ANNEX XIII. STABILITY AND BUOYANCY

Date:
Tested by: Pat Ducie Approved by: Rosa Barrineau
Test Description: Steb. 1. ty a boryancy test
Specification Reference: RTCM 32-2000/sc/10 - CD2
pere A15.0
Test Results:
HURIZ TO UPRIGHT 1.5 sec
BUOYANCY: UNIT WEISH + = 2.2 16
fonce under weder = 06/6
2.2 = 1.27 Reserve BUOYANCY = 27%
ANTENNA BASE ABOVE WATER: 4/1 mm

Intentionally Blank

ANNEX XIV. INADVERTENT ACTIVATION TEST

Date: 4 Oct 00 Time:
Tested by: Pot Dugie Approved by: Rosa Barrinean
Test Description: Inachentant actuation feit
Test Description:
Specification Reference: RTCM 32-2000/50110-002
Ecra A16.0
Test Results: During force of 2300 liters linix
it did not release toom
holding mechanism. Unt did not
activete

Intentionally Blank

ANNEX XV.

121.5 MHZ AUXILIARY RADIO-LOCATING DEVICE TRANSMITTER

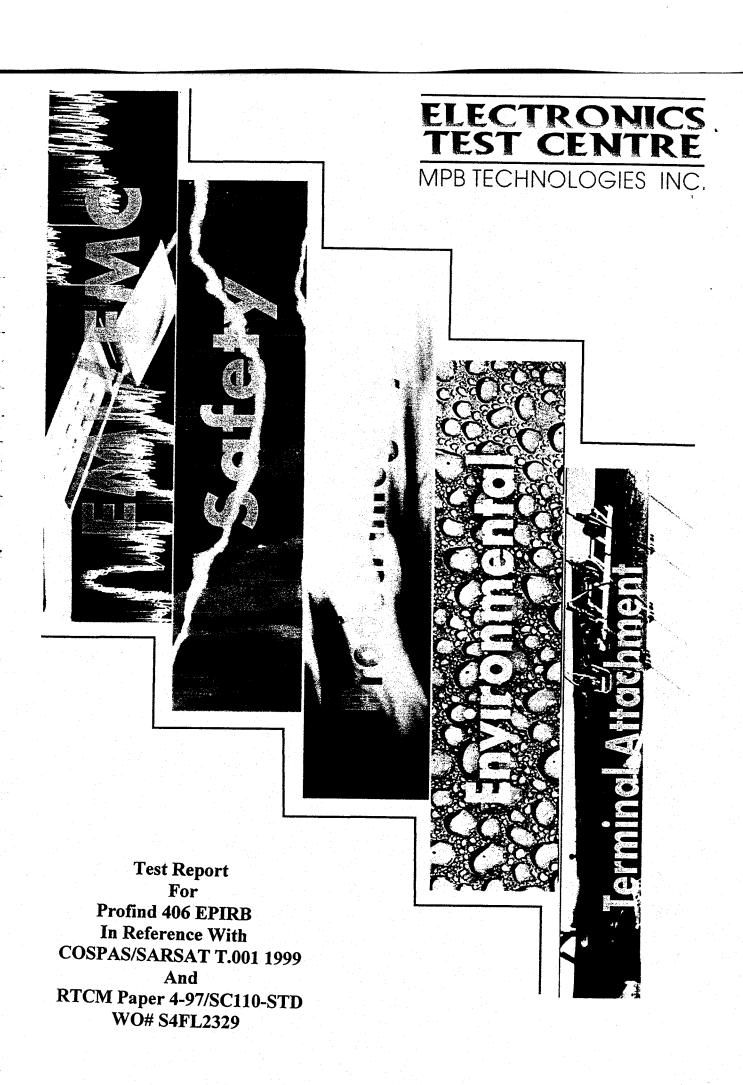
AMBIENT TEMPERA:

Date: 10/16/00	Time: 1415
Tested by: Approve	ed by: Rasa Barrineau
Test Description: 121.5 module fie	
Specification Reference: <u>eTcm</u> 32-20	00 /Sc110-C02
por A.17.2	
Test Results: XMTR OUTY eMCL	c: 100%
cannien fry: 121.47875.	
PWR OUT: 14.L dBm	
d. min frace: 354	
mod. max freg: 1136	
01FF = 782	
duty excle = 48%	
mod. for for = 100%	
Sueep rep ret: 2.250c	

MINIMUM TEMPERATURE

Date: 10/16/00 Time: 1715
Tested by: Approved by: Rosa Barringan
Test Description: <u>Low Temp - 121. 5 Moderation check</u>
Specification Reference: R7cm 32-2000 / Sc110-CD2 Para A, 17.2.
Test Results: VMTR Duty Cycle: 100%
Carrier frey 121,49940 14HZ
Med. Min frag 370 HZ
Mod May Free /// #2
Jump Rate 2.14 Ftz
Mod dety facts 100%

MAXIMUM TEMPERATURE


Date: 10/16	/00	Time:	
Tested by:		Approved by: Nosc	Banineau
Test Descriptio	n: H1 temp la	21.5 Modulates	chech.
		20-/2	15- 110-CD2
Specification F	Reference: RTCM	36/3000	/Sc 110-CD2
Test Results:	xmtR Duty	Cycle 100%	
	Carrier try	121.498 1. 17dbm.	
	MOD MIN Fr	of 357 Hz.	
	Diff.	847	7 +1
	Sweep Ka	te: 2.1 Cycle 46 to 700 99	9/6
	Mod for	to 700 99	8%

Intentionally Blank

ANNEX XVI. Peak Effective Radiated Power (121.5 MHz Auxiliary Radio-Locating Device) Measurement

This document was provided by the manufacturer.

Intentionally Blank

ELECTRONICS TEST CENTRE

TEST CENTRE MPB TECHNOLOGIES INC.

Test Report Prepared By:

Electronics Test Centre MPB Technologies Inc. Unit 100 302 Legget Drive Kanata Ontario K2K 1Y5

FINDINGS LETTER ON THE

ProFind 406 EPIRB

IN REFERENCE WITH COSPAS/SARSAT T.001 1999 and RTCM Paper 4-97/SC110-STD

MPBT Findings Letter No.: S42FL2329

Customer No.: 002046

Test Personnel: D. Zanette

Prepared for:

SEIMAC Limited 271 Brownlow Avenue Dartmouth, Nova Scotia Canada B3B 1W6

Dan Zanette
Lab Supervisor
Electromagnetic Services
Electromagnetics Division
Authorized Signatory

Sept-9-2000

S42FL2329 MPB Technologies Inc.

