83	-40.83	-40.50	-43.17
210	-45.67	-55.83	-39.50	-50.67	-35.00
240	-39.67	-52.67	-40.67	-41.17	-50.83
270	-59.33	-46.83	-55.50	-45.33	-47.33
300	-46.00	-44.67	-36.50	-53.83	-34.00
330	-52.00	-40.83	-43.83	-39.50	-43.50

TABLE B-3. TOTAL ERP (IN dBm) / ANTENNA GAIN (in dBi)

AZIMUTH		ELEVA	TION ANGLE (d	degrees)	
ANGLE (degrees)	10	20	30	40	50
0	37.45/+0.91	38.62/+2.08	38.44/+1.90	38.11/+1.57	34.82/-1.72
30	36.43/-0.11	38.60/+2.06	38.49/+1.95	38.11/+1.57	33.47/-3.07
60	36.47/-0.07	38.12/+1.58	38.78/+2.24	38.30/+1.76	34.46/-2.08
90	36.11/-0.43	37.78/+1.24	39.44/+2.90	37.47/+0.93	33.36/-3.18
120	36.28/-0.26	38.11/+1.57	38.10/+1.56	37.62/+1.08	33.37/-3.37
150	36.10/-0.44	37.78/+1.24	39/10/+2.56	37.61/+1.07	32.96/-3.58
180	35.78/-0.76	37.10/+0.56	38.78/+2.24	36.45/-0.09	32.46/-4.08
210	35.44/-1.10	37.93/+1.39	38.12/+1.58	38.27/+1.73	33.25/-3.29
240	35.80/-0.74	37.60/+1.06	37.45/+0.91	37.61/+1.07	34.93/-1.61
270	35.93/-0.61	38.10/+1.56	38.10/+1.56	37.93/+1.39	35.28/-1.26
300	36.78/+0.24	37.78/+1.24	38.18/+1.59	37.77/+1.23	33.45/-3.09
330	35.93/-0.61	37.29/+0.75	38.78/+2.24	38.12/+1.58	34.62/-1.92
VARIATION (dB)	2.01	1.52	1.99	1.82	2.82

Antenna Gain is based on measured power output of 4.51 watts (36.54 dBm)

For the ETERN battery, there was a 0.1dBm loss due to battery discharge.

$$ERP_{maxEOL} = ERP_{max} - ERP_{LOSS} = 36.54 - (-0.1) = 36.64 dBm = 4.57 watts$$
 $ERP_{minEOL} = ERP_{min} - ERP_{LOSS} = 32.46 - (-0.1) = 32.56 dBm = 1.82 watts$

For the SAFT battery, there was no loss (0.0 dBm) due to battery discharge.

$$ERP_{maxEOL} = ERP_{max} - ERP_{LOSS} = 36.54 - (0) = 36.54 dBm = 4.51 watts$$
 $ERP_{minEOL} = ERP_{min} - ERP_{LOSS} = 32.46 - (0) = 32.46 dBm = 1.78 watts$

NOTE: These values do NOT include the range instrumentation accuracy of ± 2.45 dB.

Intentionally Blank

APPENDIX C. SUMMARY OF 406-MHz BEACON TEST RESULTS

Intentionally Blank

Table C2. SUMMARY OF 406MHz BEACON TEST RESULTS

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	UNITS		TEST RESULTS		COMMENTS
			T _{min}	Tamb	Ттах	
			(-40° C)	(+2 0° C)	(-55° C)	
1. POWER OUTPUT						
Transmitter power output	35 - 39	dBm	36.2	36.6	36.4	
Power output rise time	₩.	ms	0.46	0.52	0.55	
Power output 1 ms before burst	must be <-10 dBm	*	\	`	`	
2. DIGITAL MESSAGE Bits number 1-15 frame sync frame sync format flag protocol flag protocol flag Genefication/position data BCH code Emerg. code/nat. use/supplem. data 107-112 Additional data/BCH (if applicable) Position error (if applicable) 1.13-144	its number 15 bits "1" 6-24 9 bits (000101111) 5 1 bit 6 1 bit 7-85 59 bits 6-106 21 bits 607-112 6 bits 113-144 32 bits < 5	data bit data bit data bit data bit km	0 / - 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0	7	7	

