

NTS Silicon Valley www.nts.com

41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for Grant of Equipment Authorization Class II Permissive Change/Reassessment

Industry Canada RSS-Gen Issue 4 / RSS 210 Issue 8 FCC Part 15, Subpart E

Model: HR44-700

FCC ID: PGRHR44

APPLICANT: Pace Americas Inc. 310 Providence Mine Road Nevada City, CA 95959

TEST SITE(S): National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: **REPORT DATE: REISSUE DATE:** FINAL TEST DATES: TOTAL NUMBER OF PAGES:

2845B-7

77

February 24, 2015

March 5, 2015

February 11 and 12, 2015

PROGRAM MGR / **TECHNICAL REVIEWER:**

Mark E Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Report Date: February 24, 2015

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	February 24, 2015	First release	
1	March 5, 2015	Updated note on page 46 to provide clarification regarding emissions below 1GHz	David Guidotti

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	6
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	8
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	.12
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT	.13
BANDWIDTH MEASUREMENTS	.10
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	.77

SCOPE

An electromagnetic emissions test has been performed on the Pace Americas Inc. model HR44-700, pursuant to the following rules:

FCC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2009 FCC General UNII Test Procedures KDB789033

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Pace Americas Inc. model HR44-700 complied with the requirements of the following regulations:

FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Pace Americas Inc. model HR44-700 and therefore apply only to the tested sample. The sample was selected and prepared by Mark Rieger of Pace Americas Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407 (a) (1) (iv)	-	Output Power	a: 22.1dBm (0.162mW) n20: 22.5dBm (0.178mW) n40: 23.4dBm (0.219mW) (Max eirp: 0.564W)	24dBm	Complies
15.407 (a) (1) (iv))	-	Power Spectral Density	a: 10.2 dBm/MHz n20: 9.8 dBm/MHz n40: 8.1 dBm/MHz	11 dBm/MHz	Complies

Report Date: February 24, 2015

Operation in the 5.725-5.850 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(e)		6dB Bandwidth	a: 16.4 MHz n20: 17.6 MHz n40: 35.1 MHz	>500kHz	N/A
15.407(a) (3)	-	Output Power	a: 22.2dBm (0.168mW) n20: 24.8dBm (0.300mW) n40: 24.6dBm (0.288mW) (Max eirp: 0.741W)	30 dBm)	Complies
15.407(a) (3)	-	Power Spectral Density	a: 9.6 dBm/MHz n20: 11.8 dBm/MHz n40: 9.4 dBm/MHz	30 dBm/500kHz	Complies

Requirements for all U-NII/LELAN bands

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407	-	Modulation	No chang	ges from original filing	
15.407(b) (1) and (5) / 15.209	-	Spurious Emissions	53.8 dBµV/m @ 5410.2 MHz (-0.2 dB)	Refer to page 18	Complies
15.407 (c)	-	Operation in the absence of information to transmit	No chang	ges from original filing	
15.407 (g)	-	Frequency Stability	No chang	ges from original filing	

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	No chan	ges from original filing	
15.207	-	AC Conducted Emissions	No chan	ges from original filing	
15.247 (b) (5) 15.407 (f)	=	RF Exposure Requirements	Refer to MPE calculations in separate exhibit	Refer to OET 65, FCC Part 1 and RSS 102	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Radiated enfission (new strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Pace Americas Inc. model HR44-700 is a set-top-box that incorporates 802.11abgn 2x2 and 2.4GHz 802.15.4 radios. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120 Volts, 60Hz, 1.3 Amps.

The sample was received on February 10, 2015 and tested on February 11 and 12, 2015. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Pace	HR44	Set-top Box	G33DT4PA003103	PGRHR44
DirecTV	EPS44R3-16	AC/DC adapter	DD44B1425A0039	N/A

ANTENNA SYSTEM

The wifi and 802.15.4 radios use separate antennas. The peak gain for the WiFi antennas: 3.3 dBi (2.4GHz), 4.1 dBi (5GHz) The peak gain for the 802.15.4 antennas: 4.9 dBi (2.4GHz)

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 34 cm wide by 25 cm deep by 4.5 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

No local support equipment was used during testing.

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Latitude 131L	Laptop	35271456913	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)			
1 011	Connected 10	Description	Shielded or Unshielded	Length(m)	
Serial	Laptop	Multiwire	Shielded	5	
DC power	External power supply	2 wire	Unshielded	2	
AC power (ext supply)	AC Mains	3 wire	Unshielded	2	

EUT OPERATION

During emissions testing the EUT was transmitting in the mode, on the channel, & at the power called out in the individual tests. For 802.11b mode tests, 1Mb/s was used; 6Mb/s for 802.11g; MCS0 for n20 and n40. These represented the worse case modes.

Note – during testing for the original filing testing was performed with both the wifi and zigbee radios operating at the same time. There was no measureable difference with only one radio operating. All final testing was performed with only one radio operating, unless otherwise noted.

Original testing also confirmed that the addition of the interface cables to the EUT did not affect the radio related emissions.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Sito	Site Designation / Regi		Location
Sile	FCC	Canada	Location
Chamber 7	US0027	2845B-7	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

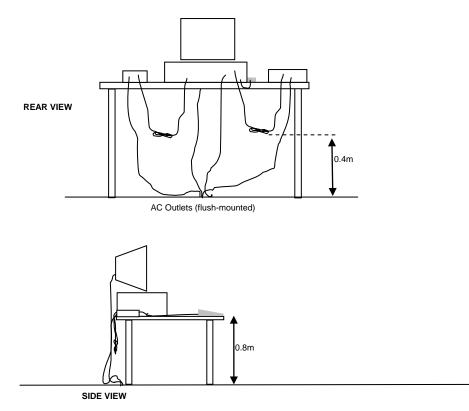
TEST PROCEDURES

EUT AND CABLE PLACEMENT

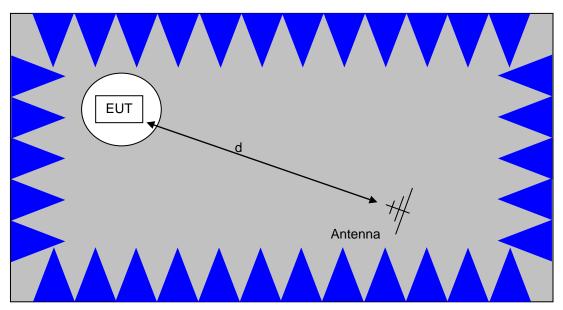
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

RADIATED EMISSIONS

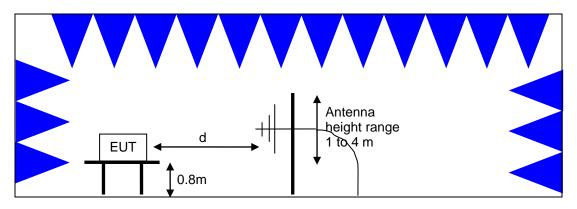
A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

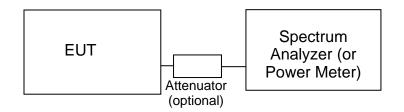

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Report Date: February 24, 2015



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density.

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 – 5250	250mW (24 dBm)	11 dBm/MHz
5725 – 5855	1 Watts (30 dBm)	30 dBm/500kHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi.

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SPURIOUS EMISSIONS LIMITS –UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. For devices operating in the 5725-5850Mhz bands, the limit within 10MHz of the allocated band is increased to -17dBm/MHz.

Report Date: February 24, 2015

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:
 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 $R_r = Receiver Reading in dBuV/m$

Report Date: February 24, 2015

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radio Antenna Port	(Power and Duty cycle), 11-Fel	b-15			
Manufacturer Rohde & Schwarz	Description Power Sensor, 1 uW-100	<u>Model</u> NRV-Z51	<u>Asset #</u> 1070	<u>Calibrated</u> 6/6/2014	<u>Cal Due</u> 6/6/2015
Rohde & Schwarz Rohde & Schwarz	mW, DC-18 GHz, 50ohms Power Meter, Single Channel EMI Test Receiver, 20 Hz-7 GHz	NRVS ESIB7	1422 1538	1/22/2015 12/20/2014	1/22/2016 12/20/2015
Radiated Emissions, <u>Manufacturer</u> Rohde & Schwarz	, 1,000 - 6,000 MHz, 11-Feb-15 <u>Description</u> EMI Test Receiver, 20 Hz-7	<u>Model</u> ESIB7	<u>Asset #</u> 1538	<u>Calibrated</u> 12/20/2014	<u>Cal Due</u> 12/20/2015
EMCO	GHz Antenna, Horn, 1-18 GHz	3115	2870	8/20/2013	8/20/2015
Radiated Emissions,	, 1000 - 40,000 MHz, 11-Feb-15				
Manufacturer Rohde & Schwarz	Description EMI Test Receiver, 20 Hz-7 GHz	<u>Model</u> ESIB7	<u>Asset #</u> 1538	Calibrated 12/20/2014	<u>Cal Due</u> 12/20/2015
Hewlett Packard	High Pass filter, 8.2 GHz (Purple System)	P/N 84300- 80039	1767	11/14/2014	11/14/2015
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/20/2014	2/20/2015
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2239	9/16/2014	9/16/2015
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	2241	9/16/2014	9/16/2015
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	2/27/2014	2/27/2015
EMCO	Antenna, Horn, 1-18 GHz	3115	2870	8/20/2013	8/20/2015
Radio Antenna Port <u>Manufacturer</u> Agilent Technologies	(Power and Spurious Emission Description PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	n s), 12-Feb-15 <u>Model</u> E4446A	<u>Asset #</u> 2139	<u>Calibrated</u> 4/8/2014	<u>Cal Due</u> 4/8/2015

Report Date: February 24, 2015

Appendix B Test Data

T97548 Pages 22 – 76

EMC Test Data

Client:	Pace Americas, Inc	Job Number:	J97522
Product	HR44-700	T-Log Number:	T97548
		Project Manager:	Irene Rademacher
Contact:	Mark Rieger		
Emissions Standard(s):	FCC 15.407 (New Rules)	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Pace Americas, Inc

