

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for Grant of Equipment Authorization

FCC Part 15, Subpart E

Model: HR54-700

FCC ID:	PGRHR54
APPLICANT:	Pace Americas Inc. 310 Providence Mine Road Nevada City, CA 95959
TEST SITE(S):	National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-3; 2845B-4, 2845B-5, 2845B-7
REPORT DATE:	August 3, 2015
REISSUE DATE:	August 6, 2015
FINAL TEST DATES:	June 19, 22, 25, 26, 28, July 1, 2, 8, 9, 10, 11, 14, 16, and August 5, 2015
TOTAL NUMBER OF PAGES:	125

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	August 3, 2015	First release	
1.0	August 6, 2015	Clarified spurious emissions below 1GHz. Clarified simultaneous 5GHz wifi + RF4CE Added frequency stability	MEH

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	9
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	11
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	12
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMILE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	
END OF KEPOKI	125

SCOPE

An electromagnetic emissions test has been performed on the Pace Americas Inc. model HR54-700, pursuant to the following rules:

FCC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2013 FCC General UNII Test Procedures KDB789033

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Pace Americas Inc. model HR54-700 complied with the requirements of the following regulations:

FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Pace Americas Inc. model HR54-700 and therefore apply only to the tested sample. The sample was selected and prepared by Mark Rieger of Pace Americas Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407 (a) (1) (iv)	-	Output Power	a: 52.5mW (17.2dBm) n20: 145.5mW (21.6dBm) n40: 167.5mW (22.2dBm) (Max eirp: 0.430W)	24 dBm	Complies
15.407 (a) (1) (iv)	-	Power Spectral Density	a: 3.2 dBm/MHz n20: 9.5 dBm/MHz n40: 7.2 dBm/MHz	11 dBm/MHz	Complies

Operation in the 5.25 – 5.35 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	20.6MHz minimum	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	-	Output Power	a: 79.4mW (19.0dBm) n20: 143.3mW (21.6dBm) n40: 133.7mW (21.3dBm) (Max eirp: 0.368W)	24dBm (250mW)	Complies
15.407(a) (2)	-	Power Spectral Density	a: 6.9 dBm/MHz n20: 9.0 dBm/MHz n40: 6.2 dBm/MHz	11 dBm/MHz	Complies

Operation in the 5.47 – 5.725 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	20.5MHz minimum	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	-	Output Power	a: 85.1mW (19.3dBm) n20: 166.5mW (22.2dBm) n40: 157.1mW (22.0dBm) (Max eirp: 0.428 W)	24dBm (250mW)	Complies
15.407(a) (2))	-	Power Spectral Density	a: 6.6 dBm/MHz n20: 9.5 dBm/MHz n40: 6.7 dBm/MHz	11 dBm/MHz	Complies

Project number J98591 Report Date: August 6, 2015

Operation in the 5.725-5.850 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(e)		6dB Bandwidth	16.4MHz minimum	>500kHz	N/A
15.407(a) (3)	-	Output Power	a: 77.6mW (18.9dBm) n20: 158.9mW (22.0dBm) n40: 146.7mW (21.7dBm) (Max eirp: 0.408W)	30 dBm	Complies
15.407(a) (3)	-	Power Spectral Density	a: 6.3 dBm/MHz n20: 9.2 dBm/MHz n40: 6.6 dBm/MHz	30 dBm/500kHz	Complies

Report Date: August 3, 2015

Requirements for all U-NII/LELAN bands

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407	-	Modulation	Digital Modulation is used	Digital modulation is required	Complies
15.407(b) (1) and (5) / 15.209	-	Spurious Emissions	68.0 dBµV/m @ 5468.5 MHz (-0.3 dB)	Refer to page 20	Complies
15.407 (c)	-	Operation in the absence of information to transmit	Operation is discontinued in the absence of information	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	-	Frequency Stability	Frequency stability is better than 20ppm	Signal shall remain within the allocated band	Complies
15.407 (h1)	-	Transmit Power Control	TPC is not required as the device operates at below 500mW eirp	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies
15.407 (h2)	-	Dynamic frequency Selection (device without radar detection)	Refer to separate test report, reference R98864	Channel move time < 10s Channel closing transmission time < 260ms	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antennas are internal to the device	Unique or integral antenna required	Complies
15.207	RSS GEN Table 3	AC Conducted Emissions	46.1 dBµV @ 0.443 MHz (-0.9 dB)	Refer to page 19	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate exhibit	Refer to OET 65, FCC Part 1 and RSS 102	Complies

Note: Spurious emission results for 802.11 5GHz and RF4CE simultaneous operation is found in R98955.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Redicted omission (field strength)	dBu\//m	25 to 1000 MHz	± 3.6 dB
Radiated emission (field strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Pace Americas Inc. model HR54-700 is a set-top-box DVR that incorporates 802.11abgn 2x2 and 2.4GHz RF4CE radios. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 12 Volts DC, 4.0 Amps. The electrical rating of the EUT power adapter is 120 Volts, 60 Hz, 1.1 Amps.

The sample was received on June 19, 2015 and tested on June 19, 22, 25, 26, 28, July 1, 2, 8, 9, 10, 11, 14, 16, and August 5, 2015. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Pace Americas, Inc.	HR54-700	DVR	G54DA5DN000024	PGR????
DirecTV	EPS44R3-16	AC/DC Adapter	DD44B1425A0039	N/A

ANTENNA SYSTEM

The wifi and RF4CE radios use separate antennas. The peak gain for the WiFi antennas: 3.3 dBi (2.4GHz), 4.1 dBi (5GHz) The peak gain for the RF4CE antennas: 4.9 dBi (2.4GHz)

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 33 cm wide by 25 cm deep by 5.5 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dynex	DX-LCD19-09	Television	H8984JA055002	-
-	-	USB Memory Stick	None	-
Lacie	d2 Quadra	Sata Drive Enclosure	16551411120974GH	
			В	

Report Date: August 3, 2015

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Linksys	BEFSR41	Cable/DSL Router	687F749FC378	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
TOIL	Connected To	Description	Shielded or Unshielded	Length(m)
Power Input	AC Adpater	2 wire with ferrite	Shielded	0.7
SATA	Sata Drive	Multiwire	Shielded	1.2
USB	USB Memory Stick	4 wire	Shielded	1.2
Ethernet	Remote Switch	Cat 5	Unshielded	7
HDMI	Television	Multiwire with ferrite	Shielded	1.2
Coaxial	Television	Coax	Shielded	1.2
Digital Audio Out	Not connected (optical)	-	-	-
A/V Out	Television	Multiwire	Shielded	1.0
Satellite In	Unterminated	Coax	Shielded	7
Temporary Serial Programming box	CN1510 connection on PCB	Multiwire	Unshielded	0.3
Temporary Serial Programming box	Laptop	Multiwire	Shielded	1.5

EUT OPERATION

During emissions testing the EUT was set to transmit continuously on the selected frequency, data rate, bandwidth, number of chains, power level and modulation as noted for each test using the serial port. The Ethernet port was in link state.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Registration Numbers FCC Canada		Location
Chamber 3	US0027	2845B-3	
Chamber 4	US0027	2845B-4	41039 Boyce Road
Chamber 5	US0027	2845B-5	- Fremont, - CA 94538-2435
Chamber 7	US0027	2845B-7	CA 94550-2455

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

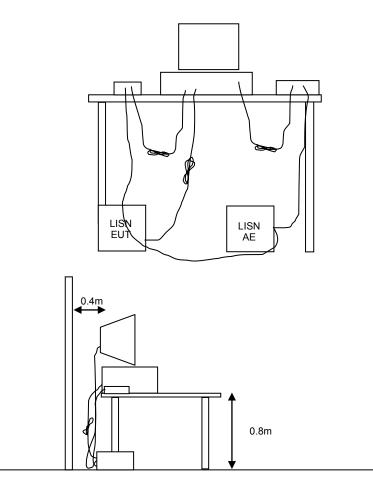
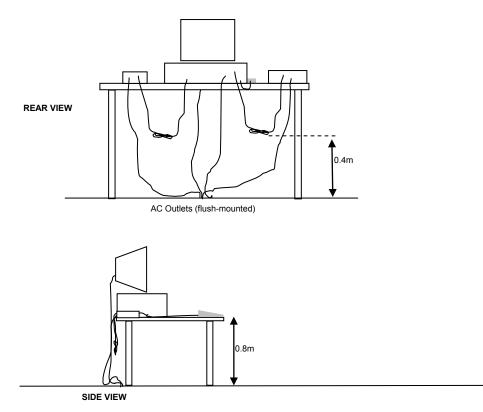
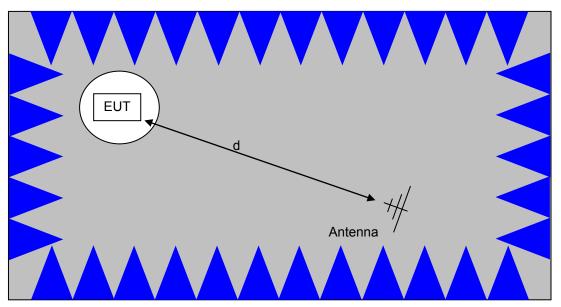


Figure 1 Typical Conducted Emissions Test Configuration

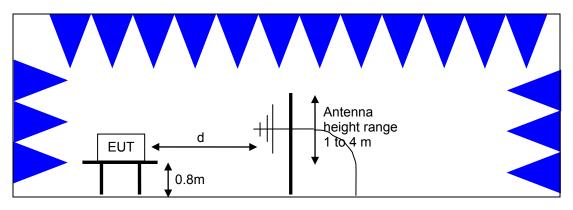
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

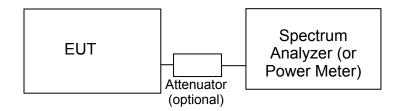

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

Report Date: August 3, 2015

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density.

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 – 5250	250 mW (24 dBm)	11 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5470 - 5725	250 mW (24 dBm)	11 dBm/MHz
5725 – 5850	1 Watts (30 dBm)	30 dBm/500Hz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi.

SPURIOUS EMISSIONS LIMITS – UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10MHz of the allocated band is increased to -17dBm/MHz.

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_d = 20*LOG_{10} (D_m/D_s)$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

Report Date: August 3, 2015

- L_{S} = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer	Description	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
Radiated Emissions, EMCO Rohde & Schwarz	1000 - 6,000 MHz, 19-Jun-15 Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz-40 GHz	3115 ESIB40 (1088.7490.40)	1561 2493	6/27/2014 1/23/2015	6/27/2016 1/23/2016
Radiated Emissions, EMCO Rohde & Schwarz	1000 - 6,000 MHz, 22-Jun-15 Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz-40 GHz	3115 ESIB40 (1088.7490.40)	1561 2493	6/27/2014 1/23/2015	6/27/2016 1/23/2016
Radiated Emissions, EMCO Rohde & Schwarz	1,000 - 6,500 MHz, 25-Jun-15 Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz-40 GHz	3115 ESIB40 (1088.7490.40)	1561 2493	6/27/2014 1/23/2015	6/27/2016 1/23/2016
Radiated Emissions, Hewlett Packard	1,000 - 18,000 MHz, 26-Jun-15 Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/31/2014	10/31/2015
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	5/2/2015	5/2/2016
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1682	7/15/2014	7/15/2015
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	9/16/2014	9/16/2015
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	10/3/2014	10/3/2015
EMCO	Antenna, Horn, 1-18 GHz	3115	2870	8/20/2013	8/20/2015
Radiated Emissions, Hewlett Packard	1000 - 18,000 MHz, 28-Jun-15 Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/31/2014	10/31/2015
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	5/2/2015	5/2/2016
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1682	7/15/2014	7/15/2015
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	9/16/2014	9/16/2015
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	10/3/2014	10/3/2015
EMCO	Antenna, Horn, 1-18 GHz	3115	2870	8/20/2013	8/20/2015
Radiated Emissions, Hewlett Packard	18 - 40 GHz, 01-Jul-15 Head (Inc W1-W4, 3136) Purple		1772	6/19/2015	6/19/2016
A. H. Systems	Purple System Horn, 18- 40GHz	SAS-574, p/n: 2581	2160	8/11/2014	8/11/2015
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	3/7/2015	3/7/2016
Radiated Emissions, Rohde & Schwarz	1000 - 6,000 MHz, 01-Jul-15 EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/20/2014	12/20/2015
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/27/2014	6/27/2016

Project number J98591 Report Date: August 6, 2015

National Technical S	Systems - Silicon Valley Repo	ort Date: August 3, 20	015 Re	Project numl port Date: Aug	
<u>Manufacturer</u> Bandedges, 1000 - 6	Description	Model	<u>Asset #</u>	Calibrated	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	2/20/2015	2/20/2016
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/20/2014	9/20/2015
Rohde & Schwarz	ÈMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/20/2014	12/20/2015
EMCO Micro-Tronics	Antenna, Horn, 1-18 GHz Band Reject Filter, 5470-5725 MHz	3115 BRC50704-02	1561 2240	6/27/2014 9/16/2014	6/27/2016 9/16/2015
Radiated Emissions, Hewlett Packard	1000 - 40,000MHz, 02-Jul-15 Microwave Preamplifier, 1- 26.5GHz	8449B	870	2/20/2015	2/20/2016
Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red	84125C	1145	6/17/2014	7/17/2015
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/20/2014	9/20/2015
EMCO A. H. Systems	Antenna, Horn, 1-18 GHz Blue System Horn, 18-40GHz	3115 SAS-574, p/n: 2581	1561 2159	6/27/2014 9/2/2014	6/27/2016 9/2/2015
Radiated Emissions, EMCO	1,000 - 26,000 MHz, 08-Jul-15 Antenna, Horn, 1-18 GHz	3115	487	7/29/2014	7/29/2016
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/4/2014	8/4/2015
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/20/2015	2/20/2016
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	3/7/2015	3/7/2016
	11000 - 25000 MHz, 09-Jul-15	0445	407	7/00/0044	7/00/0040
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1- 26.5GHz	3115 8449B	487 785	7/29/2014 10/31/2014	7/29/2016 10/31/2015
Hewlett Packard	Head (Inc flex cable, (1742,1743) Blue)	84125C	1620	6/5/2015	6/5/2016
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/4/2014	8/4/2015
A. H. Systems	Spare System Horn, 18- 40GHz	SAS-574, p/n: 2581	2162	7/24/2014	7/24/2015
Conducted Emission EMCO Rohde & Schwarz Rohde & Schwarz	ns - AC Power Ports, 09-Jul-15 LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	3825/2 ESH3 Z2 ESIB7	1293 1401 1756	6/2/2015 5/14/2015 6/20/2015	6/2/2016 5/14/2016 6/20/2016
Radiated Emissions, EMCO Micro-Tronics	1000 - 25,000MHz, 10-Jul-15 Antenna, Horn, 1-18 GHz Band Reject Filter, 5470-5725	3115 BRC50704-02	487 1681	7/29/2014 8/13/2014	7/29/2016 8/13/2015
Micro-Tronics	MHz Band Reject Filter, 2400-2500	BRM50702-02	1683	8/4/2014	8/4/2015
Hewlett Packard	MHz Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/20/2015	2/20/2016

Project number J98591 Report Date: August 6, 2015

	Rej	port Date: August 3, 2	2015 Re	eport Date: Aug	
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> SpecAn 9 kHz - 40 GHz, (SA40) Purple	<u>Model</u> 8564E (84125C)	<u>Asset #</u> 2415	<u>Calibrated</u> 3/7/2015	<u>Cal Due</u> 3/7/2016
Radio Antenna Port Agilent Technologies	(Power and Spurious Emission PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	ons), 11-Jul-15 E4446A	2139	6/22/2015	6/22/2016
Radio Antenna Port EMCO Rohde & Schwarz	(Power and Spurious Emission Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz-7 GHz	3115	487 1538	7/29/2014 12/20/2014	7/29/2016 12/20/2015
Frequency Stability,	05-Aug-15				
Agilent Technologies	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	22-Jun-15	6/22/16
Watlow	Temp Chamber (w/ F4 watlow Controller)	[/] 96A0	2171	14-Jul-15	7/14/16

Appendix B Test Data

T98678 Pages 27 - 124

EMC Test Data

Client	Pace Americas, Inc.	Job Number:	J98591
Product	HR54-700	T-Log Number:	T98678
System Configuration:		Project Manager:	Irene Radamacher
Contact	Mark Rieger	Project Coordinator:	
Emissions Standard(s):	FCC 15.247, 15.407	Class:	N/A
Immunity Standard(s):		Environment:	Radio
System Configuration: Contact: Emissions Standard(s):	Mark Rieger FCC 15.247, 15.407	Project Manager: Project Coordinator: Class:	Irene Radamacher N/A

EMC Test Data

For The

Pace Americas, Inc.

Product

HR54-700

Date of Last Test: 7/21/2015

EMC Test Data

	L'ENGINEER SUCCESS		
Client:	Pace Americas, Inc.	Job Number:	J98591
Madal	HR54-700	T-Log Number:	T98678
MOUEI.	I. FIR34-700	Project Manager:	Irene Radamacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.247, 15.407	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:	Temperature: 25	
	Rel. Humidity:	35 %

Summary of Results

Mode	Channel	Target Setting	Passing Setting	Test Performed	Limit	Result / Margin
dwith Modes	1					
а	36 - 5180MHz	17	17	Restricted Band Edge at 5150 MHz	15.209	49.0 dBµV/m @ 5150.0 MHz (-5.0 dB)
а	64 - 5320MHz	18	18	Restricted Band Edge at 5350 MHz	15.209	47.7 dBµV/m @ 5350.0 MHz (-6.3 dB)
а	100 - 5500MHz	20	20	Restricted Band Edge at 5460 MHz	15.209	47.9 dBµV/m @ 5458.6 MHz (-6.3 dB)
а	100 - 5500MHz	20	20	Band Edge 5460 - 5470 MHz	15E	65.8 dBµV/m @ 5468.3 MHz (-2.5 dB)
а	140 - 5700MHz	20	19	Band Edge 5725MHz	15E	52.2 dBµV/m @ 5725.0 MHz (-1.8 dB)
а	149 - 5745MHz	16	16	Band Edge 5715MHz	15E	58.7 dBµV/m @ 5705.6 MHz (-9.6 dB)
а	149 - 5745MHz	16	16	Band Edge 5725MHz	15E	70.2 dBµV/m @ 5724.2 MHz (-8.1 dB)
а	165 - 5825MHz	19	19	Band Edge 5850MHz	15E	66.9 dBµV/m @ 5851.1 MHz (-11.4 dB)
а	165 - 5825MHz	19	19	Band Edge 5860MHz	15E	60.9 dBµV/m @ 5861.0 MHz (-7.4 dB)
	dwith Modes a a a a a a a a a a a a a a a a a a	dwith Modes dwith Modes 36 - 5180MHz a 36 - 5180MHz a 64 - 5320MHz a 100 - 5500MHz a 100 - 5500MHz a 140 - 5700MHz a 149 - 5745MHz a 165 - 5825MHz a 165 -	Mode Channel Setting dwith Modes 36 - 5180MHz 17 a 36 - 5180MHz 17 a 64 - 5320MHz 18 a 100 - 5500MHz 20 a 100 - 5500MHz 20 a 100 - 5500MHz 20 a 140 - 5700MHz 20 a 149 - 5745MHz 16 a 149 - 5745MHz 16 a 165 - 5825MHz 19 a 165 - 19 19	Mode Channel Setting Setting dwith Modes 36 - 5180MHz 17 17 a 36 - 5180MHz 17 17 a 64 - 5320MHz 18 18 a 100 - 5300MHz 20 20 a 100 - 5500MHz 20 20 a 100 - 5500MHz 20 20 a 140 - 5700MHz 20 19 a 149 - 5700MHz 20 19 a 149 - 5745MHz 16 16 a 165 - 19 19 19 a 165 - 19 19 19	Mode Channel Setting Setting Test Penomed dwith Modes 36 - 5180MHz 17 17 Restricted Band Edge at 5150 MHz a 64 - 5320MHz 18 18 Restricted Band Edge at 5350 MHz a 100 - 5320MHz 20 20 Restricted Band Edge at 5350 MHz a 100 - 5500MHz 20 20 Restricted Band Edge at 5460 MHz a 100 - 5500MHz 20 20 Band Edge 5460 - 5470 MHz a 140 - 5700MHz 20 19 Band Edge 5725MHz a 149 - 5700MHz 16 16 Band Edge 5715MHz a 149 - 5745MHz 16 16 Band Edge 5725MHz a 149 - 5745MHz 16 16 Band Edge 5725MHz a 149 - 5745MHz 16 16 Band Edge 5725MHz a 149 - 5745MHz 16 16 Band Edge 5850MHz a 165 - 19 19 Band Edge 5850MHz 5825MHz a 165 - 19 19 Band Edg	Mode Channel Setting Setting Test Pendimied Limit dwith Modes 36 - 5180MHz 17 17 Restricted Band Edge at 5150 MHz 15.209 a 64 - 5320MHz 18 18 Restricted Band Edge at 5350 MHz 15.209 a 100 - 5300MHz 20 20 Restricted Band Edge at 5350 MHz 15.209 a 100 - 5500MHz 20 20 Restricted Band Edge at 5460 MHz 15.209 a 100 - 5500MHz 20 20 Restricted Band Edge at 5460 - 5470 MHz 15.209 a 140 - 5500MHz 20 20 Band Edge 5725MHz 15E a 149 - 5745MHz 16 16 Band Edge 5715MHz 15E a 149 - 5745MHz 16 16 Band Edge 5725MHz 15E a 149 - 5745MHz 16 16 Band Edge 5725MHz 15E a 165 - 5825MHz 19 19 Band Edge 5850MHz 15E a 165 - 19 19 19 Band Edge 58

		R SUCCESS				EM	C Test Data
Client:	Pace Ameri	cas, Inc.				Job Number:	J98591
Madalı						T-Log Number:	T98678
Model:	HR54-700					Project Manager:	Irene Radamacher
Contact:	Mark Riege	r				Project Coordinator:	-
Standard:	FCC 15.247	7, 15.407				Class:	N/A
					L. L		I
Run #	Mode	Channel	Target Setting	Passing Setting	Test Performed	Limit	Result / Margin
5	n20	36 - 5180MHz	20	18	Restricted Band Edge at 5150 MHz	15.209	52.6 dBµV/m @ 5150.0 MHz (-1.4 dB)
6	n20	64 - 5320MHz	20	20	Restricted Band Edge at 5350 MHz	15.209	51.6 dBµV/m @ 5351.0 MHz (-2.4 dB)
	n20	100 - 5500MHz	20	20	Restricted Band Edge at 5460 MHz	15.209	48.3 dBµV/m @ 5460.0 MHz (-5.7 dB)
7	n20	100 - 5500MHz	20	20	Band Edge 5460 - 5470 MHz	15E	68.0 dBµV/m @ 5468.5 MHz (-0.3 dB)
	n20	140 - 5700MHz	20	19	Band Edge 5725MHz	15E	52.5 dBµV/m @ 5725.1 MHz (-1.5 dB)
	n20	149 - 5745MHz	16	16	Band Edge 5715MHz	15E	58.1 dBµV/m @ 5705.9 MHz (-10.2 dB)
8	n20	149 - 5745MHz	16	16	Band Edge 5725MHz	15E	49.9 dBµV/m @ 5725.0 MHz (-4.1 dB)
Ū	n20	165 - 5825MHz	19	19	Band Edge 5850MHz	15E	67.4 dBµV/m @ 5850.2 MHz (-0.9 dB)
	n20	165 - 5825MHz	19	19	Band Edge 5860MHz	15E	60.4 dBµV/m @ 5860.6 MHz (-7.9 dB)
40MHz Ban	dwith Modes						
9	n40	38 - 5190MHz	17	16	Restricted Band Edge at 5150 MHz	15.209	52.4 dBµV/m @ 5150.0 MHz (-1.6 dB)
10	n40	62 - 5310MHz	19	18	Restricted Band Edge at 5350 MHz	15.209	52.0 dBµV/m @ 5351.1 MHz (-2.0 dB)
	n40	102 - 5510MHz	19	17	Restricted Band Edge at 5460 MHz	15.209	48.4 dBµV/m @ 5460.0 MHz (-5.6 dB)
11	n40	102 - 5510MHz	19	17	Band Edge 5460 - 5470 MHz	15E	63.6 dBµV/m @ 5467.7 MHz (-4.7 dB)
	n40	134 - 5670MHz	20	20	Band Edge 5725MHz	15E	58.7 dBµV/m @ 5725.2 MHz (-9.6 dB)
	n40	151 - 5755MHz	15	15	Band Edge 5715MHz	15E	63.3 dBµV/m @ 5714.8 MHz (-5.0 dB)
12	n40	151 - 5755MHz	15	15	Band Edge 5725MHz	15E	67.0 dBµV/m @ 5720.2 MHz (-11.3 dB)
12	n40	159 - 5795MHz	20	20	Band Edge 5850MHz	15E	61.5 dBµV/m @ 5850.0 MHz (-16.8 dB)
	n40	159 - 5795MHz	20	20	Band Edge 5860MHz	15E	62.3 dBµV/m @ 5876.5 MHz (-6.0 dB)

	E ENGINEER SUCCESS	EMO	C Test Data
Client:	Pace Americas, Inc.	Job Number:	J98591
Madal	HR54-700	T-Log Number:	Т98678
woder.	HR34-700	Project Manager:	Irene Radamacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.247, 15.407	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	6Mb/s	0.98	Yes	1.443	0	0	10
n20	MCS0	0.99	Yes	1.330	0	0	10
n40	MCS0	0.98	Yes	1.330	0	0	10

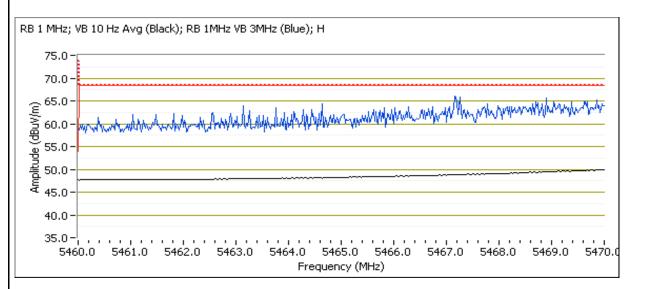
Sample Notes

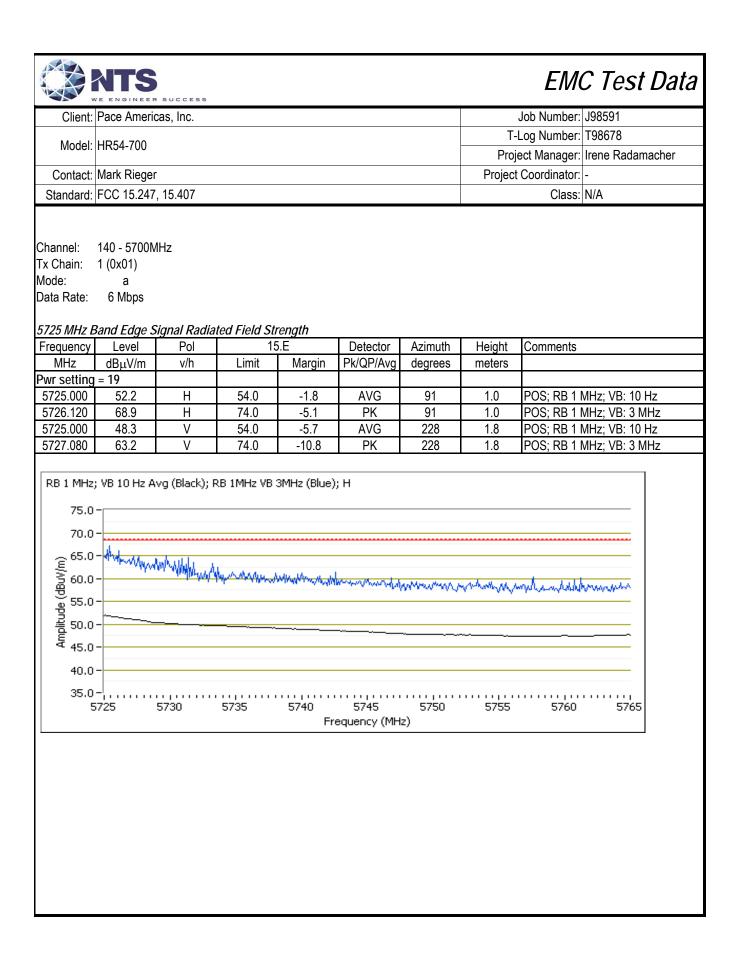
Sample S/N: G54DA5DN000024 Driver: 5.99 RC 188.10 Antenna: Internal

Measurement Specific Notes:

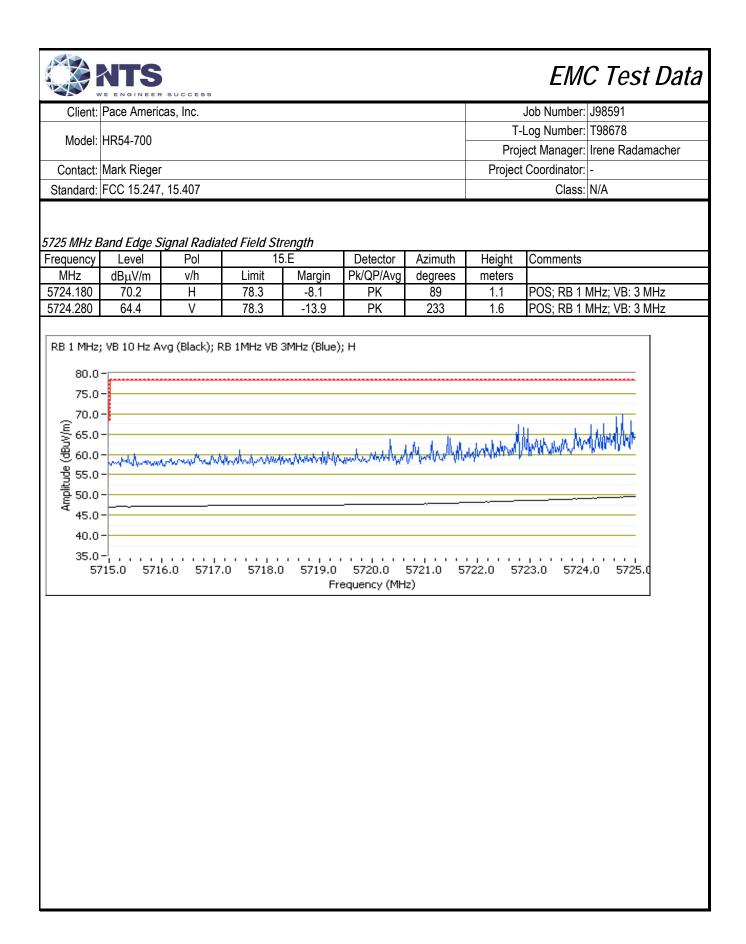
Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector, linear averaging, auto sweep, trace average 100 * 1/DC traces, measurement corrected by Linear Voltage correction factor
Note 6:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final measurements.