TABLE OF CONTENTS

1.0 INTRODUCTION

- 1.1 SCOPE
- 1.2 APPLICANT
- 1.3 APPLICABILITY
- 1.4 TEST SAMPLE DESCRIPTION
- 1.5 GENERAL TEST CONDITIONS AND ASSUMPTIONS

2.0 MEASUREMENT DATA

3.0 TEST FACILITY

4.0 TEST EQUIPMENT

APPENDIX A

EUT CLIENT DESCRIPTION

APPENDIX B

Calibration Data

Test Sample: EPIRB Report No.: S42FL2329

1.0 INTRODUCTION

1.1 SCOPE

The purpose of this findings letter is to present the findings and results of antenna testing performed with reference to the COSPAS/SARSAT 1999 specification and RTCM 1997 specification.

1.2 APPLICANT

This findings letter has been prepared for SEIMAC Limited.

1.3 APPLICABILITY

All test procedures, limits, and results defined in this document apply to the SEIMAC Limited ProFind 406 unit, which shall be referred to herein as the Equipment Under Test (EUT).

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by NVLAP or the Canadian or US governments.

1.4 TEST SAMPLE DESCRIPTION

The test sample, provided for testing was the ProFind 406 EPIRB.

Product Type: Distress Beacons

Serial Number: 26

Model Number: ProFind 406

Frequency of operation: 126.6MHz and 406.028MHz

Cables: NA

Power Requirements: Internal battery pack

Peripheral Equipment: NA

S42FL2329 MPB Technologies Inc.

Page 3 of 10

1.5 GENERAL TEST CONDITIONS AND ASSUMPTIONS

The EUT was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. All inputs and outputs to and from other equipment associated with the EUT were adequately simulated.

Where relevant, the EUT was only tested using the monitoring methods and test criteria defined in this report.

All testing, unless otherwise noted, was performed under the following environmental conditions:

Temperature:

17 to 23 °C

Humidity:

45 to 75 %

Barometric Pressure: 68 to 106 kPa

MEASUREMENT UNCERTAINTY

The following measurement uncertainty with 95% confidence level was calculated using the methods defined in NAMAS document NIS81: May 1994.

For Radiated E-Field Emissions

Frequency = $\pm 1 \times 10^{-3} \text{ MHz}$

Amplitude = $\pm 2.5 \text{ dB}$

S42FL2329 MPB Technologies Inc.

MEASUREMENT DATA

Accuracy ± 2dB

G= 20 x log (f)-AF-29.79

Raw Data

Raw Data		Vertical Polarization of ProFind 406				
Elevation/ Azimuth	10°	20°	30°	40°	50°(45°)	
0°	5.6	6	5.6	-0.4	-2.6	
30°	5.6	6.2	5.8	0	-3.2	
60°	4.8	6	5.8	0	-3	
90°	5.2	6	5.4	-0.2	-2.8	
120°	5.4	6	5.2	0	-2.4	
150°	5.4	6	5	-0.2	-2.2	
180°	5.2	5.6	5	0	-2.2	
210°	4.2	5.6	5.2	0.4	-2	
240°	4.6	5.8	5.2	0.2	-2.4	
270°	4.6	5.6	5.4	0.2	-2.2	
300°	4.6	5.4	5.6	0.4	-2.4	
330°	5.6	5.8	5.4	0.2	-2.4	

Path Loss	-34.3	-34.7	-35.4	-36.5	-38	***********
Antenna	5.88	4.88	3.78	1.38	-0.42	
Gain						

Cable loss -1.5

Raw Data

Horizontal Polarization

Elevation/	10°	20°	30°	40°	50°(45°)	
Azimuth						
0°	-13.6	-17.2	-11.2	-20.8	-25.2	
30°	-11	-28.2	-11.6	-18	-41.4	
60°	-11.6	-17.2	-14.8	-20.4	-27.8	
90°	-12.2	-20.6	-16	-20.6	-22.8	
120°	-11.6	-15.4	-19.6	-23.2	-21	
150°	-15	-17	-18	-21.4	-27.6	
180°	-16	-18.8	-18	-26	-23.8	
210°	-17	-30	-15	-21	-24.6	
240°	-13.4	-18.6	-17.4	-25.2	-29.2	
270°	-18.6	-23	-12.8	-24.6	-28.2	
300°	-21.6	-14	-13.6	-23.8	-21.2	
330°	-13.4	-14.6	-13	-27.6	-23.8	

Azimuth	406.028 MH	z Correct	ed Data fo	r the Prof	ind 406
Angle	Ε	levation Ar	ngle (Degre	ees)	
Degrees	10	20	30	40	45
0	35.57	37.34	38.81	36.26	37.34
30	35.62	37.52	39.00	36.69	36.72
60	34.82	37.34	38.96	36.66	36.93
90	35.20	37.33	38.55	36.46	37.16
120	35.41	37.35	38.33	36.64	37.58
150	35.36	37.34	38.14	36.45	37.73
180	35.15	36.94	38.14	36.63	37.75
210	34.15	36.92	38.36	37.05	37.94
240	34.59	37.14	38.34	36.83	37.53
270	34.54	36.93	38.59	36.83	37.73
300	34.53	36.77	38.77	37.04	37.58
330	35.58	37.16	38.58	36.83	37.55

121.6 MHz Beacon (RAW DATA)

	Elevation	Elevation
	Vertical	Horizontal
Azimuth	9 deg	9 deg
Angle	78 cm	78 cm
0°	-12.0	-39.8
30°	-12.0	-40.8
60°	-12.0	-41.2
90°	-12.2	-41.8
120°	-12.0	-42.0
150°	-12.2	-43.0
180°	-12.4	-43.0
210°	-12.2	-43.4
240°	-12.4	-41.8
270°	-12.2	-41.2
300°	-12.0	-40.4
330°	-12.0	-40.4

Path Loss	-28.2	-28.2
Cable Loss	-0.75	-0.75
Antennae	-0.82	-0.82
Gain		

S42FL2329 MPB Technologies Inc.

Page 6 of 10

121.6 MHz Radiated Power Out (Corrected Data)

Azimuth	Radiated Power		
Angle	Vertical	Horizontal	
(Degrees)	9 deg	9 deg	
0	17.77	-10.03	
30	17.77	-11.03	
60	17.77	-11.43	
90	17.57	-12.03	
120	17.77	-12.23	
150	17.57	-13.23	
180	17.37	-13.23	
210	17.57	-13.63	
240	17.37	-12.03	
270	17.57	-11.43	
300	17.77	-10.63	
330	17.77	-10.63	

ADDITIONAL ANTENNA DATA IN APPENDIX B

3.0 TEST FACILITY

LOCATION

The EUT was tested at the Electronics Test Centre, located in Kanata, Ontario, Canada.