Product

HR44-700

Date of Last Test: 2/12/2015

EMC Test Data

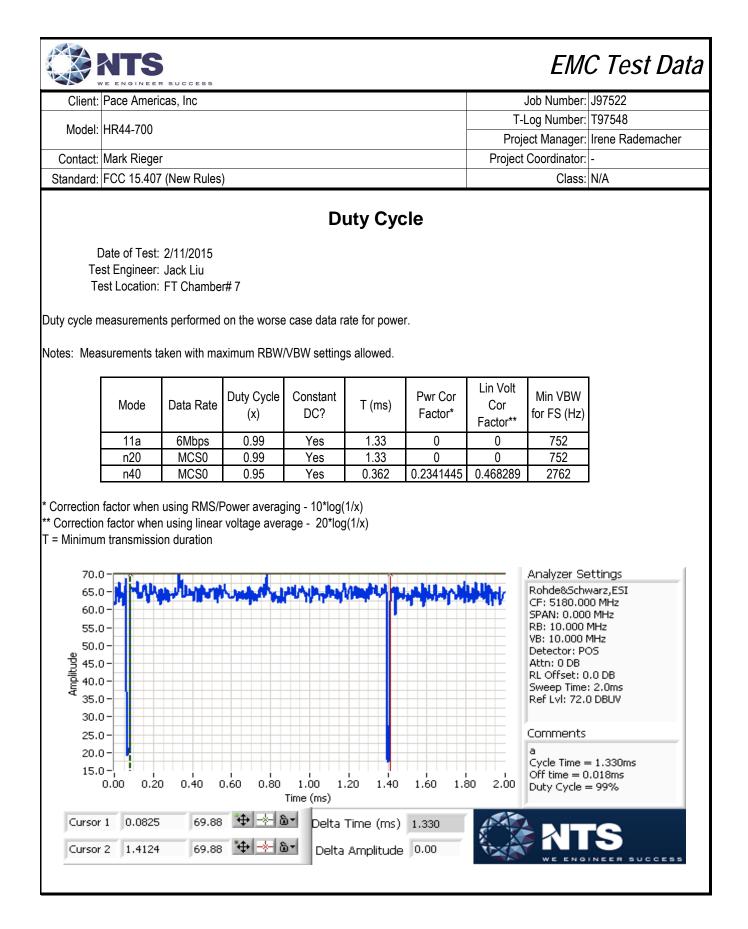
N N	E ENGINEER SUCCESS		
Client:	Pace Americas, Inc	Job Number:	J97522
Model	HR44-700	T-Log Number:	T97548
MOUEI.	111144-700	Project Manager:	Irene Rademacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.407 (New Rules)	Class:	N/A

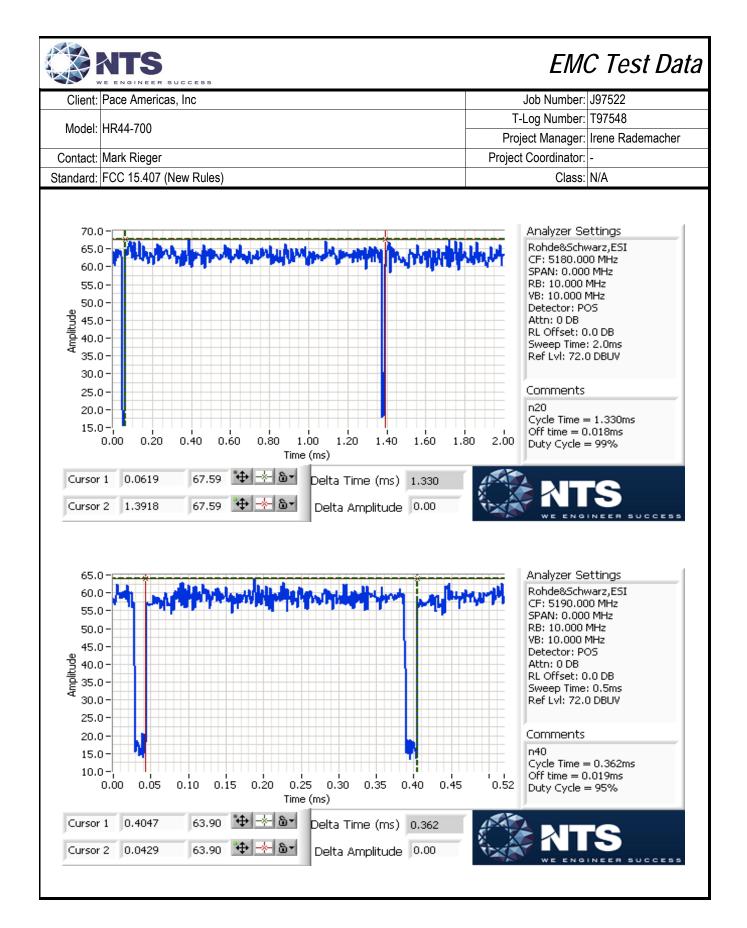
Power vs. Data Rate

In normal operating modes the card uses power settings stored on EEPROM to set the output power. For a given nominal output power the actual transmit power normally is redcued as the data rate increases, therefore testing was performed at the data rate in the mode with this power to determine compliance with the requirements.

The following power measurements were made using a GATED average power meter and with the device configured in a continuous transmit mode on Ant 1 at the various data rates in each mode to verify the highest power mode:

Sample Notes


NTS


Sample S/N: G33DT4PA003103 Wifi MAC: BC307D5B7E36 Driver: 5.99 RC 188.10

> Date of Test: 2/11/2015 Test Engineer: Jack Liu Test Location: FT Chamber# 7

Mode	Data Rate	Power (dBm)	Power setting
802.11a Ant 0	6	19.0	
802.11a Ant 1	6	19.1	
	9	18.9	
	12	18.9	
802.11a	18	18.9	19.0
Ant 1	24	18.8	
Anti	36	18.8	
	48	18.8	
	54	18.8	

Model: HR44-700 Intact: Mark Rieger Indard: FCC 15.407 (New Rules) Mode E 802.11n	Data Rate 6.5 13 19.5 26 39 52 58.5 65 13.5 27 40.5	Power (dBm) 18.8 18.8 18.7 18.7 18.6 18.6 18.6 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.6 18.7 18.7 18.6 18.7 18.7 18.6 18.7 18.7 18.6 18.7 18.7 18.6 18.7 18.7 18.6 18.7 18.7 18.6 18.7 18.7 18.7 18.7 18.6 18.7 18.7 18.7 18.7 18.6 18.7 18.7 18.7 18.7 18.6 18.7 18.7 18.7 18.7 18.6 18.7 18.0 16.7 16.	-		Irene Rademache
ontact: Mark Rieger ndard: FCC 15.407 (New Rules) Mode E 802.11n 20MHz Ant 1 802.11n/ac	6.5 13 19.5 26 39 52 58.5 65 13.5 27	18.8 18.7 18.7 18.7 18.7 18.6 18.6 18.7 18.6 18.7 18.6 18.7 18.7 18.7 18.7 18.7 18.7 18.7	Project Co Power setting	ordinator:	-
Mode E 802.11n	6.5 13 19.5 26 39 52 58.5 65 13.5 27	18.8 18.7 18.7 18.7 18.7 18.6 18.6 18.7 18.6 18.7 18.6 18.7 18.7 18.7 18.7 18.7 18.7 18.7	Project Co Power setting	ordinator:	-
Mode E 802.11n	6.5 13 19.5 26 39 52 58.5 65 13.5 27	18.8 18.7 18.7 18.7 18.7 18.6 18.6 18.7 18.6 18.7 18.6 18.7 18.7 18.7 18.7 18.7 18.7 18.7	setting	Class:	N/A
802.11n 20MHz Ant 1	6.5 13 19.5 26 39 52 58.5 65 13.5 27	18.8 18.7 18.7 18.7 18.7 18.6 18.6 18.7 18.6 18.7 18.6 18.7 18.7 18.7 18.7 18.7 18.7 18.7	setting		
802.11n 20MHz Ant 1	6.5 13 19.5 26 39 52 58.5 65 13.5 27	18.8 18.7 18.7 18.7 18.7 18.6 18.6 18.7 18.6 18.7 18.6 18.7 18.7 18.7 18.7 18.7 18.7 18.7	setting		
20MHz Ant 1	13 19.5 26 39 52 58.5 65 13.5 27	18.8 18.7 18.7 18.6 18.6 18.7 18.7 18.7 18.7 18.7 18.7	- 19.0		
20MHz Ant 1	19.5 26 39 52 58.5 65 13.5 27	18.7 18.7 18.6 18.6 18.7 18.7 18.7 18.7 18.7 18.7	19.0		
20MHz Ant 1	26 39 52 58.5 65 13.5 27	18.7 18.6 18.6 18.7 18.7 18.7 18.0	19.0 		
20MHz Ant 1	39 52 58.5 65 13.5 27	18.6 18.6 18.7 18.7 18.0	- 19.0 		
802.11n/ac	52 58.5 65 13.5 27	18.6 18.7 18.7 18.0			
	58.5 65 13.5 27	18.7 18.7 18.0	-		
	65 13.5 27	18.7 18.0	-		
	13.5 27	18.0			
	27				
		18.0	- 1		
		18.0			
40MHz	54	17.9	10.0		
	81	17.9	19.0		
	108	17.9			
		17.9			
	135	17.9			
te : Power setting - the software pow					

EMC Test Data

	VE ENGINEER SUCCESS		
Client:	Pace Americas, Inc	Job Number:	J97522
Model: HR44-700		T-Log Number:	T97548
wouer.	11744-700	Project Manager:	Irene Rademacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.407 (New Rules)	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

NTS

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	20-25 °C
Rel. Humidity:	38-40 %

Summary of Results

Summary	OI RESUL	.5												
Run #	Mode	Channel	Target Power Setting	Passing Power Setting	Test Performed	Limit	Result / Margin							
20MHz Ban	dwith Modes						•							
1	a Ant 1	36 - 5180MHz	20	20	Restricted Band Edge at 5150 MHz	15.209	52.2 dBµV/m @ 5150.0 MHz (-1.8 dB)							
		149 - 5745MHz	20	16	Band Edge at 5715 MHz	15.209	64.8 dBµV/m @ 5713.1 MHz (-3.5 dB)							
2	а	149 - 5745MHz	20	16	Band Edge at 5725 MHz	15E	74.7 dBµV/m @ 5724.1 MHz (-3.6 dB)							
2	² Ant 1	165 - 5825MHz	20	19	Band Edge 5850MHz	15E	76.5 dBµV/m @ 5855.2 MHz (-1.8 dB)							
	165 - 5825MHz	20	19	Band Edge 5860MHz	15E	63.8 dBµV/m @ 5862.2 MHz (-4.5 dB)								
3	n20	36 - 5180MHz	20	19	Restricted Band Edge at 5150 MHz	15.209	52.8 dBµV/m @ 5149.1 MHz (-1.2 dB)							
		149 - 5745MHz	20	16	Band Edge at 5715 MHz	15.209	64.8 dBµV/m @ 5714.4 MHz (-3.5 dB)							
4 n20	149 - 5745MHz	20	16	Band Edge at 5725 MHz	15E	77.7 dBµV/m @ 5724.9 MHz (-0.6 dB)								
	1120	165 - 5825MHz	20	19	Band Edge 5850MHz	15E	76.9 dBµV/m @ 5850.1 MHz (-1.4 dB)							
		165 - 5825MHz	20	19	Band Edge 5860MHz	15E	65.6 dBµV/m @ 5862.3 MHz (-2.7 dB)							
		-		-	-									