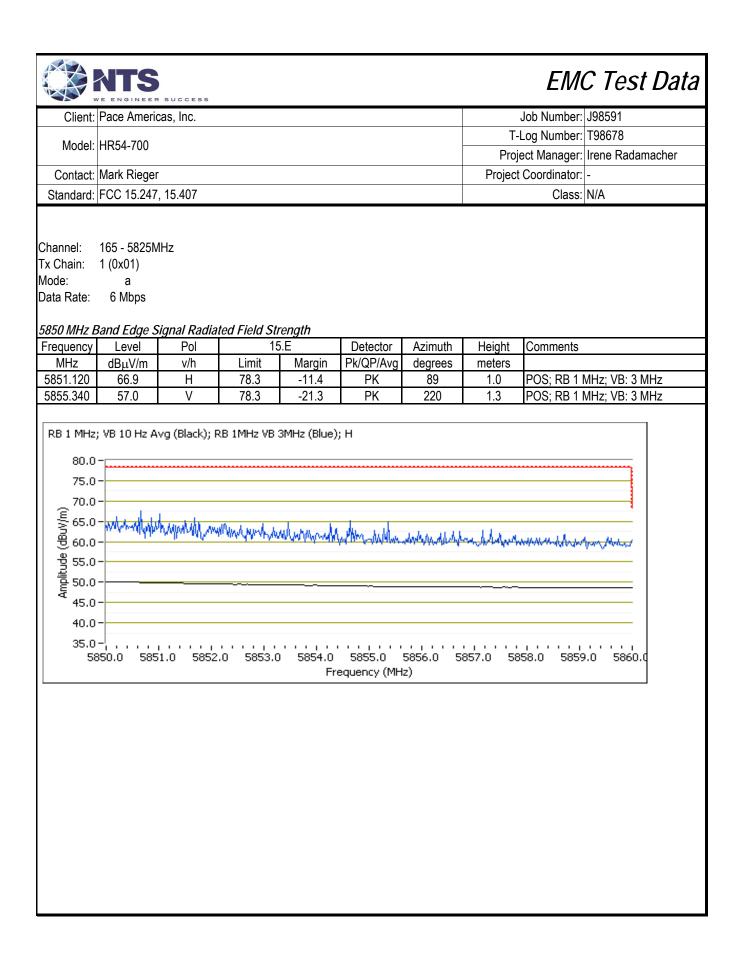
Client:	Pace Ame	ricas, Inc.						Job Number: J98591	
Madal	HR54-700						T-	Log Number: T98678	
woder.	пк <u>3</u> 4-700						Proj	ect Manager: Irene Radamacher	
Contact:	Mark Rieg	er					Project Coordinator: -		
Standard:	FCC 15.24	7, 15.407						Class: N/A	
[Te	Date of Tes st Enginee	ndedge Meas t: 6/22/2015 0 r: John Caizzi		150-5250MH	Con	onfig. Used: fig Change:	none		
Te	est Locatior	: Chamber 5			E	UT Voltage:	120V / 60H	Z	
Channel: Tx Chain: Mode: Data Rate: <i>5150 MHz E</i>	36 - 5180 1 (0x01) a 6 Mbps Band Edge	MHz Signal Radia	ted Field Sti	rength					
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.000	49.0	Н	54.0	-5.0	AVG	76	1.22		
5149.760 5149.840	67.4 47.1	H V	74.0 54.0	-6.6 -6.9	PK AVG	76 233	1.22 1.59		
5149.520	62.5	V	74.0	-0.5	PK	233	1.59		
(m)	80.0 - 70.0 - 60.0 -	0 Hz Blue =			humhyd	nnthann an dea	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	white and the second	
	30.0-,,, 5110	5115	5120	512	5 5130 Frequency	0 51:	35 5	140 5145 5150	


	WE ENGINEER	R SUCCESS						EMC Test Dat	
Client:	Pace Americ	cas, Inc.						Job Number: J98591	
Model:	HR54-700							Log Number: T98678	
0 1 1							Project Manager: Irene Radamacher		
	Mark Rieger						Project Coordinator: -		
Standard:	FCC 15.247	, 15.40 <i>1</i>						Class: N/A	
Run #2: Ra	adiated Band	ledge Meas	urements, 5	250-5350MH	łz				
	Date of Test:		:00			onfig. Used:			
	est Engineer:					fig Change:			
16	est Location:	Champer 5			E	UT Voltage:	120V / 60H	Ζ	
Channel:	64 - 5320MI	Ηz							
Tx Chain:	1 (0x01)								
Mode:	а								
Data Rate:	6 Mbps								
5250 MU- I	Band Edge S	Signal Dadia	tod Field St	ronath					
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.000	47.7	Н	54.0	-6.3	AVG	70	1.0	POS; RB 1 MHz; VB: 10 Hz	
5350.480	60.2	Н	74.0	-13.8	PK	70	1.0	POS; RB 1 MHz; VB: 3 MHz	
5350.000	46.1	V	54.0	-7.9	AVG	63	1.1	POS; RB 1 MHz; VB: 10 Hz	
5357.700	59.6	V	74.0	-14.4	PK	63	1.1	POS; RB 1 MHz; VB: 3 MHz	
BB 1	I MHz; VB 10	Hz Blue =	nk, black = /	ava H					
		112 2100	pry black i						
	80.0-								
	70.0-								
(m//n								1	
(dBuV/m)		where where the state of the st	and the second	moundary	home the part of	Moundly	manuth	man man man marker the marker	
tude (dBuV/m)		www.white		Manhan	handhannara	www.hyndu	mutaday	un and a stand	
mplitude (dBuV/m)		where the design of the second se		- 	herres Alexandres	www.www.	mandraha		
Amplitude (dBuV/m)	60.0 - MMAA 50.0 -	www.duhhhw 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 	hanna tha ann an a	nder and an	mumuhay	man Indunation of the second	
Amplitude (dBuV/m)		werndendere 		 	hann the second s	whether whether the	munden		
Amplitude (dBuV/m)	60.0 - 000000 50.0					~~~~			
Amplitude (dBuV/m)	60.0 - 000000 50.0) 53		380 5385 5390	

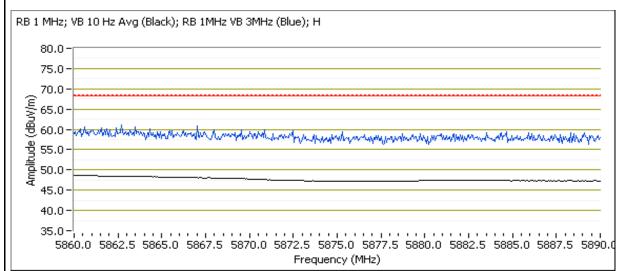

		SUCCESS						EMO	C Test Data
Client:	Pace Americ	cas, Inc.						Job Number:	J98591
Madal							T-	Log Number:	T98678
woder:	HR54-700						Proj	ect Manager:	Irene Radamacher
Contact:	Mark Rieger						Project	Coordinator:	-
Standard:	FCC 15.247	, 15.407						Class:	N/A
I	adiated Banc Date of Test: est Engineer:	6/22/2015 0	:00	470-5725MF	Co	onfig. Used: fig Change:			
	est Location: 100 - 5500M	FT Chambe				UT Voltage:		Z	
Tx Chain:	1 (0x01)								
Mode:	а								
Data Rate: 5460 MHz I	6 Mbps Band Edge S	ianal Radia	ted Field Sti	renath					
Frequency		Pol		δ.Ε	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5458.560	47.9	Н	54.0	-6.3	AVG	90	1.0		RB 1 MHz; VB: 10 Hz
5454.550	60.4	Н	74.0	-13.6	PK	90	1.0		/Hz; VB: 3 MHz
5426.970	47.0	V	54.0	-7.0	AVG	66	1.0		/Hz; VB: 10 Hz
5425.770	58.7	V	74.0	-15.3	PK	66	1.0	POS; RB 11	/Hz; VB: 3 MHz
) –				; H				ngortmett

NTS e engineer buccess	EMC Test Dat
Pace Americas, Inc.	Job Number: J98591
	T-Log Number: T98678
HK34-700	Project Manager: Irene Radamacher
Mark Rieger	Project Coordinator: -
FCC 15.247, 15.407	Class: N/A
	Pace Americas, Inc. HR54-700 Mark Rieger


5470 MHz Band Edge Signal Radiated Field Strength


Frequency	Level	Pol	15	i.Ε	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5468.320	65.8	Н	68.3	-2.5	PK	90	1.0	POS; RB 1 MHz; VB: 3 MHz
5468.220	64.8	V	68.3	-3.5	PK	66	1.0	POS; RB 1 MHz; VB: 3 MHz

Client	Pace Americ	as, Inc.						Job Number:	J98591
M. 1.1		`					T-	Log Number:	T98678
Model:	HR54-700						Proj	ect Manager:	Irene Radamacher
Contact:	Mark Rieger						Project	Coordinator:	-
Standard:	FCC 15.247	, 15.407						Class:	N/A
un #4: Ra	adiated Band	ledge Meas	urements, 5	725-5850MH	Ηz				
	Date of Test:	6/22/2015 0	:00		C	onfig. Used:	1		
	est Engineer:					fig Change:			
Т	est Location:	FT Chambe	r #5		E	UT Voltage:	120V / 60H	Z	
nannel:	149 - 5745N	IHz							
Chain:	1 (0x01)					78.3			
ode:	a 68.								
ata Rate:	6 Mbps								
715 MHz I	Band Edge S	ianal Radia	ted Field Sti	renath					
requency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
705.620	58.7	Н	68.3	-9.6	PK	89	1.1		MHz; VB: 3 MHz
5712.720	57.2	V	68.3	-11.1	PK	233	1.6	POS; RB 1 I	MHz; VB: 3 MHz
80.0 75.0 70.0 (^w / ₂) 80.0		whatmanda		NAN MANA	uthewaytonwood	aproposition	nonhaidhiinii	phyllolum	whatedan

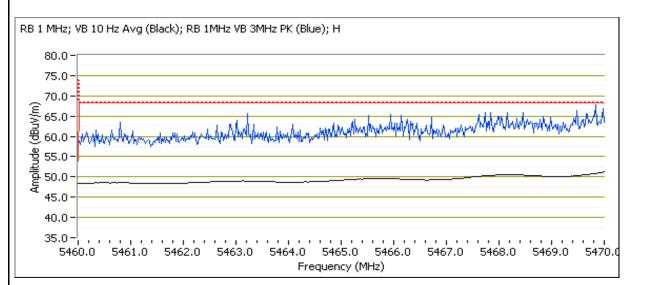


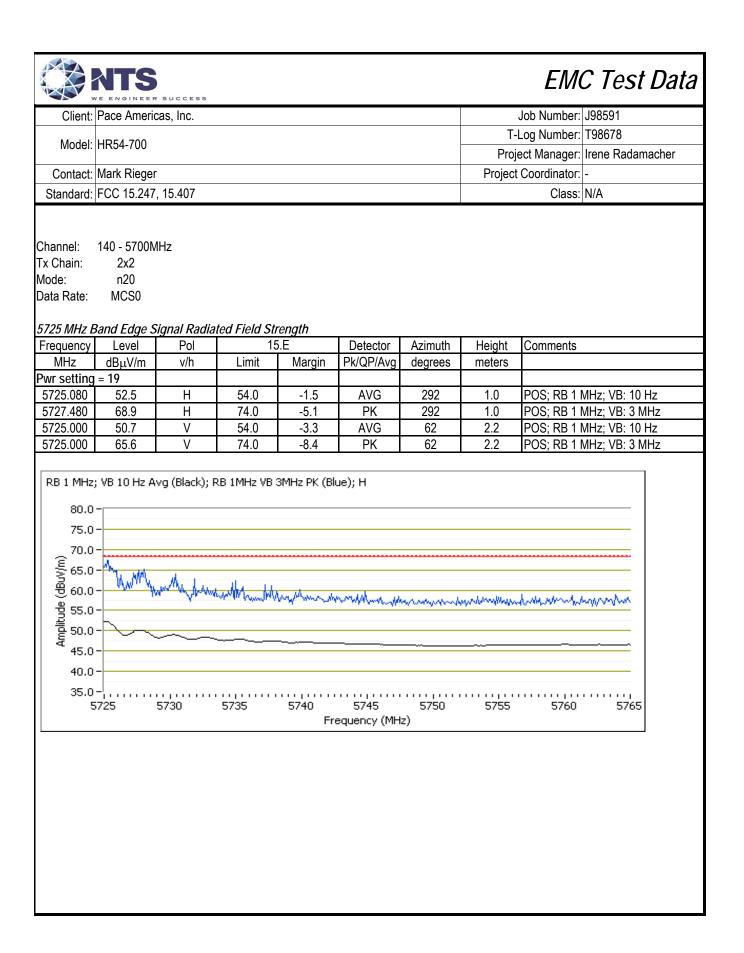
	NTS VE ENGINEER SUCCESS	EMO	EMC Test Data			
Client:	Pace Americas, Inc.	Job Number:	J98591			
Madal	HR54-700	T-Log Number:	Т98678			
wouer.	HR34-700	Project Manager:	Irene Radamacher			
Contact:	Mark Rieger	Project Coordinator:	-			
Standard:	FCC 15.247, 15.407	Class:	N/A			

5860 MHz Band Edge Signal Radiated Field Strength

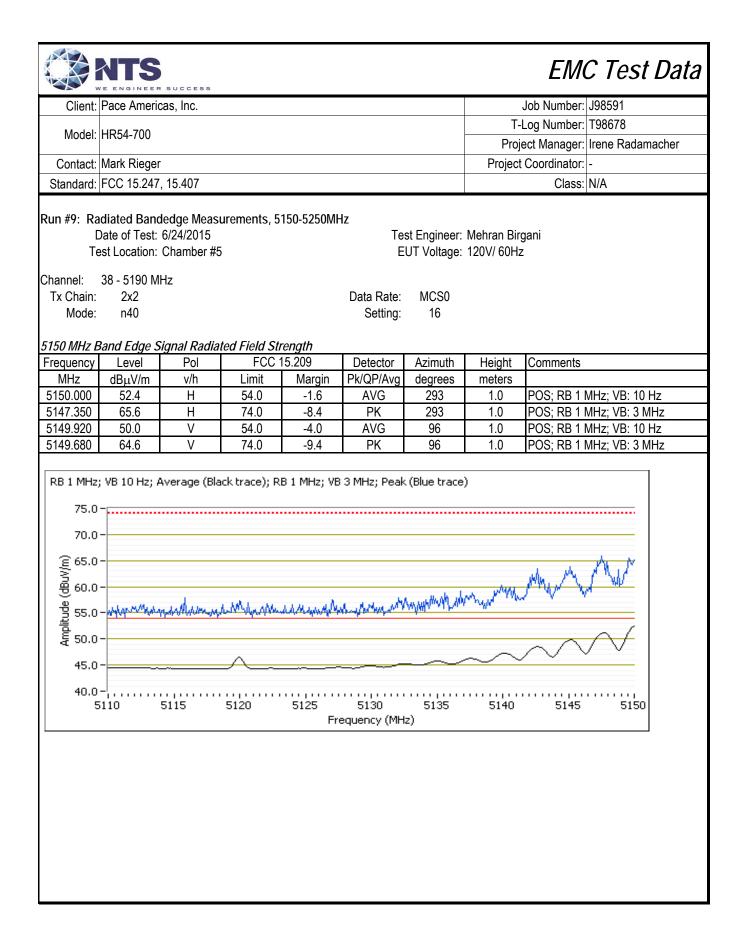
Frequency	Level	Pol	15	i.E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5860.960	60.9	Н	68.3	-7.4	PK	89	1.0	POS; RB 1 MHz; VB: 3 MHz
5877.500	57.1	V	68.3	-11.2	PK	220	1.3	POS; RB 1 MHz; VB: 3 MHz

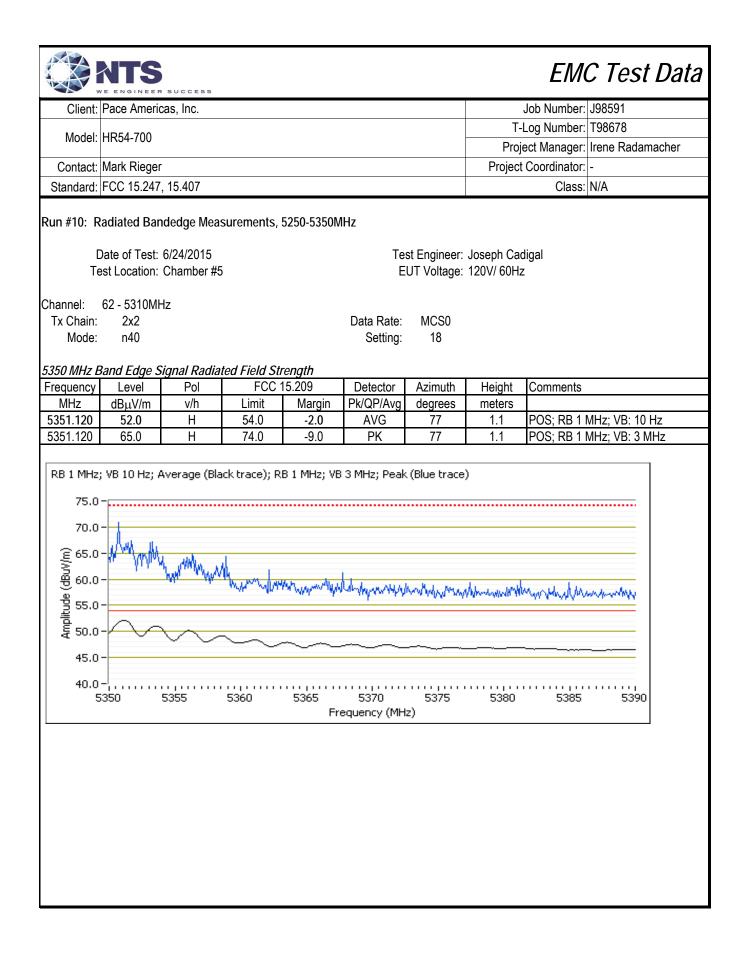
		RSUCCESS						EIVIO	C Test Dat
Client:	Pace Americ	cas, Inc.						Job Number:	J98591
Madalı	HR54-700						T-	Log Number:	T98678
woder:	HK34-700						Proj	ect Manager:	Irene Radamacher
Contact:	Mark Rieger						Project	Coordinator:	-
Standard:	FCC 15.247	, 15.407						Class:	N/A
[Te	Date of Test: st Engineer:	dedge Measi 6/22/2015 0 Rafael Vare FT Chambe Hz	:00 las	150-5250MF	Con	onfig. Used: fig Change: UT Voltage:	none	z	
ata Rate:	MCS0	Signal Radia	ted Field Sti	rength					
requency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
wr setting									
5150.000	52.6	H	54.0	-1.4	AVG	88	1.0		MHz; VB: 10 Hz
5148.400	69.3	H	74.0	-4.7	PK	88	1.0		MHz; VB: 3 MHz
5149.360 5149.440	49.3 65.9	V V	54.0 74.0	-4.7 -8.1	AVG PK	41 41	2.3 2.3		MHz; VB: 10 Hz MHz; VB: 3 MHz
75.0 70.0 65.0 60.0 55.0 55.0 50.0 45.0					; H \/lw^\www.WW			1	
40.0 35.0 5	_	5115	5120	5125	5130 equency (MH	5135	5140	5145	5150

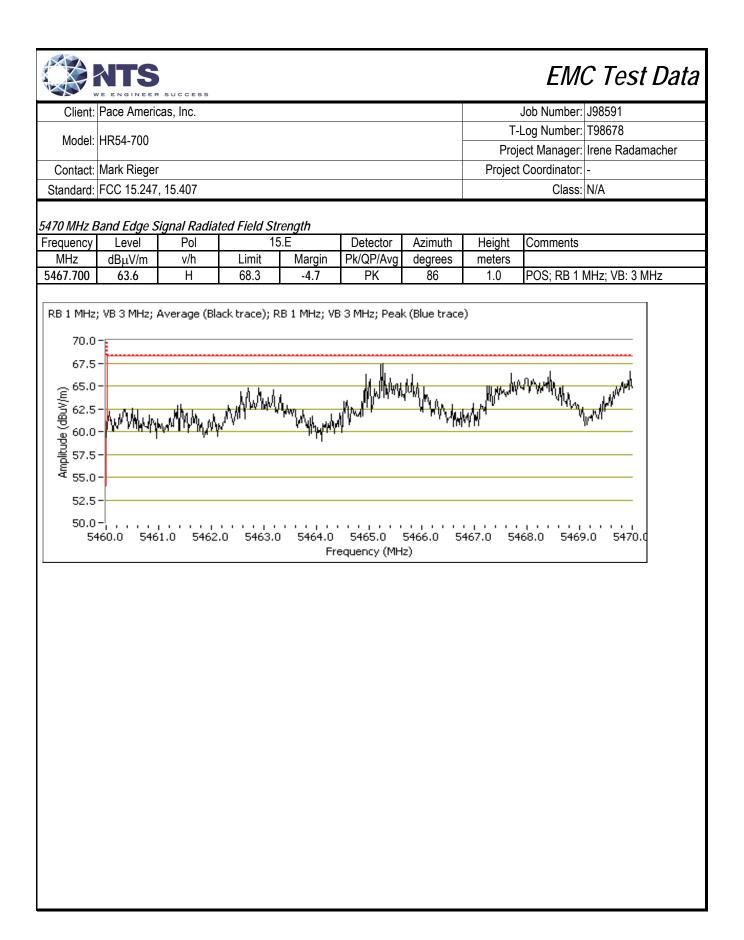

		SUCCESS						EMC Test Data	
Client:	Pace Americ	cas, Inc.						Job Number: J98591	
	1054 700						T-I	_og Number: T98678	
Model:	HR54-700					·	Project Manager: Irene Radamacher		
Contact:	Mark Rieger						Project Coordinator: -		
	FCC 15.247						,	Class: N/A	
)up #6. Da	diated Dana	ladaa Maaa	uromonto. E		1-				
	idiated Band	-		200-0300101F		anfin Ilaadi	4		
	Date of Test: est Engineer:					onfig. Used: fig Change:			
	est Location:					UT Voltage:		7	
		. i chumbe				er voltago.	.2017.0011	-	
Channel:	64 - 5320MH	Ηz							
x Chain:	2x2								
/lode:	n20								
Data Rate:	MCS0								
5350 MHz E	Band Edge S	ignal Radia	ted Field Sti	rength					
requency	Level	Pol	FCC ²	15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.960	51.6	Н	54.0	-2.4	AVG	79	2.6	POS; RB 1 MHz; VB: 10 Hz	
5350.560	67.3	H	74.0	-6.7	PK	79	2.6	POS; RB 1 MHz; VB: 3 MHz	
5350.400	49.1	V	54.0	-4.9	AVG	223	1.5	POS; RB 1 MHz; VB: 10 Hz	
5351.120	60.7	V	74.0	-13.3	PK	223	1.5	POS; RB 1 MHz; VB: 3 MHz	
75.0 70.0	-Mh. M				ue); H				