GROUNDING PLAN

406 MHz Test

The EUT was located on a 2.5 meter circular ground plane 75 cm above the open field test sight ground plane according to the client's specifications.

121.6 MHz Test

The EUT was located in a 2 meter metallic turntable, which is flush mounted on a 12 meter by 20 meter rectangular ground plane according to the client's specifications.

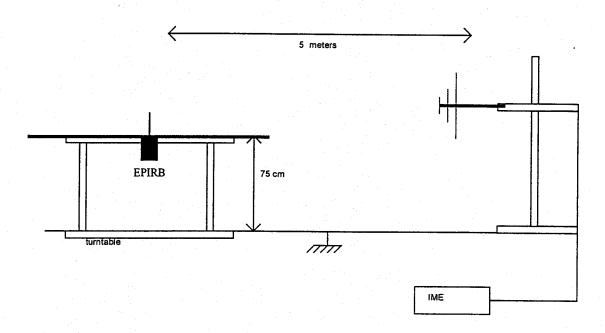
POWER

The EUT was powered via an on board battery pack.

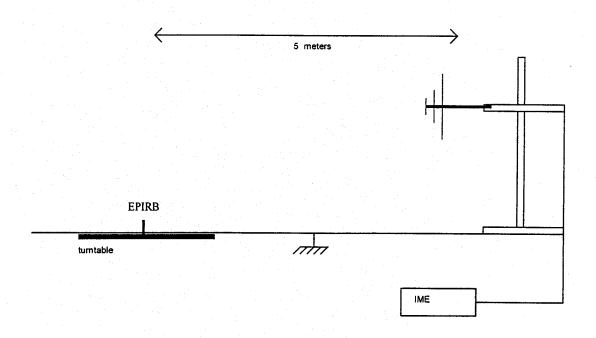
S42FL2329 MPB Technologies Inc.

Page 7 of 10

This report shall not be reproduced, except in full, without prior written approval of MPB Technologies Inc.


1- XV1-11

Test Sample: EPIRB


Report No.: \$42FL2329

EPIRB Antenna Measurement Setup

406 MHz EPIRB Setup

121.6 MHz EPIRB Setup

S42FL2329 MPB Technologies Inc.

Page 8 of 10

This report shall not be reproduced, except in full, without prior written approval of MPB Technologies Inc.

4.0 TEST EQUIPMENT

The following equipment was utilized for this procedure. All measurement devices are calibrated annually, traceable to NIST. Please refer to Appendix A for calibration data.

- a) Spectrum Analyzer
- c) Power Isolation Transformers
- d) Biconilog antenna (25 MHz to 2 GHz)
- e) Antenna mast positioner, and controller
- f) Flush-mounted turntable, and controller

S42FL2329 MPB Technologies Inc.

Page 9 of 10

APPENDIX A EPIRB

Information Supplied by Client

S42FL2329 MPB Technologies Inc.

Page 10 of 10

APPENDIX B

TEST EQUIPMENT and CALIBRATION REPORT

Equipment used in test EPIRB - EPIRB (DAN2329)

Â660	Device	ે ઊંતાદલસાંહોલ્ડ	Mennifeance	T MORE IN	Serel#	Cal Date	ં કોકલે કાર્ય કિં
 2831	analyzer	Spectrum Analyzer	Advantest	R4136	71220067	Dec 31, 1999	
4281	antenna	Biconilog Antenna	Antenna Research	LPB-2520/A	1048	Dec 28, 1999	Dec 28, 2000
4527	Site 9	Display	PC /Monitor	hrv-1024	209k100479	Monitored	Monitored
4828	OATS	Open Area Test Site	MPBT			Oct 07, 2000	Oct 07, 2001

C:\Equipment Lists\DAN2329\EPIRB\EPIRB - EPIRB (Sep 22, 2000 - 09-24-26 AM).doc

ANTENNA RESEARCH INFORMATION

FOLLOWING PAGES

Antenna Research Associates, Inc.

DATE

31 August 31, 2000

:0

Dan Zanette, Electronics Test Ctr.

CC.

FROM:

Tim D'Arcangelis, ARA

Tel#:

48 Wexford Drive Oakdale, NY 11769

E-mail tdarc5@cs.com

http://www.ara-inc.com

(613) 599-6800

EMIC Innovative Solutions and Products Antenna Research Associates, Inc

Phone: (631) 563-3616 • Fax: (631) 218-8895

(613) 599-7614

SUBJECT: Beam width of LPB-2520 and LPB-2513 BiCog antennas.

FAX TRANSMISSION COVER SHEET

I'm sorry that we could not provide you with the measured beam width of the subject antenna at the requested frequencies. However, since falking to you I put together a spreadsheet for estimating the beamwidth vs "look-down" angle. To do this I made some reasonable assumptions.

- 1) The beamwidth of the log periodic antenna is virtually constant for a given gain. About 105 degrees in E-Field plane (vertical up-down angle) and 75 degrees in the H-Field plane (horizontal polarization up-down angle).
- ?). Since the LPB-2520 is a combination of two antennas (a broadband dipole and log periodic antenna) the assumption for beam width is not as clear, however, because the beamwidth is rather broad, the error due to an erroneous guess will be relatively small. A reasonable pattern assumption for this antenna is a dipole pattern with developing forward directivity (decreasing energy out the back). Fin this I assume 180 degrees in the II-plane and 120 degrees in the E-plane.

With these assumptions we arrive at the following 3dB beamwidths and coverage on a half angle of 53 degrees (the results of a 4 meter height and a 3 meter transmit distance.

> total proges including this cover sheet. If all pages are not recovered in once 2.39 (2.24) for 7.393. Please feel free to contact me if you require any additional information.

Engineering Services • Integration • Manufacturing

- 1} For 400 MHz (a pure log periodic pattern)
 - Up-down E-Field plane (vert. polarization) Half angle radiation pattern = 37.5.
 - The coverage at half angle 53° is -3dB.
- 21 For 121 MHz (a hybrid pattern of dipole and log periodic antenna in the
 - Up-down E-plane (vertical polarization) Half angle radiation pattern = 60° The coverage at half angle 53° is -2.3dB.
 - f.p-down H-plane (horizontal polarization) Half angle radiation pattern 90° five coverage at half angle 53° is -1dB.

NOTE: I fried beamwidths above and below the estimated beam widths and found differences in the order of IdB from the "reasonable estimate".

I believe these results are well within the expectations of the "formula" used in the standard that you mentioned.