		RSUCCESS				EM	C Test Data
Client:	Pace Ameri	cas, Inc				Job Number:	J97522
Martal				T-Log Number:	T97548		
Wodel:	HR44-700			Project Manager:	Irene Rademacher		
Contact:	Mark Rieger	ſ		Project Coordinator:	-		
Standard:	FCC 15.407 (New Rules)					Class:	N/A
Run #	Mode	Channel	Target Power Setting	Passing Power Setting	Test Performed	Limit	Result / Margin
40MHz Bandwith Modes							
5	n40	38 - 5190MHz	20	14	Restricted Band Edge at 5150 MHz	15.209	52.3 dBµV/m @ 5149.5 MHz (-1.7 dB)
		151 - 5755MHz	20	15	Band Edge at 5715 MHz	15.209	67.4 dBµV/m @ 5714.8 MHz (-0.9 dB)
<u> </u>	- 10	151 - 5755MHz	20	15	Band Edge at 5725 MHz	15E	74.6 dBµV/m @ 5724.5 MHz (-3.7 dB)
6	n40	159 - 5795MHz	20	20	Band Edge 5850MHz	15E	71.6 dBµV/m @ 5854.8 MHz (-6.7 dB)
		159 - 5795MHz	20	20	Band Edge 5860MHz	15E	66.1 dBµV/m @ 5861.3 MHz (-2.2 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

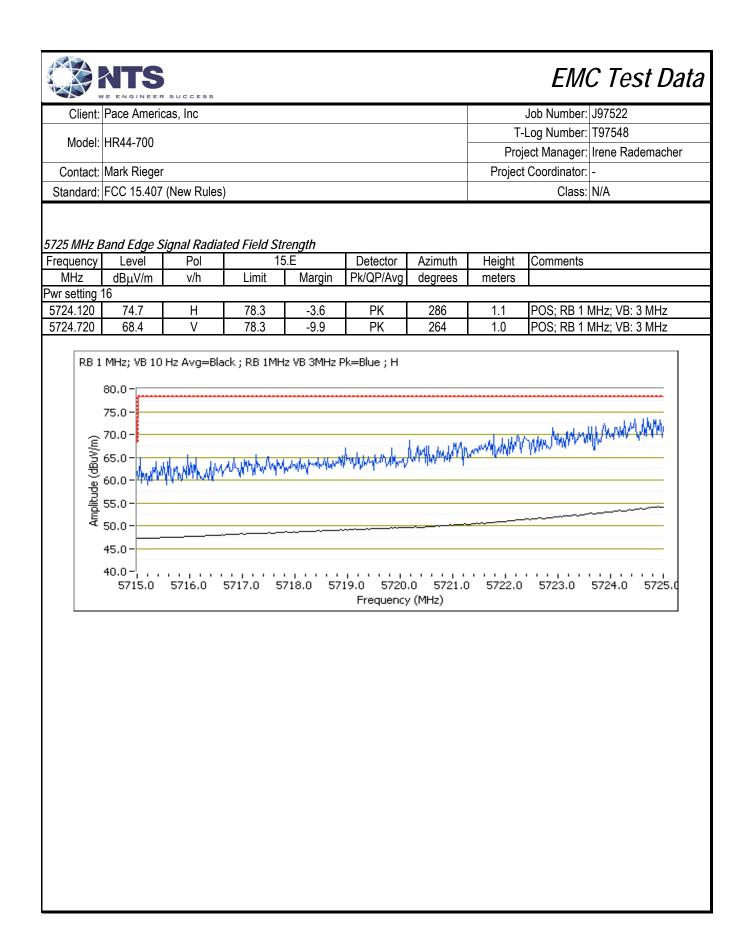
Procedure Comments:

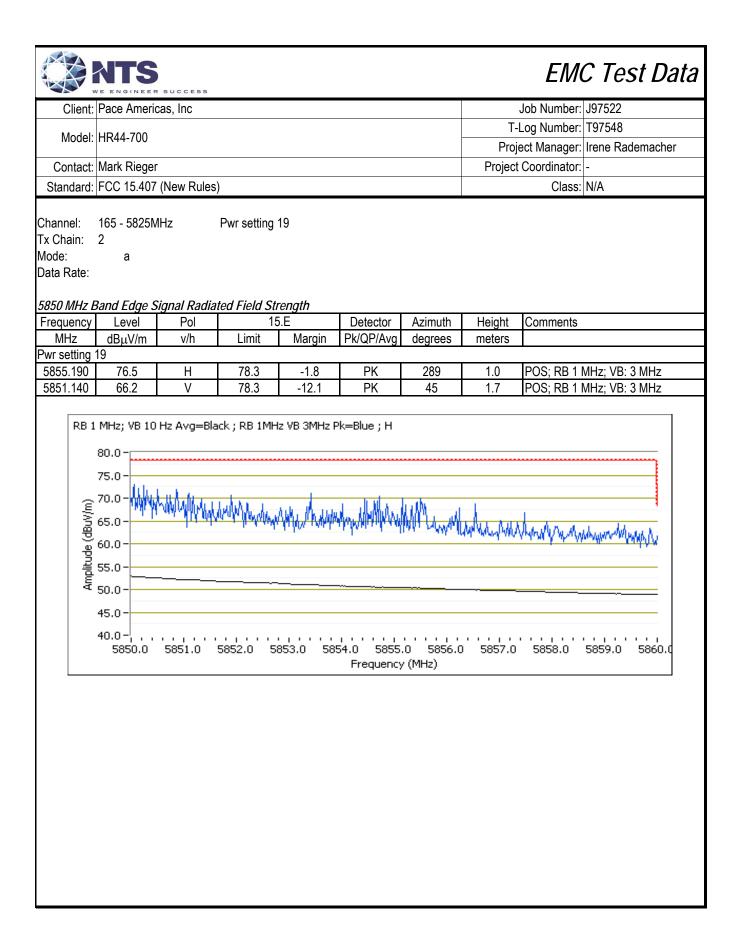
Measurements performed in accordance with FCC KDB 789033

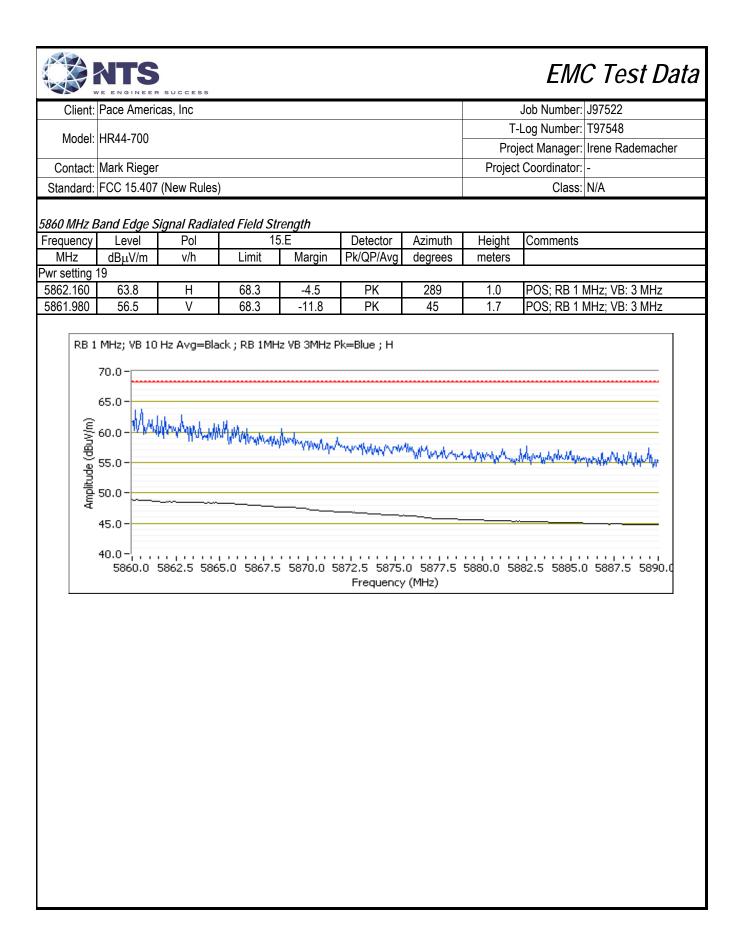
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	6Mbps	0.99	Yes	1.33	0	0	752
n20	MCS0	0.99	Yes	1.33	0	0	752
n40	MCS0	0.95	Yes	0.362	0.23	0.47	2762