A A A	PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	ONITS		TEST RESULTS		COMMENTS	
				Tmin	Tamb	Ттех		
				(-40° C)	(+20° C)	(+ 55° C)		
3.	DIGITAL MESSAGE GENERATOR							
	repetition rate**: minimum T _R	47.5	seconds	48.0	48.3	47.6		
	maximum T _R	52.5	seconds	51.7	52.2	51.7		
•	bit rate: minimum f _b	396	bits/sec.	399.9	399.9	399.9		
	maximum f _b	404	bits/sec.	400.1	400.1	400.1		
• ***	total transmission time: short message =	435.6 – 444.4	s E	439.2	439.4	439.4		
	long message (optional) =	514.8 – 525.2	us.	N/A	N/A	N/A		
* *	unmodulated carrier minimum T ₁	158,4	· sw	159.2	159.1	159.2		
	maximum T ₁	161.6	SE	159.2	159.3	159.3		
•	first burst delay	>47.5	seconds	53	52	53		

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF	UNITS		TEST		COMMENTS
	SPECIFICATION	•		RESULTS		
			F F	Tamb	T _{mex}	
			(-40° C)	(+20° C)	(+55° C)	
4. MODULATION • Biphase-L	j.	,	`		•	
• rise time	50 – 250	srl	142.2	134.2	119.5	
• fall time	50 – 250	sri	135.8	129.8	108.5	
phase deviation: positive	+(1.0 to 1.2)	radians	1.18	1.04	1.01	
 phase deviation: negative 	-(1.0 to 1.2)	radians	-1.20	-1.05	-1.02	
symmetry measurement	≥0.05	\	> 1			
5. 406 MHz TRANSMITTED FREQUENCY						
nominal value	406.023 - 406.027 or 406.027 - 406.029***)	MHz	406.028	406.028	406.0279	
short-term stability	s2 x 10°	/100ms	5.9E ⁻¹⁰	4.32E ⁻¹⁰	1.8E ¹⁰	
medium-term stability slope	(-1 to +1) × 10 ⁻⁹	/minute	3.32E ⁻¹¹	-3.0E¹¹	2.53E ⁻¹¹	-
- residual frequency variation	s3 x 10°		2.80E ⁻¹⁰	6.03E¹⁰	1.97E ⁻¹⁰	
6. SPURIOUS EMISSIONS**** (into 50 ohms)						
 in-band (406.0 – 406.1 MHz) 	see spurious emission mask in C/S T.001	`	,		•	

TAR.	PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	SLINO		TEST RESULTS		COMMENTS	
				Tmin	Tamb	T _{max}		
i w			1, 1 2, 2	(-40° C)	(+20° C)	(155° C)		
7. 40	7. 406 MHz VSWR CHECK after open circuit, short circuit, then while VSWR is 3:1, measure:					-	34	
	nominal transmitted frequency	406.023 406.027 or 406.027 406.029***)	MHz	406.028	406.028	406.0279		
ž.	Modulation: • rise time	50 - 250	S.	142.2	117.5	119.5		
•	fall time	50 – 250	ន្មា	135.8	122.5	108.5		
•	phase deviation: positive	+(1.0 to 1.2)	radians	1.18	1.04	1.01		
•	phase deviation: negative	-(1.0 to 1.2)	radians	-1.20	-1.05	-1.02		
•	symmetry measurement	50.05	`	`	`	`		
•	digital message	must be correct	*	`	`	`		

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF	UNITS		TEST RESULTS		COMMENTS	
	SPECIFICATION		NE	AMBIENT	MAX		
8. SELF-TEST MODE (if applicable)							
frame sync	9 bits (011010000)		`	· 🝾	`		
• format flag	1/0	pit	0	0	0		
single radiated burst	<440/520 (+1%)	SE ,	440.3	440.3	440.3		
default position data (if applicable)	must be correct	\	`	N A	¥ X		
description provided	Tan	`	\	`	`		
9. THERMAL SHOCK **** (30° C change)							
Soak temperature			T _{soak} =40 ° C	ပ			
Measurement temperature		ŧ	T _{meas} = 10 ° C	ာ			*.
The following parameters are to be met within 15 minutes of beacon turn on and maintained for 2 hours:							
transmitted frequency:						*	
nominal value	406.023 – 406.027 or 406.027 – 406.029***)	MHz	94	406.028			
short-term stability:	≤2 × 10°	/100ms		4.0E ⁻¹⁰			
- medium-term stability: - slope - residual frequency variation	(-1 to +1) x 10° ≤3 x 10°	/minute		0 2.0E ⁻¹⁰			
transmitter power output	35 - 39	dBm		36.6			
digital message	must be correct	\		,			