Please call if you have any questions.

Tru Steens

Simperely,

Please feet free to contact me if you require any additional adversarion

Engineering Services • Integration • Manufacturing

A-XV1-17

ANNEX XVII. HUMIDITY

TESTED BY:

APPROVED BY: Mosa

SPECIFICATIONS TESTED	LIMITS	RESULTS	UNITS	COMMENTS
Nominal transmitted frequency	406.028 ±.001	406.027738	MHz	passed
Short term frequency stability	< 2.0E-9	5.82E-10		passed
Medium term: mean slope residual deviation	< 1.0E-9 < 3.0E-9	+1.36E-10 2.65E-10	/min	passed passed

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA
MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 029 23 JCH
BEACON CERTIFICATION TEST RESULTS - POST HUMIO, TY PLIVENESS CHECK

3.15 TO 7.93

MEASUREMENT DATE: 12 Sep 2000 TIME: 14:35:10

TESTED BY:

SPECIFICATIONS TESTED

Tx ouput power level

Tx ouput power level

Tx ouput power level

APPROVED BY:

LIMITS	RESULTS	UNITS	COMMENTS
3.15 TO 7.93	4.53	W	passed
3.15 TO 7.93	4.53	W	passed

passed

4.52

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 02923 3CH BEACON CERTIFICATION TEST RESULTS - FOST HUMIDITY PLIVENESS CHECK MEASUREMENT DATE: 12 Sep 2000, TIME: 14:55:35 APPROVED BY: TESTED BY: -BEACON DIGITAL MESSAGE VERIFICATION SYNCHRONIZATION BIT #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1 Decoded: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 *** BIT SYNCHRONIZATION OK *** FRAME SYNCHRONIZATION BIT #: 16 17 18 19 20 21 22 23 24 Should be: 0 0 0 1 0 1 1 1 1 0 0 0 Decoded: 1 *** FRAME SYNCHONIZATION OK *** _MESSAGE TYPE: SHORT MESSAGE (bit 25 = 0) DIGITAL MESSAGE IN HEXADECIMAL: A D C D 0 0 0 0 C 4 0 4 0 1 2 5 4 1 8 2 BEACON BCH CODE VERIFICATION BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 Should be: 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0. 0 0 1 0 0 Decoded: *** BCH CODE OK ***

Intentionally Blank

ANNEX XVIII. ORIENTATION TEST

VERTICAL

WSMR ELECTRONIC PROVING MANU: SEIMAC MODEL BEACON CERTIFICATION TE MEASUREMENT DATE: 20 Ju	NO: PI	ROFI SULT	ND S	0/	5 2 10,	ء حرب	19T	AL.	NO:	U Z 2								
TESTED BY: That	M	1	1	-		PPRO		B)	۲: _	Ro	8q	£	Par	rn	ua	u		
BEACON DIGITAL MESSAGE	VERIF	ICAT	101	J														
SYNCHRONIZATION BIT #:	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15				
Should be: Decoded:	1 1 1 1	1	1	1	1	1	1	1	1	1	1	1	1					
*** BIT	SYNCH	RON	IZA'	TIO	n o	K *	**											
FRAME SYNCHRONIZATION	BIT #:		16	17	18	19	20	21	22	23	24							
Shou De	ld be:	:	0	0	0	1	0		1									
*** FRA	ME SYN	NCHO	NIZ	AT]	ON	OK	***								•			
MESSAGE TYPE: SHORT ME	SSAGE	(bi	t 2	:5 =	= 0)													
DIGITAL MESSAGE IN HEX	KADECI	MAL:	P	A D	CI	o 0	0 0	0	0 0	2 4	0 4	¥ 0	1 2	2 5	4 1	. 8	2	
BEACON BCH CODE VERIFI	CATIO	N																
BCH CODE BIT #: 86 87	88 89	90	91	92	93	94	95	96	97	98	99	00	01	02	03	04	05	06
Should be: 0 0 Decoded: 0 0	1 0	0	1	0	1	0	1	0	0	0	0	0	1	1			0	
*** BC	H CODE	OK	**	*									:					

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 029
BEACON CERTIFICATION TEST RESULTS - ORIENTATION TEST PERTI

TESTED BY:

MEASUREMENT DATE: 20 Jul 2000 TIME: 06:28:20 port

APPROVED BY:

			•	
SPECIFICATIONS TESTED	LIMITS	RESULTS	UNITS	COMMENTS
Nominal transmitted frequency	406.028 ±.001	406.028104	MHz	passed
Short term frequency stability	< 2.0E-9	4.06E-10		passed
Medium term: mean slope residual deviation	< 1.0E-9 < 3.0E-9	-1.02E-10 7.37E-10	/min	passed passed

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA
MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 029
BEACON CERTIFICATION TEST RESULTS - PROFIT OF THE PROPERTY O

