

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

TEST REPORT

Covering the DYNAMIC FREQUENCY SELECTION (DFS) REQUIREMENTS OF

FCC Part 15 Subpart E (UNII)

Pace Americas Model(s): HR54-700

COMPANY:	Pace Americas 310 Providence Mine Road Nevada City, CA, 95959
TEST SITE:	National Technical Systems - Silicon Valley 41039 Boyce Road Fremont, CA 94538
REPORT DATE:	May 16, 2016
FINAL TEST DATE:	July 16, 2015
TEST ENGINEER:	Mehran Birgani
TOTAL NUMBER OF PAGES:	32

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

VALIDATING SIGNATORIES

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E. Hill Staff Engineer

REPORT PREPARER:

Me 81

Mehran Birgani EMC Engineer

QUALITY ASSURANCE DELEGATE

David Guidotti Senior Technical Writer

REVISION HISTORY

Rev #	Date	Comments	Modified By
-	May 16, 2016	Initial Release	-

TABLE OF CONTENTS

TITLE PAGE	1
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
LIST OF TABLES	5
LIST OF FIGURES	5
SCOPE	6
OBJECTIVE	6
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARD	
TEST RESULTS	7
TEST RESULTS SUMMARY – FCC PART 15, CLIENT DEVICE	7
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ENCLOSURE	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
RADAR WAVEFORMS	10
DFS TEST METHODS	
RADIATED TEST METHOD	12
DFS MEASUREMENT INSTRUMENTATION	
RADAR GENERATION SYSTEM	
CHANNEL MONITORING SYSTEM	
RADAR GENERATOR PLOTS	
DFS MEASUREMENT METHODS	
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME	22
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING	
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING DFS CHANNEL AVAILABILITY CHECK TIME RANSMIT POWER CONTROL (TPC)	
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING DFS CHANNEL AVAILABILITY CHECK TIME RANSMIT POWER CONTROL (TPC) SAMPLE CALCULATIONS DETECTION PROBABILITY / SUCCESS RATE	
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING DFS CHANNEL AVAILABILITY CHECK TIME RANSMIT POWER CONTROL (TPC) SAMPLE CALCULATIONS DETECTION PROBABILITY / SUCCESS RATE THRESHOLD LEVEL	22 22 23 23 23 24 24 24
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING DFS CHANNEL AVAILABILITY CHECK TIME RANSMIT POWER CONTROL (TPC) SAMPLE CALCULATIONS DETECTION PROBABILITY / SUCCESS RATE THRESHOLD LEVEL APPENDIX A TEST EQUIPMENT CALIBRATION DATA	22 22 23 23 23 24 24 24 24 24 25
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING DFS CHANNEL AVAILABILITY CHECK TIME RANSMIT POWER CONTROL (TPC) SAMPLE CALCULATIONS DETECTION PROBABILITY / SUCCESS RATE THRESHOLD LEVEL APPENDIX A TEST EQUIPMENT CALIBRATION DATA	22 22 23 23 24 24 24 24 25 25 26
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING DFS CHANNEL AVAILABILITY CHECK TIME RANSMIT POWER CONTROL (TPC) SAMPLE CALCULATIONS	22 22 23 23 23 24 24 24 24 25 26 27
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING DFS CHANNEL AVAILABILITY CHECK TIME RANSMIT POWER CONTROL (TPC) SAMPLE CALCULATIONS DETECTION PROBABILITY / SUCCESS RATE THRESHOLD LEVEL APPENDIX A TEST EQUIPMENT CALIBRATION DATA APPENDIX B TEST DATA TABLES FOR RADAR DETECTION PROBABILITY APPENDIX C TEST DATA TABLES AND PLOTS FOR CHANNEL CLOSING FCC PART 15 SUBPART E CHANNEL CLOSING MEASUREMENTS	22 22 23 23 24 24 24 24 24 25 26 27 27
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME	22 22 23 23 24 24 24 24 25 26 27 27 27 30
DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING DFS CHANNEL AVAILABILITY CHECK TIME RANSMIT POWER CONTROL (TPC) SAMPLE CALCULATIONS DETECTION PROBABILITY / SUCCESS RATE THRESHOLD LEVEL APPENDIX A TEST EQUIPMENT CALIBRATION DATA APPENDIX B TEST DATA TABLES FOR RADAR DETECTION PROBABILITY APPENDIX C TEST DATA TABLES AND PLOTS FOR CHANNEL CLOSING FCC PART 15 SUBPART E CHANNEL CLOSING MEASUREMENTS	22 22 23 23 24 24 24 24 24 25 25 26 27 27 27 30 31

LIST OF TABLES

Table 1 - FCC Part 15 Subpart E Client Device Test Result Summary	. 7
Table 2 - FCC Short Pulse Radar Test Waveforms	
Table 3 - FCC Long Pulse Radar Test Waveforms. 1	
Table 4 - FCC Frequency Hopping Radar Test Waveforms	
Table 5 - FCC Part 15 Subpart E Channel Closing Test Results 2	