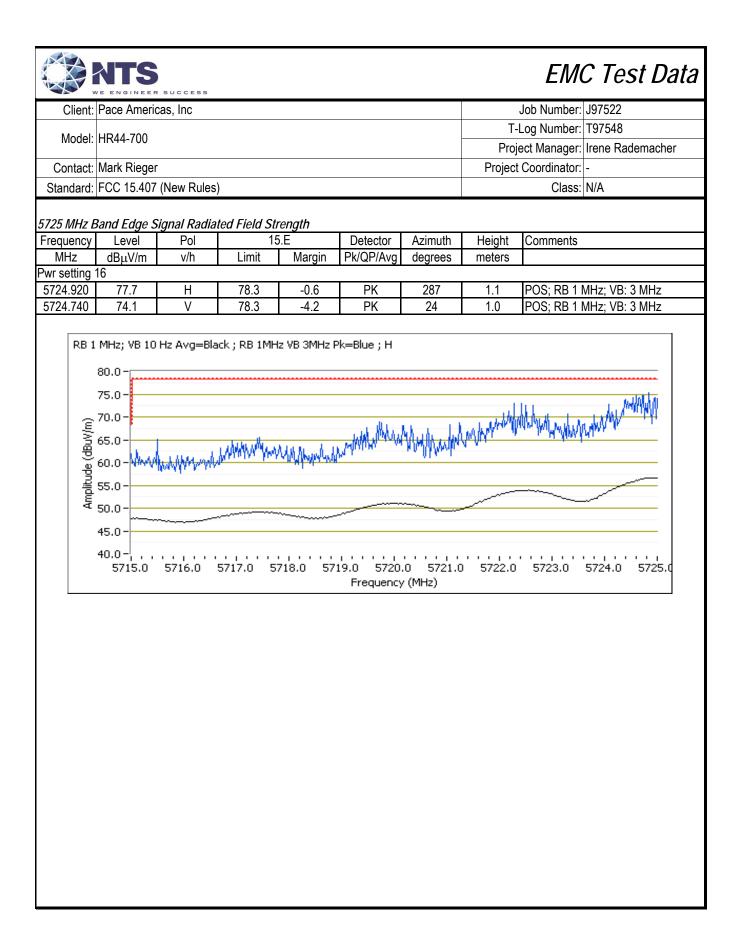

Sample Notes

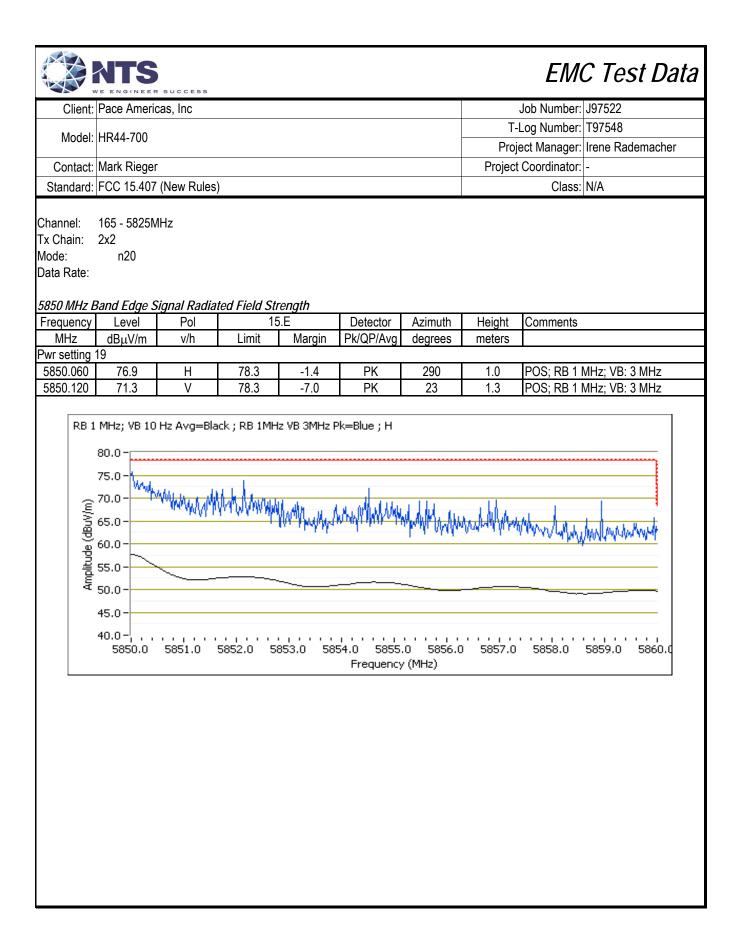

Sample S/N: G33DT4PA003103 Wifi MAC: BC307D5B7E36 Driver: 5.99 RC 188.10

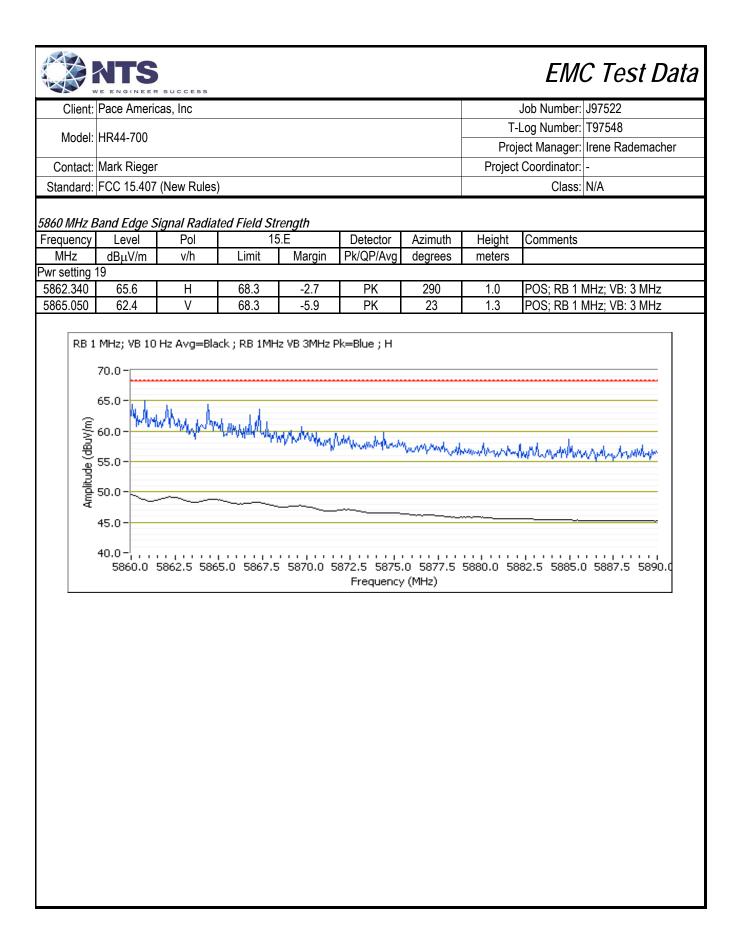

	A I S Le Engineer Success	EMO	C Test Data
Client:	Pace Americas, Inc	Job Number:	J97522
Madal	HR44-700	T-Log Number:	T97548
wouer.	NK44-700	Project Manager:	Irene Rademacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.407 (New Rules)	Class:	N/A
	riginal approval, Chain 2 was worse case for 11a (Ant 1)		
Measurer	nent Specific Notes:		
Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Pe demonstrated by meeing the average and peak limits of 15.209, as an alter	er KDB 789033 2) c) (i), c native.	ompliance can be
Note 2:	Emission has duty cycle ≥ 98%, average measurement performed: RBW=11 sweep, trace average 100 traces		
Note 3:	Emission has duty cycle < 98%, but constant, average measurement perform linear averaging, auto sweep, trace average 100 * 1/DC traces, measureme	nt corrected by Linear Vo	Itage correction factor
Note 4:	Emission has duty cycle < 98% and is NOT constant, average measuremen detector, linear average mode, sweep time auto, max hold. Max hold for 50	*(1/DC) traces	·
Note 5:	Emission has duty cycle < 98%, but constant, average measurement performaveraging, auto sweep, trace average 100 * 1/DC traces, measurement corr	rected by Pwr correction f	actor
Note 6:	Plots of the average and peak bandedge do not account for any duty cycle of measurements.	correction. Refer to the ta	abluar results for final

		SUCCESS						ЕМС	C Test Data
Client:	Pace Americ	as, Inc						Job Number:	J97522
N4. 1.1							T-	Log Number:	T97548
Model:	HR44-700						Proj	ect Manager:	Irene Rademacher
Contact:	Mark Rieger						Project	Coordinator:	-
Standard:	FCC 15.407	(New Rules)					Class:	N/A
un #1: Ra	adiated Band	edge Meas	urements, 5	150-5250MH	łz				
	Date of Test:		:00			onfig. Used:			
	est Engineer:					fig Change:			
T	est Location:	FT Chambe	r #7		E	UT Voltage:	120V/60Hz		
hannel: x Chain:	36 - 5180 Mł 2	Ηz	Pwr setting	20					
ode:	а								
ata Rate:	6Mbps								
150 MUz I	Band Edge S	ianal Dadia	tod Field St	ronath					
requency	1	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.000	52.2	Н	54.0	-1.8	AVG	283	1.3	POS; RB 1 M	MHz; VB: 10 Hz
5150.000	68.3	Н	74.0	-5.7	PK	283	1.3		MHz; VB: 3 MHz
5150.000	47.2	V	54.0	-6.8	AVG	39	1.4		MHz; VB: 10 Hz
5146.870	64.0	V	74.0	-10.0	PK	39	1.4	POS; RB 1 I	MHz; VB: 3 MHz
	I MHz; VB 10 75.0 - 70.0 - 65.0 - 60.0 - 55.0 - 50.0 - 45.0 -				rk=Blue ; H				or sport for some for

Client: Pa	ace Ameri	cas, Inc						Job Number:	
Model: H	IR44-700							Log Number:	T97548 Irene Rademacher
Contact: M	lark Riege	r						Coordinator:	
		7 (New Rules)				-	Class:	N/A
ın #2: Radi	iated Ban	dedge Meas	urements, 5	725-5850MF	Ηz				
Da	ite of Test:	2/11/2015 0	:00		С	onfig. Used:	1		
Test Engineer: Jack Liu / R. Varelas Config Change:							- 120V/60Hz		
					L	or vollage.	1200/00112		
nannel: 14 Chain: 2	49 - 5745N	<i>l</i> Hz	Pwr setting	16					
ode: ata Rate:	a 6Mbps								
7 <i>15 MHz Bal</i> requency	<i>nd Edge S</i> Level	S <i>ignal Radia</i> Pol		<i>rength</i> 15.209	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5713.080	64.8	Н	68.3	-3.5	PK	278	1.2		MHz; VB: 3 MHz
714.460	57.3	V	68.3	-11.0	PK	264	1.0	POS; RB 1 I	MHz; VB: 3 MHz
RB 1 M	1Hz; VB 10) Hz Avg=Bla	ack ; RB 1MH	iz VB 3MHz F	Pk=Blue ; H				
70	0.0-								
65	5.0-								
() () () () () () () () () () () () () (0.0-								. A. H. a. Aust
Amplitude (dBuV/m) 22 23 20 24	5.0-	to when we that	malmond	hyperthype	cycollaborhayal	Maryalla	www.hullm	William	WAY WANNER
olitude	0.0-	and the state of the state		•					
45	5.0			· · · ·					
40	0.0- <mark> </mark> 5685.0	5687.5 569	0.0 5692.5	5 5695.0 5	697.5 5700	.0 5702.5		,, 07.5 5710.0	5712.5 5715.0
					Frequency	/ (MHz)			