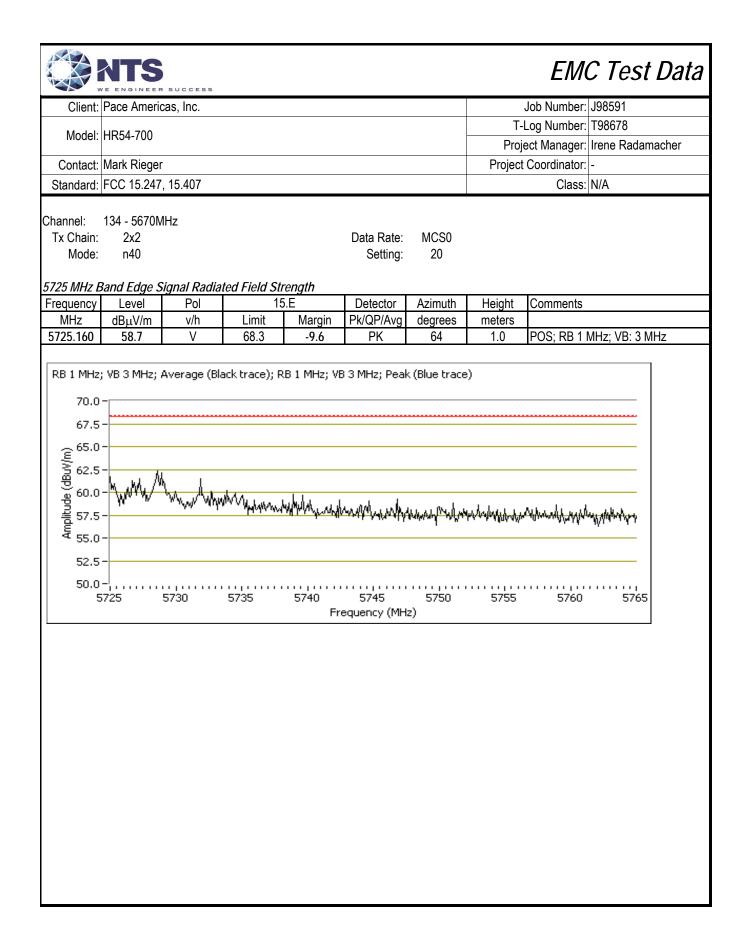

	NIJ	SUCCESS						EMO	C Test Data
Client:	Pace Americ	cas, Inc.						Job Number:	
Madal	HR54-700						T-	Log Number:	T98678
woder.	NK34-700						Proj	ect Manager:	Irene Radamacher
Contact:	Mark Rieger	•					Project Coordinator: -		
	FCC 15.247							Class:	N/A
Run #7: Ra	adiated Band	ledge Meas	urements, 5	470-5725MF	łz				
I	Date of Test:	6/22/2015 0	:00		С	onfig. Used:	1		
	est Engineer:					fig Change:			
Т	est Location:	FT Chambe	r #5		E	UT Voltage:	120V / 60H	Z	
	400 5500								
Channel:	100 - 5500N	1HZ							
Tx Chain: Mode:	2x2 n20								
Data Rate:	MCS0								
5460 MHz I	Band Edge S	<i>Signal Radia</i>							
Frequency	Level	Pol		5.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5460.000	48.3	H	54.0	-5.7	AVG	270	1.2		/Hz; VB: 10 Hz
5449.420	62.1	H V	74.0	-11.9	PK	270	1.2		/Hz; VB: 3 MHz
5427.210 5459.280	46.9 58.4	V	54.0 74.0	-7.1 -15.6	AVG PK	72 72	1.0 1.0		/Hz; VB: 10 Hz /Hz; VB: 3 MHz
3433.200	50.4	V	74.0	-15.0	ΓN	12	1.0	F03, ND T I	
80.0					ue); H uhlwwwy	hattingantadin.	Murundu Markov	*/////////////////////////////////////	kuruna

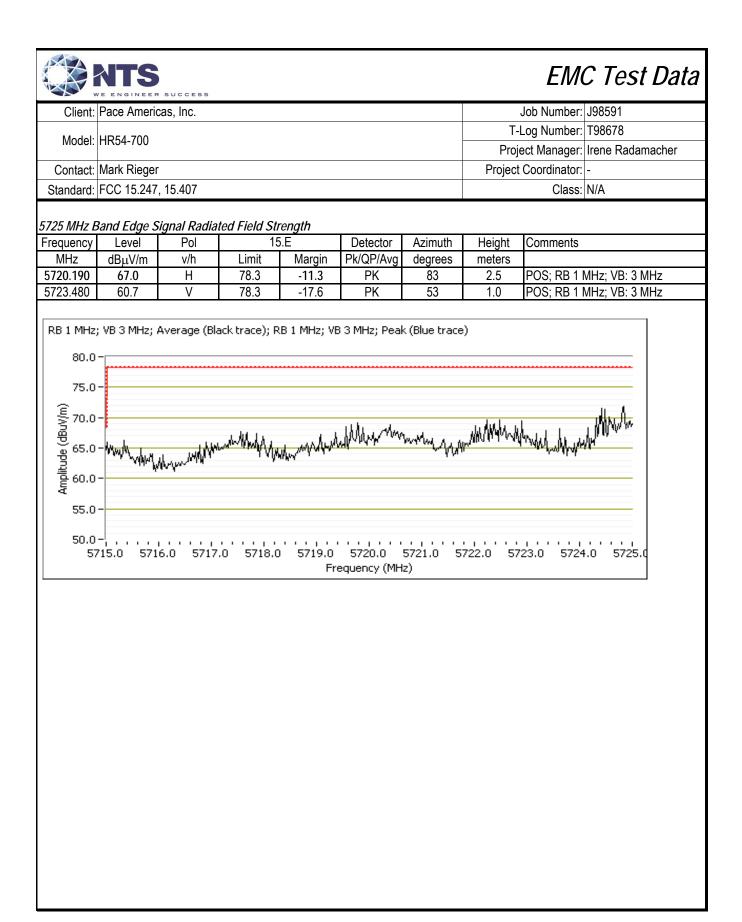
5470 MHz Band Edge Signal Radiated Field Strength

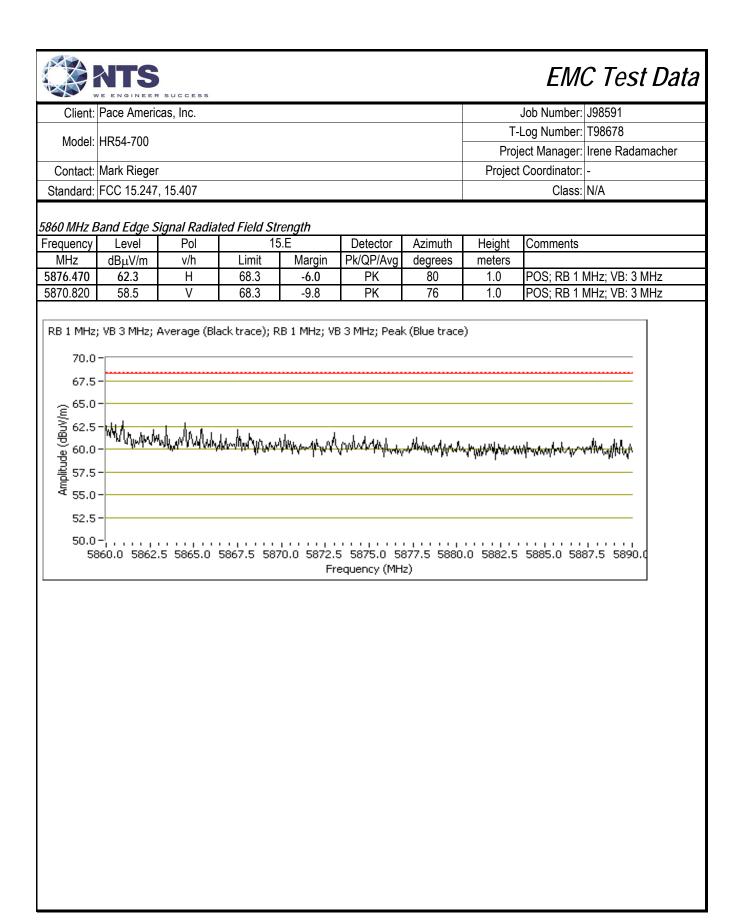

Frequency	Level	Pol	15	.Е	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5468.520	68.0	Н	68.3	-0.3	PK	270	1.2	POS; RB 1 MHz; VB: 3 MHz
5469.300	66.3	V	68.3	-2.0	PK	72	1.0	POS; RB 1 MHz; VB: 3 MHz




Client:	Pace Americ	as, Inc.						Job Number: J98591
Madalı							T-	Log Number: T98678
woder.	HR54-700						Proj	ect Manager: Irene Radamacher
Contact:	Mark Rieger						Project	Coordinator: -
Standard:	FCC 15.247	, 15.407						Class: N/A
I	adiated Band Date of Test: est Location: 149 - 5745M	6/24/2015 Chamber #5		725-5850MH	Te	st Engineer: UT Voltage:		
Tx Chain:		11 12			Data Rate:	MCS0		
Mode:					Setting:	16		
-					5			
	Band Edge S				<u> </u>			
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5705.860 5695.220	58.1 56.7	H V	68.3 68.3	-10.2 -11.6	PK PK	280 135	1.0 1.0	POS; RB 1 MHz; VB: 3 MHz POS; RB 1 MHz; VB: 3 MHz
5095.220	50.7	V	00.3	-11.0	Γſ	155	1.0	
5725 MHz I	Band Edge S	ianal Radia	ted Field St	renath				
Frequency	Level	Pol		5.E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.000	49.9	Н	54.0	-4.1	AVG	278	1.0	POS; RB 1 MHz; VB: 10 Hz
5724.840	48.1	V	54.0	-5.9	AVG	137	1.0	POS; RB 1 MHz; VB: 10 Hz
5724.520	66.4	H	74.0	-7.6	PK	278	1.0	POS; RB 1 MHz; VB: 3 MHz
5723.880	61.2	V	74.0	-12.8	PK	137	1.0	POS; RB 1 MHz; VB: 3 MHz
RB 1 MHz 83.5 80.0 (W/) 75.0 (W/) 70.0 900 65.0 900 100 55.0 50.0	- - - - - - - - - - - - -	werage (Bla			13 MHz; Peak		, 	where a product of the second se
45.0		5690	5695	5700	5705 equency (MH	5710	5715	5720 5725


Client:	Pace Americ	as, Inc.						Job Number:	J98591
Model:	HR54-700						T-	Log Number:	T98678
wouer.	11534-700						Proj	ect Manager:	Irene Radamacher
Contact:	Mark Rieger						Project	Coordinator:	-
Standard:	FCC 15.247	15.407						Class:	N/A
		0104/0045			т		M I		
	Date of Test: est Location:		i			st Engineer: UT Voltage:			
						or voltage.	120 0/ 00112	-	
Channel:	165 - 5825M	Hz			Data Data	14000			
Tx Chain: Mode:					Data Rate: Setting:	MCS0 19			
woue.	ΠZU				Setting.	13			
5850 MHz E	Band Edge S	ignal Radia							
Frequency		Pol		5.E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5850.240	67.4	H V	68.3	-0.9	PK	291	1.0		MHz; VB: 3 MHz
5850.200	62.8	V	68.3	-5.5	PK	134	1.1	PUS; RB 11	MHz; VB: 3 MHz
5860 MHz E	Band Edge S	ianal Radia	ted Field St	renath					
Frequency		Pol		5.E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5860.600	60.4	Н	68.3	-7.9	PK	291	1.0		MHz; VB: 3 MHz
5861.680	58.5	V	68.3	-9.8	PK	134	1.1	POS; RB 1 I	MHz; VB: 3 MHz
	MHz; VB 10 80.0 - 75.0 - 70.0 - 65.0 - 60.0 - 55.0 -	Hz; Average	e (Black trac	e); RB 1 MH	z; Vb 3 MHz;			undrahada	udatulanatulah




WE ENGINEER SUCCESS		EMO	C Test Data
Client: Pace Americas, Inc.	,	Job Number:	J98591
Model: HR54-700	T-l	_og Number:	T98678
	Proje	ect Manager:	Irene Radamacher
Contact: Mark Rieger	Project	Coordinator:	-
Standard: FCC 15.247, 15.407		Class:	N/A
Run #11: Radiated Bandedge Measurements, 5470-5725MHz			
Date of Test: 6/24/2015Test Engineer:Test Location: Chamber #5EUT Voltage:			
	120 07 00112		
Channel: 102 - 5510MHz			
Tx Chain: 2x2 Data Rate: MCS0			
Mode: n40 Setting: 17			
5460 MHz Band Edge Signal Radiated Field Strength			
Frequency Level Pol FCC 15.209 Detector Azimuth	Height	Comments	
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees	meters		
5460.000 48.4 H 54.0 -5.6 AVG 86	1.0	POS; RB 1 N	MHz; VB: 10 Hz
5446.530 58.6 H 74.0 -15.4 PK 86	1.0	POS; RB 1 N	MHz; VB: 3 MHz
RB 1 MHz; VB 10 Hz; Average (Black trace); RB 1 MHz; VB 3 MHz; Peak (Blue trace) 75.0- 70.0- 66.0- 99 55.0- 99 55.0- 45.0- 40.0- 5420 5425 5430 5435 5440 5445 Frequency (MHz)	Mr		~

	NIS VE ENGINEER	SUCCESS						EMC Test Dat
Client:	Pace Americ	as, Inc.						Job Number: J98591
M							T-	Log Number: T98678
Wodel:	HR54-700					-	Proj	ect Manager: Irene Radamacher
Contact:	Mark Rieger						Project	Coordinator: -
	FCC 15.247						,	Class: N/A
otandara.		,						
hannel:	159 - 5795M	lHz						
Tx Chain:	2x2				Data Rate:	MCS0		
Mode:	n40				Setting:	20		
	Band Edge S			r <i>ength</i> 5.E	Detector	A —inecutio	Llaight	Commente
requency MHz		Pol			Detector	Azimuth	Height	Comments
5850.040	dBμV/m 61.5	v/h H	Limit 78.3	Margin -16.8	Pk/QP/Avg PK	degrees 80	meters 1.0	POS; RB 1 MHz; VB: 3 MHz
5856.210	59.1	V	78.3	-10.0	PK	76	1.0	POS; RB 1 MHz; VB: 3 MHz
000.210	55.1	v	70.5	-13.2		10	1.0	
₹ 55.0	-			, , , , , , , ,) 5854.0				Mhunnahanan 58.0' 5859.0' 5860.0

WE ENGINEER SUCCESS				C Test Da
Client: Pace Americas, Inc.			Job Number:	
Model: HR54-700			T-Log Number:	
				Irene Radamacher
Contact: Mark Rieger			Project Coordinator:	
Standard: FCC 15.247, 15.407			Class:	N/A
RSS 210 a	nd FCC 15.407 (UN	III) Radiated S	Spurious Emission	S
Test Specific Details Objective: The objective specification I		form final qualificat	tion testing of the EUT with r	espect to the
General Test Configuration The EUT and all local support equip For radiated emissions testing the m				e noted.
Ambient Conditions:	Temperature: Rel. Humidity:	20-27 °C 32-38 %		
Modifications Made During Te No modifications were made to the E				
Deviations From The Standard				
No deviations were made from the re	equirements of the standard			

Client:	Pace Ameri	cas, Inc.				Job Number:	J98591				
		,			T-Log Number:						
Model:	HR54-700			Irene Radamacher							
Contact:	Mark Rieger	r	Project Coordinator:								
Standard:	FCC 15.247	7, 15.407	Class:	N/A							
_											
Summary	of Result	ts	Devuer				[
Run #	Mode	Channel	Power Setting		Test Performed	Limit	Result / Margin				
cans on "c	enter" chann	el in all three		es to determ	ine the worst case mode.		<u> </u>				
		40 -			Radiated Emissions,	FCC 15.209 / 15 E	52.7 dBµV/m @ 5040				
1	а	5200MHz	20	20	1 - 40 GHz	FUU 15.2097 15 E	MHz (-1.3 dB)				
	n20	40 -	20	20	Radiated Emissions,	FCC 15.209 / 15 E	45.3 dBµV/m @ 4965				
·	1120	5200MHz	20	20	1 - 40 GHz	100 10.2007 10 2	MHz (-8.7 dB)				
	n40	38 -	20	20	Radiated Emissions,	FCC 15.209 / 15 E	43.9 dBµV/m @ 4968				
loocuromo	nte on low ar	5190MHz nd high chanr	ole in worst		1 - 40 GHz		MHz (-10.1 dB)				
leasurenne	1115 011 10 w ai	36 -			Radiated Emissions,		49.4 dBµV/m @ 5040				
	а	5180MHz	20	20	1 - 40 GHz	FCC 15.209 / 15 E	MHz (-4.6 dB)				
2		48 -			Radiated Emissions,	500 / 5 000 / / 5 F	42.7 dBµV/m @ 5034				
	а	5240MHz	20	20	1 - 40 GHz	FCC 15.209 / 15 E	MHz (-11.3 dB)				
0MHz - us	e if worse ca	se from 1 and	l also do low	est n20 char	nnel		· · · · ·				
	n20	36 -	20	20	Radiated Emissions,	FCC 15.209 / 15 E	48.7 dBµV/m @ 5040				
2	1120	5180MHz	20	20	1 - 40 GHz	100 13.2037 13 E	MHz (-5.3 dB)				
-	n40	46 -	20	20	Radiated Emissions,	FCC 15.209 / 15 E	48.2 dBµV/m @ 4959				
		5230MHz			1 - 40 GHz		MHz (-5.8 dB)				
cans on c	enter chann	60 -		es to determ	ine the worst case mode. Radiated Emissions,		42.2 dBµV/m @ 4959				
	а	a 5300MHz	20	20	1 - 40 GHz	FCC 15.209 / 15 E	MHz (-11.8 dB)				
	n20	60 -			Radiated Emissions,		44.4 dBµV/m @ 4880				
3		n20 5300MHz	20	20	1 - 40 GHz	FCC 15.209 / 15 E	MHz (-9.6 dB)				
		. 40	F	54 -	54 -	54	00	00	Radiated Emissions,		43.5 dBµV/m @ 4756
	n40	5270MHz	20	20	1 - 40 GHz	FCC 15.209 / 15 E	MHz (-10.5 dB)				
leasureme	nts on low ar	nd high chanr	nels in worst-	case OFDM							
	а	52 -	20	20	Radiated Emissions,	FCC 15.209 / 15 E	42.2 dBµV/m @ 5046				
4	ŭ	5260MHz	20	20	1 - 40 GHz	100 10.2007 10 2	MHz (-11.8 dB)				
Т	а	64 -	20	20	Radiated Emissions,	FCC 15.209 / 15 E	43.0 dBµV/m @ 5045				
	a if worso oa	5320MHz se from 1 and	l alco do low	oct a or n20	1 - 40 GHz		MHz (-11.0 dB)				
		52 -			Radiated Emissions,		47.3 dBµV/m @ 5040				
	n20	5260MHz	20	20	1 - 40 GHz	FCC 15.209 / 15 E	MHz (-6.7 dB)				
4		64 -	00	0.0	Radiated Emissions,		43.0 dBµV/m @ 5045				
	n20	5320MHz	20	20	1 - 40 GHz	FCC 15.209 / 15 E	MHz (-11.0 dB)				

IR54-700 //ark Riege				: Pace Americas, Inc.							
				T-Log Number: T98678							
/lark Riegei			Project Manager: Irene Radamacher								
			Project Coordinator: -								
CC 15.247	, 15.407				Class	N/A					
of Result	S										
Mode	Channel	Power Setting		Test Performed	Limit	Result / Margin					
nter" chann		OFDM mod	es to determ								
а		20	20		FCC 15.209 / 15 E	46.9 dBµV/m @ 5355 MHz (-7.1 dB)					
n20	116 -	20	20	Radiated Emissions,	FCC 15.209 / 15 F	45.8 dBµV/m @ 5356					
						MHz (-8.2 dB) 45.7 dBµV/m @ 4960					
n40	5550MHz	20	20	1 - 40 GHz	FCC 15.209 / 15 E	MHz (-8.3 dB)					
ts on low ar		nels in worst-	case OFDN								
а		20	20		FCC 15.209 / 15 E	44.5 dBµV/m @ 5138 MHz (-9.5 dB)					
а	140-	20	20	Radiated Emissions,	FCC 15.209 / 15 E	47.7 dBµV/m @ 5354 MHz (-6.3 dB)					
а	144-	20	20	Radiated Emissions,	FCC 15.209 / 15 E	47.7 dBµV/m @ 5354					
nter" chann		OFDM mod	es to determ			MHz (-6.3 dB)					
a	157 -	20	20	Radiated Emissions,	FCC 15.209 / 15 E	47.9 dBµV/m @ 5377					
						MHz (-6.1 dB) 49.1 dBµV/m @ 5378					
n20	5785MHz	20	20	1 - 40 GHz	FCC 15.209 / 15 E	MHz (-4.9 dB)					
n40	159 - 5795MHz	20	20	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	45.3 dBµV/m @ 5428 MHz (-8.7 dB)					
ts on low ar	nd high chanr	nels in worst-	case OFDN			<u> </u>					
n20	149 - 5745MHz	20	20	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	45.5 dBµV/m @ 5127 MHz (-8.5 dB)					
n20	165-	20	20	Radiated Emissions,	FCC 15.209 / 15 E	50.9 dBµV/m @ 5400 MHz (-3.1 dB)					
n	Mode iter" chann a n20 n40 s on low ar a a a iter" chann a n20 n40 s on low ar n20 n40	a 116 - 5580MHz n20 116 - 5580MHz n40 110 - 5550MHz s on low and high chann a 100 - 5500MHz s on low and high chann a 100 - 5500MHz a 140- 5700MHz a 140- 5720MHz a 144- 5720MHz n40 5720MHz n40 157 - 5785MHz n20 159 - 5795MHz s on low and high chann n20 149 - 5745MHz 165- 165-	ModeChannelPower Settinginter" channel in all threeOFDM modea116 - 5580MHz20n20116 - 5580MHz20n40110 - 5550MHz20s on low and high channels in worst- 3100 - 5500MHz20a100 - 5500MHz20a140- 5700MHz20a144- 5720MHz20a157 - 5785MHz20n20157 - 5785MHz20n40159 - 5795MHz20s on low and high channels in worst- 5785MHz20n40159 - 5795MHz20s on low and high channels in worst- 5745MHz20n20149 - 5745MHz20n20165- 2020	ModeChannelPower Settinghter" channel in all three OFDM modes to determa116 - 5580MHz20n20116 - 5580MHz20n40110 - 5550MHz20s on low and high channels in worst-case OFDMa100 - 5500MHz20a140- 5500MHz20a140- 5700MHz20a140- 5700MHz20a144- 5720MHz20a157 - 5785MHz20a157 - 5785MHz20n20157 - 5785MHz20n40159 - 5795MHz20s on low and high channels in worst-case OFDMn20149 - 5745MHz20n20149 - 5745MHz20n20165- 2020	ModeChannelPower SettingTest Performediter" channel in all three OFDM modes to determine the worst case mode.a116 - 5580MHz2020Radiated Emissions, 1 - 40 GHzn20116 - 5580MHz2020Radiated Emissions, 1 - 40 GHzn40110 - 5550MHz2020Radiated Emissions, 1 - 40 GHzn40100 - 5550MHz2020Radiated Emissions, 1 - 40 GHzs on low and high channels in worst-case OFDM mode.a100 - 5500MHz2020Radiated Emissions, 1 - 40 GHza140 - 5700MHz2020Radiated Emissions, 1 - 40 GHza140 - 5720MHz2020Radiated Emissions, 1 - 40 GHza144 - 5720MHz2020Radiated Emissions, 1 - 40 GHza157 - 5785MHz2020Radiated Emissions, 1 - 40 GHzn20157 - 5785MHz2020Radiated Emissions, 1 - 40 GHzn40159 - 5795MHz2020Radiated Emissions, 1 - 40 GHzn40159 - 5795MHz2020Radiated Emissions, 1 - 40 GHzn40159 - 5795MHz2020Radiated Emissions, 1 - 40 GHzn20149 - 5745MHz2020Radiated Emissions, 1 - 40 GHzn20165 - 2020Radiated Emissions, 1 - 40 GHzn20165 - 2020Radiated Emissions, 1 - 40 GHz	ModeChannelPower SettingTest PerformedLimittter" channel in all three OFDM modes to determine the worst case mode.Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 Ea116 - 5580MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 En20116 - 5580MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 En40110 - 5550MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 Es on low and high channels in worst-case OFDM mode.red GHzFCC 15.209 / 15 Ea100 - 5500MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 Ea140- 5700MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 Ea144- 5720MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 Ea157 - 5785MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 En20157 - 5785MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 En40159 - 5795MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 En40159 - 5795MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 En40159 - 5795MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 En40159 - 5745MHz2020Radiated Emissions, 1 - 40 GHzFCC 15.209 / 15 En40159					

	NTS	EMC Test Data			
Client:	Pace Americas, Inc.	Job Number:	J98591		
Madal	HR54-700	T-Log Number:	Т98678		
wouer.	INC04-700	Project Manager:	Irene Radamacher		
Contact:	Mark Rieger	Project Coordinator:	-		
Standard:	FCC 15.247, 15.407	Class:	N/A		

Procedure Comments:

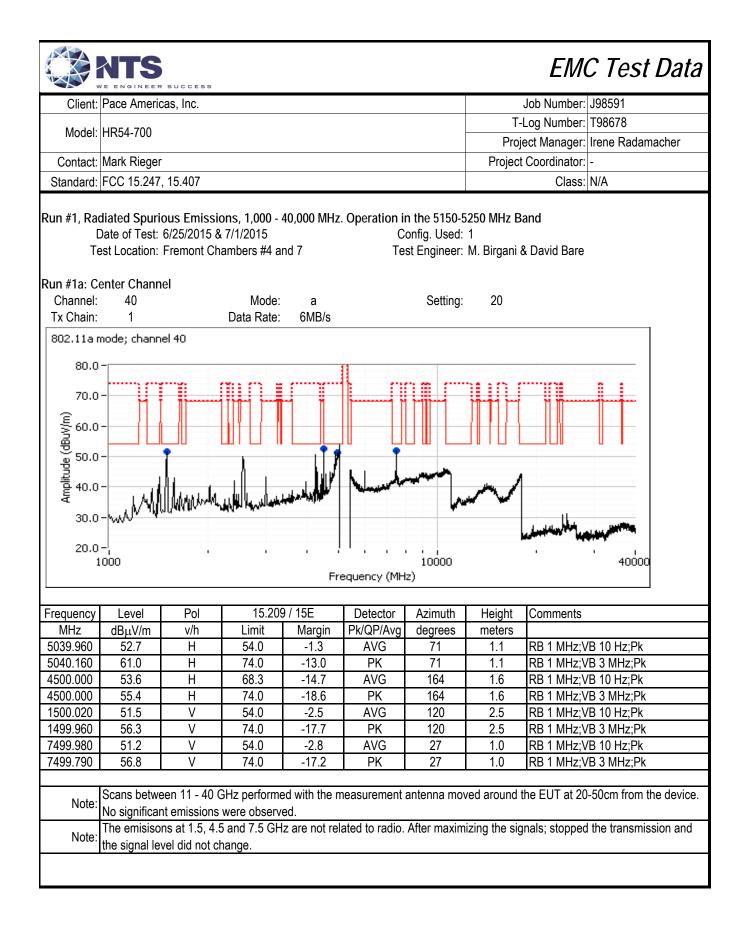
Measurements performed in accordance with FCC KDB 789033