LIST OF FIGURES

Figure 1 Test Configuration for radiated Measurement Method	2
Figure 2 SA Noise Floor During Testing (radar shown at 520 ms)	5
Figure 3 FCC Type 1 Radar (18 pulses) 16	5
Figure 4 FCC Type 2 Radar (24 pulses) 17	7
Figure 5 FCC Type 3 Radar (17 pulses) 18	3
Figure 6 FCC Type 4 Radar (16 pulses)	
Figure 7 FCC Type 5 Radar (burst with three pulses, 1650 µs first period))
Figure 8 FCC Type 6 Radar (9 pulses in each burst)	1
Figure 9 Channel Utilization During In-Service Detection Measurements (n40 mode)	5
Figure 10 Channel Closing Time and Channel Move Time (n40 mode) – 40 second plot	7
Figure 11 Close-Up of Transmissions Occurring More Than 200ms After The End of Radar (n40 mode)	
	3
Figure 12 Radar Channel Non-Occupancy Plot (n40 mode))

SCOPE

Test data has been taken pursuant to the relevant DFS requirements of the following standard(s):

• FCC Part 15 Subpart E Unlicensed National Information Infrastructure (U-NII) Devices.

Tests were performed in accordance with these standards together with the current published versions of the basic standards referenced therein including FCC KDB 905462 D02 v01r02 and D03 v01r01 as outlined in NTS Silicon Valley test procedures. The test results recorded herein are based on a single type test of the Pace Americas model HR54-700 and therefore apply only to the tested sample. The sample was selected and prepared by Mark Rieger of Pace Americas.

OBJECTIVE

The objective of the manufacturer is to comply with the standards identified in the previous section. In order to demonstrate compliance, the manufacturer or a contracted laboratory makes measurements and takes the necessary steps to ensure that the equipment complies with the appropriate technical standards. Compliance with some DFS features is covered through a manufacturer statement or through observation of the device.

STATEMENT OF COMPLIANCE

The tested sample of the Pace Americas model HR54-700 complied with the DFS requirements of FCC Part 15.407(h)(2).

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARD

No deviations were made from the test methods and requirements covered by the scope of this report.

TEST RESULTS

Т	able 1 - FC	C Part 15 Subpa	art E Client Dev	ice Test Result Su	mmary	
Description	Radar Type	EUT Frequency	Measured Value	Requirement	Test Data	Status
Channel closing transmission time	Type 0	5510 MHz	1.5 ms	60 ms	Appendix C	Pass
Channel move time	Type 0	5510 MHz	0.6 s	10 s	Appendix C	Pass
Non-occupancy period - associated	Type 0	5550 MHz	> 30 min	> 30 minutes	Appendix C	Pass
Passive Scanning	N/A	N/A	I	Refer to manufactur	er attestation	
1) Tests were perform	ned using the r	adiated test metho	d.			

TEST RESULTS SUMMARY – FCC Part 15, CLIENT DEVICE

2) Channel availability check and detection threshold are not applicable to client devices.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level, with a coverage factor (k=2) and were calculated in accordance with UKAS document LAB 34.

Measurement	Measurement Unit	Expanded Uncertainty
Timing (Channel move time, aggregate transmission time)	ms	Timing resolution $\pm 0.24\%$
Timing (non occupancy period)	seconds	5 seconds
DFS Threshold (radiated)	dBm	1.6
DFS Threshold (conducted)	dBm	1.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The the Pace Americas model HR54-700 is a a set-top-box DVR that incorporates 802.11 abgn 2x2 and 2.4GHz RF4CE radios.

The sample was received on July 16, 2015 and tested on July 16, 2015. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number
Pace Americas	HR54-700	Set top box	G54DA5DN000024

The manufacturer declared values for the EUT operational characteristics that affect DFS are as follows:

Operating Modes (5250 – 5350 MHz, 5470 – 5725 MHz)

Client Device (no In Service Monitoring, no Ad-Hoc mode)

<u>Antenna Gains / EIRP (5250 – 5350 MHz, 5470 – 5725 MHz)</u>

	5250 – 5350 MHz	5470 – 5725 MHz
Lowest Antenna Gain (dBi)	4.1	4.1
Highest Antenna Gain (dBi)	4.1	4.1
EIRP Output Power (dBm)	21.6	22.2

Power can exceed 200mW eirp

Channel Protocol

IP Based

ENCLOSURE

The EUT enclosure measures approximately 34x27x5.5 centimeters. It is primarily constructed of uncoated coated plastic.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the requirements of the standard(s) referenced in this test report.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Cisco	1250	abgn Wireless Router	FTX1209906V	LDK102062
HP	6910p	Master Laptop	CND8280MD5	DoC
Dell	D610	Client Laptop	6XYYQ91	DoC
Airlink101	AR430W	DNS Server (wireless router	30008256167	RRK-AR430W
		with wifi disabled)		

The italicized device was the master device.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

		Cable(s)		
Port	Connected To	Description	Shielded or Unshielded	Length (m)
Ethernet (EUT)	Client Laptop	CAT5	Unshielded	10.0
Serial (EUT)	Client Laptop	9pDsub	Shielded	10.0
Ethernet (Master Laptop)	Airlink101	CAT5	Unshielded	1.0
Ethernet (Airlink101)	Cisco Router	CAT5	Shielded	10.0

EUT OPERATION

The EUT was operating with the following software. The software is secured by encryption to prevent the user from disabling the DFS function.

Client Device: 5.99.188.13

During channel moving tests the system was configured with a streaming video file from the master device (sourced by the PC connected to the master device via an Ethernet interface) to the client device.