SPECIFICATIONS TESTED LIMITS RESULTS UNITS COMMENTS

Tx ouput power level 3.15 TO 7.93 4.54 W passed

HORIZONTAL

### PROVED BY: **Deca Darmulo BEACON DIGITAL MESSAGE VERIFICATION SYNCHRONIZATION BIT #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Should be: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1			M	٠.	1							ムノ	·	<i>/</i>		-	•		
SYNCHRONIZATION BIT #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Should be: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TESTED	BY: Th			1/4	1	_	_		APF	PROV	/RD	BY	: <u>/</u>	Te	fa	F	<u>sa</u>	w	ne	a	<u>"</u>
Should be: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BEACON	DIGITAL ME	ESSAGE	VE	RIF	ïC	ATI	ON						<u> </u>					·		-	
Should be: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																						
Decoded: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SYNCHRO	NIZATION E	BIT #:	1	2	3	4	5	6	7	8	. 9) :	LO	11	12	13 :	L4 :	15			
FRAME SYNCHRONIZATION BIT #: 16 17 18 19 20 21 22 23 24 Should be: 0 0 0 1 0 1 1 1 1 1 Decoded: 0 0 0 1 0 1 1 1 1 1 *** FRAME SYNCHONIZATION OK *** MESSAGE TYPE: SHORT MESSAGE (bit 25 = 0) DIGITAL MESSAGE IN HEXADECIMAL: A D C D 0 0 0 0 0 C 4 0 4 0 1 2 5 4 1 8 2 BEACON BCH CODE VERIFICATION BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 08		Should Deco	ded:	1	1	1	1	1	1 1	1 1	1	1	. 1				-		•			
Decoded: 0 0 0 1 0 1 1 1 1 1 *** FRAME SYNCHONIZATION OK *** MESSAGE TYPE: SHORT MESSAGE (bit 25 = 0) DIGITAL MESSAGE IN HEXADECIMAL: A D C D 0 0 0 0 C 4 0 4 0 1 2 5 4 1 8 2 BEACON BCH CODE VERIFICATION BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 09	FRAME S												. 22	2.2.	3 2	4						
MESSAGE TYPE: SHORT MESSAGE (bit 25 = 0) DIGITAL MESSAGE IN HEXADECIMAL: A D C D 0 0 0 0 C 4 0 4 0 1 2 5 4 1 8 2 BEACON BCH CODE VERIFICATION BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 09											-											
DIGITAL MESSAGE IN HEXADECIMAL: A D C D 0 0 0 0 C 4 0 4 0 1 2 5 4 1 8 2 BEACON BCH CODE VERIFICATION BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 09		**	* FRAI	ME S	YN	СНО	NI	ZAT	ION	OK	**	*										
BEACON BCH CODE VERIFICATION BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 09	MESSAGE	TYPE: SHO	RT MES	SSAG	Έ	(bi	t 2	25 =	= 0)												
BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 09	DIGITAL	MESSAGE I	N HEXA	ADEC	IMZ	AL:	7	A D	C 1	0 0	0	0 0	0	C 4	1 0	4 0	1	2 5	4	1 8	2	
	BEACON I	BCH CODE V	ERIFI(CATI	ON																	
Should be: 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0	BCH CODE	E BIT #: 8	6 87 8	18 8	9 9	90	91	92	93	94	95	96	97	98	3 99) 00	01	02	03	04	05	06
	Sho	ould be:	0 0 0 0	1	0 0	0	1	0	1	0	1	0	 0 0				_	_	-		_	0

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA

MODEL NO: PROFIND 406 SERIAL NO: 029 MANU: SEIMAC

BEACON CERTIFICATION TEST RESULTS - ORIGINATION - HORIZ MEASUREMENT DATE: 14 SEP 2000 TIME: 06:06:31

TESTED BY: Then The

APPROVED BY: Rosa Barrineau

SPECIFICATIONS TESTED	LIMITS	RESULTS	UNITS	COMM
Tx ouput power level	3.15 TO 7.93	4.31	W	pas
Tx ouput power level	3.15 TO 7.93	4.30	W	pas
Tx ouput power level	3.15 TO 7.93	4.30	M	pas

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 029

BRACON CERTIFICATION TEST RESULTS - ORIGINATION - HORR

MEASUREMENT DATE: 20 Jul 2000 TIME: 06:08:56

TESTED BY: C Bala APPROVED BY:

Rosa Barrineau

SPECIFICATIONS TESTED	LIMITS	RESULTS	UNITS	COMMENTS
Nominal transmitted frequency	405.028 ± 001	406.028102	MHZ	passed
Short term frequency stability	< 2.0E-9	4.37E-10		passed
Medium term: mean slope residual deviation	< 1.0E-9 < 3.0E-9	-1.58E-09 7.79E-10	/min	failed passed

UPSIDE DOWN

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA	
MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO:029 BEACON CERTIFICATION TEST RESULTS - OR PETTA TION UPSIDE OUND	
MEASUREMENT DATE: 20 Jul 2000 TIME: 07:02:31	
TESTED BY: The Harman APPROVED BY: NOSA PARVINLAN	L
BEACON DIGITAL MESSAGE VERIFICATION	-
SYNCHRONIZATION BIT #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
Should be: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
*** BIT SYNCHRONIZATION OK ***	
FRAME SYNCHRONIZATION BIT #: 16 17 18 19 20 21 22 23 24	
Should be: 0 0 0 1 0 1 1 1 1 Decoded: 0 0 0 1 0 1 1 1 1	
*** FRAME SYNCHONIZATION OK ***	
MESSAGE TYPE: SHORT MESSAGE (bit 25 = 0)	:
DIGITAL MESSAGE IN HEXADECIMAL: A D C D 0 0 0 0 0 C 4 0 4 0 1 2 5 4 1 8 2	
BEACON BCH CODE VERIFICATION	
BCH CODE BIT #: 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05	06
Should be: 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0	-
*** BCU CODE OK ***	

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA

MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 029
BEACON CERTIFICATION TEST RESULTS - ORIENTATION TEST - UPSI OF DUNN

MEASUREMENT DATE: 14 SEP 2000 TIME: 06:56:03

TESTED BY: Me.

APPROVED BY:

SPECIFICATIONS TESTED	LIMITS	RESULTS	UNITS	COMMENTS
Nominal transmitted frequency	406.028 ±.001	406.027738	MHz	passed
Short term frequency stability	< 2.0E-9	5.32E-10		passed
Medium term: mean slope residual deviation	< 1.0E-9 < 3.0E-9	+8.28E-11 2.25E-10	/min	passed passed

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA

MANU: SELMAC BEACON CERTIFICATION TEST RESULTS - ORIENTATION UPSIDE DOUN

MODEL NO: PROFIND 406 SERIAL NO: 029 7 029 76

MEASUREMENT DATE: 20 Jul 2000

TESTED BY

TIME: 07:00:55

APPROVED BY: Kofa

SPECIFICATIONS TESTED	LIMITS	RESULTS	UNITS	COMMENTS
Tx ouput power level	3.15 TO 7.93	4.53	W	passed
Tx ouput power level	3.15 TO 7.93	4.51	W	passed
Tx ouput power level	3.15 TO 7.93	4.50	W	passed

RETURN TO VERTICAL

WSMR ELECTRONIC PROVING GROUND, US AR MANU: SEIMAC MODEL NO: PROFIND 40 BEACON CERTIFICATION TEST RESULTS - OMEASUREMENT DATE: 20 Jul 2000 TIME:	ا تسریم ج	TA T	ر ک	NO :	DZ Re	19 - 7-0.)	e r	TV 1	ve	RT			
TESTED BY: h. 1 H			ED B	¥: _	Ne	sa.	<u> </u>	an	ris	rec	<u>m</u>		
BEACON DIGITAL MESSAGE VERIFICATION									-				
SYNCHRONIZATION BIT #: 1 2 3 4 5	6	7	3 9	10	11	12	13	14	15				
Should be: 1 1 1 1 1 Decoded: 1 1 1 1 1	1	1	1 1 1 1	1	1 1	1	1	1	1				
*** BIT SYNCHRONIZATION													
FRAME SYNCHRONIZATION BIT #: 16 17 Should be: 0 0 Decoded: 0 0) 0	1	0 1		23 1 1								
Decoded: 0 0 *** FRAME SYNCHONIZAT			**				•						
MESSAGE TYPE: SHORT MESSAGE (bit 25													
DIGITAL MESSAGE IN HEXADECIMAL: A D	CD	0 0	0 0	0 4	4	0 4	. 0	1 0	0	A A	. 9	A	
BEACON BCH CODE VERIFICATION													
BCH CODE BIT #: 86 87 88 89 90 91 92	2 93	94 9	95 96 	97 	98	99	00	01	02	03	04	05	06
Should be: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	_	0 1 0 1		1	0	1	0	1 1	0	0	_	1
*** BCH CODE OK ***													