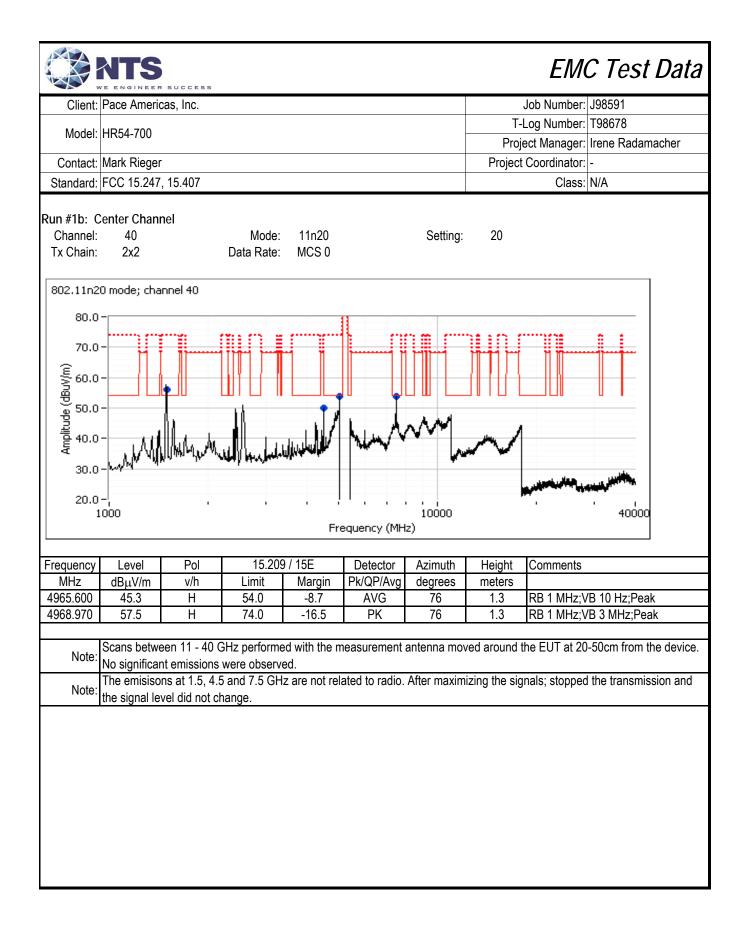
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

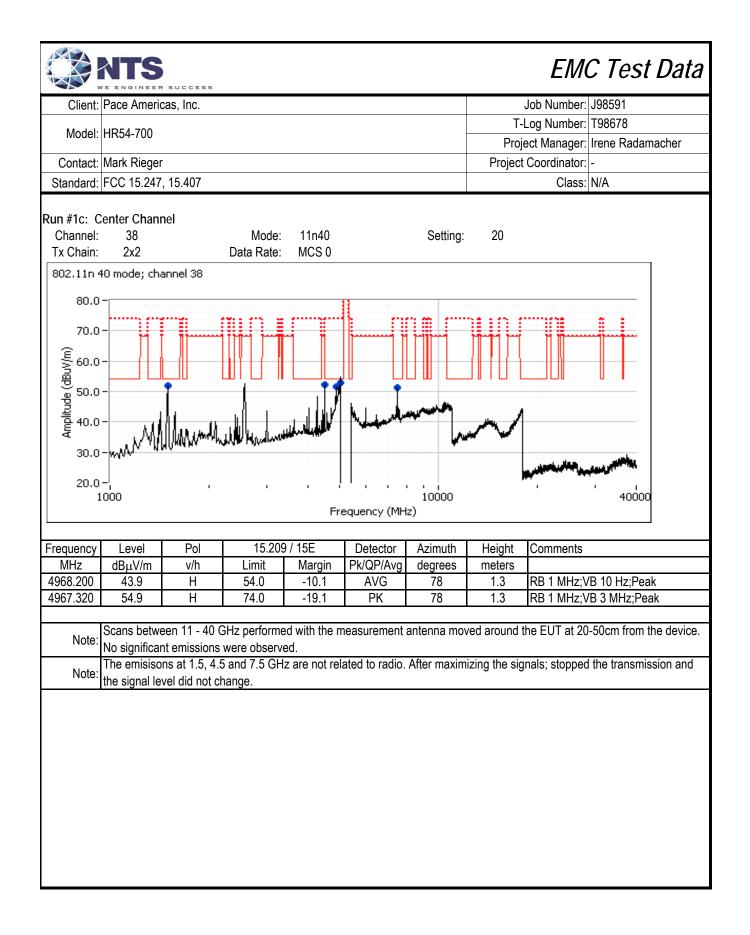
Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

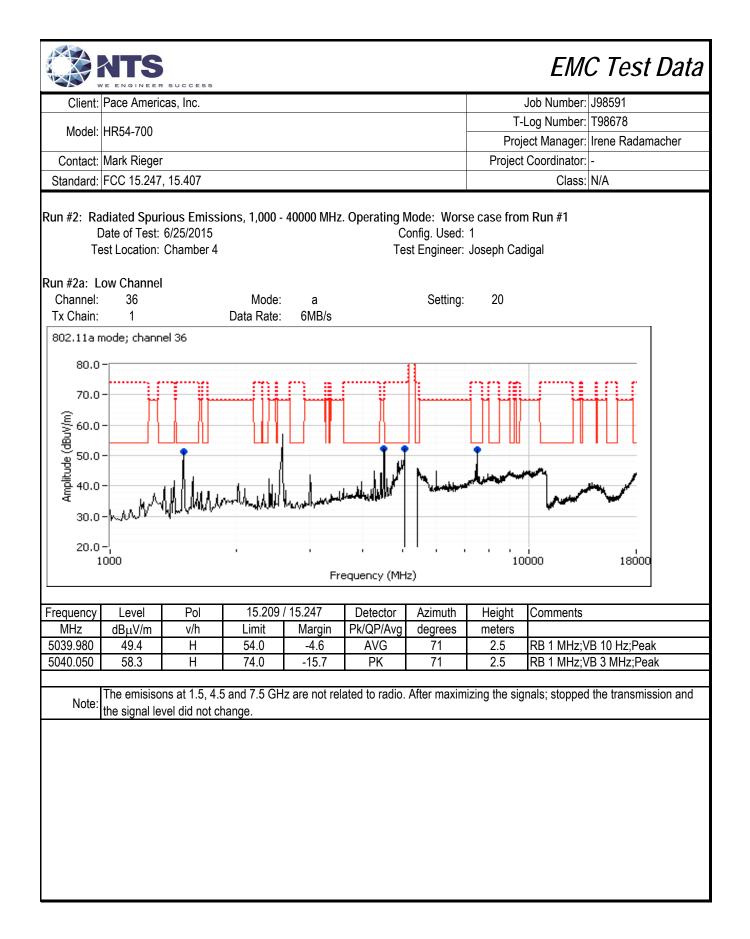
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	6MB/s	0.98	Yes	1.417	0	0	10
11n20	MCS 0	0.98	Yes	1.302	0	0	10
11n40	MCS 0	0.98	Yes	1.309	0.0	0.0	10

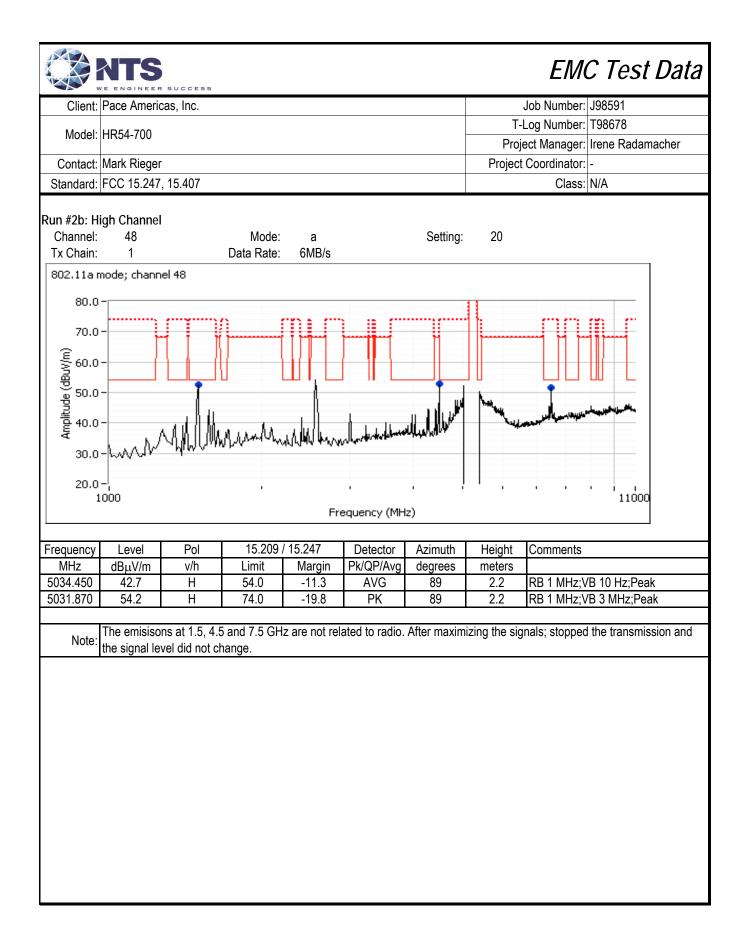
Sample Notes

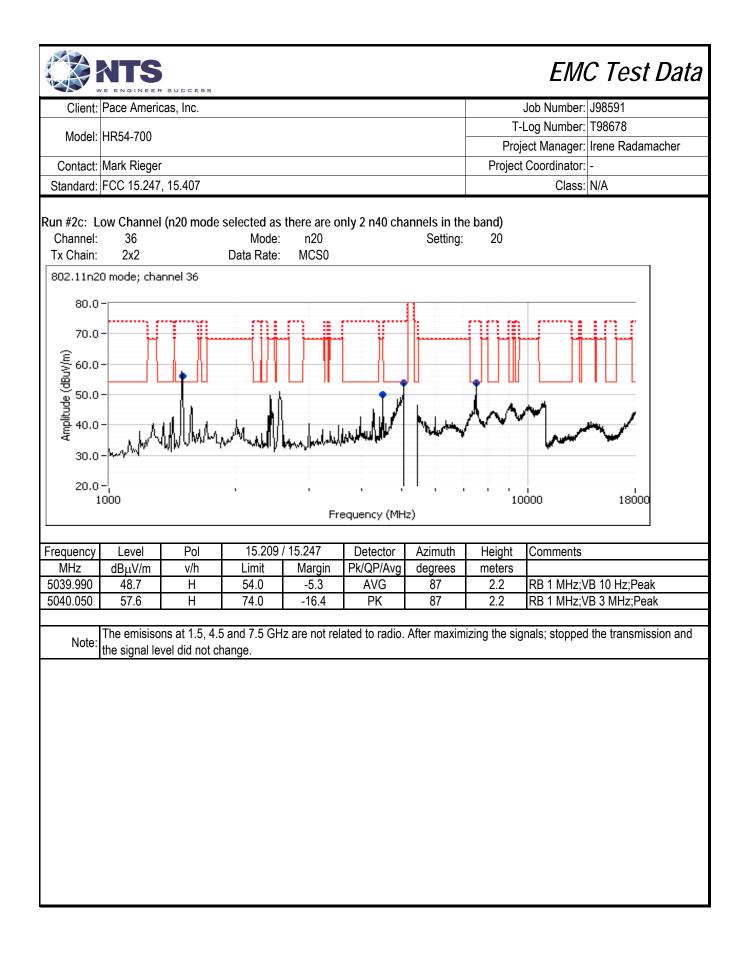

Sample S/N: G54DA5DN000024 Driver: 5.99 RC 188.10 Antenna: Internal

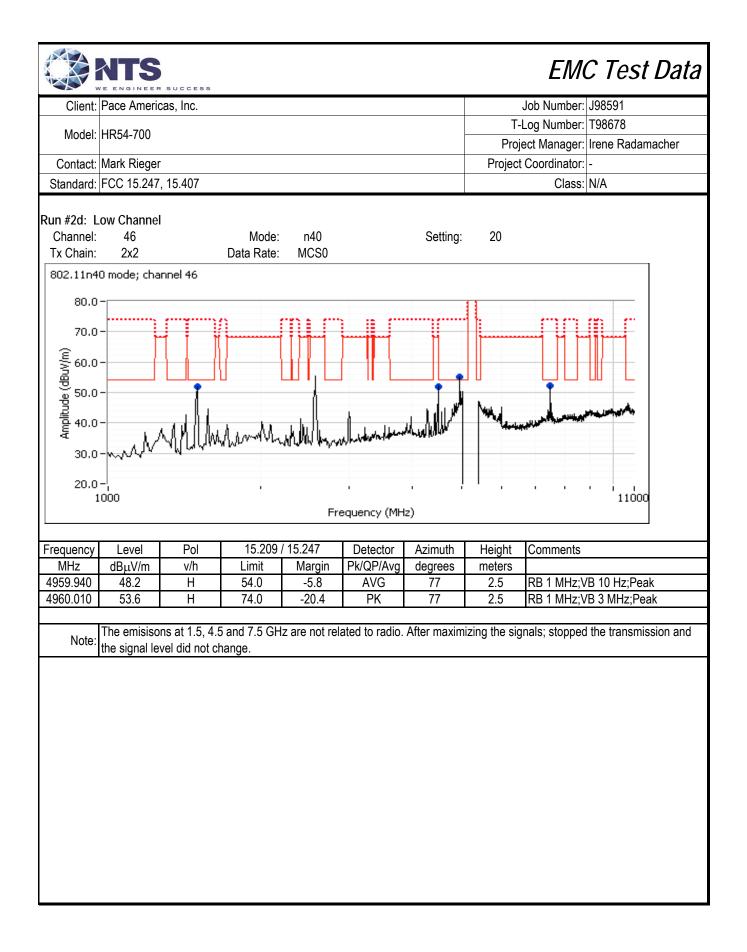

Measurement Specific Notes:

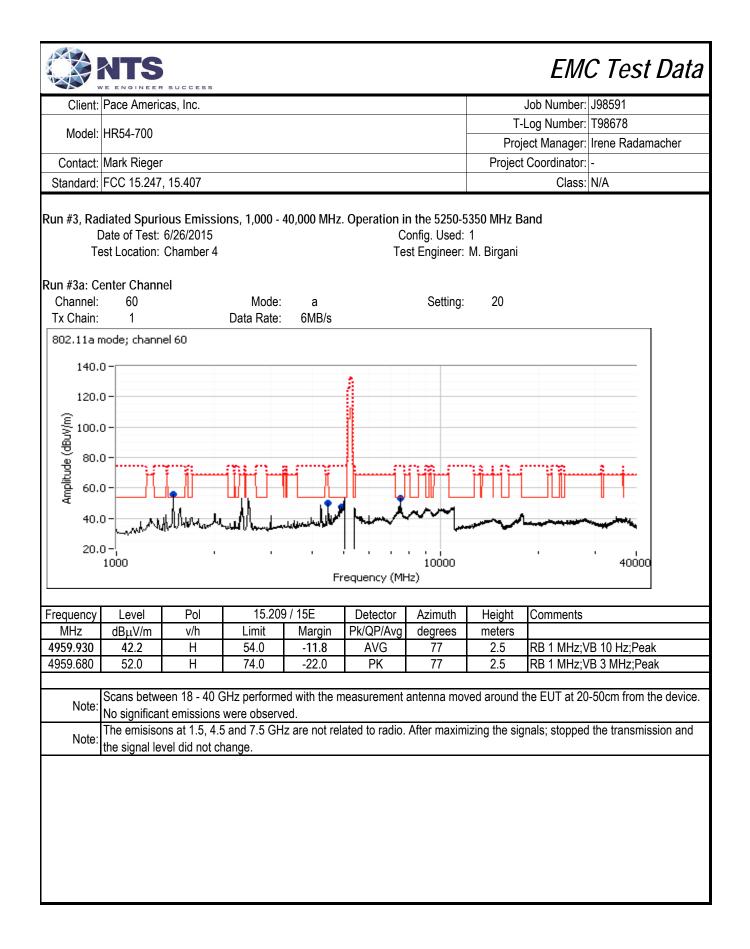

	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 1:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Note 2:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2	Emission has duty cycle ≥ 98% for a nd n20 modes, average measurement performed using: RBW=1MHz, VBW=10Hz, Peak
Note 5.	Emission has duty cycle ≥ 98% for a nd n20 modes, average measurement performed using: RBW=1MHz, VBW=10Hz, Peak Detector, Linear mode, auto sweep, trace max hold, 50 sweeps
Note ()	Emission has duty cycle < 98% for n40 mode, average measurement performed using: RBW=1MHz, VBW=3kHz, Peak
Note 4.	Emission has duty cycle < 98% for n40 mode, average measurement performed using: RBW=1MHz, VBW=3kHz, Peak Detector, Linear mode, auto sweep, trace max hold, 54 sweeps

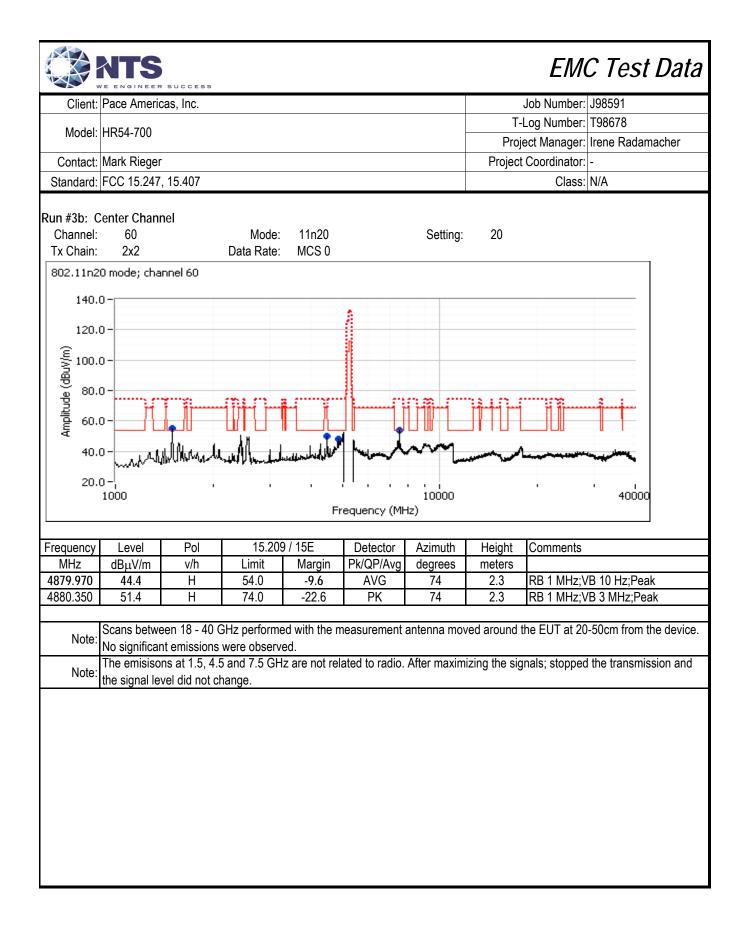

Test Notes

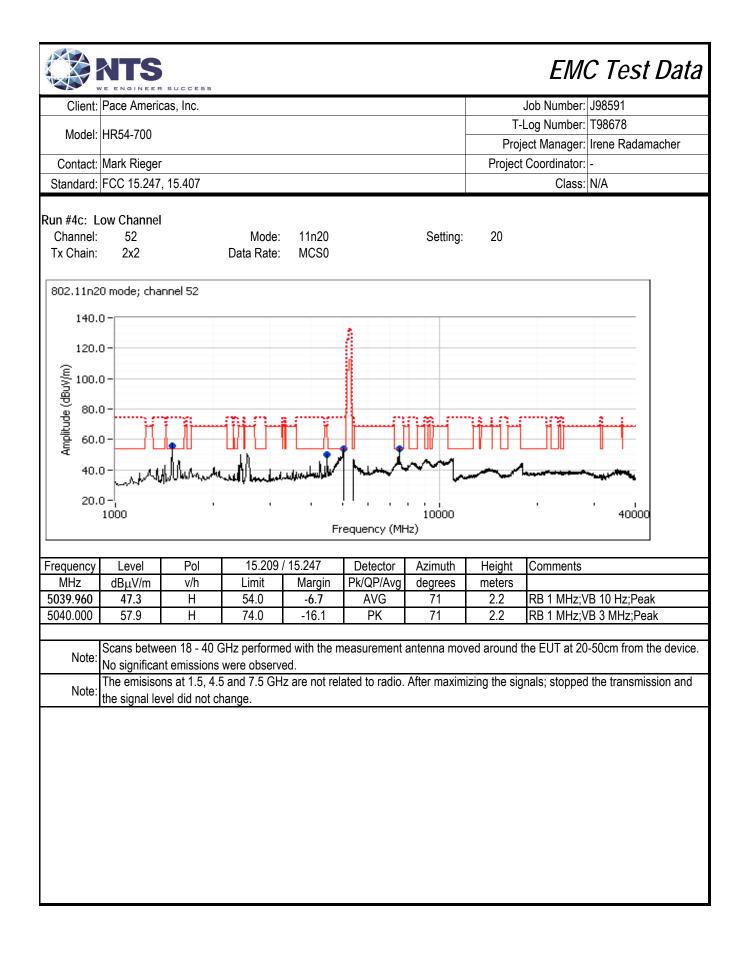

No emissions from the radio circuitry were observed below 1 GHz during preliminry tests. Emissions results of 802.11 5GHz + RF4CE are found in R98955