The streamed file was FCC Movie and the client device was using VLC Player to view the file. The channel loading was evaluated to be 45% (refer to figure 10) meeting the approximately 17% loading as required by FCC KDB 905462 D02.

RADAR WAVEFORMS

		Table 2	2 - FCC Short Pulse l	Radar Test W	aveforms	
Rada	r Type	Pulse Width (µsec)	PRI (µsec)	Pulses / burst	Minimum Detection Percentage	Minimum Number of Trials
	0	1	1428	18	See N	ote 1
	1a	1	15 unique PRI values randomly selected from the list of 23 PRI values in Note 2 below	Round Up	(0)/	15
1	1b	1	518-3066 with minimum increment of 1 μsec, excluding PRI values selected in 1a	1/360* 19*10 ⁶ / PRI μsec	60%	15
	2	1-5	150-230	23-29	60%	30
	3	6-10	200-500	16-18	60%	30
	4	11-20	200-500	12-16	60%	30
Aggre	egate (Ra	adar Types 1-4)			80%	120
chann	el closin	ng time tests.	0 is used for the dete		idth test, channel r	nove time, and
chann Note	el closin 2: Pulse Repetit	ng time tests.	values for Test 1a a Pulse Repetition (Pulses Per Secon	bove Frequency Id)	Pulse Repetiti (Microsecond	on Interval s)
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930.	bove F requency Id) 5	Pulse Repetiti (Microsecond	on Interval s) 518
chann Note Pulse	el closin 2: Pulse Repetit	repetition intervals ion Frequency	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858.	bove Frequency d) 5 7	Pulse Repetiti (Microsecond	on Interval s) 518 538
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792.	bove F requency Id) 5 7 1	Pulse Repetiti (Microsecond	on Interval s) 518 538 558
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730.	bove F requency d) 5 7 1 1	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672.	bove Frequency d) 5 7 1 1 2	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578 598
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618.	bove Frequency d) 5 7 7 1 1 2 2	Pulse Repetiti (Microsecond	on Interval 5) 518 538 558 578 598 518
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567.	bove Frequency d) 5 7 1 1 2 2 1 4	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578 598 518 518 538
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618.	bove Frequency d) 5 7 1 1 2 1 2 4 8	Pulse Repetiti (Microsecond	on Interval 5) 518 538 558 578 598 518
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519.	bove Frequency d) 5 7 1 1 2 1 2 4 8 9	Pulse Repetiti (Microsecond)	on Interval \$) 518 538 558 578 578 598 518 538 538 538 558
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1392.	bove Frequency d) 5 7 1 1 2 1 2 1 4 8 9 7 8 8	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578 598 518 598 518 538 558 578 538 558 578 598 518 538 578 598 518 538 578 598 518 538 538 548 558 578 598 518 538 558 578 598 518 538 538 558 578 598 518 538 538 558 578 598 518 538 538 558 578 598 518 538 538 558 578 598 518 538 558 578 598 518 538 558 578 598 518 538 558 578 558 558 558 558 558 55
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11 11 12	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1672. 1618. 1567. 1519. 1474. 1432. 1392. 1355. 1555	bove Frequency d) 5 7 1 1 2 1 2 1 2 1 4 8 9 7 8 8	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578 598 518 598 518 538 558 578 598 518 538 558 578 598 518 598 518 598 518 598 518 598 518 598 518 518 558 578 598 518 518 518 558 578 598 518 518 518 558 578 598 518 518 518 518 558 578 598 518 518 518 518 558 578 598 518 518 518 518 518 558 578 598 518 518 518 518 518 518 518 51
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1392. 1319.	bove Frequency d) 5 7 1 1 2 1 2 1 2 3 3	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578 598 518 598 518 538 558 578 598 518 538 578 598 518 538 578 598 518 538 578 598 518 538 548 558 578 598 518 578 598 518 578 598 518 578 598 518 578 598 518 578 598 518 578 598 518 578 598 518 578 598 518 578 598 518 518 518 518 518 518 558 55
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 10 11 12 13 14	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1392. 1319. 1285.	bove Frequency d) 5 7 1 1 2 1 2 1 4 8 9 7 8 5 3 3 3	Pulse Repetiti (Microsecond)	on Interval s) 518 538 558 578 598 518 598 518 538 558 578 598 518 538 558 578 598 518 538 558 578 598 578 598 578 598 578 598 578 598 578 598 578 598 578 598 578 598 578 578 578 578 578 578 578 57
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1392. 1355. 1319. 1285. 1253.	bove Frequency d) 5 7 1 1 2 1 2 1 4 8 9 7 8 5 3 3 3 1	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578 598 518 538 538 538 558 578 598 518 538 558 578 598 578 598 778 738 758 778 798
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1355. 1319. 1285. 1253. 1222.	bove Frequency d) 5 7 1 1 2 1 2 1 4 8 9 7 8 5 3 3 3 1 5	Pulse Repetiti (Microsecond)	on Interval s) 518 538 558 578 598 518 538 538 538 558 578 598 518 538 578 598 578 598 578 598 578 598 578 598 578 598 578 598 578 598 578 578 578 578 578 578 578 57
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1392. 1355. 1319. 1285. 1253. 1222. 1193.	bove Frequency (d) 5 7 1 1 2 1 2 1 2 4 8 9 7 8 9 7 8 5 3 3 1 5 3 3	Pulse Repetiti (Microsecond)	on Interval s) 518 538 558 578 578 598 518 538 538 558 578 598 518 538 578 598 578 578 578 578 578 578 578 57
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1392. 1355. 1319. 1285. 1253. 1222. 1193. 1165.	bove Frequency d) 5 7 1 1 2 1 2 1 2 1 2 3 1 8 9 7 8 9 7 8 9 7 8 5 3 3 1 5 5 3 6	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578 598 518 598 518 538 538 538 558 578 578 578 578 578 578 57
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1392. 1355. 1319. 1285. 1253. 1222. 1193. 1165. 1139	bove Frequency d) 5 7 1 1 2 1 2 1 2 1 2 1 2 3 1 5 3 3 3 1 5 5 3 6 0	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578 598 518 598 518 538 538 558 578 538 578 598 718 738 758 778 758 778 798 318 338 358 378
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1392. 1355. 1319. 1285. 1253. 1222. 1193. 1165.	bove Frequency d) 5 7 1 1 2 1 2 1 4 8 9 7 8 3 3 3 1 5 3 6 6 6	Pulse Repetiti (Microsecond)	on Interval s) 518 538 558 578 598 518 598 518 538 538 538 558 578 578 578 578 578 578 57
chann Note Pulse	el closin 2: Pulse Repetit	ng time tests. repetition intervals ion Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	values for Test 1a a Pulse Repetition (Pulses Per Secon 1930. 1858. 1792. 1730. 1672. 1618. 1567. 1519. 1474. 1432. 1392. 1355. 1319. 1285. 1253. 1222. 1193. 1165. 1139. 1113.	bove Frequency d) 5 7 1 1 2 1 2 1 4 8 9 7 8 3 3 3 3 1 5 3 6 6 6 3 1 1 5 3 6 6 1 1 5 3 1 1 5 3 1 1 5 3 1 1 5 3 1 1 5 5 3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5	Pulse Repetiti (Microsecond	on Interval s) 518 538 558 578 598 518 598 518 538 558 578 598 518 538 578 598 578 598 518 578 598 578 598 518 578 598 578 578 598 578 598 578 578 578 578 578 578 578 57