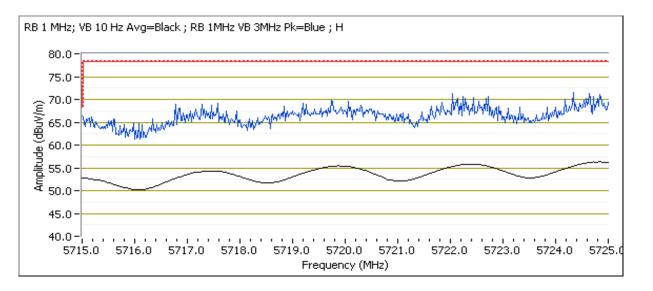


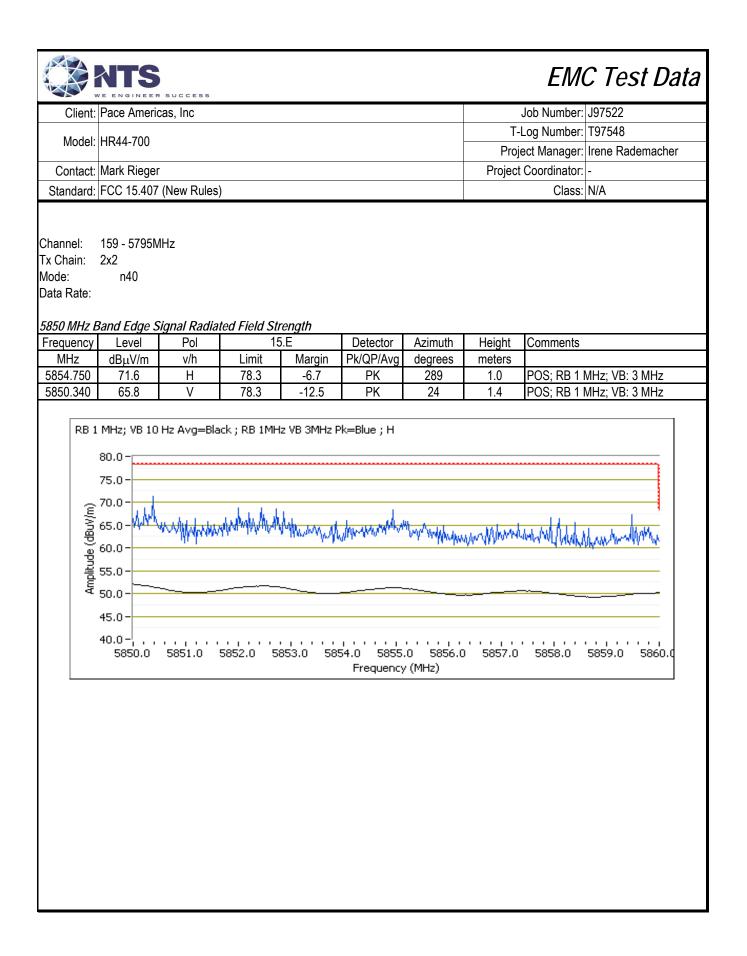




		R SUCCESS						EMO	C Test Data
Client:	Pace Amer	icas, Inc						Job Number:	J97522
							T-	Log Number:	T97548
Model:	HR44-700						Proj	ect Manager:	Irene Rademacher
Contact:	Mark Riege	er					Project	Coordinator:	-
	-	7 (New Rules)				,	Class:	
		dedge Meas	,	150-5250MI	Ηz				
		: 2/11/2015 0				onfig. Used:			
		: Rafael Vare				fig Change:			
Te	est Location	: FT Chambe	er #7		E	UT Voltage:	120V/60Hz		
Tx Chain: Mode: Data Rate:	36 - 5180 M 2x2 n20 MCS0 Band Edge	/IHz Signal Radia	Pwr setting						
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
wr setting		V/11	Linit	margin	i logi // og	dogrooo	motoro		
5149.120	52.8	Н	54.0	-1.2	AVG	283	1.1	POS; RB 1 M	MHz; VB: 10 Hz
5146.790	68.4	Н	74.0	-5.6	PK	283	1.1		MHz; VB: 3 MHz
5150.000	51.6	V	54.0	-2.4	AVG	37	1.0		MHz; VB: 10 Hz
5149.920	65.6	V	74.0	-8.4	PK	37	1.0	POS; RB 1 N	MHz; VB: 3 MHz
Amplitude (dBuV/m)	75.0 -			huuhan M	yummhha.			Ward Wydd M	
					Frequency	/ (MHz)			

Client [.]	Pace Ameri	cas Inc						Job Number:	.197522
								Log Number:	
Model:	HR44-700						-		Irene Rademacher
Contact:	Mark Riege	r					Project	Coordinator:	-
andard:	FCC 15.407	7 (New Rules)					Class:	N/A
#4: Ra	diated Ban	dedge Meas	urements, 5	725-5850MH	Ηz				
[Date of Test:	2/11/2015 0	:00		С	onfig. Used:	1		
		Rafael Vare				fig Change:			
16	est location:	FT Chambe	r#/		E	UT Voltage:	120V/60HZ		
nnel:	149 - 5745	ИНz	Pwr setting	16					
Chain: le:	2x2 n20								
a Rate:	MCS0								
5 MU-7 I	Dand Edga	Signal Dadia	tod Field St	conath					
quency	Level	S <i>ignal Radia</i> Pol		15.209	Detector	Azimuth	Height	Comments	
ЛНz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
setting 14.400	16 64.8	Н	68.3	-3.5	PK	287	1.1	POS: RB 11	MHz; VB: 3 MHz
2.960	62.3	V	68.3	-6.0	PK	24	1.0		MHz; VB: 3 MHz
1 2	55.0	ralina yuliyi Madaa	anthongantach		•A.a				<u> </u>
	5685.0	5687.5 569	0.0 5692.5	5695.0 5	697.5 5700 Frequency	.0 5702.5	5705.0 57	07.5 5710.0) 5712.5 5715.C

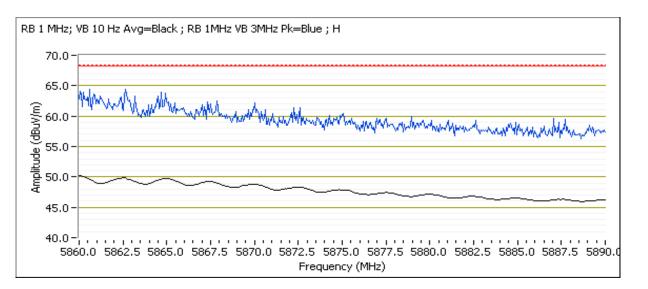

		RSUCCESS						EMO	C Test Data
Client:	Pace Americ							Job Number:	J97522
							T-I	Log Number:	T97548
Model:	HR44-700								Irene Rademacher
Contact:	Mark Rieger							Coordinator:	
	FCC 15.407)					Class:	
	adiated Band	<u>,</u>	*	150-5250MF	łz				
	Date of Test:					onfig. Used:			
	st Engineer:					fig Change:			
Te	est Location:	FT Chambe	r #7		E	UT Voltage:	120V/60Hz		
Tx Chain: Mode: Data Rate:	38 - 5190 M 2x2 n40 MCS0		Pwr setting						
	Band Edge S						[T	
Frequency	Level	Pol		5.209	Detector	Azimuth	Height	Comments	
MHz Pwr setting	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5149.520	52.3	Н	54.0	-1.7	AVG	288	1.1		/Hz; VB: 10 Hz
5146.390	66.7	H	74.0	-7.3	PK	288	1.1		MHz; VB: 3 MHz
5150.000	50.4	V	54.0	-3.6	AVG	38	1.0		/Hz; VB: 10 Hz
5149.520	60.8	V	74.0	-13.2	PK	38	1.0		/Hz; VB: 3 MHz
Amplitude (dBuV/m)	70.0 - 65.0 - 55.0 - 50.0 - 45.0 - 40.0 - 35.0 -		number han					Mmadhamad 	


Client:	VE ENGINEE	RSUCCESS							-
	Pace Ame	ricas, Inc						Job Number:	
Model:	HR44-700					·		Log Number:	
Cantast	Mork Diam							2	Irene Rademacher
	Mark Riege		\ \				Project	Coordinator:	
		7 (New Rules ndedge Meas	/		1-			Class:	N/A
(uii #0. Ka	iuialeu Dai	lueuye weas	urements, o	/20-00001011	72				
		t: 2/11/2015 0				onfig. Used:			
	-	Rafael Vare				fig Change:			
16	est Location	: FT Chambe	r#/		E	UT Voltage:	120V/60HZ		
Channel:	151 - 5755	MHz	Pwr setting	15					
	2x2		-						
Mode:	n40								
Data Rate:									
5715 MHz E	Band Edge	Signal Radia							
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz Pwr setting	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5714.820	67.4	Н	68.3	-0.9	PK	287	1.1	POS: RB 1 I	MHz; VB: 3 MHz
5714.940	63.5	V	68.3	-4.8	PK	25	1.2		MHz; VB: 3 MHz
ude (dBuV/m)	70.0 - 65.0 - 60.0 - 55.0 - 1	Mondbachacia	wy.www.vyh	www.hreedel	Hubernder	white the second	winned apple	wl	~~~~
A A	45.0-								
μ.									
	40.0			5695.0 5	697.5 5700	.0 5702.5	5705.0 57	07.5 5710.0	5712.5 5715.0
	40.0-,,, 5685.0	5687.5 569	0.0 5692.5						
	40.0-,,, 5685.0	5687.5 569	0.0 5692.5		Frequency	(IME2)			
	40.0-,,, 5685.0	5687.5 569	0.0 5692.5		Frequency	(MH2)			
	40.0-,,, 5685.0	5687.5 569	0.0 5692.5		Frequency	/ (MH2)			
	40.0 - , , , 5685.0	5687.5 569	0.0 5692.5		Frequency	(MHZ)]
	40.0-,,,, 5685.0	5687.5 569			Frequency	(MIN2)			
	40.0-, 5685.0	5687.5 569			Frequency	(MIN2)			
	40.0-,,,, 5685.0	5687.5 569			Frequency	/ (MIN2)			

	NTS VE ENGINEER SUCCESS	EM	C Test Data
Client:	Pace Americas, Inc	Job Number:	J97522
Madal	HR44-700	T-Log Number:	T97548
wouer.	11//44-700	Project Manager:	Irene Rademacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.407 (New Rules)	Class:	N/A

5725 MHz Band Edge Signal Radiated Field Strength

Level	Pol	15	.E	Detector	Azimuth	Height	Comments
dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
74.6	Н	78.3	-3.7	PK	287	1.1	POS; RB 1 MHz; VB: 3 MHz
71.6	V	78.3	-6.7	PK	25	1.2	POS; RB 1 MHz; VB: 3 MHz
	IBμV/m 74.6	IBμV/m v/h 74.6 H	IBμV/m v/h Limit 74.6 H 78.3	IBμV/m v/h Limit Margin 74.6 H 78.3 -3.7	IBμV/m v/h Limit Margin Pk/QP/Avg	IBμV/m v/h Limit Margin Pk/QP/Avg degrees 74.6 H 78.3 -3.7 PK 287	IBμV/m v/h Limit Margin Pk/QP/Avg degrees meters



	NTS VE ENGINEER SUCCESS	EMO	C Test Data
Client:	Pace Americas, Inc	Job Number:	J97522
Madal	HR44-700	T-Log Number:	T97548
Model.	FIK44-700	Project Manager:	Irene Rademacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.407 (New Rules)	Class:	N/A

5860 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	15	δ.Ε	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5861.320	66.1	Н	68.3	-2.2	PK	289	1.0	POS; RB 1 MHz; VB: 3 MHz
5860.540	62.5	V	68.3	-5.8	PK	24	1.4	POS; RB 1 MHz; VB: 3 MHz