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, ARIZONA

MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 029

MANU: SEIMAC MODEL NO: PROFIND 406 SERIAL NO: 029
BEACON CERTIFICATION TEST RESULTS - OPICATION TEST-RETURN TO VERT
MEASUREMENT DATE: 20 Jul 2000 TIME: 07:08:37
TESTED BY:

APPROVED BY:

APPROVED BY:

storth

SPECIFICATIONS TESTED	LIMITS	RESULTS	UNITS	COMMENTS
Nominal transmitted frequency	406.028 ±.001	406.028109	MHz	passed
Short term frequency stability	< 2.0E-9	4.58E-10		passed
Medium term: mean slope	< 1.0E-9	-1.37E-10	/min	passed
residual deviation	< 3.0E-9	7.02E-10		passed

WSMR ELECTRONIC PROVING GROUND, US ARMY, FORT HUACHUCA, AKIZUMA
MANU: SEIMAC MODEL NO: PROFIND 406... SERIAL NO: 029
BEACON CERTIFICATION TEST RESULTS - ON POST TATION TO TO THE NEASUREMENT DATE: 20 Jul 2000 TIME: 07:15:53

APPROVED BY:

APPROVED BY:

SPECIFICATIONS	TESTED	LIMITS	RESULTS	UNITS	COMMENTS
Tx ouput power	level	3.15 TO 7.93	4.51	W	passed
Tx ouput power	level	3.15 TO 7.93	4.53	W	passed

APPENDIX B. SUMMARY TEST RESULTS

Table C2. SUMMARY OF TEST RESULTS

COMMENTS																		- Charles and a
	T _{max}	(+55° C)				WHITE HIME	406.0279	36.4		406.0279	36.4			406.0281	36.5		406.0281	36.5
TEST RESULTS	Tamb	(_+ <u>20°</u> C)	406.0281	36.5								1						
	Tmin	(-40° C)																
UNITS			WH2	dBm			MHz	dBm		MHz	dBm			MHz	dBm		MHz	dBm
RANGE OF	SPECIFICATION		406.028.+0.001	35 – 39			406.028 ±0.001	35 – 39		406.028 ±0.001	35 – 39			406.028 ±0.001	35 – 39		406.028 ±0.001	35 – 39
PARAMETERS TO BE MEASURED DURING TESTS			INITIAL ALIVENESS TEST (A1.0)	Carrier Frequency	DRY HEAT CYCLE (A3.0)	Aliveness Test (during 2-hour period)	Carrier Frequency	Power Output	Aliveness Test (at end of 2-hour period)	Carrier Frequency	Power Output	DAMP HEAT CYCLE (A4.0)	Aliveness Test (during 2-hour period)	Carrier Frequency	Power Output	Aliveness Test (at end of 2-hour period)	Carrier Frequency	Power Output

			۰
	•	×	

<u>-</u>			-		-					·									
COMMENTS																			
	Tmax	(_55° C)																1 m	
RESULTS	Tamb	(+20°C)		`		406.0277	36.3					406.0281	36.5			\		406.0281	36.5
	T _{eff}	(-40° C)													N. C.				
UNITS			ssenmanowoun	`	T COLUMN THE BEAUTY	MHZ	dBm	RIPS SHAKEN PROBLEM STATE	annount to garden	\	Have matrices and pares	MHz	dBm	essecuo sestimitar sintu	anto i que con activo de la constanta de la co	MINISTER AND STATES	nesem sugari rateri siri.	MHZ	dBm
RANGE OF SPECIFICATION				No damage		406.028 ±0.001	35 – 39	No activation during test		No damage		406.028 ±0.001	35 – 39	No activation during test		No damage		406.028 ±0.001	35 – 39
PARAMETERS TO BE MEASURED DURING TESTS			VIBRATION TEST (A5.0)	Exterior Mechanical Inspection	Aliveness Test:	Carrier Frequency	Power Output		BUMP TEST (A6.0)	Exterior Mechanical Inspection	Aliveness Test:	Carrier Frequency	Power Output		SALT FOG TEST (A7.0)	Exterior Mechanical Inspection	Aliveness Test:	Carrier Frequency	Power Output

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF	UNITS	And the second s	TEST RESULTS		COMMENTS
	SPECIFICATION		Ттіп	T _{amb}	T _{max}	
			(<u>-40°</u> C)	(+ <u>20°</u> C)	(+ 25° C)	
7-A. DROP TEST (A8.1)						
On Hard Surface		-				
Exterior Mechanical Inspection	No damage	<u>\</u>	\			
Aliveness Test:						
- Carrier Frequency	406.028 ±0.001	MHz	406.0281			
- Power Output	35 – 39	dBm	36.8			
Activation	No activation during test	`				
7-B. DROP TEST (A8.2)						
In Water	No damage	`	134 134 134 134 134 134 134 134 134 134			
Exterior Mediatrical Inspection Aliveness Test:		: : : : : : : : : : : : : : : : : : :				
- Carrier Frequency	406.028 ±0.001	MHz		406.0281		
Power Output	35 – 39	dBm		36.6		

(C
	ī
1	Υ

COMMENTS									Part of C-S	
	T _{max}	(+55° C)			240					
TEST RESULTS	Tamb	(+20° C)			406.028	36.6			\	
	Tmin	(-40° C)								
UNITS				IIII Need degenerates	MHz	dBm	**************************************		(attach oraphs)	(attach graphs)
RANGE OF	SPECIFICATION				406.028 ±0.001	35 – 39	No water		Figure 2-1	Figure 2-6
PARAMETERS TO BE MEASURED DURING TESTS			LEAKAGE AND IMMERSION TEST (A9.0)	Aliveness Test:	- Carrier Frequency	- Power Output	Interior Inspection	SPURIOUS EMISSIONS TEST (A10.0)	406 MHz	121.5 MHz