COMMENTS			Conducted battery life tests with two manufacturer batteries: ETERN and SAFT.													
TEST RESULTS	Battery 1 Battery 2 ETERN SAFT		48 hours at T _{min} = -40 °C		406.028 406.0278	1.1E ⁻⁹ 7.0E ⁻¹⁰	0 4.0E ⁻¹⁰ 4.0E ⁻¹⁰	35.8 36.4	`		•	406.028	1.0E ⁻⁹	5.0E ⁻¹⁰ 2.0E ⁻⁹	36.2	`
UNITS			hours		MHz	/100ms	/minute	dBm	\			MHz	/100ms	/minute	dBm	`
RANGE OF SPECIFICATION			>24		406.023 – 406.027 or 406.027 – 406.029***)	≤2 × 10°	(-1 to +1) x 10° ≤3 x 10°	35 - 39	must be correct			406.023 – 406.027 or 406.027 – 406.029***)	s2 x 10³	(-1 to +1) x 10° ≤3 x 10°	35 - 39	must be correct
PARAMETERS TO BE MEASURED DURING TESTS		10. OPERATING LIFETIME AT MINIMUM TEMPERATURE****	• duration	 transmitted frequency: 	nominal value	short-term stability:	medium-term stability: slope residual frequency variation	transmitter power output	digital message	11. TEMPERATURE GRADIENT**** (5° C/hr)	 transmitted frequency: 	nominal value	short-term stability:	 medium-term stability: slope residual frequency variation 	transmitter power output	digital message

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	UNITS	TEST RESULTS	COMMENTS
12. LONG-TERM FREQUENCY STABILITY	406.23 – 406.30***)	MHz		See TAB E of packet
data provided		\		
13. PROTECTION AGAINST CONTINUOUS TRANSMISSION	s45	seconds		See TAB E of packet
description provided		`		
14. SATELLITE QUALITATIVE TESTS****	successfully located by			
results provided	satelites/LUT	`	N/A	
15. ANTENNA CHARACTERISTICS				
polarization	linear	`		
	RHCP	`		
• VSWR	≤1.5	1	N/A	Non-removable antenna
• ERP _{max EOL}	250	watts	4.57 ETERN	
ERP _{min EOL}	21.6	watts	4.51 SAFI 1.82 ETERN	
 azimuth gain variation at 40° elevation angle 	8	B B	1.78 SAF1 1.82	
BEACON CODING SOFTWARE			•	
 sample message provided for each coding option of the applicable coding protocol types 	must be correct (attach to report)	`	•	
 sample message provided, if applicable, with encoded positions at least 5 km apart 	must be correct (attach to report)	`	N/A	

PARA	PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	UNITS	TEST RESULTS		COMMENTS	STNE	
17. (a)	17. NAVIGATION SYSTEM*** (as applicable)							
•	position data default values	must be correct						
•	position acquisition time	<30	minutes					
•	position data update interval	>20	minutes					
•	delta offset							
	- position direction	must be correct	· \	NA				
	- negative direction	must be correct	`					
	- overrange to 2 times coarse res.	must be correct	`		:			
•	last valid position:							
	- retained after navigation input lost	must be correct	,					
	- cleared when beacon reactivated	must be correct	`					
•	design data provided on protection	no degradation						-
	against beacon degradation due to navigation device, interface or signal failure or malfunction							

The tick mark ✓ can be used where indicated to record that the requirement is met (no value needs to be shown)

If (Transe - Transe) #1 second, the manufacturer must provide a technical explanation, as described in section A3.1.1.

From 1 January 2000, new 406 MHz beacon models submitted for type approval can be set to transmit at 406.028 MHz ±1 kHz. The transmitted frequency shall not vary more than +2 kHz/-5 kHz from 406.028 MHz in 5 years. It shall not vary more than 2 parts in 10° in 100 ms. After 1 January 2002, all new beacon models submitted for type approval must be set at the frequency 406.028 MHz ±1 kHz and satisfy the above stability requirements.

Attach graphs of test results for test numbers 6, 9, 10, and 11 and a summary table of results for test number 14, and if applicable, test number 17.

**

APPENDIX D. PHASE MODULATION FAILURE

Intentionally Blank

Technical Report – TR-419-99-013 V1.1 Oct 30, 2000 Phase Modulation Failure

Revision History	Date	Change
Initial Release V1.0	Sept 22, 2000	
Release V1.1	Oct 30, 2000	Added Addendum section

During certification testing the ProFind 406 EPIRB failed the phase modulation test at low temperatures. An investigation was carried out to determine the cause of this failure.