Table 3 - FCC Long Pulse Radar Test Waveforms							
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Pulses / burst	Number of <i>Bursts</i>	Minimum Detection Percentage	Minimum Number of Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

Table 4 - FCC Frequency Hopping Radar Test Waveforms							
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses / hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Detection Percentage	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

DFS TEST METHODS

RADIATED TEST METHOD

The combination of master and slave devices is located in an anechoic chamber. The simulated radar waveform is transmitted from a directional horn antenna (typically an EMCO 3115) toward the unit performing the radar detection (radar detection device, RDD). Every effort is made to ensure that the main beam of the EUT's antenna is aligned with the radar-generating antenna which is oriented in vertical polarization.

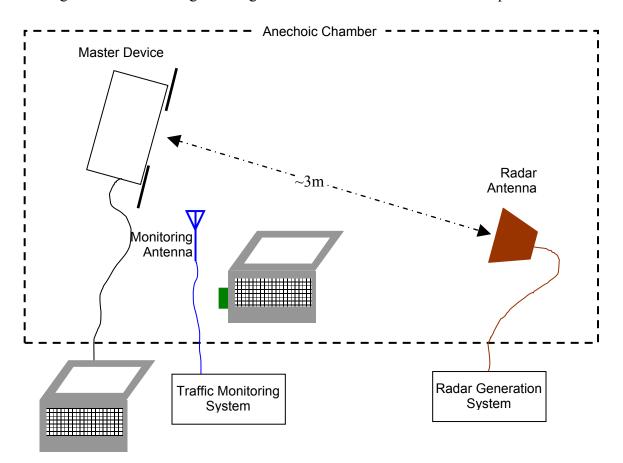


Figure 1 Test Configuration for radiated Measurement Method

The signal level of the simulated waveform is set to a reference level equal to the threshold level (plus 1dB if testing against FCC requirements). Lower levels may also be applied on request of the manufacturer. The level reported is the level at the RDD antenna and so it is not corrected for the RDD's antenna gain. The RDD is configured with the lowest gain antenna assembly intended for use with the device.

The signal level is verified by measuring the CW signal level from the radar generation system using a reference antenna of gain G_{REF} (dBi). The radar signal level is calculated from the measured level, R (dBm), and any cable loss, L (dB), between the reference antenna and the measuring instrument:

Applied level $(dBm) = R - G_{REF} + L$

If both master and client devices have radar detection capability then the device not under test is positioned with absorbing material between its antenna and the radar generating antenna, and the radar level at the non RDD is verified to be at least 20dB below the threshold level to ensure that any responses are due to the RDD detecting radar.

The antenna connected to the channel monitoring subsystem is positioned to allow both master and client transmissions to be observed, with the level of the EUT's transmissions between 6 and 10dB higher than those from the other device.