Client	Pace Ameri	r success				Job Number:	.197522
Cilent.						T-Log Number:	
Model:	HR44-700					-	Irene Rademacher
Contact:	Mark Riege	r				Project Coordinator:	
		(New Rules)				Class:	
General T The EUT ar		The objective specification guration ipport equipm	listed above ent were loc	e. cated on the t	urntable for radiated spur	n testing of the EUT with r rious emissions testing. e EUT, unless otherwise r	
	Condition		emperature:	21.4	°C		
Summary	y of Resul	Re	el. Humidity:				
Summary Run #	y of Resul	Re	•			Limit	Result / Margin
Run #	Mode	Re Channel orse case mo	el. Humidity: Target Power Setting	39 Passing Power Setting	% Test Performed riginal testing/certification		
Run #	Mode	Re Channel orse case mo 36 -	el. Humidity: Target Power Setting	39 Passing Power Setting	% Test Performed		53.1 dBµV/m @ 9000.
Run #	Mode ents on the w	Re Channel orse case mo	Target Power Setting de for UNII1	39 Passing Power Setting band from o	% Test Performed riginal testing/certification Radiated Emissions,		53.1 dBµV/m @ 9000. MHz (-0.9 dB)
Run # Measureme	Mode ents on the w n20	Re Channel orse case mo 36 - 5180MHz 40 -	al. Humidity: Target Power Setting de for UNII1 20	39 Passing Power Setting band from o 20	% Test Performed riginal testing/certification Radiated Emissions, 1 - 40 GHz Radiated Emissions,	FCC 15.209 / 15 E	53.1 dBµV/m @ 9000. MHz (-0.9 dB) 52.2 dBµV/m @ 9000. MHz (-1.8 dB)
Run # //easureme	Mode ents on the w n20 n20 n20	Re Channel orse case mo 36 - 5180MHz 40 - 5200MHz 48 - 5240MHz orse case mo	El. Humidity: Target Power Setting de for UNII1 20 20 20	39 Passing Power Setting band from o 20 20 20	% Test Performed riginal testing/certification Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz and from original testing/c	FCC 15.209 / 15 E FCC 15.209 / 15 E FCC 15.209 / 15 E	53.1 dBµV/m @ 9000. MHz (-0.9 dB) 52.2 dBµV/m @ 9000. MHz (-1.8 dB) 52.7 dBµV/m @ 9000. MHz (-1.3 dB)
Run # //easureme	Mode ents on the w n20 n20 n20	Re Channel orse case mo 36 - 5180MHz 40 - 5200MHz 48 - 5240MHz orse case mo 149 -	El. Humidity: Target Power Setting de for UNII1 20 20 20	39 Passing Power Setting band from o 20 20 20	% Test Performed riginal testing/certification Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E FCC 15.209 / 15 E FCC 15.209 / 15 E	53.1 dBµV/m @ 9000. MHz (-0.9 dB) 52.2 dBµV/m @ 9000. MHz (-1.8 dB) 52.7 dBµV/m @ 9000. MHz (-1.3 dB)
Run # Measureme	Mode ents on the w n20 n20 n20 ents on the w	Re Channel orse case mo 36 - 5180MHz 40 - 5200MHz 48 - 5240MHz orse case mo	El. Humidity: Target Power Setting de for UNII1 20 20 20 de for UNII3	39 Passing Power Setting band from o 20 20 20 20 (old DTS) ba	% Test Performed riginal testing/certification Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz and from original testing/c Radiated Emissions,	FCC 15.209 / 15 E FCC 15.209 / 15 E FCC 15.209 / 15 E FCC 15.209 / 15 E	53.1 dBµV/m @ 9000. MHz (-0.9 dB) 52.2 dBµV/m @ 9000. MHz (-1.8 dB) 52.7 dBµV/m @ 9000. MHz (-1.3 dB) 52.3 dBµV/m @ 5425.

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMO	C Test Data
Job Number:	J97522
T-Log Number:	T97548
Project Manager:	Irene Rademacher

Project Coordinator:

Class: N/A

Contact: Mark Rieger

Model: HR44-700

Standard: FCC 15.407 (New Rules)

Client: Pace Americas, Inc

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

GINEER SUCCESS

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

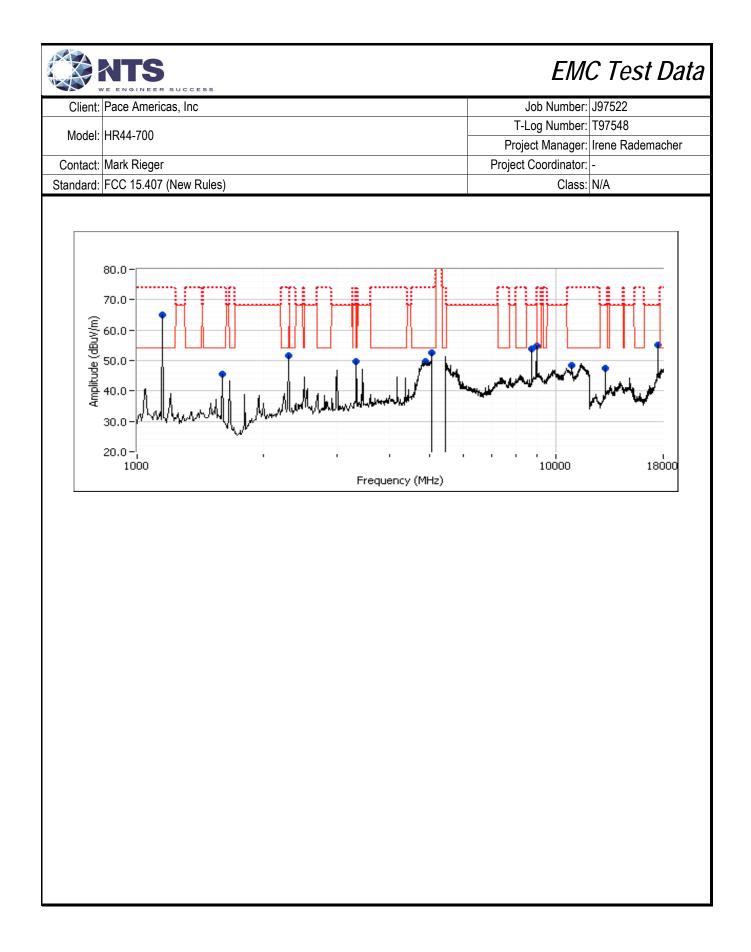
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11a	6Mbps	0.99	Yes	1.33	0	0	752
n20	MCS0	0.99	Yes	1.33	0	0	752
n40	MCS0	0.95	Yes	0.362	0.23	0.47	2762

Sample Notes

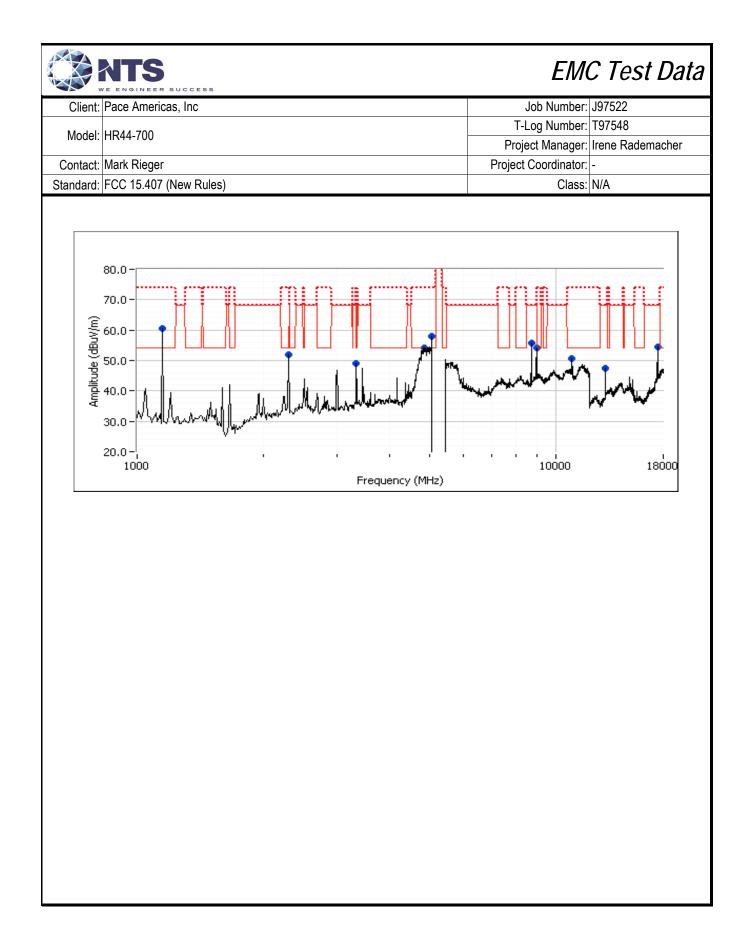
Sample S/N: G33DT4PA003103 Wifi MAC: BC307D5B7E36 Driver: 5.99 RC 188.10

Notes:

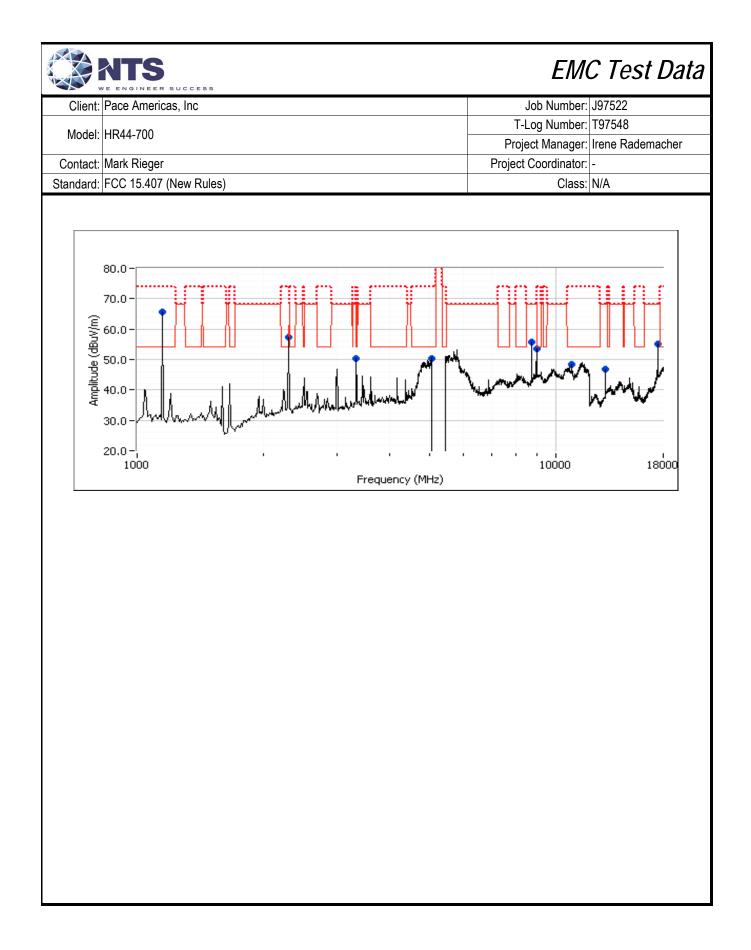
Based on original approval, Chain 2 was worse case for 11a