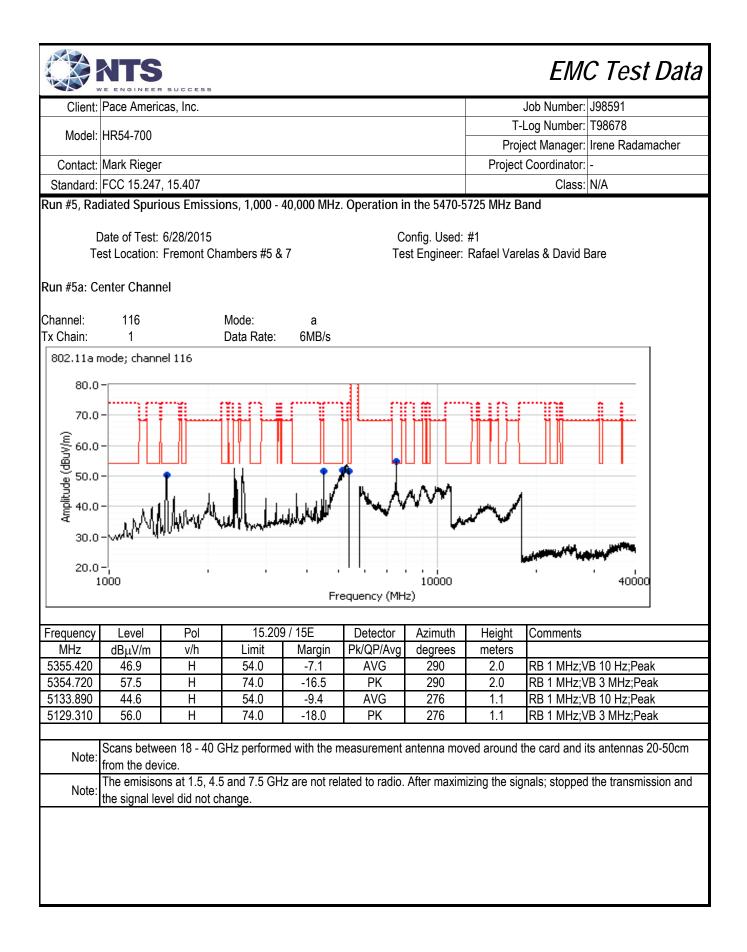


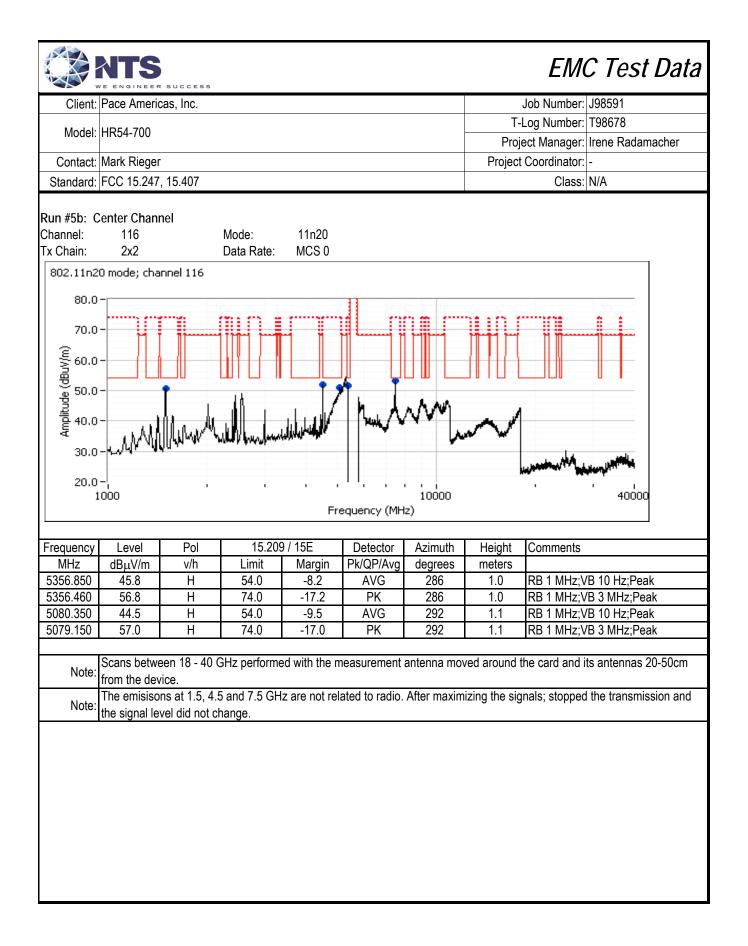


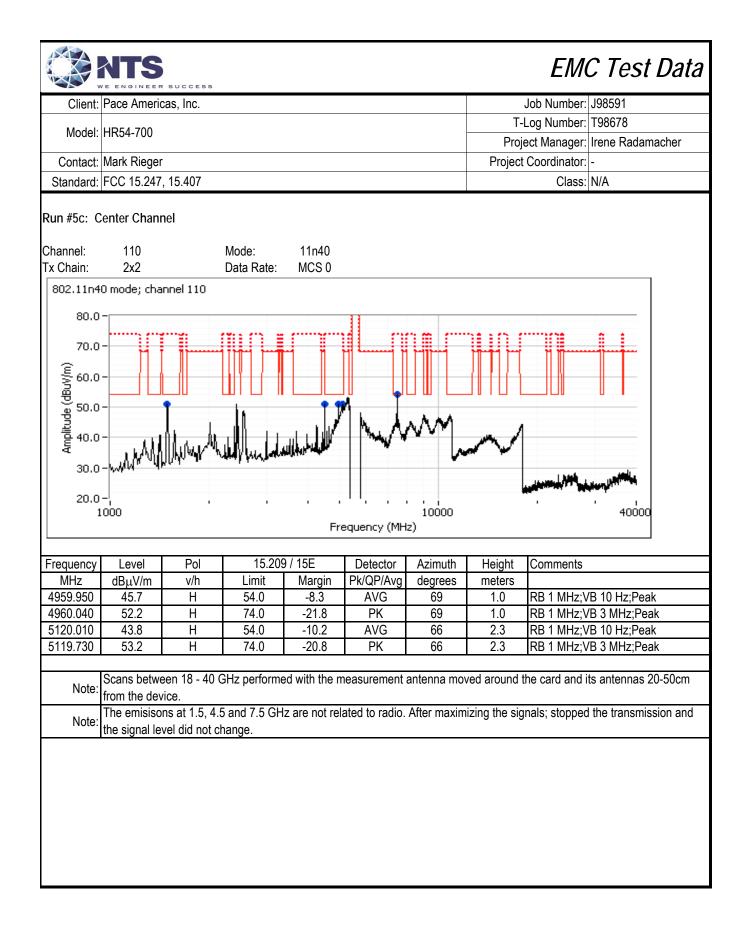


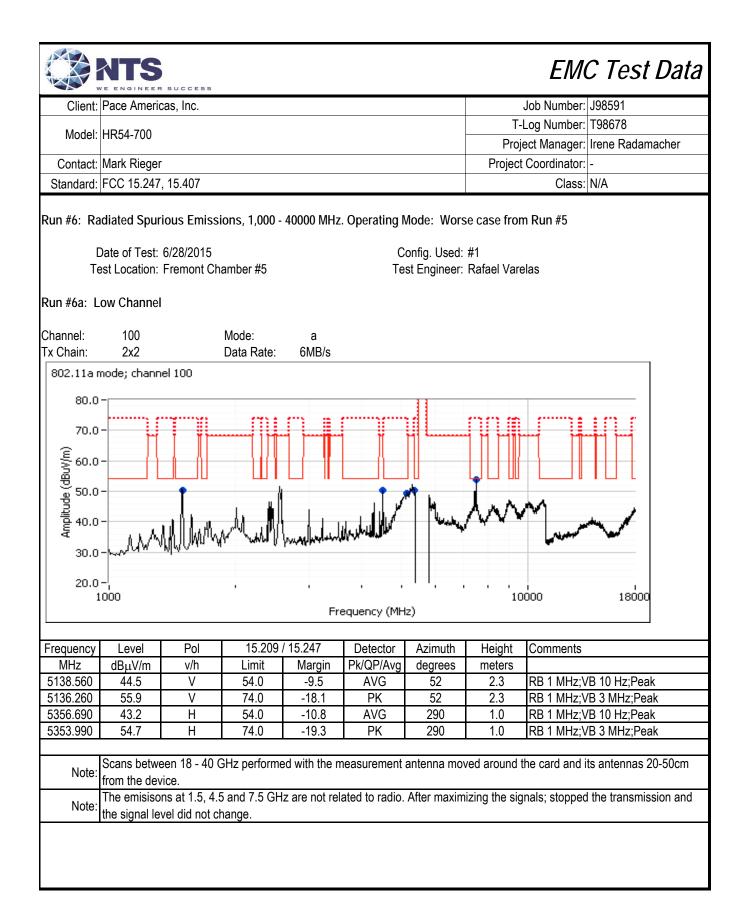


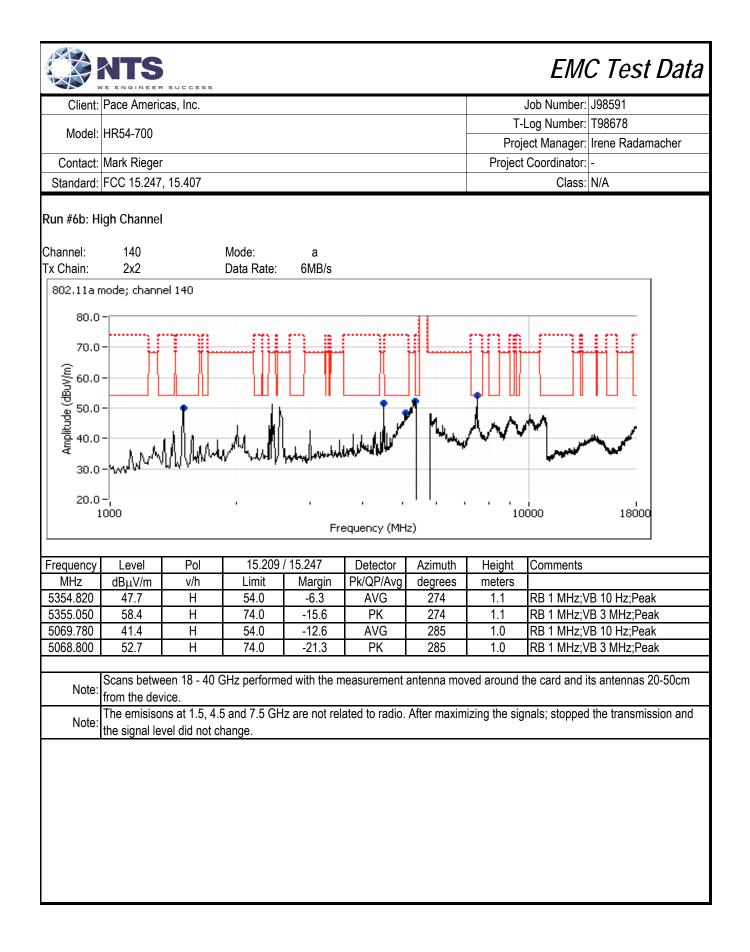


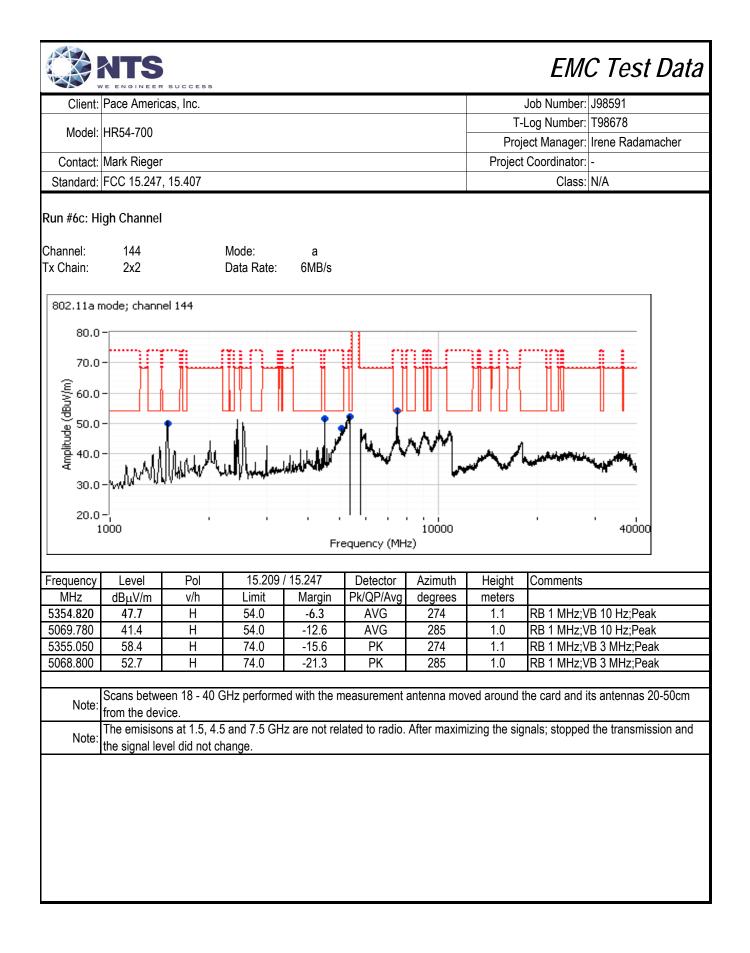

		SUCCESS						EMO	C Test Data
Client: Pa	ce Americ	as, Inc.						Job Number:	J98591
Model: HR	254 700						T-	Log Number:	Т98678
							Proj	ect Manager:	Irene Radamacher
Contact: Ma							Project	Coordinator:	-
Standard: FC	C 15.247,	, 15.407						Class:	N/A
		6/26/2015 Chamber 4				onfig. Used: st Engineer:		digal	
Run #3c: Cent Channel: Tx Chain:	ter Chanr 54 2x2	nel	Mode: Data Rate:	11n40 MCS 0		Setting:	20		
802.11n40 n 100.0 - 80.0 - E	node; cha	annel 54		mer	·`				
(w/\ngp) 60.0 - 10 appn11 40.0 - 20.0 - 0.0 - 10	bo	MAIL	h han a h	un Min F	valaneedaliten requency (Mi		 		· · · 11000
Frequency	Level	Pol	15.209	/ 15E	Detector	Azimuth	Height	Comments	
	lBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4755.980	43.5	Н	54.0	-10.5	AVG	84	2.2		'B 10 Hz;Peak
4919.940	40.7	Н	54.0	-13.3	AVG	78	2.5		B 10 Hz;Peak
4919.990 4755.510	50.2 50.0	H H	74.0 74.0	-23.8 -24.0	PK PK	78 84	2.5 2.2		/B 3 MHz;Peak /B 3 MHz;Peak
Note: No	significan e emisisor	t emissions v	were observe and 7.5 GHz	d.					-50cm from the device. the transmission and

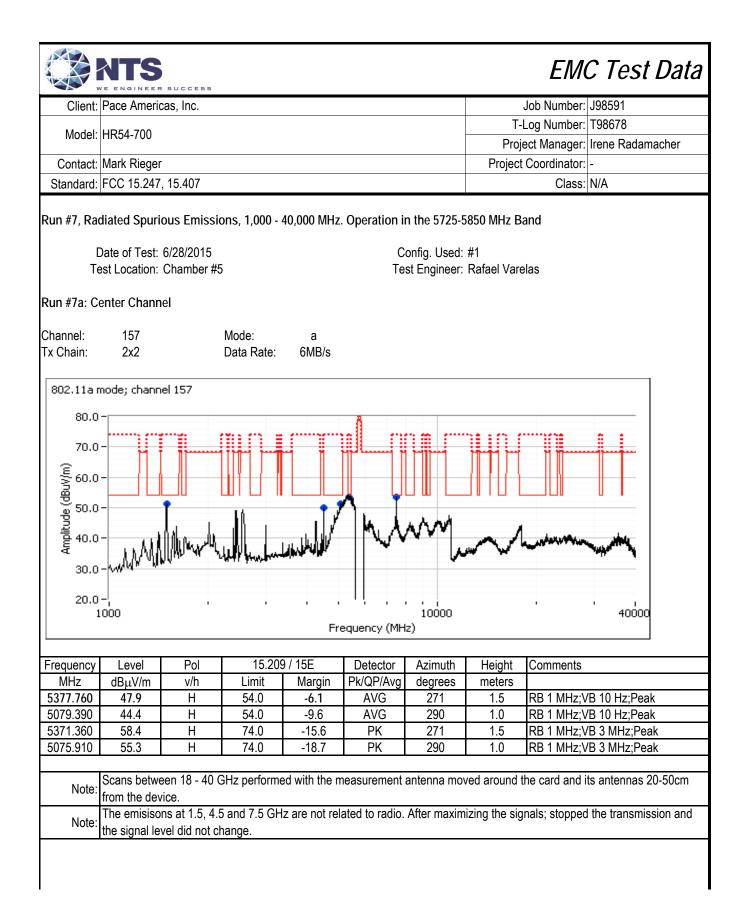

	Project Coordinator: Class: case from Run #3	T98678 Irene Radamacher -
Contact: Mark Rieger Standard: FCC 15.247, 15.407 Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: Worse c Date of Test: 6/26/2015 Config. Used: 1 Test Location: Channel Channel: 52 Run #4a: Low Channel Mode: 11a Setting: Tx Chain: 1 Data Rate: 6MB/s 802.11a mode; channel 52 140.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 10000 Frequency (MHz) Frequency (MHz)	Project Manager: Project Coordinator: Class: case from Run #3 seph Cadigal	Irene Radamacher -
Contact: Mark Rieger Standard: FCC 15.247, 15.407 Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: Worse c Date of Test: 6/26/2015 Config. Used: 1 Test Location: Channel Channel: 52 Run #4a: Low Channel Mode: 11a Setting: Tx Chain: 1 Data Rate: 6MB/s 802.11a mode; channel 52 140.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 10000 Frequency (MHz) Frequency (MHz)	Project Coordinator: Class: case from Run #3 seph Cadigal	-
Standard: FCC 15.247, 15.407 Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: Worse c Date of Test: 6/26/2015 Config. Used: 1 Test Location: Chamber #4 Test Engineer: Jos Run #4a: Low Channel Channel: 52 Mode: 11a Setting: Tx Chain: 1 Data Rate: 602.11a mode; channel 52 140.0 120.0 60.0 40.0 20.0 1000 Frequency Level Pol 15.209 / 15.247 Detector Azimuth I MHz dBµV/m	Class: case from Run #3 seph Cadigal	
Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: Worse c Date of Test: 6/26/2015 Config. Used: 1 Test Location: Chamber #4 Test Engineer: Jos Run #4a: Low Channel Mode: 11a Setting: Channel: 52 Mode: 11a Setting: Tx Chain: 1 Data Rate: 6MB/s Setting: 802.11a mode; channel 52 140.0 100.0 909 60.0 60.0 100.0 900 60.0 10000 Frequency (MHz) Frequency Level Pol 15.209 / 15.247 Detector Azimuth I MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees r	case from Run #3 seph Cadigal	N/A
Date of Test: 6/26/2015 Test Location: Chamber #4 Run #4a: Low Channel Channel: 52 Mode: 11a Setting: Tx Chain: 1 Data Rate: 6MB/s 802.11a mode; channel 52 140.0 100.0 80.0 0.0 0.0 100.0 Frequency (MHz) Frequency Level Pol 15.209 / 15.247 Detector Azimuth I MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees r	seph Cadigal	
Channel: 52 Mode: 11a Setting: Tx Chain: 1 Data Rate: 6MB/s Setting: 802.11a mode; channel 52 140.0 120.0 140.0 120.0 100.0 Frequency (MHz) 100.0 Frequency (MHz) 100.0 100.0 Frequency (MHz) 100.0 100.0 Frequency (MHz) Frequency (Mz)	20	
140.0 120.0 100.0 Frequency (MHz) Level Pol 15.209 / 15.247 Detector Azimuth I MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees r		
120.0 120.0 100.0 80.0 80.0 60.0 40.0 40.0 20.0 10000 Frequency Level Pol 15.209 / 15.247 Detector Azimuth MHz dBµV/m		
Image: Point State Point State <td></td> <td></td>		
40.0 40.0 20.0 - 1000 10000 Frequency Level Pol 15.209 / 15.247 Detector Azimuth I MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees r		
20.0 - 1 10000 1000 Frequency (MHz) Frequency Level Pol 15.209 / 15.247 Detector Azimuth I MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees r		
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees r		40000
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees r		
	Height Comments meters	
		B 10 Hz;Peak
5048.330 54.5 H 74.0 -19.5 PK 75		B 3 MHz;Peak
Note: Scans between 18 - 40 GHz performed with the measurement antenna moved No significant emissions were observed. Note: The emissions at 1.5, 4.5 and 7.5 GHz are not related to radio. After maximizing the signal level did not change.		

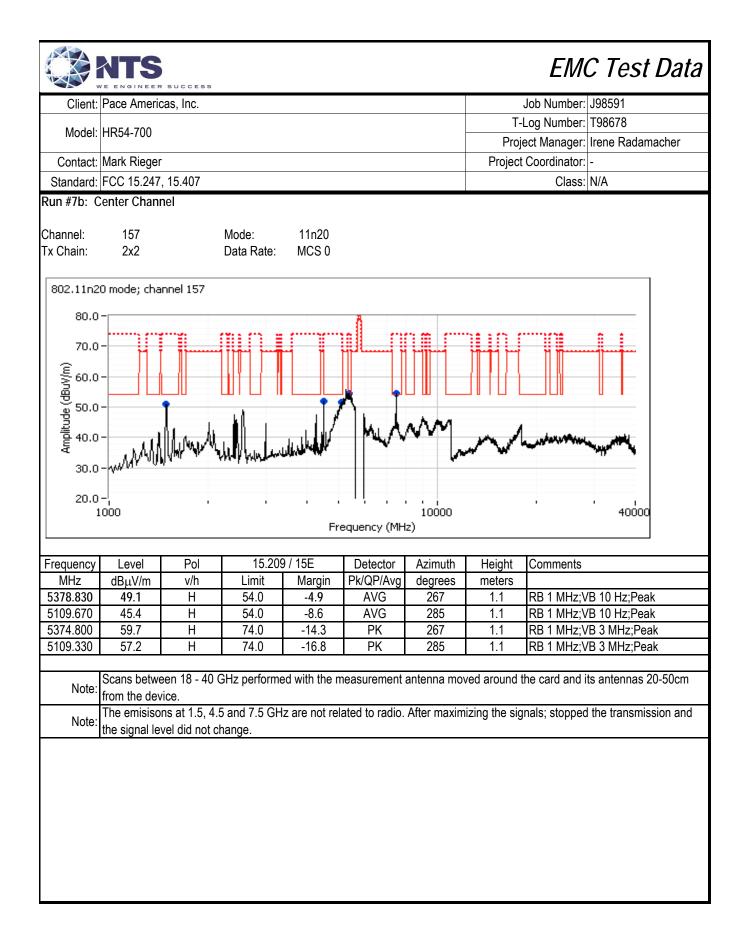

		SUCCESS						EM	C Test Data
Client:	Pace Americ	cas, Inc.						Job Number:	J98591
Model	HR54-700						T-	Log Number:	T98678
woder.	HK34-700						Proj	ect Manager:	Irene Radamacher
Contact:	Mark Rieger	•					Project	Coordinator:	-
Standard:	FCC 15.247	, 15.407						Class:	N/A
Run #4b: H	igh Channel								
Channel: Tx Chain:	64 1		Mode: Data Rate:	11a 6MB/s		Setting:	20		
802.11a r	mode; chann	iel 64							
140.0	0								
					A				
120.0 (===================================									
WmDlitude (dBuV) 80.1 60.1	0-								
<u>ප</u> 80.0	0-								2 .
] <u>귀</u> 60.1	n- 1	į įj		h i	1	1 1 1	11-1-1	1	
H A CON]				U I
40.0	0-	1 Maranta		موالم المعلم ومعاورات	him h	سا میں	المريسين		
20.0	0-								
	1000					10000			40000
				F	requency (MH	łz)			
Frequency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
5045.160	43.0	H	54.0	-11.0	AVG	58	2.2	RB 1 MHz;V	/B 10 Hz;Peak
5046.050	56.3	Н	74.0	-17.7	PK	58	2.2	RB 1 MHz;V	/B 3 MHz;Peak
Note:	No significa	nt emissions	were observ	ed.)-50cm from the device. I the transmission and
Noto		vel did not ch							

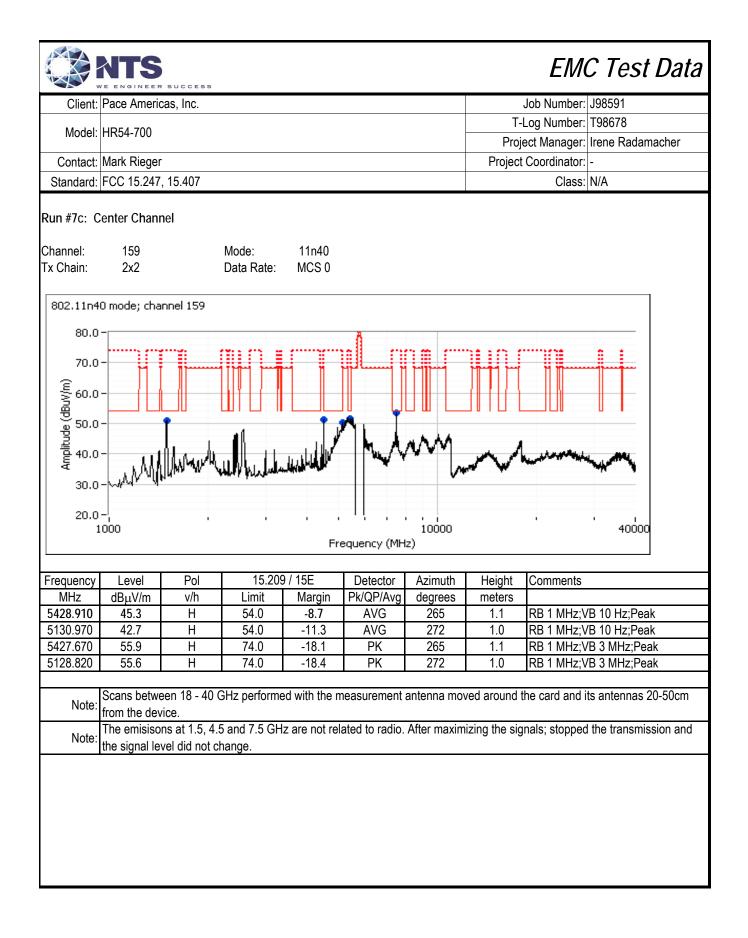


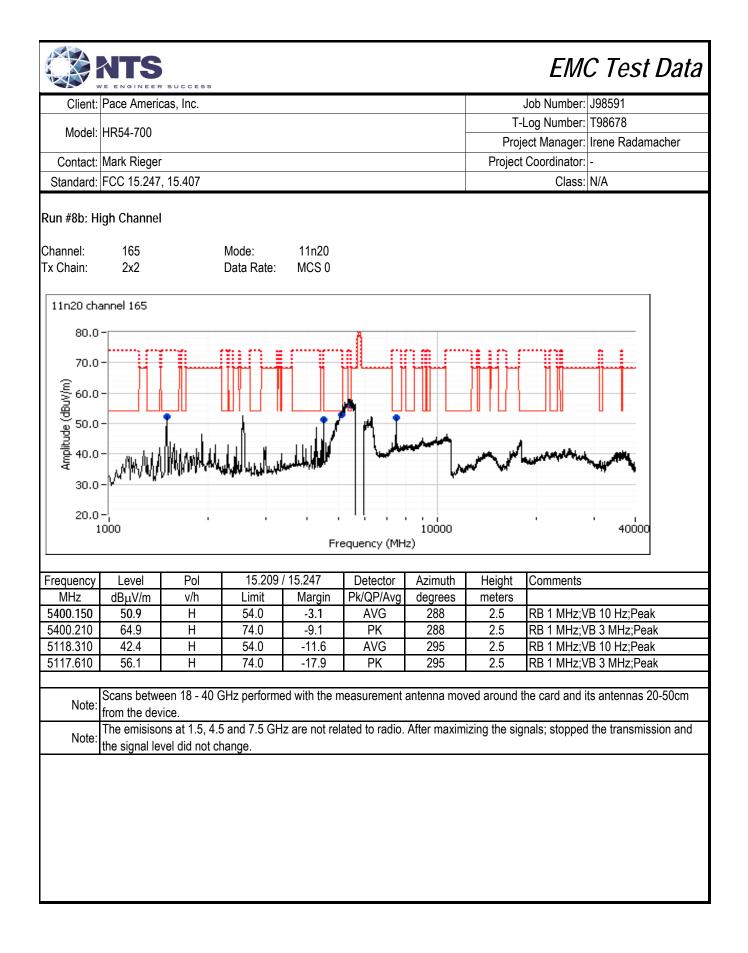

		SUCCESS						EM	C Test Data
Client:	Pace Americ	cas, Inc.						Job Number:	J98591
							T-	Log Number:	T98678
Model:	HR54-700								Irene Radamacher
Contact:	Mark Rieger						-	Coordinator:	
	FCC 15.247							Class:	
	ow Channel								
	Date of Test: est Location:		i			onfig. Used: st Engineer:		elas	
Channel: Tx Chain:	64 2x2		Mode: Data Rate:	11n20 MCS0		Setting:	20		
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4879.950	44.0	Н	54.0	-10.0	AVG	63	2.2		/B 10 Hz;Peak
4880.140	51.4	Н	74.0	-22.6	PK	63	2.2		'B 3 MHz;Peak
5039.940	46.8	Н	54.0	-7.2	AVG	80	1.0		/B 10 Hz;Peak
5039.840	55.3	Н	74.0	-18.7	PK	80	1.0	RB 1 MHz;V	'B 3 MHz;Peak
Note: Note:	No significar	nt emissions ns at 1.5, 4.5	were observe 5 and 7.5 GH	ed.					-50cm from the device. the transmission and
Note: No plo	ot provided.	Tabular data	represents th	ne worse ca	se emissions	observed du	ring a prelim	ninary scan.	











Client:	Pace Americ	cas, Inc.						Job Number:	J98591
							T-	Log Number:	T98678
Model:	HR54-700						Proj	ect Manager:	Irene Radamacher
Contact:	Mark Rieger						Project	Coordinator:	-
Standard:	FCC 15.247	, 15.407						Class:	N/A
l Te	Date of Test: est Location:	6/28/2015 Chamber #5		40000 MHz		Mode: Wors config. Used: st Engineer:	#1		
Channel: Tx Chain:	ow Channel. 149 2x2		Mode: Data Rate:	11n20 MCS 0					
11n20 ch	annel 149								
70.0 (⁽), 60.0								1	
(W/Ango) 50.0 900 50.0 900 40.0 30.0 20.0	-WP 1 * ***	Mannhah					~~~		40000
30.0 20.0	-W ^p · · · · ·	Mannhad			equency (MH		~~		40000
30.0 20.0 1	-W ^p · · · · ·	Pol	15.209	Fr (15.247	equency (MH		Height	Comments	40000
30.0 20.0 1 Frequency MHz	 Looo	v/h	Limit	/ 15.247 Margin	Detector Pk/QP/Avg	lz) Azimuth degrees	meters		
30.0 20.0 1 Frequency MHz 5127.270	 LOOO Level dBµV/m 45.5	v/h H	Limit 54.0	/ 15.247 Margin -8.5	Detector Pk/QP/Avg AVG	Azimuth degrees 285	meters 2.2	RB 1 MHz;\	/B 10 Hz;Peak
30.0 20.0 1 5127.270 5423.460	 Looo Level dBµV/m 45.5 42.0	v/h H H	Limit 54.0 54.0	/ 15.247 Margin -8.5 -12.0	Detector Pk/QP/Avg AVG AVG	Azimuth degrees 285 287	meters 2.2 2.5	RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Peak /B 10 Hz;Peak
30.0 20.0 1 Frequency MHz 5127.270	 LOOO Level dBµV/m 45.5	v/h H	Limit 54.0	/ 15.247 Margin -8.5	Detector Pk/QP/Avg AVG	Azimuth degrees 285	meters 2.2	RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\ RB 1 MHz;\	/B 10 Hz;Peak

EMC Test Data EER SUCCESS Client: Pace Americas, Inc. Job Number: J98591 T-Log Number: T98678 Model: HR54-700 Project Manager: Irene Radamacher **Project Coordinator:** Contact: Mark Rieger Standard: FCC 15.247, 15.407 Class: N/A FCC 15.407(UNII) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Ambient Conditions: Temperature: 20-22 °C Rel. Humidity: 30-35 % Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard.