DFS MEASUREMENT INSTRUMENTATION

RADAR GENERATION SYSTEM

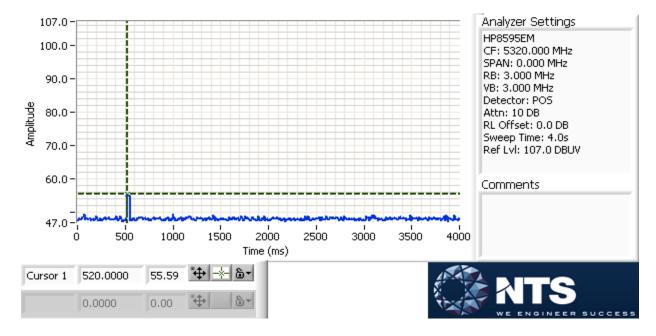
An Agilent PSG is used as the radar-generating source. The integral arbitrary waveform generators are programmed using Agilent's "Pulse Building" software and NTS Silicon Valley custom software to produce the required waveforms, with the capability to produce both un-modulated and modulated (FM Chirp) pulses. Where there are multiple values for a specific radar parameter then the software selects a value at random and, for FCC tests, the software verifies that the resulting waveform is truly unique.

With the exception of the hopping waveforms required by the FCC's rules (see below), the radar generator is set to a single frequency within the radar detection bandwidth of the EUT. The frequency is varied from trial to trial by stepping in 5MHz steps. For radar types with variable parameters, each detection probability trial is performed using a unique set of parameters obtained by a random selection with uniform distribution for each of the variable parameters.

Frequency hopping radar waveforms are simulated using a time domain model. A randomly hopping sequence algorithm (which uses each channel in the hopping radar's range once in a hopping sequence) generates a hop sequence. A segment of the first 100 elements of the hop sequence are then examined to determine if it contains one or more frequencies within the radar detection bandwidth of the EUT. If it does not then the first element of the segment is discarded and the next frequency in the sequence is added. The process repeats until a valid segment is produced. The radar system is then programmed to produce bursts at time slots coincident with the frequencies within the segment that fall in the detection bandwidth. The frequency of the generator is stepped in 1 MHz increments across the EUT's detection range.

The radar signal level is verified during testing using a long duration pulse waveform generated in the same manner as the normal radar generated signals.

The generator output is connected to the coupling port of the conducted set-up or to the radar-generating antenna. The radar generating antenna (when used) is oriented for vertical polarization.


CHANNEL MONITORING SYSTEM

Channel monitoring is achieved using a spectrum analyzer and digital storage oscilloscope. The analyzer is configured in a zero-span mode, center frequency set to the radar waveform's frequency or the center frequency of the EUT's operating channel. The IF output of the analyzer is connected to one input of the oscilloscope.

A signal generator output is set to send either the modulating signal directly or a pulse gate with an output pulse co-incident with each radar pulse. This output is connected to a second input on the oscilloscope and the oscilloscope displays both the channel traffic (via the if input) and the radar pulses on its display.

For in service monitoring tests the analyzer sweep time is set to > 20 seconds and the oscilloscope is configured with a data record length of 10 seconds for the short duration and frequency hopping waveforms, 20 seconds for the long duration waveforms. Both instruments are set for a single acquisition sequence. The analyzer is triggered 500ms before the start of the waveform and the oscilloscope is triggered directly by the modulating pulse train. Timing measurements for aggregate channel transmission time and channel move time are made from the oscilloscope data, with the end of the waveform clearly identified by the pulse train on one trace. The analyzer trace data is used to confirm that the last transmission occurred within the 10-second record of the oscilloscope. If necessary the record length of the oscilloscope is expanded to capture the last transmission on the channel move.

Channel availability check time timing plots are made using the analyzer. The analyzer is triggered at start of the EUT's channel availability check and used to verify that the EUT does not transmit when radar is applied during the check time.

The analyzer detector and oscilloscope sampling mode is set to peak detect for all plots.

Figure 2 SA Noise Floor During Testing (radar shown at 520 ms)

RADAR GENERATOR PLOTS

The radar generator was connected to Spectrum Analyzer (SA) input, with the SA set to zero span, 3 MHz RBW, 3 MHz VBW. The SA IF output was connected to an oscilloscope to provide timing plots.

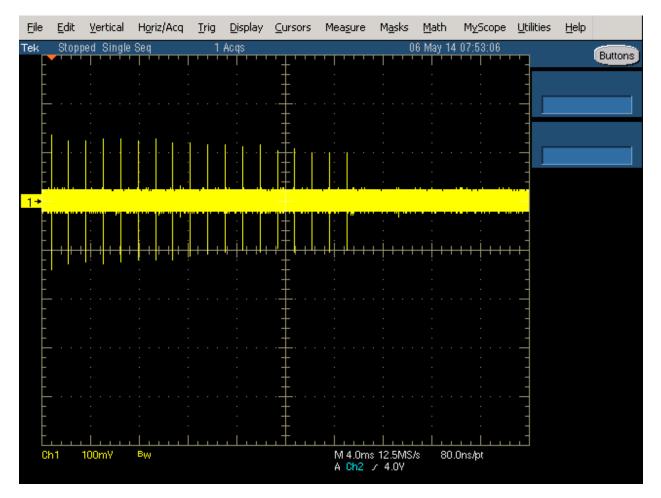


Figure 3 FCC Type 1 Radar (18 pulses)