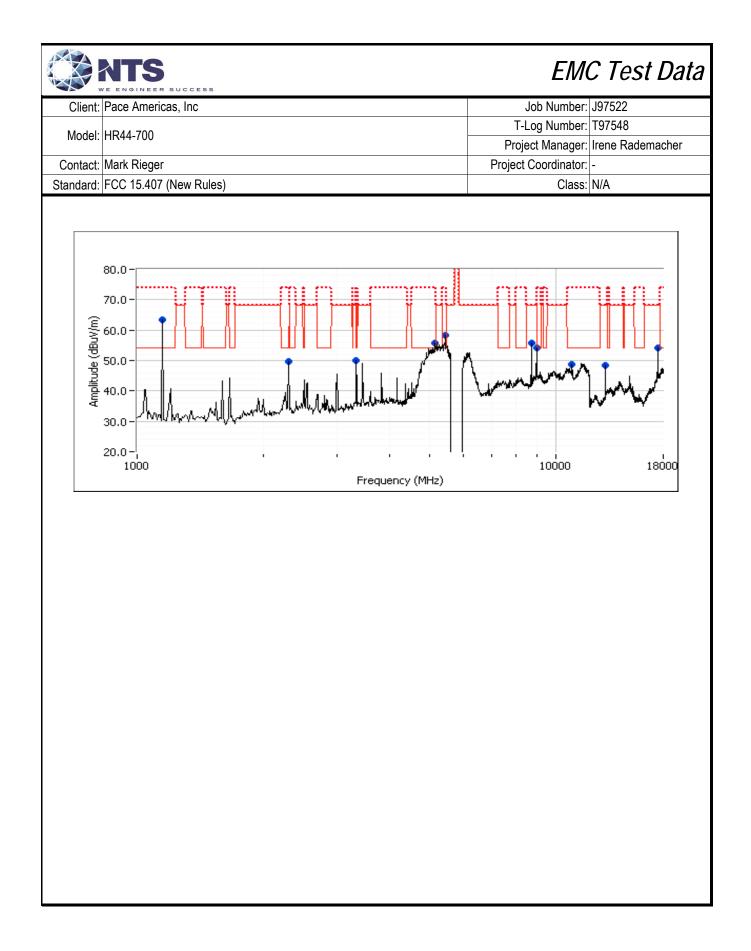

No emissions were observed below 1GHz in original testing, an evaluation showed that the increase in output power did not affect the original results

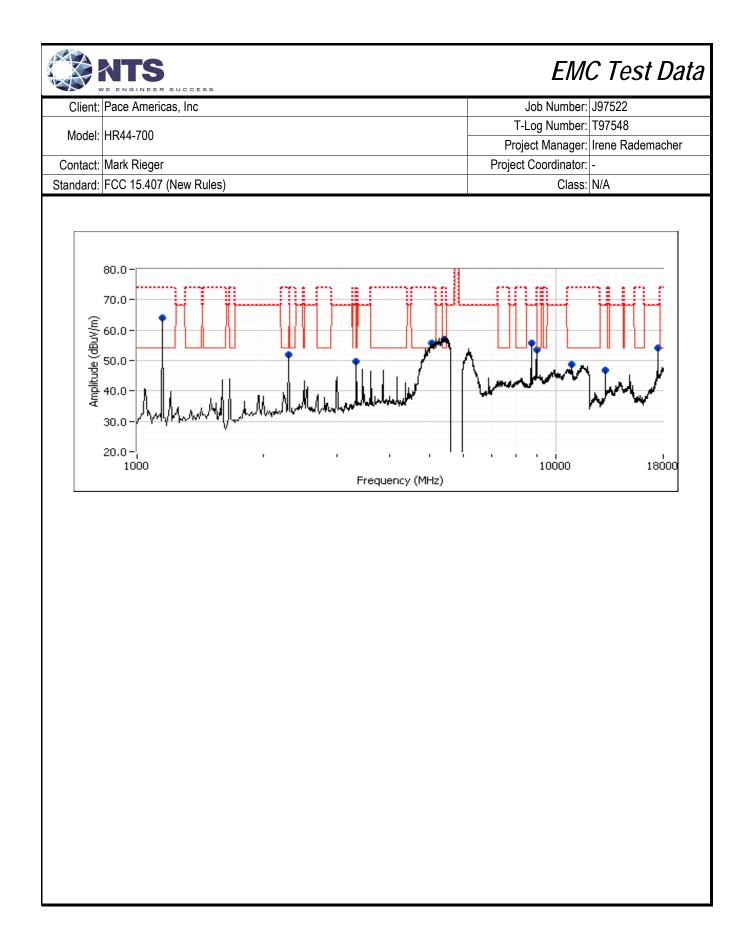
Testing performed on worse case mode (for each band) from original testing/certification

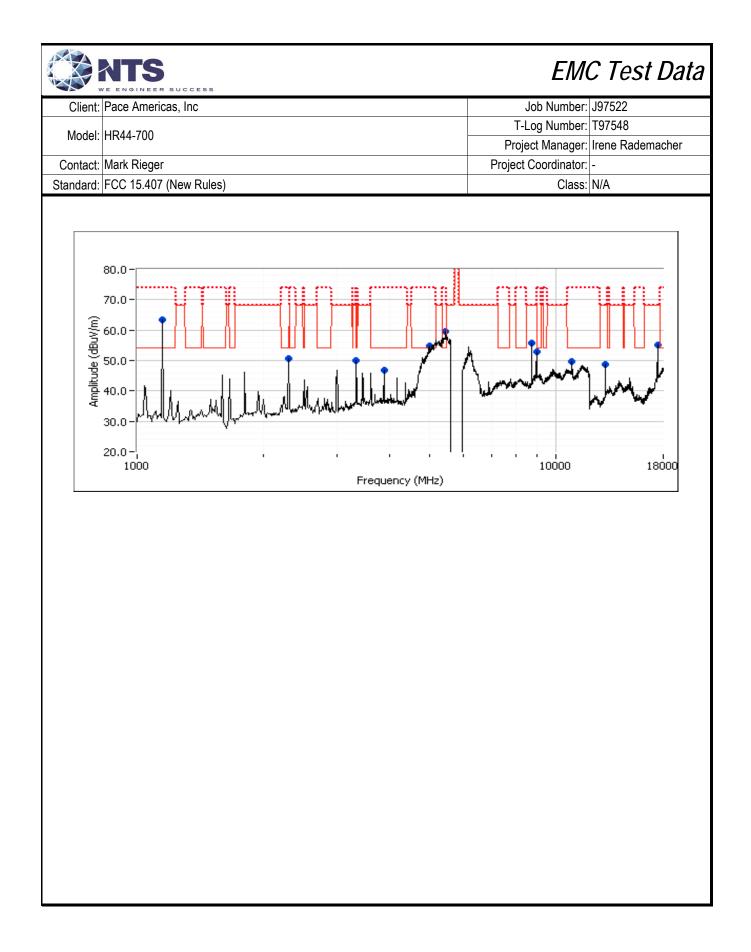

Measurement Specific Notes:

	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 1:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeing the average and peak limits of 15.209, as an alternative.
Note 2:	Emission has duty cycle ≥ 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto
NOLE Z.	sweep, trace average 100 traces
Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector,
Note 5.	linear averaging, auto sweep, trace average 100 * 1/DC traces, measurement corrected by Linear Voltage correction factor
Note 4:	Emission has duty cycle < 98% and is NOT constant, average measurement performed: RBW=1MHz, VBW> 1/T, peak
Note 4.	detector, linear average mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces
Note 5:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power
note 5.	averaging, auto sweep, trace average 100 * 1/DC traces, measurement corrected by Pwr correction factor
Nata Ci	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabluar results for final
Note 6:	measurements.


Model:	t: Pace Americas, Inc							Job Number:	J97522
Model:							T-Log Number		T97548
	HR44-700						Proj	ect Manager:	Irene Rademacher
Contact [.]	Mark Rieger						-	Coordinator:	
	FCC 15.407		.)				110,000	Class:	
			,	40.000 MIL-	Oneration	n tha 5150 5			IN/A
•	Date of Test: 2			40,000 MHZ	. Operation in C	onfig. Used:		and	
	st Engineer:					nfig Change:			
Te	est Location:	FT Chambe	er #7		E	UT Voltage:	120V/60Hz		
kun #Ta: Lo	ow Channel								
Channel:	36		Mode:	n20					
	2x2		Data Rate:	MCS0					
X Onum.			Data Nato.	MOOD					
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
9000.460	53.1	V	54.0	-0.9	AVG	0	1.2	RB 1 MHz;V	/B 10 Hz;Peak
9000.520	59.1	V	74.0	-14.9	PK	0	1.2	RB 1 MHz;V	/B 3 MHz;Peak
1150.010	42.2	Н	54.0	-11.8	AVG	344	2.0	Intermittent	signal
1149.020	58.8	Н	74.0	-15.2	PK	344	2.0	Intermittent	
2299.010	34.5	Н	54.0	-19.5	AVG	344	1.0		/B 10 Hz;Peak
2295.560	43.5	Н	74.0	-30.5	PK	344	1.0		/B 3 MHz;Peak
3332.040	49.7	V	54.0	-4.3	AVG	320	1.0		/B 10 Hz;Peak
3331.990	53.4	V	68.3	-14.9	PK	320	1.0		/B 3 MHz;Peak
10899.970	47.3	V	54.0	-6.7	AVG	294	2.0		/B 10 Hz;Peak
10900.120	55.8	V	74.0	-18.2	PK	294	2.0		/B 3 MHz;Peak
5052.920	49.1	<u> </u>	54.0	-4.9	AVG	280	1.1		/B 10 Hz;Peak
5052.600 1599.990	60.0 40.5	H V	74.0 54.0	-14.0 -13.5	PK AVG	280 258	1.1 1.6		/B 3 MHz;Peak /B 10 Hz;Peak
1600.020	40.5	V	74.0	-13.5 -32.9	PK	250	1.6		/B 10 HZ,Peak /B 3 MHz;Peak
4879.830	41.1	 H	54.0	-32.9	AVG	82	1.0		/B 10 Hz;Peak
4881.030	43.0 57.2	H	74.0	-16.8	PK	82	1.0	,	/B 3 MHz;Peak
8719.950	55.4	V	68.3	-12.9	PK	47	1.0		/B 3 MHz;Peak
17440.770	63.2	V	68.3	-5.1	PK	224	1.0		/B 3 MHz;Peak
13080.210	59.8	V	68.3	-8.5	PK	83	1.1		/B 3 MHz;Peak