WE ENGINEE	R SUCCESS			EMC Test Data
Client: Pace Ameri	cas, Inc.			Job Number: J98591
Model: HR54-700			T-L	_og Number: T98678
			Proje	ect Manager: Irene Radamacher
Contact: Mark Riege	r		Project	Coordinator: -
Standard: FCC 15.247	7, 15.407			Class: N/A
Summary of Resul	ts			
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2), (3)	Pass	a: 52.5 mW (17.2 dBm) n20: 145.5 mW (21.6 dBm) n40: 167.5 mW (22.2 dBm)
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2), (3)	Pass	a: 3.2 dBm/MHz n20: 9.5 dBm/MHz n40: 7.2 dBm/MHz
1	Power, 5250 - 5350MHz	15.407(a) (1), (2), (3)	Pass	a: 79.4 mW (19.0 dBm) n20: 143.3 mW (21.6 dBm) n40: 133.7 mW (21.3 dBm)
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2), (3)	Pass	a: 6.9 dBm/MHz n20: 9.0 dBm/MHz n40: 6.2 dBm/MHz
1	Max EIRP 5250 - 5350MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm.	Pass	EIRP = 25.7 dBm (368.4 mW)
1	Power, 5470 - 5725MHz	15.407(a) (1), (2), (3)	Pass	a: 85.1 mW (19.3 dBm) n20: 166.5 mW (22.2 dBm) n40: 157.1 mW (22.0 dBm)
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2), (3)	Pass	a: 6.6 dBm/MHz n20: 9.5 dBm/MHz n40: 6.7 dBm/MHz
1	Max EIRP 5470 - 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold	Pass	EIRP = 26.3 dBm (428.0 mW)
1	Power, 5725 - 5850MHz	15.407(a) (1), (2), (3)	Pass	a: 77.6 mW (18.9 dBm) n20: 158.9 mW (22.0 dBm) n40: 146.7 mW (21.7 dBm)
1	PSD, 5725 - 5850MHz	15.407(a) (1), (2), (3)	Pass	a: 6.3 dBm/MHz n20: 9.2 dBm/MHz n40: 6.6 dBm/MHz
1	99% Bandwidth	-	N/A	a: 17.0 MHz n20: 18.0 MHz n40: 36.2 MHz

	NTS VE ENGINEER SUCCESS	EM	C Test Data
Client:	Pace Americas, Inc.	Job Number:	J98591
Madal	HR54-700	T-Log Number:	T98678
MOUEI.	IR34-700	Project Manager:	Irene Radamacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.247, 15.407	Class:	N/A

Summary of Results

Summary of Result	.5			
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	26dB Bandwidth (5250-5350 and	15.407		> 20MHz for all modes
I	5470-5725 MHz Bands)	(Information only)	-	
0	6dB Bandwidth	15.407		> 500 kHz all modes
Z	(5725-5850 MHz band only)	15.407	-	
3	Antenna Conducted - Out of Band	15.407(b)		All measurements performed
5	Spurious	-27dBm/MHz	-	radiated

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:	Temperature:	20-22 °C
	Rel. Humidity:	30-35 %

Modifications Made During Testing

No modifications were made to the EUT during testing

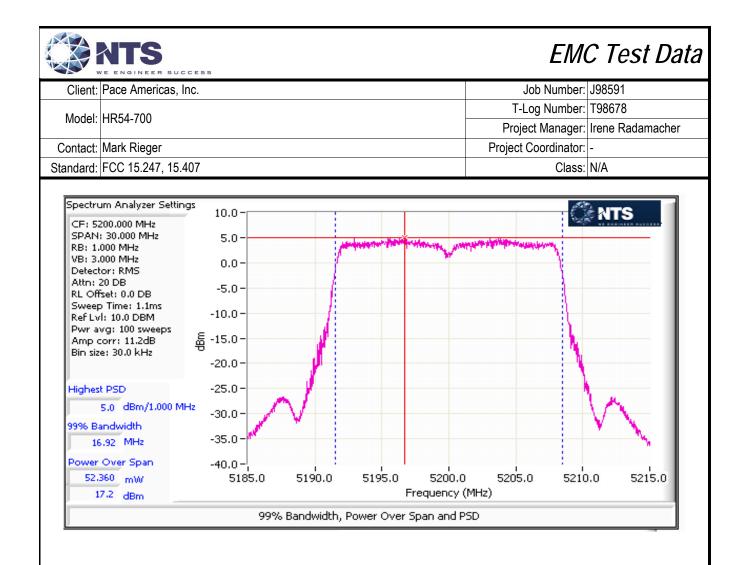
Deviations From The Standard

No deviations were made from the requirements of the standard.

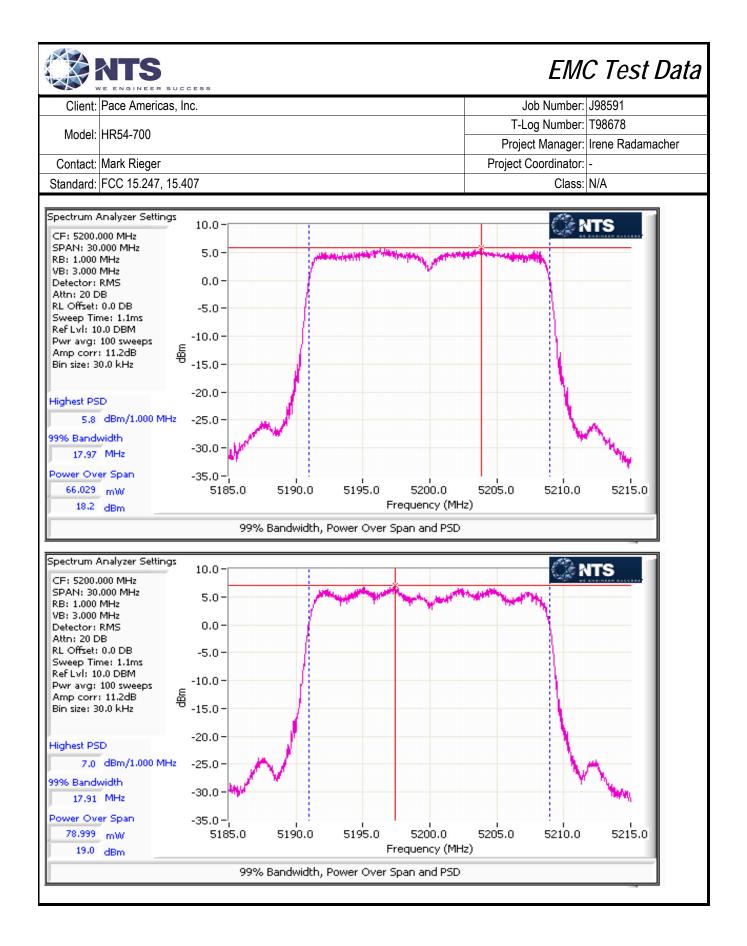
Procedure Comments:

Measurements performed in accordance with FCC KDB 789033 D02 v01

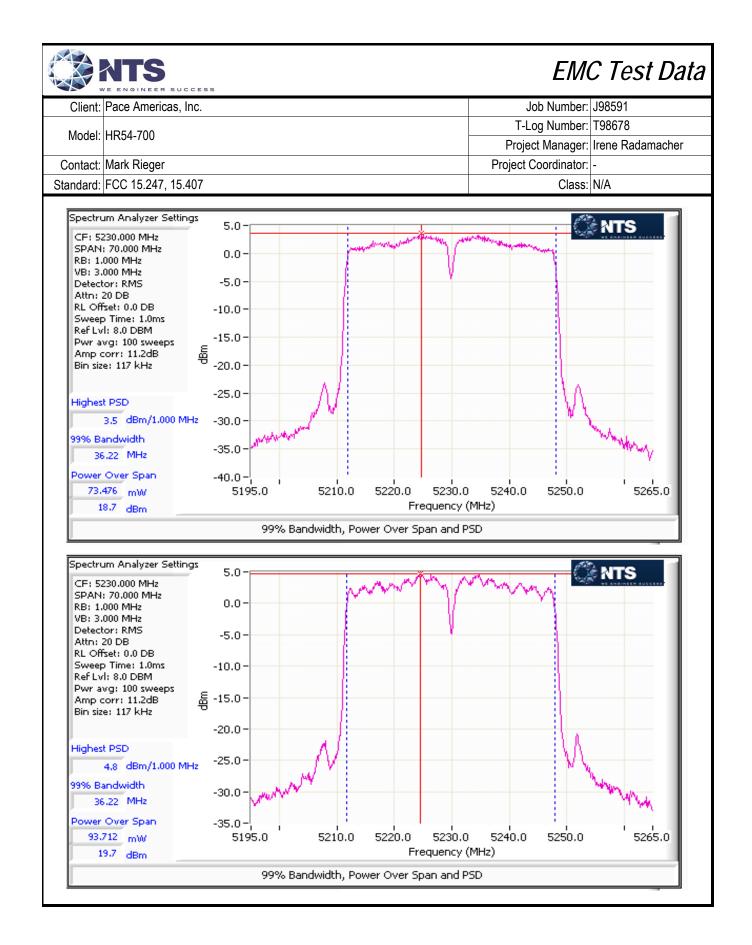
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	6 Mb/s	98.4%	yes	1.41	0	0	709
n20	MCS 0	99.2%	yes	1.33	0	0	752
n40	MCS 0	98.4%	yes	1.33	0	0	752

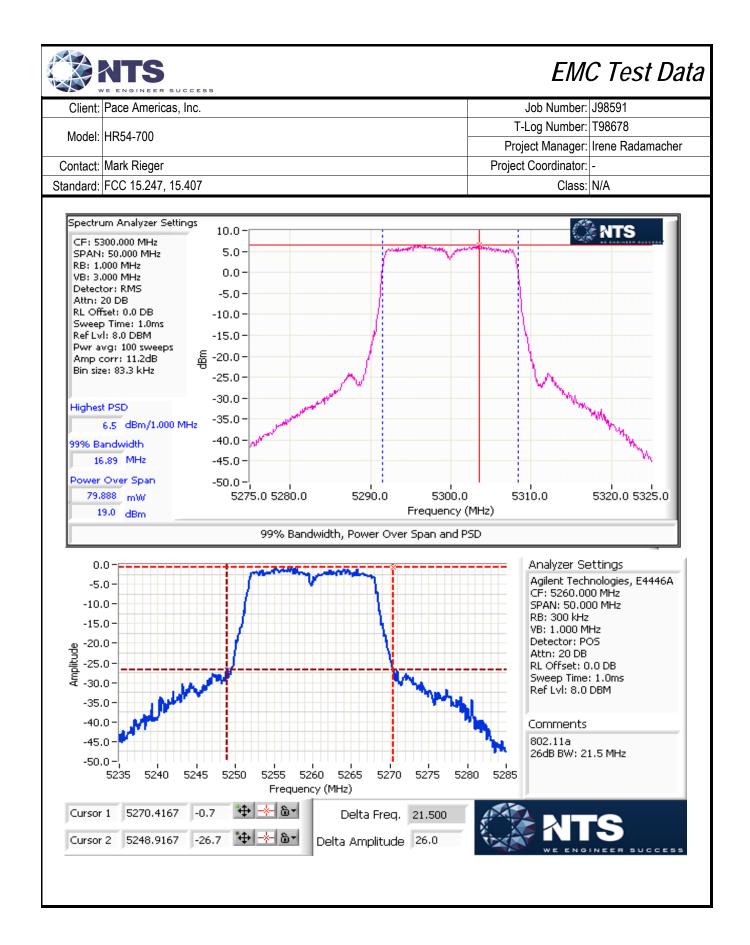

Sample Notes

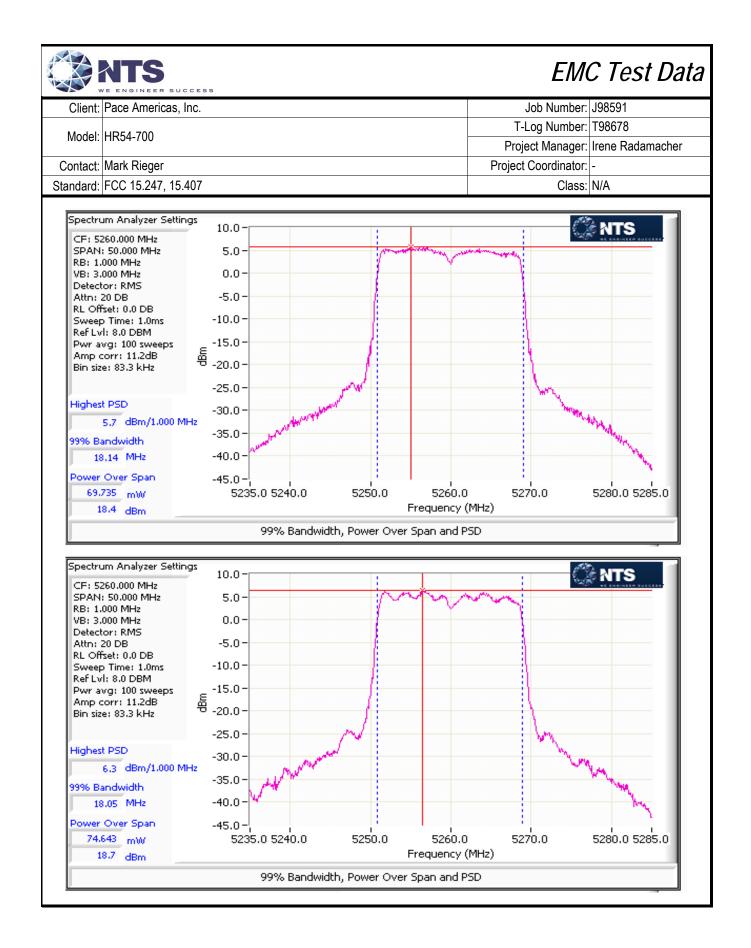
Sample S/N: G54DA5DN000024 Driver: 5.99 RC 188.10 Antenna: Internal

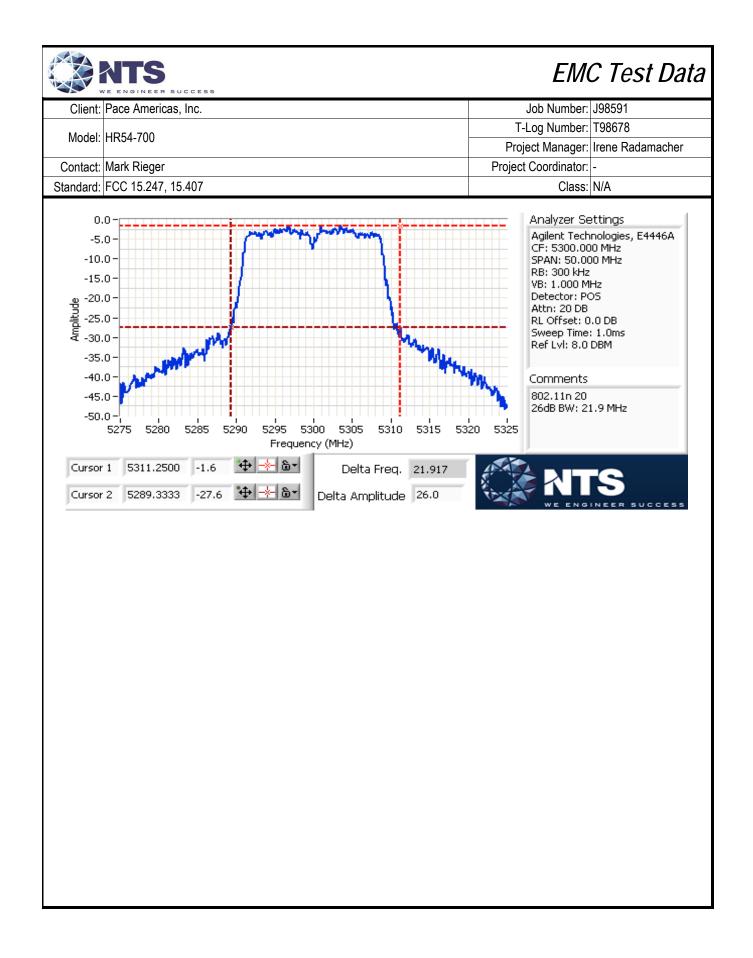

	NTS VE ENGINEER	SUCCESS					EMO	C Test	' Data
Client:	Pace Americ	as, Inc.					Job Number:	J98591	
Madal	HR54-700					T	-Log Number:	T98678	
wouer.	1154-700					Pro	ject Manager:	Irene Radar	nacher
Contact:	Mark Rieger					Projec	t Coordinator:	-	
Standard:	FCC 15.247,	15.407					Class:	N/A	
Antenna Ga	ain Informati		ain (dDi) / Chain	1	MultiChain		Sectorized	Dir G	Dir G
Freq	1	ntenna Ga	ain (dBi) / Chain 3 4	BF	Legacy	CDD	/ Xpol	(PWR)	(PSD)
5150-5250	4.1	4.1		No	No	Yes	No	4.1	7.1
5250-5350	4.1	4.1		No	No	Yes	No	4.1	7.1
470-5725	4.1	4.1		No	No	Yes	No	4.1	7.1
5725-5825	4.1	4.1		No	No	Yes	No	4.1	7.1
Notes:	FCC KDB 66	= total ga	in (Gant + Array Gain) for p pending on the modes sup						
Notes:			sd calculated per DKB 6629 = 10*log(4/2) = 3dB.	911 D01, v0	1r02. Spatial M	Aultiplexing	g with Nant=4,	Nss=2, for v	orse case
Notes:	For systems Option 1: De calculated ba Option 2: Ar	with Bean elays are c ased on be tennas ar sociated v	nforming and CDD, choose optimized for beamforming, eamforming criteria. e paired for beamforming, a with beamforming with 2 an	rather than and the pair	being selected	from cycli d to use th	e cyclic delay	diversity of 8	802.11; the

	NTS	EMO	C Test Data
Client:	Pace Americas, Inc.	Job Number:	J98591
		T-Log Number:	T98678
Model:	HR54-700	Project Manager:	Irene Radamacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.247, 15.407	Class:	N/A
	ndwidth, Output Power and Power Spectral Density - MIMO Systems		
	Date of Test: 7/13 and 14/2015 Test Location:		
Te	st Engineer: Mehran Birgani EUT Voltage:	120V/60Hz	
	Output power measured using a spectrum analyzer (see plots below). RBW	/=1MHz VB=3 MHz # of	noints in sween >
Note 1:	2*span/RBW, RMS detector, power averaging on (transmitted signal was c		
	802.11a and n20 modes over 70 MHz for 802.11n40 mode (method SA-1 o		
Note 2:	Measured using the same analyzer settings used for output power.	/	
	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the anten	•	
Note 3:	10dBm/MHz. The limits are also corrected for instances where the highest r		-
	PSD (calculated from the measured power divided by the measured 99% ba	andwidth) by more than 3	dB by the amount that
Note 4:	the measured value exceeds the average by more than 3dB. 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span	and V/P >=3vDP	
NOLE 4.	For MIMO systems the total output power and total PSD are calculated form		f the individual chains
	(in linear terms). The antenna gain used to determine the EIRP and limits f		
Note 5	mode of the MIMO device. If the signals on the non-coherent between the		
Note 5:	the limits is the highest gain of the individual chains and the EIRP is the sun	n of the products of gain a	and power on each
	chain. If the signals are coherent then the effective antenna gain is the sum	n (in linear terms) of the g	ains for each chain and
	the EIRP is the product of the effective gain and total power.		
Note 6:	PL8200 Grey: Port 1; PL8100 Black: Port 2		

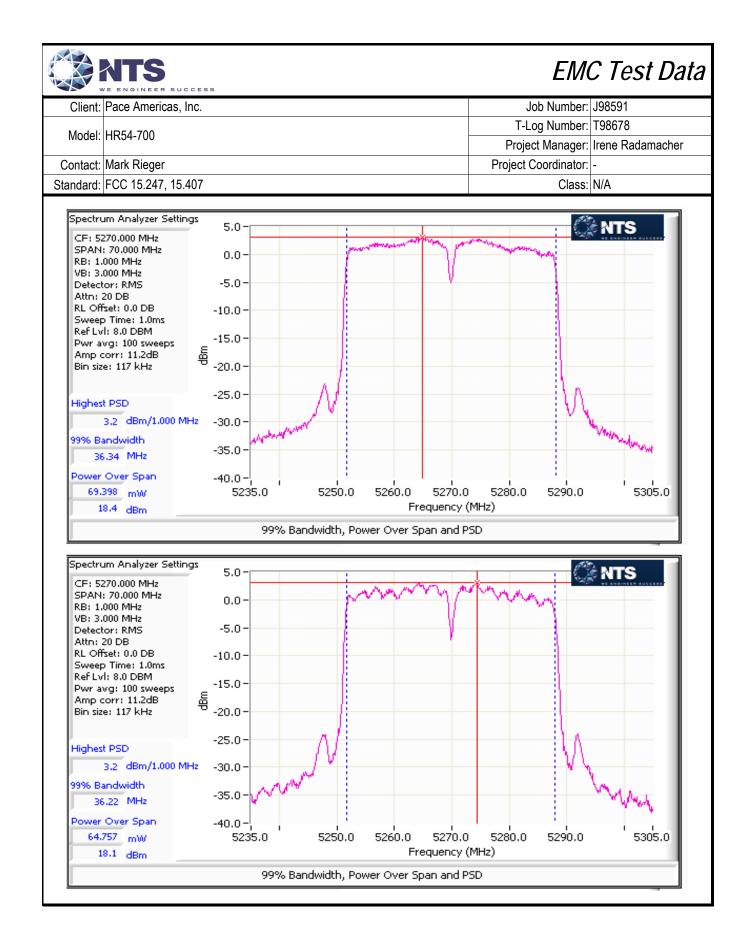

		SUCCESS						EM	C Test	Data
Client:	Pace Americ	as, Inc.						Job Number:	J98591	
Model	HR54-700						T-L	og Number:	T98678	
									Irene Radam	acher
	Mark Rieger						Project	Coordinator:		
Standard:	FCC 15.247,	15.407						Class:	N/A	
MIMO Devid Mode:	ce - 5150-525 11a	i0 MHz Ban	d - FCC				Мах	EIRP (mW):	134.9	
Frequency	Chain	Software		Duty Cycle	Power ¹	Total	Power		Max Power	Deput
(MHz)	Chain	Setting		%	dBm	mW	dBm	dBm	(W)	Result
5180	1	17		98.4	16.3	42.7	16.3	24.0		Pass
5200	1	18		98.4	17.2	52.5	17.2	24.0	0.052	Pass
5240	1	18		98.4	16.8	47.9	16.8	24.0		Pass
5150-5250 F Mode:	PSD 11a	0.(00% DW				1	500111		
Frequency (MHz)	Chain	Software Setting	99% BW (MHz)	Duty Cycle %	PSD dBm/MHz	l otal mW/MHz	PSD ¹ dBm/MHz	FCC Limit dBm	/MHz	Result
5180	1	17	16.9	98.4	4.2	2.6	4.2	11.0		Pass
5200	1	18	16.9	98.4	5.0	3.2	5.0	11.0		Pass
5240	1	18	16.9	98.4	4.6	2.9	4.6	11.0		Pass

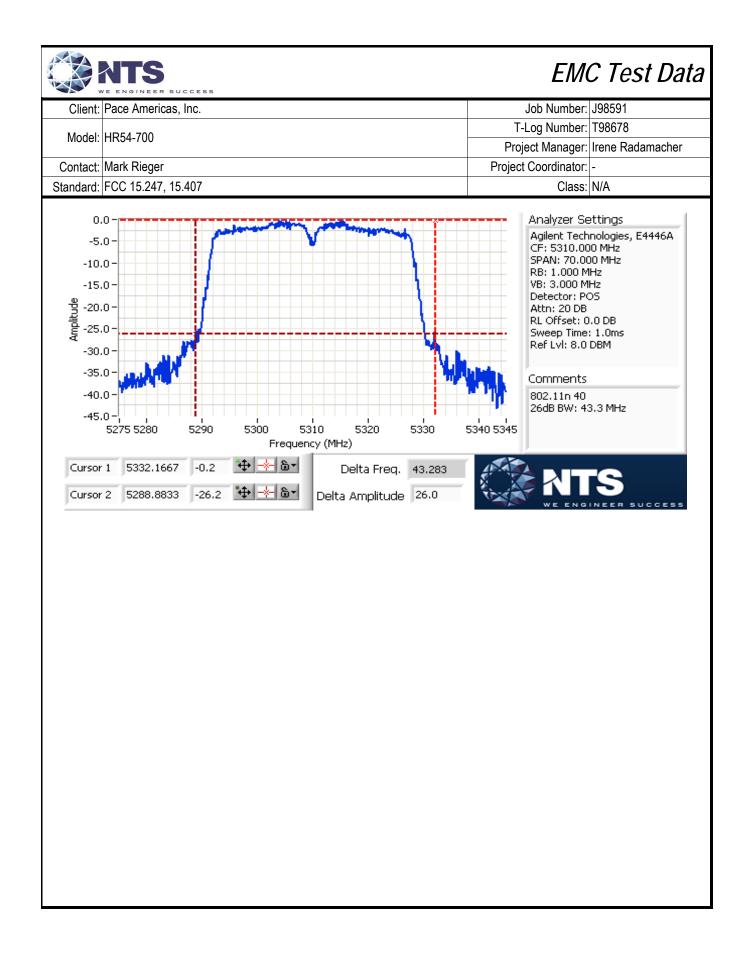

		SUCCESS						EM	C Test	Data
Client:	Pace Americ	as, Inc.					,	Job Number:	J98591	
Madalı	HR54-700						T-L	og Number:	T98678	
Model.	HK94-700						Proje	ect Manager:	Irene Radam	nacher
Contact:	Mark Rieger						Project	Coordinator:	-	
Standard:	FCC 15.247,	15.407						Class:	N/A	
MIMO Devic Mode:	:e - 5150-525 n20	i0 MHz Band	d - FCC				Мах	EIRP (mW):	374.0	
Frequency		Software		Duty Cycle	Power ¹	Total	Power		Max Power	Desult
(MHz)	Chain	Setting		%	dBm	mW	dBm	dBm	(W)	Result
5180	1 2	18		99.2	17.3 18.3	121.3	20.8	24.0		Pass
5200	1 2	19		99.2	18.2 19.0	145.5	21.6	24.0	0.146	Pass
5240	1	19		99.2	17.7 18.4	128.1	21.1	24.0		Pass
5150-5250 F Mode:	PSD n20						1			
Frequency (MHz)	Chain	Software Setting	99% BW (MHz)	Duty Cycle %	PSD dBm/MHz	Total mW/MHz	PSD' dBm/MHz	FCC Limit dBm	/MHz	Result
5180	1 2	18	18.0	99.2	4.7 6.3	7.2	8.6	9.9		Pass
5200	1 2	19	18.0	99.2	5.8 7.0	8.8	9.5	9.9		Pass
5240	1 2	19	18.0	99.2	5.2 6.3	7.6	8.8	9.9		Pass