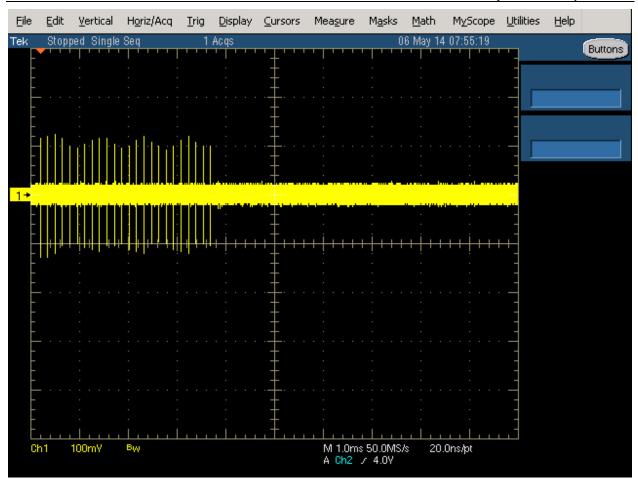


Figure 4 FCC Type 2 Radar (24 pulses)

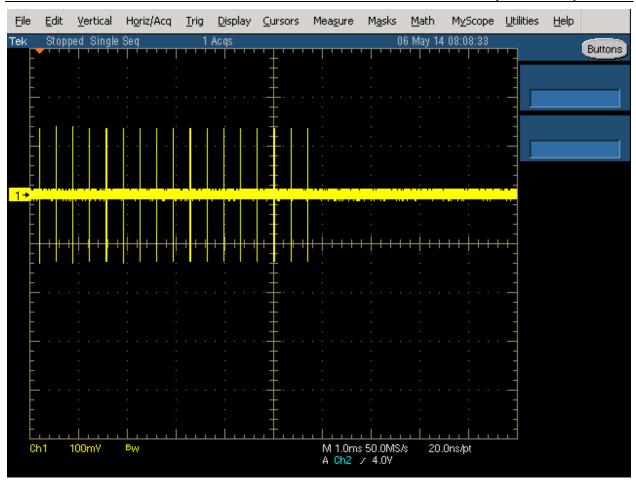


Figure 5 FCC Type 3 Radar (17 pulses)

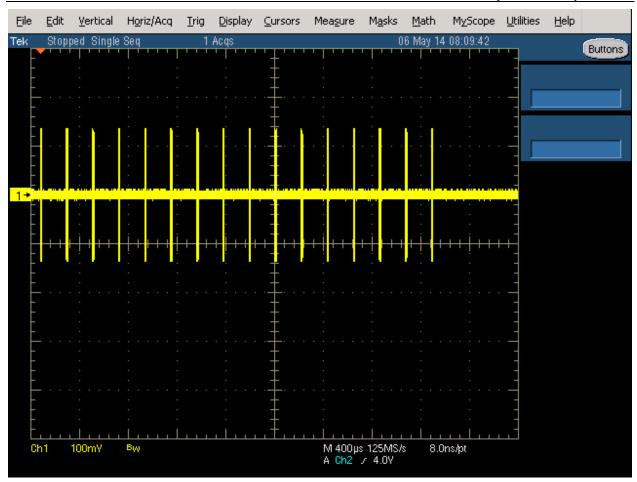


Figure 6 FCC Type 4 Radar (16 pulses)

Eile	<u>E</u> dit	<u>V</u> ertical	H <u>o</u> riz/Acq	Irig	Display	⊆ursors	Measure	M <u>a</u> sks	Math	MyScope	Utilities	Help	
Tek	Stop:	ed Single	Seq 	1 	Acqs		· · · · · · ·		δ May 14 t1 : t2 : Δt : 1/Δt :	08:16:41 0.0s 1.646r 1.646r 607.4Hz		Curs1 0.1	
	.					+ + + + + + + + + + +			· · · · · · ·			Curs2 1.648 rsor1	
				-+ + + 								_	
						+++;+++;++++;+++++++++++++++++++++++++							Type Waveform Screen
Cł	11	100mV	BW		<u>, , </u> , ,		M 400µs A Ch2 .	: 125MS/s / 4.0Y	8.0r	⊥⊥⊥⊥⊥ ns/pt	Se	tup	Close

Figure 7 FCC Type 5 Radar (burst with three pulses, 1650 µs first period)

The shape is round due to chirped frequency during pulse as the SA is in zero span with 3 MHz bandwidth.

Figure 8 FCC Type 6 Radar (9 pulses in each burst)

DFS MEASUREMENT METHODS

DFS – CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME

Channel clearing and closing times are measured by applying a burst of radar with the device configured to change channel and by observing the channel for transmissions. The time between the end of the applied radar waveform and the final transmission on the channel is the channel move time.

The aggregate transmission closing time is measured in one of two ways:

FCC/KCC Notice No. 2010-48 – the total time of all individual transmissions from the EUT that are observed starting 200ms at the end of the last radar pulse in the waveform. This value is required to be less than 60ms.

DFS - CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING

The channel that was in use prior to radar detection by the master is additionally monitored for 30 minutes to ensure no transmissions on the vacated channel over the required non-occupancy period. This is achieved by tuning the spectrum analyzer to the vacated channel in zero-span mode and connecting the IF output to an oscilloscope. The oscilloscope is triggered by the radar pulse and set to provide a single sweep (in peak detect mode) that lasts for at least 30 minutes after the end of the channel move time.