COMMENTS			Fresh Water	*Stress cracks in dome felt and observed during low temp shock. No water penetration	evident.			
	T _{max} (+55° C)	Max Stowage to 25° C water⁴	* 5 sec.	406.0279		3.59E ⁻¹⁰	3.44E ⁻¹⁰	2.28E ¹⁰
TEST RESULTS	T _{amb} (+20° C)							
	T _{min} (-40° C)	Min Stowage to 0° C water*	5 sec.	406.0279	ກ ອຸ	7.09E ¹⁰	5.45E ¹⁰	6.34E ⁻¹⁰
UNITS			minutes	MHz	Egg b	parts/million in 100 ms	parts/million /minute	parts/million
RANGE OF	SPECIFICATION		₩.	406.028 ±0.001	35 – 39 1 – 39	≤0.002	≤0.001	≤0.003
PARAMETERS TO BE MEASURED DURING TESTS			10. THERMAL SHOCK TEST (A11.0)Self-Activation in Water	Aliveness Test: Carrier Frequency	 Power Output Frequency Stability 	Short-term Stability - Medium-term Stability:	Mean Slope	Residual Frequency Variation

CONTINUED FROM PREVIOUS PAGE

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF	UNITS		TEST RESULTS		COMMENTS
	SPECIFICATION		T _{min} (-40° C)	T _{amb} (+20° C)	T _{max} (+55° C)	
			Min Stowage to 0° C water*		Max Stowage to 25° C water*	
10A. THERMAL SHOCK TEST (A11.0) Self-Activation in Water	\$1	minutes			4 sec.	Salt Water
Aliveness Test:						
- Carrier Frequency - Power Output	406.028 ±0.001 35 – 39	MHz	406.0279 36.9		406.0279 35.9	
Frequency Stability						
Short-term Stability Medium-term Stability	≤0.002	parts/million in 100 ms	6.90E ⁻¹⁰		3.76E ⁻¹⁰	
Mean Slope	≤0.001	parts/million /minute	5.26E ⁻¹⁰		3.17E ¹⁰	
Residual Frequency Variation	≤0.003	parts/million	3.84E ⁻¹⁰		1.93E ⁻¹⁰	
11. COSPAS-SARSAT TYPE APPROVAL TESTS (A12.0)	C-S Certificate (attach test report)	`	,		`	

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF	STIND		TEST RESULTS		COMMENTS
	SPECIFICATION		Tmin	Tamb	Тта	
			(<u>-40°</u> C)	(+20° C)	(_ +55° C)	
12. OPERATIONAL LIFE, STROBE LIGHT, AND SELF-TESTS (A13.0)						
Operational Life						ETERN Battery
• Frequency						
Nominal Carrier	406.028 ±0.001	MHz	406.0278			
Short-term Stability	≤0.002	parts/million in 100 ms	7.0E ⁻¹⁰		è	
Medium-term Stability						
- Mean Slope	≤0.001	parts/ million/ minute	1.0E ⁻¹⁰			
- Residual Variation	≤0.003	parts/million	2.5E ⁻¹⁰			
RF Power Output	35 – 39	dBm	36.8			
Strobe Flash Rate	20 – 30	/min	24			
Auxiliary Radio-Locating Peak Envelope Output Power	14 – 20	dBm	14.7			

B-10

CONTINUED FROM PREVIOUS PAGE

COMMENTS	18. de 18. de 19. d			SAFT Battery										_
0	Tmax	(+55° C)		SAFT										
TEST RESULTS		(_+ <u>20°</u> C)												
	T _{min}	(-40° C)			DOS SITURES ANA SECRETAR	406.0278	6.5E ⁻¹⁰	Saainupidi (2006)	0	теменененене	3.0E ⁻¹⁰	36.9	20	
UNITS						MHz	parts/million in 100 ms		parts/ million/	minute	parts/million	dBm	/min	_
RANGE OF	SPECIFICATION					406.028 ±0.001	≤0.002		≤0.001		≤0.003	35 – 39	20 – 30	
PARAMETERS TO BE MEASURED DURING TESTS			12A. OPERATIONAL LIFE, STROBE LIGHT, AND SELF-TESTS (A13.0)	Operational Life	Frequency	Nominal Carrier	Short-term Stability	Medium-term Stability	Mean Slope		Residual Variation	RF Power Output	Strobe Flash Rate	

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF	UNITS		TEST RESULTS		COMMENTS
	SPECIFICATION		Tain	Tamb	Ттах	
			(-40° C)	(+20° C)	(+55° C)	
12.1 STROBE LIGHT TEST (A13.2)						
Flash Rate	20 - 30	/min	20	23	20	
Effective Intensity	≥0.75	8	0.85	0.84	0.89	
Pulse Duration	10°to 10°	Ø	1.1E	8.5E ⁻⁵	1.5E ⁴	
12.2 SELF-TEST (A13.2)						
RF Pulse Duration	≤0.444 sec		`	\	\	Part of C-S
Frame Synchronization Pattern	0 1101 0000	* 1 * * * * * * * * * * * * * * * * * *			`	
Number of RF Bursts	1 Burst	>			•	

PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF	UNITS		TEST RESULTS		COMMENTS
	SPECIFICATION	-	T _{min} Stowage	Tamb	T _{max} Stowage	.*
			(<u>-50°</u> C)	(<u>+20°</u> C)	(+70° C)	
14. STABILTY AND BUOYANCY TEST (A16.0)						
Time to Upright	23	Ø		1.5		
Reserve Buoyancy	\$2	%		27		
Float Upright; Antenna Base	*	Ę		1.7		
15. INADVERTENT ACTIVATION TEST (A16.0)						
Activation/Release	UUT should not release from bracket	\		\		
	activate				2.7	