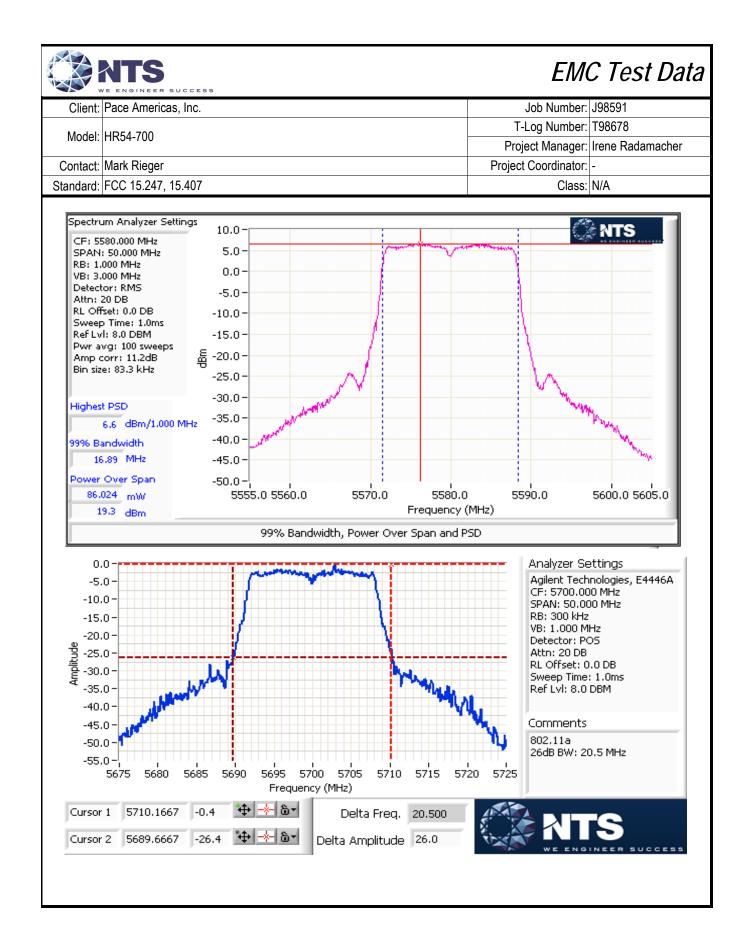

	VE ENGINEER	SUCCESS								
Client:	Pace Americ	as, Inc.						Job Number:	J98591	
Madal	HR54-700						T-L	og Number:	T98678	
Model.	1154-700						Proje	ect Manager:	Irene Radam	acher
Contact:	Mark Rieger						Project	Coordinator:	-	
Standard:	FCC 15.247	15.407						Class:	N/A	
/IMO Devi Mode:	ce - 5150-525 n40	60 MHz Ban	d - FCC				Мах	EIRP (mW):	430.4	
Frequency		Software		Duty Cycle	Power	Total F		FCC Limit	Max Power	
(MHz)	Chain	Setting		%	dBm	mW	dBm	dBm	(W)	Result
5190	1 2	16		98.4	15.1 16.5	77.0	18.9	24.0	0.407	Pass
5230	1 2	20		98.4	18.7 19.7	167.5	22.2	24.0	0.167	Pass
5150-5250 I Mode: Frequency (MHz)	PSD n40 Chain	Software Setting	99% BW (MHz)	Duty Cycle	PSD dBm/MHz	Total mW/MHz	PSD ¹ dBm/MHz	FCC Limit dBm	/MHz	Result
Mode: Frequency	n40						-			Result Pass



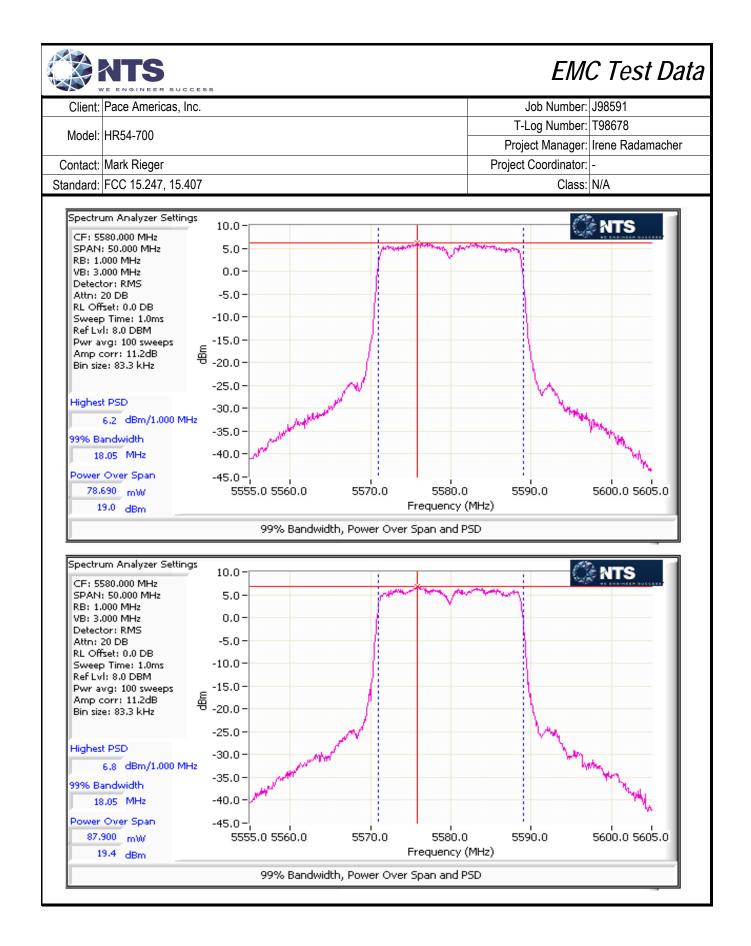
								<u> </u>		D (
	ATS VE ENGINEER	SUCCESS						EIM	C Test	Data
Client:	Pace Americ	as, Inc.						Job Number:		
Model [.]	HR54-700			T-Log Number: T98678						
				-	-	Irene Radam	acher			
Contact:	Mark Rieger		Project Coordinator: -							
Standard:	FCC 15.247	, 15.407						Class:	N/A	
	ce - 5250-535	50 MHz Ban	d - FCC						004.0	
Mode:	11a	Software	26dB BW		D			EIRP (mW):	204.2	
Frequency (MHz)	Chain	Software	260B BVV (MHz)	Duty Cycle	Power		Power ¹	FCC Limit	Max Power (W)	Result
(11112)	1	Setting	(1011 12)	%	dBm 18.7	mW	dBm	dBm	(VV)	
5260	-	20	21.5	98.4		74.1	18.7	24.0		Pass
5300	1	20	21.2	98.4	19.0	79.4	19.0	24.0	0.079	Pass
5320	1	18	20.6	98.4	17.3	53.7	17.3	24.0		Pass
5250-5350 F Mode:	PSD 11a	0.4	000/ 514/				1			
Frequency (MHz)	Chain	Software Setting	99% BW (MHz)	Duty Cycle %	PSD dBm/MHz	Total mW/MHz	dBm/MHz	FCC Limit	/MHz	Result
5260	1	20	16.9	98.4	6.9	4.9	6.9	9.9		Pass
5300	1	20	16.9	98.4	6.5	4.5	6.5	9.9		Pass
5320	1	18	16.9	98.4	4.8	3.0	4.8	9.9		Pass

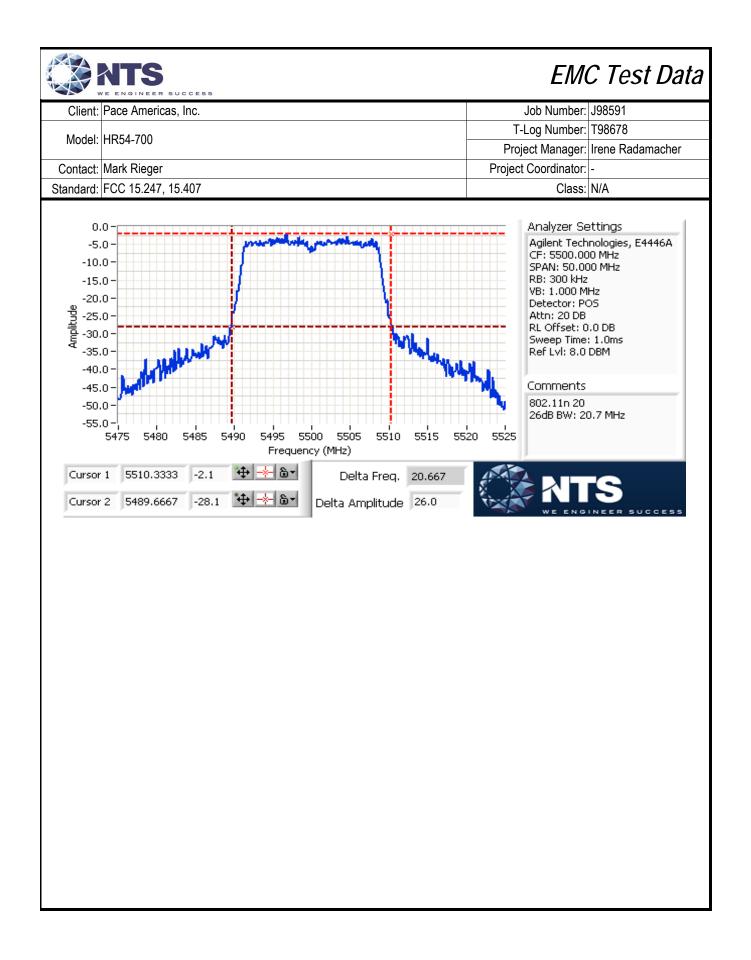



		SUCCESS						EM	C Test	Data
Client:	Pace Americ	as, Inc.						lob Number:		
Model:	HR54-700			T-Log Number: T98678						
				-	-	Irene Radam	nacher			
	Mark Rieger	45.407					Project	Coordinator:		
Standard:	FCC 15.247,	15.407						Class:	N/A	
MIMO Devic Mode:	e - 5250-535 n20	io MHz Ban	d - FCC				Max	EIRP (mW):	368.4	
Frequency		Software	26dB BW	Duty Cycle	Power	Total F	Power ¹	FCC Limit	Max Power	D. II
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
5260	1 2	20	24.0	99.2	18.4 18.7	143.3	21.6	24.0		Pass
5300	1 2	20	21.9	99.2	18.6 ////////////////////////////////////	132.7	21.2	24.0	0.143	Pass
5320	1 2	20	22.5	99.2	17.9 17.9 17.9	123.3	20.9	24.0		Pass
5250-5350 F Mode: Frequency	n20	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit		
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz		/MHz	Result
5260	1 2	20	18.1	99.2	5.7 6.3	8.0	9.0	9.9		Pass
5300	1 2	20	18.0	99.2	5.7 5.2	7.0	8.5	9.9		Pass
5320	1 2	20	18.1	99.2	5.0 5.4	6.6	8.2	9.9		Pass

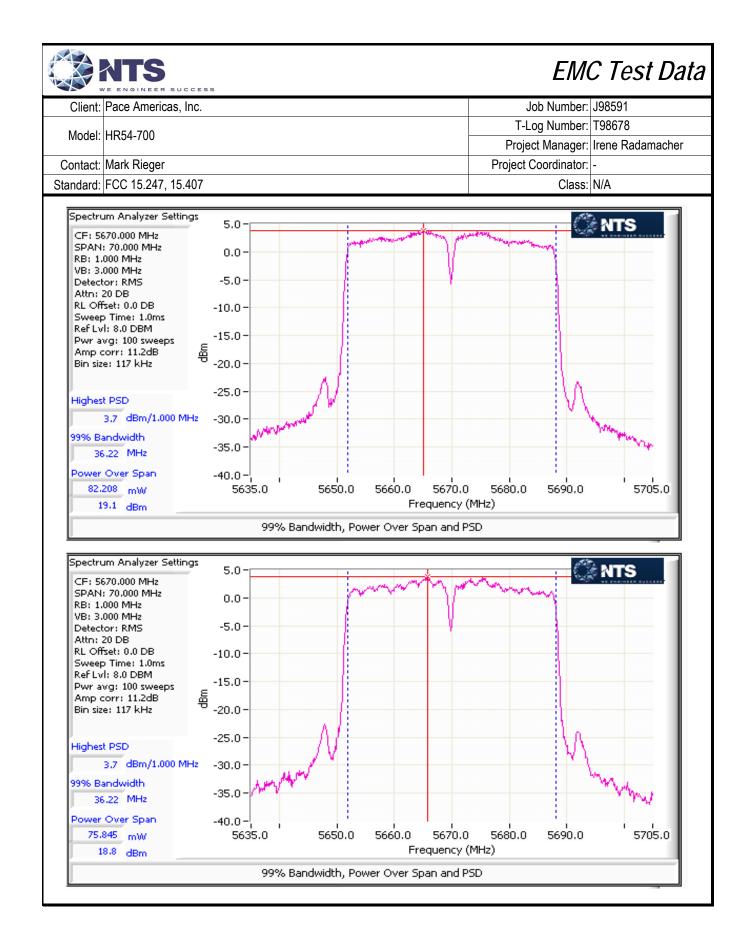


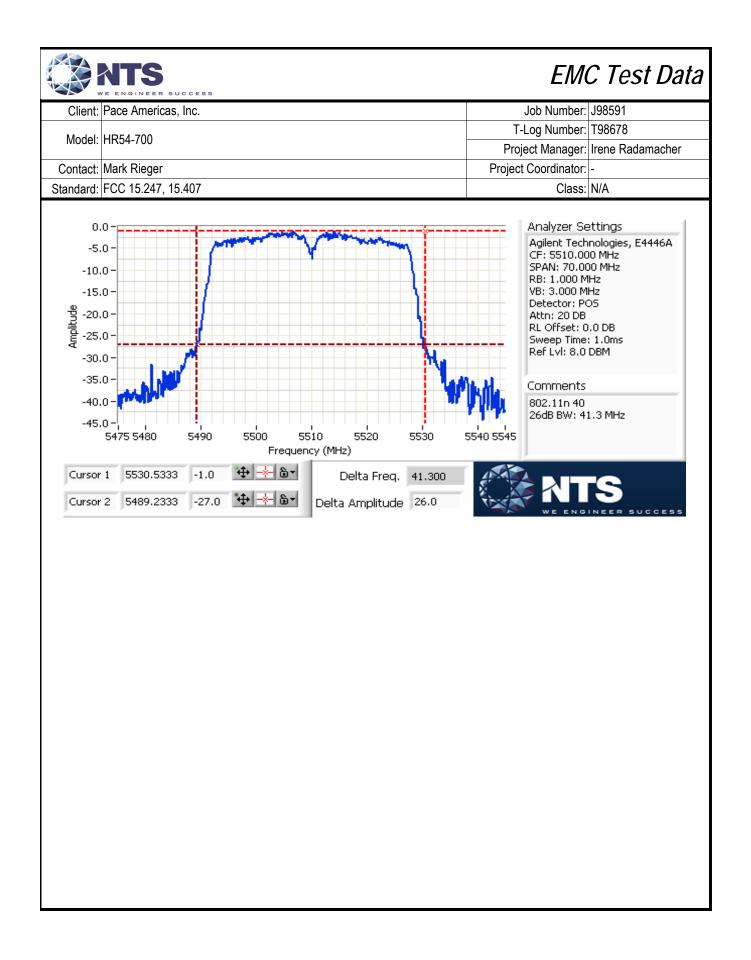
(MHz) Setting (MHz) % dBm mW dBm dBm (W) 5270 1 20 46.4 98.4 18.4 133.7 21.3 24.0 Pa 2 1 1 1 0.134 Pa 16.9 0.134 Pa 5310 1 18 43.3 98.4 16.9 96.8 19.9 24.0 Pa MIMO Device 5250-5350 PSD 16.8 96.8 19.9 24.0 Pa MIMO Device 5250-5350 PSD Mode: n40 16.8 16.8 19.9 24.0 Pa 5270 20 36.3 98.4 16.8 19.9 24.0 Pa 5270 20 36.3 98.4 4.2 6.2 9.9 Pa			SUCCESS						EM	C Test	Data
Mödel: HRS4-700 Project Manager: Irene Radamache Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.247, 15.407 Class: N/A MIMO Device - 5250-5350 MHz Band - FCC Max EIRP (mW): 343.8 Frequency (MHz) Chain Software 26dB BW Duty Cycle Power Total Power ¹ FCC Limit Max Power Re 5270 1 20 46.4 98.4 133.7 21.3 24.0 0.134 5310 1 43.3 98.4 16.9 0.134 Pa 5310 1 8 43.3 98.4 16.9 0.134 Pa 6 1 8 43.3 98.4 16.8 19.9 24.0 Pa MIMO Device 5250-5350 PSD Mode: n40 16.8 19.9 24.0 Pa Frequency (MHz) Chain Software 99% BW Duty Cycle PSD Total PSD ¹ FCC Limit dBm/MHz	Client	Pace Americ	cas, Inc.					, i	Job Number:	J98591	
Contact: Mark Rieger Project Manager: Irene Radamache Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.247, 15.407 Class: N/A MIMO Device - 5250-5350 MHz Band - FCC Max EIRP (mW): 343.8 Frequency chain Software 26dB BW Duty Cycle Power Total Power ¹ FCC Limit Max Power Re (MHz) Chain Software 26dB BW Duty Cycle Power Total Power ¹ FCC Limit Max Power Re 5270 1 20 46.4 98.4 133.7 21.3 24.0 0.134 Pa 5310 1 18 43.3 98.4 16.9 0.134 Pa 5310 1 18 43.3 98.4 16.8 19.9 24.0 Pa MIMO Device 5250-5350 PSD Mode: n40 MHz Re MMHz MMHz Mam/MHz Re MIMO Device 5250-5350 PSD 20 36.3	Madal							T-L	og Number:	T98678	
Standard: FCC 15.247, 15.407 Class: N/A MIMO Device - 5250-5350 MHz Band - FCC Max EIRP (mW): 343.8 Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle % Power dBm Total Power ¹ mW FCC Limit dBm Max Power (W) Re 5270 1 20 46.4 98.4 133.7 21.3 24.0 98.4 96.8 19.9 24.0 0.134 98.4 96.8 19.9 24.0 98.4 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8 19.9 24.0 96.8	woder	HK54-700						Proje	ect Manager:	Irene Radam	nacher
MIMO Device - 5250-5350 MHz Band - FCC Mode: Max EIRP (mW): 343.8 Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle Power Total Power ¹ FCC Limit Max Power (W) Re 5270 1 20 46.4 98.4 18.4 133.7 21.3 24.0 Pa 5270 1 20 46.4 98.4 16.9 0.134 Pa 5310 1 1 16.9 0.134 Pa 0.134 Pa 5310 1 18 43.3 98.4 16.8 96.8 19.9 24.0 Pa MIMO Device 5250-5350 PSD Mode: Node: n40 Node: Re Node: Re MIMO Device 5250-5350 PSD Mode: 20 36.3 98.4 Mimmutation Mimmutation FCC Limit Re 5270 20 36.3 98.4 3.2 4.2 6.2 9.9 Pa	Contact	Mark Rieger						Project	Coordinator:	-	
Mode: n40 Max EIRP (mW): 343.8 Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle % Power dBm Total Power ¹ mW FCC Limit dBm Max Power dBm Re 5270 1 20 46.4 98.4 18.4 133.7 21.3 24.0 Patholic Patholic 0.134 Patholic Patholic Patholic 0.134 Patholic Patholic 0.134 Patholic Patholic Patholic 0.134 Patholic Patholic 0.134 Patholic Patholic 0.134 Patholic Patholic Patholic Patholic Patholic Patholic 0.134 Patholic Patholic	Standard	FCC 15.247	, 15.407						Class:	N/A	
Frequency (MHz) Chain Chain Software Setting 26dB BW (MHz) Duty Cycle % Power dBm Total Power ¹ mW FCC Limit dBm Max Power (W) Re 5270 1 20 46.4 98.4 18.4 133.7 21.3 24.0 Pa 2 1 1 18.1 133.7 21.3 24.0 Pa 5310 1 84.3.3 98.4 16.9 19.9 24.0 Pa 5310 1 84.3.3 98.4 16.8 19.9 24.0 Pa MIMO Device 5250-5350 PSD Mode: n40 16.8 16.8 16.8 19.9 24.0 Pa Frequency (MHz) Chain Software Setting 99% BW (MHz) Duty Cycle % PSD Total PSD ¹ mW/MHz FCC Limit dBm/MHz Re 1 20 36.3 98.4 3.2 4.2 6.2 9.9 Pa			50 MHz Ban	d - FCC				Мах	FIRP (mW).	343.8	
(MHz) Chain Setting (MHz) % dBm mW dBm dBm (W) Re 5270 1 20 46.4 98.4 18.4 133.7 21.3 24.0 Pa 2 1 16.9 16.9 0.134 Pa 5310 1 84.3 98.4 16.9 0.134 Pa 5310 1 18 43.3 98.4 16.9 0.134 Pa MIMO Device 5250-5350 PSD 16.8 16.8 19.9 24.0 Pa MIMO Device 5250-5350 PSD Mode: n40 Pa 16.8 16.8 19.9 24.0 Pa 5270 Chain Software 99% BW Duty Cycle PSD Total PSD ¹ FCC Limit Re 1 20 36.3 98.4 3.2 4.2 6.2 9.9 Pa			Software	26dB BW	Duty Cycle	Power	Total F				
1 1		Chain									Result
1 16.9 0.134 5310 18 43.3 98.4 96.8 19.9 24.0 Pa MIMO Device 5250-5350 PSD 16.8 16.8 16.8 19.9 24.0 Pa MIMO Device 5250-5350 PSD Mode: n40 Frequency Chain Software 99% BW Duty Cycle PSD Total PSD ¹ FCC Limit Re MHz) Chain Software 99% BW Duty Cycle PSD Total PSD ¹ FCC Limit Re 1 20 36.3 98.4 4.2 6.2 9.9 Pa	. ,		-			18.4					Pass
MIMO Device 5250-5350 PSD Mode: n40 Frequency Chain Software 99% BW Duty Cycle PSD Total PSD ¹ FCC Limit Re (MHz) Chain Setting (MHz) % dBm/MHz mW/MHz dBm/MHz Re 1 3.2 3.2 4.2 6.2 9.9 Pa	5310	1	18	43.3	98.4	16.9	96.8	19.9	24.0	0.134	Pass
(MHZ) Setting (MHZ) % dBm/MHz mW/MHz dBm/MHz dBm/MHz 1 3.2 3.2 3.2 3.2 3.2 98.4 4.2 6.2 9.9 Pa	Mode: Frequency	n40	Software					-			Result
5270 20 36.3 98.4 4.2 6.2 9.9 Pa	(MHZ)	4	Setting	(MHZ)	%		mW/MHz	dBm/MHz	dBm	/MHz	
	5270	1 2	20	36.3	98.4		4.2	6.2	9.9		Pass
1 1.6 5310 18 36.2 98.4 1.6 2 18 36.2 98.4 1.9 3.0 4.8 9.9 Pa	5310	-	18	36.2	98.4		3.0	4.8	9.9		Pass

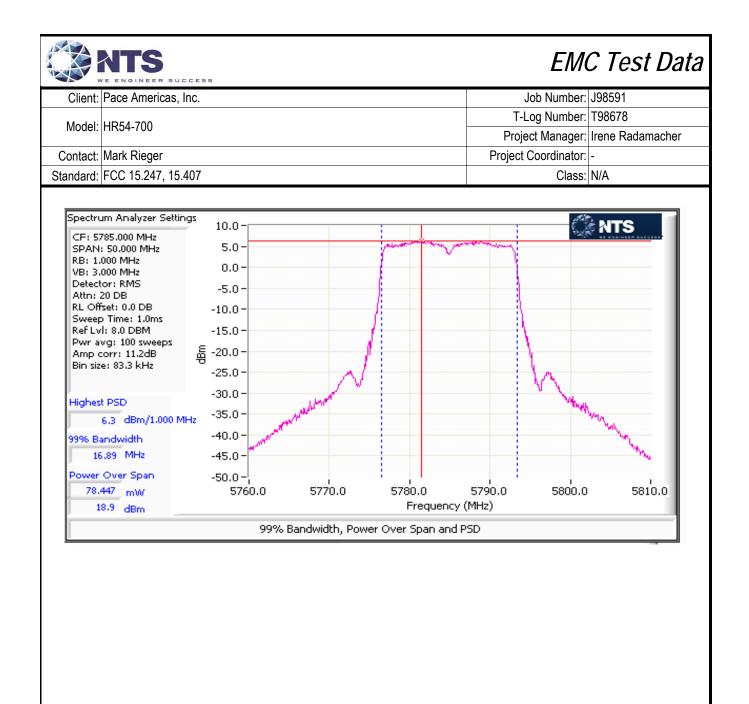




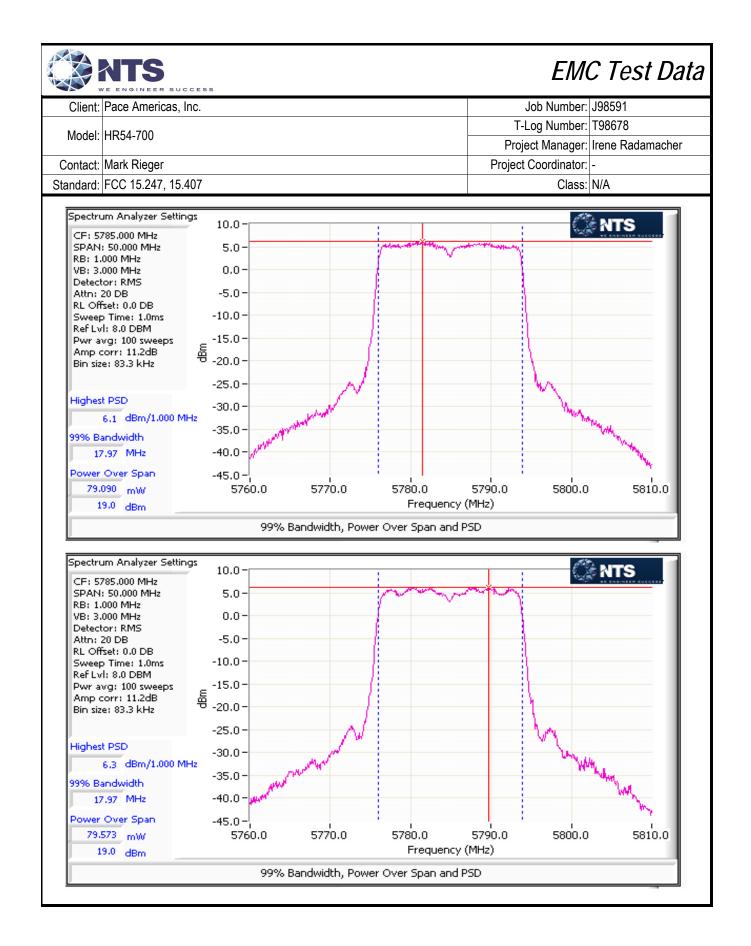
		SUCCESS						EM	C Test	Data
Client:	Pace Americ	as, Inc.					,	lob Number:	J98591	
Madal	HR54-700						T-L	og Number:	T98678	
woder.	NK34-700						Proje	ct Manager:	Irene Radam	acher
Contact:	Mark Rieger						Project	Coordinator:	-	
Standard:	FCC 15.247,	, 15.407						Class:	N/A	
	ce - 5470-572	25 MHz Ban	d - FCC						040.0	
Mode:	11a	Coffwara	26dB BW	Dut Out	Davia	T.(.)		EIRP (mW):		
Frequency (MHz)	Chain	Software Setting	260B BVV (MHz)	Duty Cycle		Total F			Max Power (W)	Result
	1	Setting		%	dBm 19.0	mW	dBm	dBm	(**)	
5500		20	20.5	98.4		79.4	19.0	24.0		Pass
5580	1	20	20.7	98.4	19.3	85.1	19.3	24.0	0.085	Pass
5700	1	19	20.5	98.4	18.5	70.8	18.5	24.0		Pass
5470-5700 I Mode: Frequency	PSD 11a Chain	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit		Result
(MHz)		Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	rtooun
5500	1	20	16.9	98.4	6.5	4.5	6.5	9.9		Pass
5580	1	20	16.9	98.4	6.6	4.6	6.6	9.9		Pass
5700	1	19	16.9	98.4	5.9	3.9	5.9	9.9		Pass