1. Phase Modulation Circuit

Phase modulation in the ProFind 406 is achieved by injecting an offset current into the feedback loop of the phase-lock-loop (PLL) circuit. A simplified schematic diagram for the circuit is shown in Figure 1.

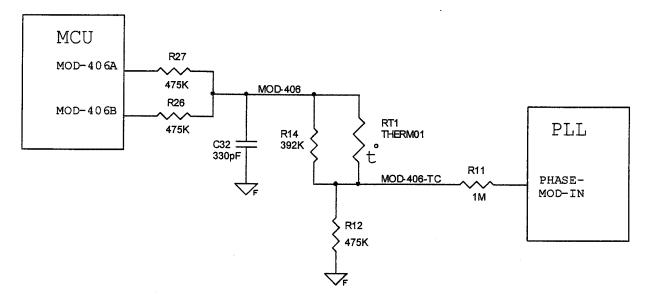


Figure 1. Phase Modulation Circuit

2. Theory of Operation

Digital signals MOD-406A and MOD-406B from the micro-controller (MCU) are set to one of three different state to achieve the different levels of modulation:

- a) During un-modulated carrier (zero phase modulation), MOD-406A is set high and MOD-406B is set low.
- b) For +1.1 radian phase modulation both MOD-406A and MOD-406A are set high.
- c) For -1.1 radian phase modulation both MOD-406A and MOD-406A are set low.

Signal MOD-406 is a summing point whose nominal voltage will be one of three levels depending on the modulation state (+1.1, 0, or -1.1 radians). Capacitor C32 controls the rise and fall time of the modulation signal.

Resistor R14 in parallel with thermistor RT1 and series resistor R12 provide a voltage divider network whose output signal MOD-406-TC. The current through resistor R11 is proportional to the voltage at MOD-406-TC and is used to phase modulate the PLL. The sensitivity of the modulation input signal PHASE-MOD-IN is temperature dependent. It is less sensitive at high temperatures. To compensate for this effect, thermistor RT1 is used to increase the modulation current signal into the PLL. The overall effect is to have a relatively constant phase modulation of the PLL over the operating temperature range.

3. Cause of Failure

The circuit described above has been used in several ARGOS transmitter circuits which have a similar phase modulation specifications. Some minor changes were required to adapt the design for the ProFind 406 because of different operating voltages.

During the development and in-house testing, the test engineer found that the phase modulation level measurements were too low (by about 0.1 radians). To increase the modulation he increased the value of R12 from 375K to 475k. This increased the modulation level but he also inadvertently changed the temperature characteristic of the compensating circuit.

The circuit was tested after the resistor value was changed but due to a malfunctioning test chamber, the circuit was only tested over a temperature range of -20°C to +55°C. If the circuit had been tested over the complete temperature range it would have shown that the modulation levels were too high at low temperatures.

As a result of this investigation we found that the in-house test measurements were performed with an uncalibrated instrument which gave readings which were low by about 0.1 radians. The assumption that the modulation level needed to be increased was false. Changing the resistor value increased the modulation level unnecessarily and caused the circuit to exceed the modulation specifications at low temperature. Unfortunately this was not tested sufficiently prior to certification testing.

4. Modulation Symmetry

More detailed in-house testing on separate test units has confirmed the findings at Fort Huachuca. The test results not only indicate that the average modulation levels are too high, but that there is a small offset between the positive modulation level and the negative modulation level. This is caused by the fact that the phase detector response is not quite symmetrical about its operating point. It is slightly more sensitive in the positive direction than the negative direction.

This asymmetry can be corrected by changing the relative values of R26 and R27. The optimum values for R26 and R27 are being evaluated presently.

5. Recommendations

Changing the resistor value R12 should bring the phase modulation with the specified limits. Further testing is recommended to determine the optimum value to minimize the variation with temperature.

It is also recommended that the values of R26 and R27 be changed slightly to make the positive and negative levels more symmetrical which would provide more head room for unit to unit variation.

Addendum

Further investigation found that the following component values should be changed:

Component	Changed from	Changed to
R26	475K	No change
R27	475K	500K
R12	402K	475K

APPENDIX E. DISTRIBUTION

Mr. Sergey Mikhailov Cospas-Sarsat Secretariat, Inmarsat 99 City Road London EC1Y 1AX United Kingdom

Derek Inglis 271 Brownlow Avenue Dartmouth, Nova Scotia, Canada B3B 1W6

Commander
WSMR Electronic Proving Ground
ATTN: CSTE-DTC-WS-EP-EI
(Mrs. Barrineau/Mrs.Anthony)
Fort Huachuca, AZ 85613-7110

Intentionally Blank