For devices with a client-mode that are being evaluated against FCC rules the manufacturer must supply an attestation letter stating that the client device does not employ any active scanning techniques (i.e. does not transmit in the DFS bands without authorization from a Master device).

DFS CHANNEL AVAILABILITY CHECK TIME

It is preferred that the EUT report when it starts the radar channel availability check. If the EUT does not report the start of the check time, then the time to start transmitting on a channel after switching the device on is measured to approximate the time from poweron to the end of the channel availability check. The start of the channel availability check is assumed to be 60 seconds prior to the first transmission on the channel.

To evaluate the channel availability check, a single burst of one radar type is applied within the first 2 seconds of the start of the channel availability check and it is verified that the device does not use the channel by continuing to monitor the channel for a period of at least 60 seconds. The test is repeated by applying a burst of radar in the last 2 seconds (i.e. between 58 and 60 seconds after the start of CAC when evaluating a 60-second CAC) of the channel availability check.

RANSMIT POWER CONTROL (TPC)

Compliance with the transmit power control requirements for devices is demonstrated through measurements showing multiple power levels and manufacturer statements explaining how the power control is implemented.

SAMPLE CALCULATIONS

DETECTION PROBABILITY / SUCCESS RATE

The detection probability, or success rate, for any one radar waveform equals the number of successful trials divided by the total number of trials for that waveform.

THRESHOLD LEVEL

The threshold level is the level of the simulated radar waveform at the EUT's antenna. If the test is performed in a conducted fashion then the level at the rf input equals the level at the antenna plus the gain of the antenna assembly, in dBi. The gain of the antenna assembly equals the gain of the antenna minus the loss of the cabling between the rf input and the antenna. The lowest gain value for all antenna assemblies intended for use with the device is used when making this calculation.

If the test is performed using the radiated method then the threshold level is the level at the antenna.

Appendix A Test Equipment Calibration Data

Manufacturer	Description	Model #	Asset #	<u>Cal Due</u>
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	787	18-Aug-15
ETS Lindgren	Antenna, Horn, 1-18 GHz	3117	1662	04-Jun-16
Agilent Technologies	PSG, Vector Signal Generator, (250kHz - 20GHz)	E8267C	1877	16-Jun-16
Tektronix	500MHz, 2CH, 5GS/s Scope	TDS5052B	2118	30-Oct-15

Appendix B Test Data Tables for Radar Detection Probability

The plot below shows the channel loading during testing as evaluated over a 1 second period. The traffic was generated by FCC Movie using VLC Player.

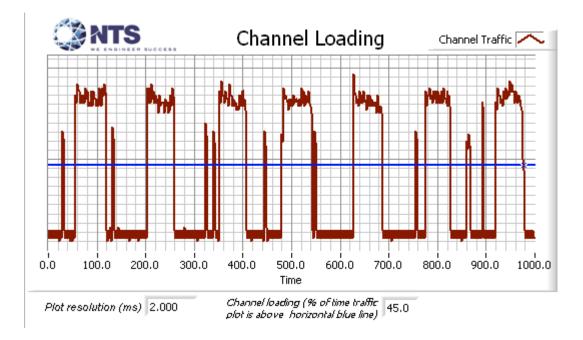


Figure 9 Channel Utilization During In-Service Detection Measurements (n40 mode)

Appendix C Test Data Tables and Plots for Channel Closing

Table 5 - FCC Part 15 Subpart E Channel Closing Test Results							
Waveform Type	Channel C Transmissic		Channe Tir	Result			
	Measured	Limit	Measured	Limit			
Radar Type 0	1.5 ms	60 ms	0.6 s	10 s	Pass		