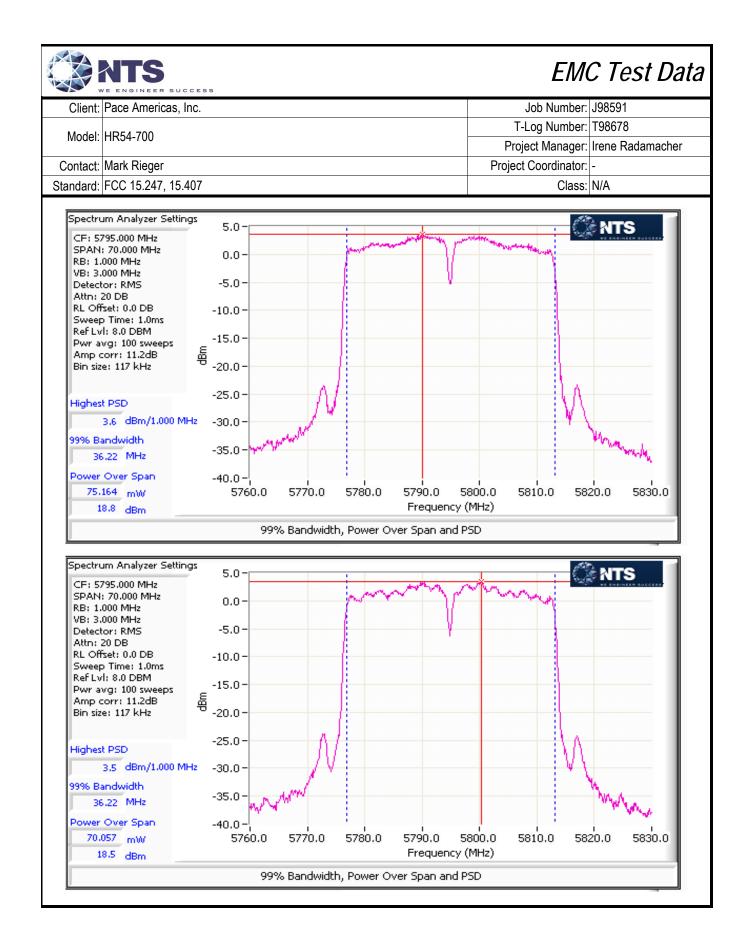



		SUCCESS						EM	C Test	Data
Client:	Pace Americ	as, Inc.						Job Number:	J98591	
Madal	HR54-700						T-L	og Number:	T98678	
Model.	HK94-700			Proje	ect Manager:	Irene Radam	nacher			
Contact:	Mark Rieger						Project	Coordinator:	-	
Standard:	FCC 15.247,	, 15.407						Class:	N/A	
	ce - 5470-572	25 MHz Ban	d - FCC							
Mode:	n20	0.4						EIRP (mW):		
Frequency	Chain	Software	26dB BW	Duty Cycle			Power ¹	FCC Limit	Max Power	Result
(MHz)	1	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	
5500	1 2	20	20.7	99.2	17.2	128.3	21.1	24.0		Pass
5580	1 2	20	20.7	99.2	19.0 19.4	166.5	22.2	24.0	0.167	Pass
5700	1 2	19	20.7	99.2	18.4 18.4	138.4	21.4	24.0		Pass
5470-5725 F Mode: Frequency	PSD n20 Chain	Software	99% BW	Duty Cycle		Total	-	FCC Limit		Result
(MHz)		Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	
5500	1 2	20	18.1	99.2	4.3 6.2	6.9	8.4	9.9		Pass
5580	1 2	20	18.1	99.2	6.2 6.8	9.0	9.5	9.9		Pass
5700	1 2	19	18.1	99.2	5.6 5.7	7.3	8.7	9.9		Pass

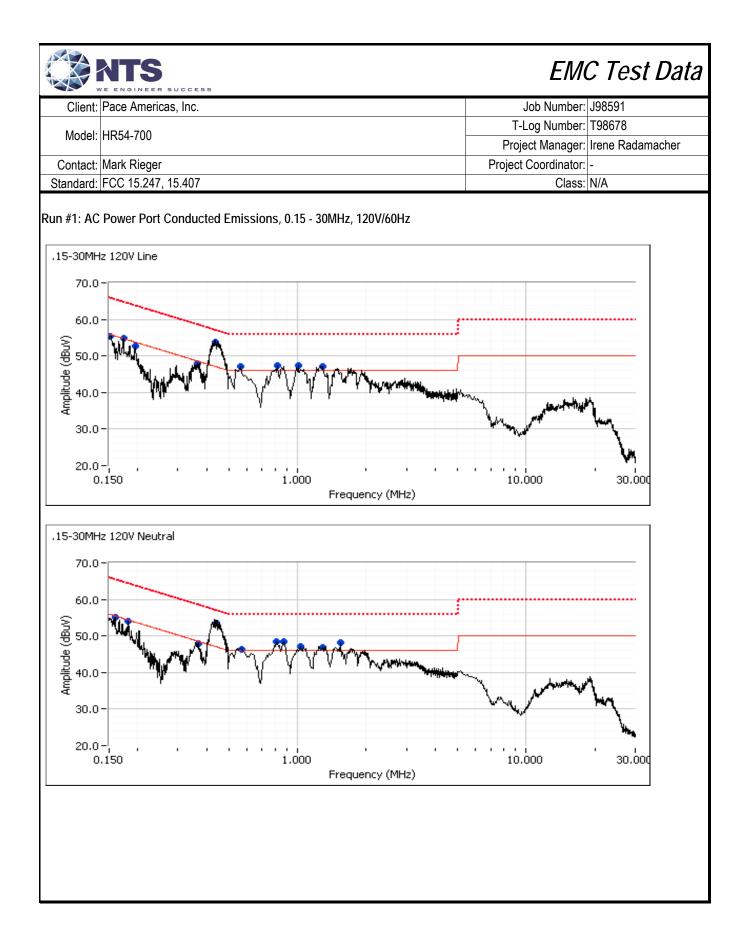


		SUCCESS						EM	C Test	Data
Client:	Pace Americ	as, Inc.						lob Number:	J98591	
Model [.]	HR54-700							.og Number:		
							-	-	Irene Radam	acher
	Mark Rieger						Project	Coordinator:		
Standard:	FCC 15.247	, 15.407						Class:	N/A	
MIMO Devid Mode:	ce - 5470-572	25 MHz Ban	d - FCC				Мох		403.9	
Frequency	n40	Software	26dB BW	Duty Cycle	Power	Total	Power ¹	EIRP (mW): FCC Limit	403.9 Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
5510	1 2	17	41.3	98.4	15.8 15.0	69.6	18.4	24.0		Pass
5550	1 2	20	42.7	98.4	19.0 18.1	144.0	21.6	24.0	0.157	Pass
5670	1 2	20	44.6	98.4	19.1 18.8	157.1	22.0	24.0		Pass
Mode:	ce 5470-5725 n40	5 PSD Software	99% BW		202			50011 1		
Frequency (MHz)	Chain	Setting	99% ВVV (MHz)	Duty Cycle %	PSD dBm/MHz	Total mW/MHz	dBm/MHz	FCC Limit	/MHz	Result
5510	1	17	36.2	98.4	0.4	2.1	3.1	9.9		Pass
5550	2 1 2	20	36.2	98.4	-0.2 3.6 2.8	4.2	6.2	9.9		Pass
5670	1 2	20	36.2	98.4	3.7 	4.7	6.7	9.9		Pass




		SUCCESS						EM	C Test	Data
Client:	Pace Americ	as, Inc.						Job Number:	J98591	
Madalı	HR54-700						T-L	og Number:	T98678	
Model:	HK94-700						Proje	ect Manager:	Irene Radam	acher
Contact:	Mark Rieger						Project	Coordinator:	-	
Standard:	FCC 15.247,	15.407						Class:	N/A	
MIMO Devic Mode:	e - 5725-585 11a	i0 MHz Band	d - FCC				Мах	EIRP (mW):	199.5	
Frequency		Software		Duty Cycle	Power	Total F		FCC Limit	Max Power	D "
(MHz)	Chain	Setting		%	dBm	mW	dBm	dBm	(W)	Result
5745	1 2	16		98.4	14.7	29.5	14.7	30.0		Pass
5785	1	20		98.4	18.9	77.6	18.9	30.0	0.078	Pass
5825	1	19		98.4	17.6	57.5	17.6	30.0		Pass
5725-5850 F Mode:	2SD 11a	Software	99% BW		505			50011 11		
Frequency (MHz)	Chain	Software	99% ВW (MHz)	Duty Cycle %	PSD dBm/MHz	Total mW/MHz	dBm/MHz	FCC Limit dBm/5	500kHz	Result
5745	1 2	16	16.9	98.4	2.1	1.6	2.1	30.0		Pass
5785	1 2	20	16.9	98.4	6.3	4.3	6.3	30.0		Pass
5825	1 2	19	17.0	98.4	5.0	3.2	5.0	30.0		Pass

		SUCCESS						EM	C Test	Data
Client:	Pace Americ	as, Inc.						Job Number:	J98591	
Madalı	HR54-700						T-L	og Number:	T98678	
woder.	HK94-700						Proje	ect Manager:	Irene Radam	acher
Contact:	Mark Rieger						Project	Coordinator:	-	
Standard:	FCC 15.247,	15.407						Class:	N/A	
MIMO Devic Mode:	e - 5725-585 n20	i0 MHz Band	d - FCC				Мах	EIRP (mW):	408.3	
Frequency		Software		Duty Cycle	Power	Total F	Power ¹		Max Power	
(MHz)	Chain	Setting		%	dBm	mW	dBm	dBm	(W)	Result
5745	1 2	16		99.2	14.7 14.5	57.7	17.6	30.0		Pass
5785	1 2	20		99.2	19.0 19.0	158.9	22.0	30.0	0.159	Pass
5825	1	19		99.2	17.6 17.6	115.1	20.6	30.0		Pass
5725-5850 F Mode: Frequency	n20	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit		
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz		500kHz	Result
5745	1 2	16	18.0	99.2	1.9 1.7	3.0	4.8	28.9		Pass
5785	1 2	20	18.0	99.2	6.1 6.3	8.3	9.2	28.9		Pass
5825	1 2	19	18.0	99.2	4.8 5.1	6.3	8.0	28.9		Pass



	NTS	SUCCESS						EM	C Test	Data
Client:	Pace Americ	199999696969696						Job Number:	J98591	
	HR54-700						T-L	og Number:	T98678	
	HR94-700						Proje	ect Manager:	Irene Radam	acher
Contact:	Mark Rieger						Project	Coordinator:	-	
Standard: F	FCC 15.247,	15.407						Class:	N/A	
MIMO Device Mode:	e - 5725-585: n40	i0 MHz Ban	d - FCC				Мах	EIRP (mW):	377.0	
Frequency		Software		Duty Cycle	Power	Total F			Max Power	
(MHz)	Chain	Setting		%	dBm	mW	dBm	dBm	(W)	Result
5755	1 2	15		98.4	13.7 13.4	45.3	16.6	30.0	0.447	Pass
5795	1	20		98.4	18.8 18.5	146.7	21.7	30.0	0.147	Pass
Mode: Frequency (MHz)	n40 Chain	Software Setting	99% BW (MHz)	Duty Cycle %	PSD dBm/MHz	Total mW/MHz	PSD ¹ dBm/MHz	FCC Limit dBm/5	500kHz	Result
5755	1	15	36.2	98.4	-1.7	1.4	1.4	28.9		Pass
	2	20	36.2	98.4	-1.6 3.6					

Client:	Pace Americ	as. Inc.					Job Number:	J98591
						1	-Log Number:	
Model:	HR54-700							Irene Radamacher
Contact:	Mark Rieger						ct Coordinator:	
	FCC 15.247,	15 407					Class:	
otanadia.	10010.217,	10.101					01000.	
un #2: - S ode:	ignal Bandwi 11a	dth (5725-5850 MHz)						
	Power	Fraguanay (MHz)	Bandwid	th (MHz)	RBW	Setting		
	Setting	Frequency (MHz)	6dB		6dB			
	20	5785	16.4		100 kHz			
ode:	n20							
Jue.	Power		Bandwid	th (MHz)	RBW	Setting	7	
	Setting	Frequency (MHz)	6dB	· ·-/	6dB			
	20	5785	17.6		100 kHz			
	40							
ode:	n40 Power		Dondwid			Cotting	-	
	Fower		Bandwid			Setting		
	Setting	Frequency (MHz)				I		
Note 1:	Setting 20 DTS BW: RE	Frequency (MHz) 5795 3W=100kHz, VBW ≥ 3*F	6dB 35.1		6dB 100 kHz			
Note 1: Note 2:	20 DTS BW: RE	5795	6dB 35.1 RBW, peak de		6dB 100 kHz			
Note 2:	20 DTS BW: RE	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Analyzer Se	
Note 2:	20 DTS BW: RE Measuremen	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech	nologies, E4446A
Note 2: 0 -5 -10	20 DTS BW: RE Measuremen .0 - .0 -	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech CF: 5785.00 SPAN: 50.00	nnologies, E4446A 00 MHz 00 MHz
Note 2: 0 -5 -10 -15	20 DTS BW: RE Measuremen .0 - .0 - .0 -	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz	nnologies, E4446A 00 MHz 00 MHz 20 MHz
Note 2: 0 -5 -10 -15 -20	20 DTS BW: RE Measuremen .0 - .0 - .0 -	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech CF: 5785.00 SPAN: 50.00	nnologies, E4446A 00 MHz 00 MHz
Note 2: 0 -5 -10 -15 -20	20 DTS BW: RE Measuremen .0 - .0 - .0 - .0 - .0 - .0 - .0 -	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz VB: 300 kHz Detector: P Attn: 20 DB	nnologies, E4446A 00 MHz 00 MHz 00 MHz 05
Note 2: 0 -5 -10 -15 -20 pp:125 dwg-30	20 DTS BW: RE Measuremen .0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz VB: 300 kHz Detector: Pr Attn: 20 DB RL Offset: 0 Sweep Time	nnologies, E4446A 00 MHz 00 MHz 05 0.0 DB : 4.8ms
Note 2: 0 -5 -10 -15 -20 pn12 -25 -30 -30 -35	20 DTS BW: RE Measuremen .0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz VB: 300 kHz Detector: Pr Attn: 20 DB RL Offset: 0	nnologies, E4446A 00 MHz 00 MHz 05 0.0 DB : 4.8ms
Note 2: 0 -5 -10 -15 -20 ppn:25 -35 -35 -40	20 DTS BW: RE Measuremen .0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz VB: 300 kHz Detector: P Attn: 20 DB RL Offset: 0 Sweep Time Ref LvI: 8.0	nologies, E4446A 00 MHz 00 MHz 05 0.0 DB : 4.8ms DBM
Note 2: 0 -5 -10 -15 -20 -25 -30 -30 -35 -40 -45	20 DTS BW: RE Measuremen .0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz VB: 300 kHz Detector: Pr Attn: 20 DB RL Offset: 0 Sweep Time	nologies, E4446A 00 MHz 00 MHz 05 0.0 DB : 4.8ms DBM
Note 2: 0 -5 -10 -15 -20 9 0 -30 -30 -30 -35 -40 -45 -50	20 DTS BW: RE Measuremen .0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -	5795 3W=100kHz, VBW \ge 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz		Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz VB: 300 kHz Detector: Pr Attn: 20 DB RL Offset: 0 Sweep Time Ref LvI: 8.0	nologies, E4446A 00 MHz 00 MHz 05 0.0 DB : 4.8ms DBM
Note 2: 0 -5 -10 -15 -20 -25 -30 -30 -35 -40 -45	20 DTS BW: RE Measuremen .0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -	5795 3W=100kHz, VBW ≥ 3*F ts performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz hold, auto sv		Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz VB: 300 kHz Detector: P4 Attn: 20 DB RL Offset: 0 Sweep Time Ref LvI: 8.0 Comments 802.11a 6dB BW: 16	nologies, E4446A 00 MHz 00 MHz 05 0.0 DB : 4.8ms DBM
Note 2: 0 -5 -10 -15 -20 9 0 -30 -30 -30 -35 -40 -45 -50	20 DTS BW: RE Measuremen .0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -	5795 3W=100kHz, VBW ≥ 3*F its performed on chain 0	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz hold, auto su	veep time.	Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz VB: 300 kHz Detector: P4 Attn: 20 DB RL Offset: 0 Sweep Time Ref LvI: 8.0 Comments 802.11a 6dB BW: 16	nologies, E4446A 00 MHz 00 MHz 05 0.0 DB : 4.8ms DBM
Note 2: 0 -5 -10 -15 -20 -25 -30 -30 -35 -40 -55	20 DTS BW: RE Measuremen .0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -	5795 3W=100kHz, VBW ≥ 3*F its performed on chain 0 5 5770 5775 5780 Fre 67 -3.2	6dB 35.1 RBW, peak de	etector, max	6dB 100 kHz hold, auto sv 5800 58 16.417	veep time.	Agilent Tech CF: 5785.00 SPAN: 50.00 RB: 100 kHz VB: 300 kHz Detector: P4 Attn: 20 DB RL Offset: 0 Sweep Time Ref LvI: 8.0 Comments 802.11a 6dB BW: 16	nologies, E4446A 00 MHz 00 MHz 05 0.0 DB : 4.8ms DBM

	SUCCESS			EM	C Test Data
Client: Pace America	as, Inc.			Job Number:	J98591
Model: HR54-700			T-	-Log Number:	T98678
			Proj	ject Manager:	Irene Radamacher
Contact: Mark Rieger			Project	t Coordinator:	-
Standard: FCC 15.247,	15.407			Class:	N/A
	Conduct (NTS Silicon Valley, Fremon	ted Emissions tr Facility, Semi-Anec	hoic Chamb	ber)	
Test Specific Details Objective:	S The objective of this test session is to p	erform final qualificatio	on testing of t	the EUT with i	respect to the
5	specification listed above.				
Date of Test: 7 Test Engineer: 5 Test Location: F	loseph Cadigal	Config. Used Config Change EUT Voltage	: none	<u>.</u>	
the semi-anechoic chamb	Rel. Humidity:				
			<u> </u>	I	
Run #	Test Performed CE, AC Power,120V/60Hz	Limit FCC 15.209	Result Pass	Margin	@ 0.443 MHz (-0.9 dB)
Deviations From The	de to the EUT during testing e Standard from the requirements of the standard.				

		RSUCCESS					EMC Test Dat
Client:	Pace Ameri	cas, Inc.					Job Number: J98591
							T-Log Number: T98678
Model:	HR54-700						Project Manager: Irene Radamacher
Contact	Mark Riege	r					Project Coordinator: -
	FCC 15.247						Class: N/A
Stanuaru.	1 00 13.247	, 10.407					Old33. INIA
Preliminary	u neak readi	nas canture	d during pre	-scan (neak	readings v	s. average lim	it)
Frequency	Level	AC	FCC 1		Detector	Comments	
MHz	dBµV	Line	Limit	Margin	QP/Ave	Commonito	
0.152	55.4	Line 1	55.9	-0.5	Peak		
0.173	54.8	Line 1	54.8	0.0	Peak		
0.196	52.7	Line 1	53.8	-1.1	Peak		
0.436	53.7	Line 1	47.1	6.6	Peak		
0.364	47.9	Line 1	48.6	-0.7	Peak		
1.277	47.0	Line 1	46.0	1.0	Peak		
1.010	47.4	Line 1	46.0	1.4	Peak		
0.814	47.4	Line 1	46.0	1.4	Peak		
0.566	47.0	Line 1	46.0	1.0	Peak		
0.160	55.1	Neutral	55.5	-0.4	Peak		
0.182	54.1	Neutral	54.4	-0.3	Peak		
0.368	48.0	Neutral	48.6	-0.6	Peak		
0.443	53.4	Neutral	47.0	6.4	Peak		
1.536	48.3	Neutral	46.0	2.3	Peak		
1.291	46.9	Neutral	46.0	0.9	Peak		
1.028	47.0	Neutral	46.0	1.0	Peak		
0.873	48.4	Neutral	46.0	2.4	Peak		
0.566	46.3	Neutral	46.0	0.3	Peak		
0.566	46.3	Neutral	46.0	0.3	Peak		
0.798	48.4	Neutral	46.0	2.4	Peak		
inal quasi	-peak and a	verage read	ings				
Frequency		AC	FCC 1			Comments	
MHz	dBµV	Line	Limit	Margin	QP/Ave		
0.443	46.1	Neutral	47.0	-0.9	AVG	AVG (0.10s)	
0.436	46.1	Line 1	47.1	-1.0	AVG	AVG (0.10s)	
0.436	52.1	Line 1	57.1	-5.0	QP	QP (1.00s)	
0.443	51.7	Neutral	57.0	-5.3	QP	QP (1.00s)	
0.566	39.2	Neutral	46.0	-6.8	AVG	AVG (0.10s)	
1.277	38.9	Line 1	46.0	-7.1	AVG	AVG (0.10s)	
1.028	38.9	Neutral	46.0	-7.1	AVG	AVG (0.10s)	
0.566	38.8	Line 1	46.0	-7.2	AVG	AVG (0.10s)	
0.814	38.7	Line 1	46.0	-7.3	AVG	AVG (0.10s)	
1.010	38.6	Line 1	46.0	-7.4	AVG	AVG (0.10s)	
1.291	38.5	Neutral	46.0	-7.5	AVG	AVG (0.10s)	
1.536	37.8	Neutral	46.0	-8.2	AVG	AVG (0.10s)	
0.364	40.1	Line 1	48.6	-8.5	AVG	AVG (0.10s)	
0.368	39.3	Neutral	48.5	-9.2	AVG	AVG (0.10s)	

01 1								100504
Client:	Pace Americ	cas, Inc.					Job Number:	
Model [.]	HR54-700						T-Log Number:	
model.	11104 700						Project Manager:	Irene Radamache
Contact:	Mark Rieger	•					Project Coordinator:	-
Standard:	FCC 15.247	, 15.407					Class:	N/A
0.873	36.3	Neutral	46.0	-9.7	AVG	AVG (0.10s)		
0.814	45.1	Line 1	56.0	-10.9	QP	QP (1.00s)		
0.873	44.9	Neutral	56.0	-11.1	QP	QP (1.00s)		
0.566	44.9	Neutral	56.0	-11.1	QP	QP (1.00s)		
1.277	44.8	Line 1	56.0	-11.2	QP	QP (1.00s)		
0.566	44.8	Line 1	56.0	-11.2	QP	QP (1.00s)		
1.291	44.5	Neutral	56.0	-11.5	QP	QP (1.00s)		
1.028	44.4	Neutral	56.0	-11.6	QP	QP (1.00s)		
1.010	44.2	Line 1	56.0	-11.8	QP	QP (1.00s)		
1.536	43.8	Neutral	56.0	-12.2	QP	QP (1.00s)		
0.364	45.9	Line 1	58.6	-12.7	QP	QP (1.00s)		
0.173	41.9	Line 1	54.8	-12.9	AVG	AVG (0.10s)		
0.368	45.2	Neutral	58.5	-13.3	QP	QP (1.00s)		
0.182	40.4	Neutral	54.4	-14.0	AVG	AVG (0.10s)		
0.152	51.9	Line 1	65.9	-14.0	QP	QP (1.00s)		
0.152	41.6	Line 1	55.9	-14.3	AVG	AVG (0.10s)		
0.196	39.4	Line 1	53.8	-14.4	AVG	AVG (0.10s)		
0.160	40.6	Neutral	55.5	-14.9	AVG	AVG (0.10s)		
0.182	48.6	Neutral	64.4	-15.8	QP	QP (1.00s)		
0.173	48.8	Line 1	64.8	-16.0	QP	QP (1.00s)		
0.160	49.5	Neutral	65.5	-16.0	QP	QP (1.00s)		
0.196	47.2	Line 1	63.8	-16.6	QP	QP (1.00s)		

EMC Test Data

-	E ENGINEER SUCCESS		
Client:	Pace Americas, Inc.	Job Number:	J98591
Madal	HR54-700	T-Log Number:	T98678
MOUEI.	11/04-700	Project Manager:	Irene Radamacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.247, 15.407	Class:	N/A

FCC Part 15 Frequency Stability

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

NTS

All measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was placed inside an environmental chamber.

Ambient Conditions:	Temperature:	24 °C
	Rel. Humidity:	38 %

Run #	Test Performed	Limit	Pass / Fail	
1	Frequency Stability	Stays in band	Pass	

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client	Dage Americae Inc			Job Number:	108501
Client:	Pace Americas, Inc.				
Model:	HR54-700			T-Log Number:	
0 1 1	Mat D'ann				Irene Radamacher
	Mark Rieger			Project Coordinator:	-
Standard:	FCC 15.247, 15.407			Class:	N/A
	equency Stability				
	Date of Test: 8/5/2015		Config. Used:		
	st Engineer: J Caizzi and E N		Config Change:		
Te	est Location: Fremont EMC L	ab #4	EUT Voltage:	120V/60Hz	
	Nominal Frequency:	5180 MHz			
reauencv	Stability Over Temperature				
	is soaked at each temperatur		0 minutes prior to starting	the transmitter and makir	g the measurements
	UT and chamber had stabiliz				•
. .	Francisco Managerad		-:4	1	
Temperature	Frequency Measured		rift (nom)		
(Celsius) 0	(MHz) 5179.9850	(Hz) -15000	(ppm) -2.9		
		-15000	-2.9		
10	5179.9850 5179.9700				
10 20	5179.9700	-30000	-5.8		
10 20 30	5179.9700 5179.9600	-30000 -40000	-5.8 -7.7		
10 20 30 40	5179.9700 5179.9600 5179.9450	-30000 -40000 -55000	-5.8 -7.7 -10.6		
10 20 30	5179.9700 5179.9600	-30000 -40000	-5.8 -7.7		
10 20 30 40 50	5179.9700 5179.9600 5179.9450 5179.9400 Worst case: Stability Over Input Voltage	-30000 -40000 -55000 -60000 -55000	-5.8 -7.7 -10.6 -11.6		
10 20 30 40 50 Frequency Nominal Vo	5179.9700 5179.9600 5179.9450 5179.9400 Worst case: Stability Over Input Voltage Itage is 120Vac.	-30000 -40000 -55000 -60000 -55000	-5.8 -7.7 -10.6 -11.6 -11.6		
10 20 30 40 50 Frequency Vominal Vo <u>Voltage</u>	5179.9700 5179.9600 5179.9450 5179.9400 Worst case: Stability Over Input Voltage Itage is 120Vac. Frequency Measured	-30000 -40000 -55000 -60000 -55000	-5.8 -7.7 -10.6 -11.6 -11.6		
10 20 30 50 Frequency Vominal Vo <u>Voltage</u> (DC)	5179.9700 5179.9600 5179.9450 5179.9400 Worst case: Stability Over Input Voltage Itage is 120Vac. Frequency Measured (MHz)	-30000 -40000 -55000 -60000 -55000 e <u>D</u> (Hz)	-5.8 -7.7 -10.6 -11.6 -11.6 <u>rift</u> (ppm)		
10 20 30 40 50 Frequency Vominal Vo <u>Voltage</u>	5179.9700 5179.9600 5179.9450 5179.9400 Worst case: Stability Over Input Voltage Itage is 120Vac. Frequency Measured	-30000 -40000 -55000 -60000 -55000	-5.8 -7.7 -10.6 -11.6 -11.6		

End of Report

This page is intentionally blank and marks the last page of this test report.