₹
÷
\mathbf{m}

17 Tmin Tmin Tmin Tmin Tmin Tmin Tmin Tmin	PARAMETERS TO BE MEASURED DURING TESTS	RANGE OF	UNITS		TEST RESULTS		COMMENTS	
121.5 ±0.006 MHz 121.499 14.7 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 47 %		SPECIFICATION		Tuin	amb	T max		
121.5 ±0.006 MHz 121.499 14 - 20 dBm 14.7 100 % 100 2700 Hz within range Hz 370-1111 of 300 – 1600 Hz / 741 Upward / / / / / / / / / / / / / / / / / / /				(<u>-40°</u> C)	(_ +20° C)	(+55° C)		
121.5 ±0.006 MHz 121.499 14 - 20 dBm 14.7 100 % 100 2700 Hz within range Hz 370-1111 of 300 – 1600 Hz % 47 Upward % 47 0.85 – 1.0 # 1.0 2 – 4 Hz 2.1 Omni-directional % 2.1	OCATING DEVICE (A17.0)							
14 - 20 dBm 14.7 100 2700 Hz within range Hz 370-1111 of 300 – 1600 Hz 741 Upward 7 33 – 55 % 47 0.85 – 1.0 # 1.0 2 – 4 Hz 2.1 Omni-directional 7 Vertical 7 Vertical 7 Vertical 7 1.00 2 – 4 Vertical 7 Vertical	>	121.5 ±0.006	MHz	121.499	121.498	121.498		
2700 Hz within range Hz 370-1111 of 300 – 1600 Hz 741 Upward		14 - 20	dBm	14.7	14.6	17		
≥700 Hz within range Hz 370-1111 of 300 – 1600 Hz Upward 33 – 55 % 47 0.85 – 1.0 # 1.0 2 – 4 Hz 2.1 Omni-directional / 2.1		100	%	100	100	100		
≥700 Hz within range Hz 741 Upward						-		
Upward		≥700 Hz within range of 300 – 1600 Hz	7	370-1111 741	354-1136 782	357-1204 847		
33 – 55 % 47 0.85 – 1.0 # 1.0 2 – 4 Hz 2.1 Omni-directional / / / / / / / / / / / / / / / / / / /		Upward	`	`	`	\		
0.85 – 1.0 # 1.0 2 – 4 Hz 2.1 Omni-directional /		33 – 55	%	47	48	46		
2-4 Hz 2.1 Omni-directional /		0.85 – 1.0	#	1.0	1.0	0.99		
ectional	tition Rate		꾸	2.1	2.2	2.7		
ectional				\$1.00 (d)				
		Omni-directional			· \			
		Vertical			`			
		≤1.5:1			N/A not removable			

APPENDIX C. PHASE MODULATION FAILURE

This document was provided by the manufacturer.

Technical Report – TR-419-99-013 V1.1 Oct 30, 2000 Phase Modulation Failure

Revision History	Date	Change
Initial Release V1.0	Sept 22, 2000	
Release V1.1	Oct 30, 2000	Added Addendum section

During certification testing the ProFind 406 EPIRB failed the phase modulation test at low temperatures. An investigation was carried out to determine the cause of this failure.

1. Phase Modulation Circuit

Phase modulation in the ProFind 406 is achieved by injecting an offset current into the feedback loop of the phase-lock-loop (PLL) circuit. A simplified schematic diagram for the circuit is shown in Figure 1.

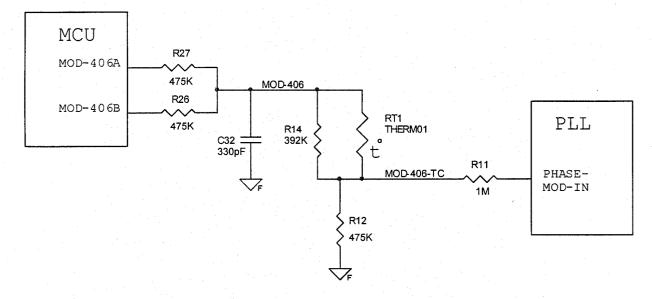


Figure 1. Phase Modulation Circuit

2. Theory of Operation

Digital signals *MOD-406A* and *MOD-406B* from the micro-controller (MCU) are set to one of three different state to achieve the different levels of modulation:

- a) During un-modulated carrier (zero phase modulation), MOD-406A is set high and MOD-406B is set low.
- b) For +1.1 radian phase modulation both MOD-406A and MOD-406A are set high.
- c) For -1.1 radian phase modulation both MOD-406A and MOD-406A are set low.

Signal MOD-406 is a summing point whose nominal voltage will be one of three levels depending on the modulation state (+1.1, 0, or -1.1 radians). Capacitor C32 controls the rise and fall time of the modulation signal.

Resistor R14 in parallel with thermistor RT1 and series resistor R12 provide a voltage divider network whose output signal *MOD-406-TC*. The current through resistor R11 is proportional to the voltage at *MOD-406-TC* and is used to phase modulate the PLL. The sensitivity of the modulation input signal *PHASE-MOD-IN* is temperature dependent. It is less sensitive at high temperatures. To compensate for this effect, thermistor RT1 is used to increase the modulation current signal into the PLL. The overall effect is to have a relatively constant phase modulation of the PLL over the operating temperature range.

3. Cause of Failure

The circuit described above has been used in several ARGOS transmitter circuits which have a similar phase modulation specifications. Some minor changes were required to adapt the design for the ProFind 406 because of different operating voltages.

During the development and in-house testing, the test engineer found that the phase modulation level measurements were too low (by about 0.1 radians). To increase the modulation he increased the value of R12 from 375K to 475k. This increased the modulation level but he also inadvertently changed the temperature characteristic of the compensating circuit.

The circuit was tested after the resistor value was changed but due to a malfunctioning test chamber, the circuit was only tested over a temperature range of -20°C to +55°C. If the circuit had been tested over the complete temperature range it would have shown that the modulation levels were too high at low temperatures.

As a result of this investigation we found that the in-house test measurements were performed with an uncalibrated instrument which gave readings which were low by about 0.1 radians. The assumption that the modulation level needed to be increased was false. Changing the resistor value increased the modulation level unnecessarily and caused the circuit to exceed the modulation specifications at low temperature. Unfortunately this was not tested sufficiently prior to certification testing.

4. Modulation Symmetry

More detailed in-house testing on separate test units has confirmed the findings at Fort Huachuca. The test results not only indicate that the average modulation levels are too high, but that there is a small offset between the positive modulation level and the negative modulation level. This is caused by the fact that the phase detector response is not quite symmetrical about its operating point. It is slightly more sensitive in the positive direction than the negative direction.

This asymmetry can be corrected by changing the relative values of R26 and R27. The optimum values for R26 and R27 are being evaluated presently.

5. Recommendations

Changing the resistor value R12 should bring the phase modulation with the specified limits. Further testing is recommended to determine the optimum value to minimize the variation with temperature.

It is also recommended that the values of R26 and R27 be changed slightly to make the positive and negative levels more symmetrical which would provide more head room for unit to unit variation.

Addendum

Further investigation found that the following component values should be changed:

Component	Changed from	Changed to
R26	475K	No change
R27	475K	500K
R12	402K	475K

APPENDIX D. DISTRIBUTION

Mr. Sergey Mikhailov Cospas-Sarsat Secretariat, Inmarsat 99 City Road London EC1Y 1AX United Kingdom

Derek Inglis 271 Brownlow Avenue Dartmouth, Nova Scotia, Canada B3B 1W6

Commander
WSMR Electronic Proving Ground
ATTN: CSTE-DTC-WS-EP-El
(Mrs. Barrineau/Mrs.Anthony)
Fort Huachuca, AZ 85613-7110