FCC PART 15 SUBPART E Channel Closing Measurements

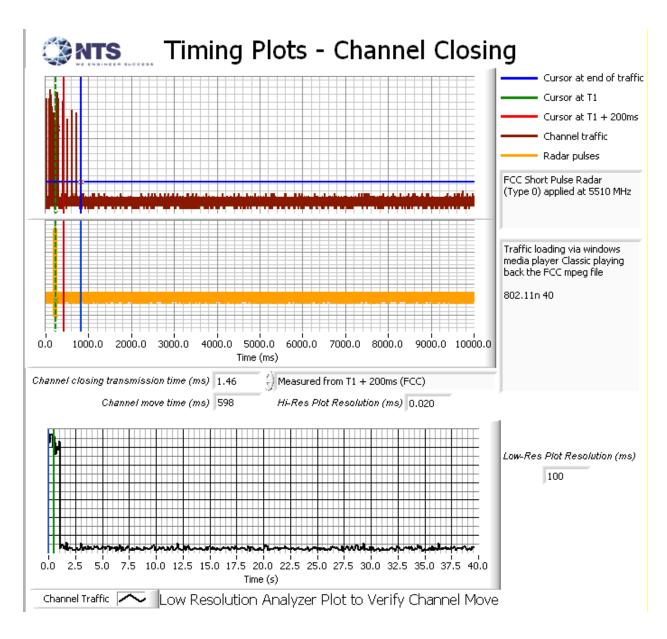
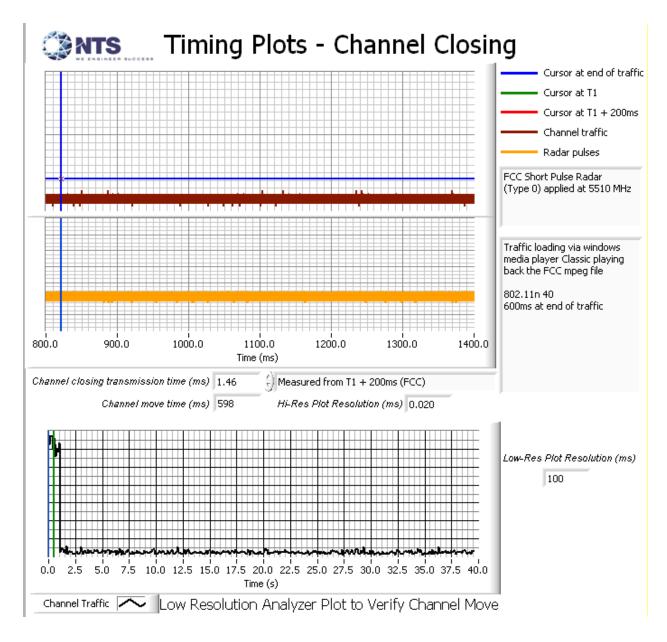
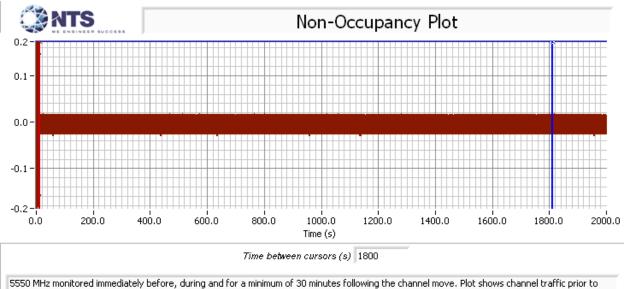




Figure 10 Channel Closing Time and Channel Move Time (n40 mode) – 40 second plot

¹ Channel closing time for FCC measurements is the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.

Figure 11 Close-Up of Transmissions Occurring More Than 200ms After The End of Radar (n40 mode)

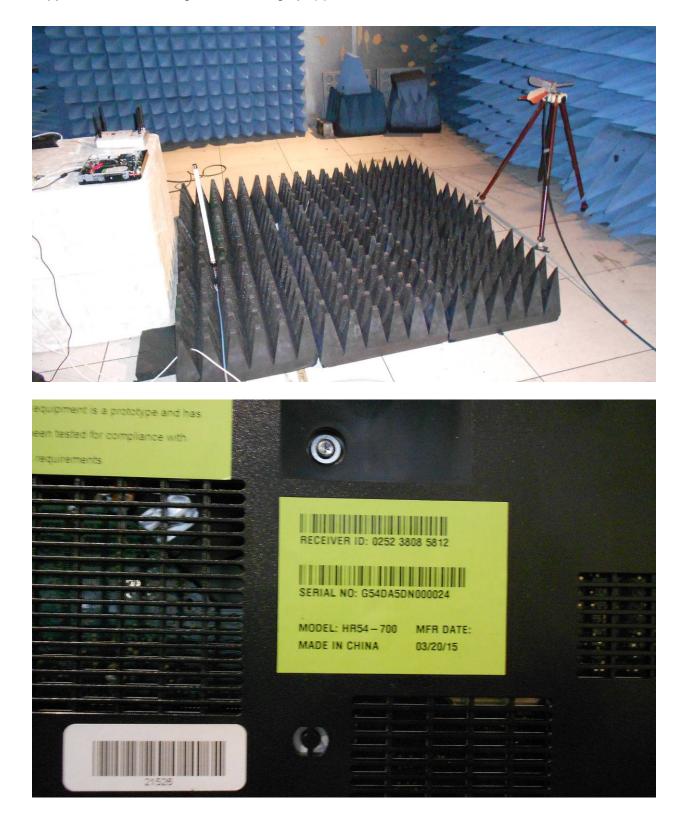

channel move and no traffic on the vacated channel after the channel move. 802.11n 40

Figure 12 Radar Channel Non-Occupancy Plot (n40 mode)

The non-occupancy plot was made over a 30-minute time period following the channel move time with the analyzer IF output connected to the scope and tuned to the vacated channel. No transmissions were observed on the vacated channel after the channel move had been completed.

After the channel move the client re-associated with the master device on the new channel.

Appendix D Test Configuration Photograph(s)

Appendix E Channel Plan

Bandwidth	Channel #	Scanning	DFS
2.4GHz Band			
20MHz	1 - 11	Active	No - N/A
40MHz	3 - 9	Active	No - N/A
1	nels 12 & 13 for 20MH	Iz and channels 10 & 11 f	for 40MHz is not
supported.	1		
UNII1 Band	1		
20MHz	36 - 48	Active	No - N/A
40MHz	38, 46	Active	No - N/A
UNII2a Band			
20MHz	52 - 64	Passive	DFS Client
40MHz	54, 62	Passive	DFS Client
· · · · · · · · · · · · · · · · · · ·	ded via FCC C3PC)		
20MHz	100 - 140	Passive	DFS Client
40MHz	102 - 134	Passive	DFS Client
UNII3 Band	1		
20MHz	149 - 165	Active	No - N/A
40MHz	151, 159	Active	No - N/A

End of Report

This page is intentionally blank and marks the last page of this test report.