Channel: 40 Mode: n 20 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.2970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 5047.200 63.3 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;VB 3 MHz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 4861.800 61.6 </th <th>Contact: Mark Rieger Standard: FCC 15.407 (New Rules) Run #1b: Center Channel Channel: 40 Mode: n20 Channel: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees 9000.470 52.2 V 54.0 -1.8 AVG 9 9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 4861.480 49.9 H 54.0 -4.1 AVG 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AV</th> <th>rees 9 9 3 3 82 82 92 92 92 21 40 40</th> <th>Pro Heig mete 1.0 1.0 1.1</th> <th>Proje oject (ht ers)</th> <th>ct Manager: Coordinator: Class: Comments</th> <th>Irene Rademacher -</th>	Contact: Mark Rieger Standard: FCC 15.407 (New Rules) Run #1b: Center Channel Channel: 40 Mode: n20 Channel: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees 9000.470 52.2 V 54.0 -1.8 AVG 9 9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 4861.480 49.9 H 54.0 -4.1 AVG 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AV	rees 9 9 3 3 82 82 92 92 92 21 40 40	Pro Heig mete 1.0 1.0 1.1	Proje oject (ht ers)	ct Manager: Coordinator: Class: Comments	Irene Rademacher -
Model: HR44-700 Project Manager. Irene Rademact Contact: Mark Rieger Project Coordinator. - Standard: FCC 15.407 (New Rules) Class: N/A N/A Run #1b: Center Channel Class: N/A Channel: 40 Mode: n20 fx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 9000.470 52.2 V 54.0 -18.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.280 33.3 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;VB 3 MHz;Peak 2047.200 63.3 H 74.0 -10.7 PK 282	Contact: Mark Rieger Standard: FCC 15.407 (New Rules) Run #1b: Center Channel Channel: 40 Mode: n20 Channel: 40 Mode: n20 Channel: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees 9000.470 52.2 V 54.0 -1.8 AVG 9 9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -20.7 AVG 13 2299.280 33.3 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 4861.480 49.9 H 54.0 -4.1 AVG 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270	rees 9 9 3 3 82 82 82 92 92 92 21 40 40	Pro Heig mete 1.0 1.0 1.1	Proje oject (ht ers)	ct Manager: Coordinator: Class: Comments	Irene Rademacher -
Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.407 (New Rules) Class: N/A Run #1b: Center Channel Class: N/A Channel: 40 Mode: n20 fx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBjL//m v/h Limit Margin PK/QP/Avg degrees meters 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;/VB 10 Hz;Peak 2090.480 58.2 V 74.0 -51.8 PK 9 1.0 RB 1 MHz;/VB 3 MHz;Peak 2299.280 33.3 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;/VB 3 MHz;Peak 2047.500 61.7 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;/VB 3 MHz;Peak 4861.480 49.9 H 5	Standard: FCC 15.407 (New Rules) Run #1b: Center Channel Channel: 40 Mode: n20 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees 9000.470 52.2 V 54.0 -1.8 AVG 9 9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -2.0.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 4861.480 49.9 H 54.0 -4.1 AVG 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG	rees 9 9 3 3 82 82 82 92 92 92 21 40 40	Pro Heig mete 1.0 1.10 1.10	ht ht brs)	Coordinator: Class: Comments	-
Standard: FCC 15.407 (New Rules) Class: N/A Run #1b: Center Channel Channel: 40 Mode: n20 Drannel: 40 Data Rate: MCS0 MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 33.3 H 54.0 -2.0.7 AVG 13 1.0 RB 1 MHz;VB 30 Hz;Peak 2299.970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 30 Hz;Peak 5047.500 51.7 H 54.0 -2.3 AVG 292 1.0 RB 1 MHz;VB 30 Hz;Peak 5047.200 63.3 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;VB 30 Hz;Peak	Standard: FCC 15.407 (New Rules) Run #1b: Center Channel Channel: 40 Mode: n20 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees 9000.470 52.2 V 54.0 -1.8 AVG 9 9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -2.0.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 4861.480 49.9 H 54.0 -4.1 AVG 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG	rees 9 9 3 3 82 82 82 92 92 92 21 40 40	Heig mete 1.0 1.0 1.0 1.1	ht ers)	Class: Comments	
Run #1b: Center Channel Channel: 40 Mode: n20 Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.70 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.70 42.7 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;VB 3 MHz;Peak 5047.200 63.3 H 74.0 -12.4 PK 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK <td< td=""><td>Run #1b: Center Channel Channel: 40 Mode: n20 Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees 9000.470 52.2 V 54.0 -1.8 AVG 9 9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 3331.940 53.7 V 68.3 -14.6 PK 292 3331.940 53.7 V 68.3 -14.6 PK 321</td><td>rees 9 9 3 3 82 82 82 92 92 92 21 40 40</td><td>mete 1.0 1.0 1.0 1.0 1.0 1.0 1.1</td><td>ers))</td><td>Comments</td><td></td></td<>	Run #1b: Center Channel Channel: 40 Mode: n20 Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees 9000.470 52.2 V 54.0 -1.8 AVG 9 9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 3331.940 53.7 V 68.3 -14.6 PK 292 3331.940 53.7 V 68.3 -14.6 PK 321	rees 9 9 3 3 82 82 82 92 92 92 21 40 40	mete 1.0 1.0 1.0 1.0 1.0 1.0 1.1	ers))	Comments	
Channel: 40 Mode: n 20 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.2970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 5047.200 63.3 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;VB 3 MHz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 4861.800 61.6 </td <td>Channel:40Mode:n20Tx Chain:2x2Data Rate:MCS0FrequencyLevelPol$15.209 / 15E$DetectorMHzdBμV/mv/hLimitMarginPk/QP/Avg9000.470$52.2$V$54.0$$-1.8$AVG9000.480$58.2V74.0$$-15.8$PK2299.280$33.3H54.0$$-20.7AVG13$2299.970$42.7H74.0$$-31.3PK13$$5047.500$$51.7H54.0$$-2.3AVG282$$5047.200$$63.3H74.0$$-10.7PK282$$4861.480$$49.9H54.0$$-4.1AVG292$$3331.940$$53.7V68.3$$-14.6PK321$$10904.270$$42.8V54.0$$-11.2AVG340$$10904.470$$54.2V74.0$$-19.8PK340$$1150.610$$48.6H54.0$$-5.4AVG346$</td> <td>rees 9 9 3 3 82 82 82 92 92 92 21 40 40</td> <td>mete 1.0 1.0 1.0 1.0 1.0 1.0 1.1</td> <td>ers))</td> <td></td> <td></td>	Channel:40Mode:n20Tx Chain:2x2Data Rate:MCS0FrequencyLevelPol $15.209 / 15E$ DetectorMHzdB μ V/mv/hLimitMarginPk/QP/Avg9000.470 52.2 V 54.0 -1.8 AVG9000.480 58.2 V 74.0 -15.8 PK2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 4861.480 49.9 H 54.0 -4.1 AVG 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346	rees 9 9 3 3 82 82 82 92 92 92 21 40 40	mete 1.0 1.0 1.0 1.0 1.0 1.0 1.1	ers))		
Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dB _µ V/m v/h Limit Margin Pk/QP/Avg degrees meters 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.280 33.3 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.70 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 5047.500 51.7 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;VB 3 MHz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 10904.270 42.8 V 54.0	Tx Chain:2x2Data Rate:MCS0FrequencyLevelPol15.209 / 15EDetectorAzimuthMHzdBµV/mv/hLimitMarginPk/QP/Avgdegrees9000.47052.2V54.0-1.8AVG99000.48058.2V74.0-15.8PK92299.28033.3H54.0-20.7AVG132299.97042.7H74.0-31.3PK135047.50051.7H54.0-2.3AVG2825047.20063.3H74.0-10.7PK2824861.48049.9H54.0-4.1AVG2923331.94053.7V68.3-14.6PK32110904.27042.8V54.0-11.2AVG34010904.47054.2V74.0-19.8PK3401150.61048.6H54.0-5.4AVG346	rees 9 9 3 3 82 82 82 92 92 92 21 40 40	mete 1.0 1.0 1.0 1.0 1.0 1.0 1.1	ers))		
Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.480 58.2 V 74.0 -15.8 PK 9 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 5047.500 51.7 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;VB 3 MHz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK 321 1.0 RB 1 MHz;VB 3 MHz;Peak <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>rees 9 9 3 3 82 82 82 92 92 92 21 40 40</td> <td>mete 1.0 1.0 1.0 1.0 1.0 1.0 1.1</td> <td>ers))</td> <td></td> <td></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rees 9 9 3 3 82 82 82 92 92 92 21 40 40	mete 1.0 1.0 1.0 1.0 1.0 1.0 1.1	ers))		
MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.480 58.2 V 74.0 -15.8 PK 9 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 10 Hz;Peak 5047.500 51.7 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;VB 3 MHz;Peak 5047.200 63.3 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;VB 10 Hz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK 321 1.0 RB 1 MHz;VB 3 M	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rees 9 9 3 3 82 82 82 92 92 92 21 40 40	mete 1.0 1.0 1.0 1.0 1.0 1.0 1.1	ers))		
MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.480 58.2 V 74.0 -15.8 PK 9 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 10 Hz;Peak 5047.500 51.7 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;VB 3 MHz;Peak 5047.200 63.3 H 74.0 -10.7 PK 282 1.0 RB 1 MHz;VB 10 Hz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK 321 1.0 RB 1 MHz;VB 3 M	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rees 9 9 3 3 82 82 82 92 92 92 21 40 40	mete 1.0 1.0 1.0 1.0 1.0 1.0 1.1	ers))		
9000.470 52.2 V 54.0 -1.8 AVG 9 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.480 58.2 V 74.0 -15.8 PK 9 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 10 Hz;Peak 5047.500 51.7 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;VB 10 Hz;Peak 5047.200 63.3 H 74.0 -10.7 PK 282 1.0 RB 1 MHz;VB 3 MHz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK 321 1.0	9000.470 52.2 V 54.0 -1.8 AVG 9 9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 4861.480 49.9 H 54.0 -4.1 AVG 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346	9 9 3 3 82 82 92 92 21 40 40	1.0 1.0 1.0 1.0 1.1))	RB 1 MHz;\	
9000.480 58.2 V 74.0 -15.8 PK 9 1.0 RB 1 MHz;VB 3 MHz;Peak 2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 5047.500 51.7 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;VB 10 Hz;Peak 5047.200 63.3 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;VB 3 MHz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 4861.800 61.6 H 74.0 -12.4 PK 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK 321 1.0 RB 1 MHz;VB 3 MHz;Peak 10904.270 42.8 V 54.0 -11.2 AVG 340 1.0 <td>9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 5047.200 63.3 H 74.0 -10.7 PK 282 4861.480 49.9 H 54.0 -4.1 AVG 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346</td> <td>9 3 3 82 82 92 92 21 40 40</td> <td>1.0 1.0 1.0 1.1</td> <td>)</td> <td>10112,0</td> <td>/B 10 Hz·Peak</td>	9000.480 58.2 V 74.0 -15.8 PK 9 2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 5047.200 63.3 H 74.0 -10.7 PK 282 4861.480 49.9 H 54.0 -4.1 AVG 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346	9 3 3 82 82 92 92 21 40 40	1.0 1.0 1.0 1.1)	10112,0	/B 10 Hz·Peak
2299.280 33.3 H 54.0 -20.7 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 5047.500 51.7 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;VB 10 Hz;Peak 5047.200 63.3 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;VB 3 MHz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 4861.800 61.6 H 74.0 -12.4 PK 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK 321 1.0 RB 1 MHz;VB 3 MHz;Peak 10904.270 42.8 V 54.0 -11.2 AVG 340 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.610 48.6 H 54.0 -5.4 AVG 346 1.0 </td <td>2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 4861.480 49.9 H 54.0 -4.1 AVG 292 4861.800 61.6 H 74.0 -12.4 PK 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346</td> <td>3 3 82 82 92 92 92 21 40 40</td> <td>1.0 1.0 1.1</td> <td></td> <td>RB 1 MHz:\</td> <td></td>	2299.280 33.3 H 54.0 -20.7 AVG 13 2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 4861.480 49.9 H 54.0 -4.1 AVG 292 4861.800 61.6 H 74.0 -12.4 PK 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346	3 3 82 82 92 92 92 21 40 40	1.0 1.0 1.1		RB 1 MHz:\	
2299.970 42.7 H 74.0 -31.3 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 5047.500 51.7 H 54.0 -2.3 AVG 282 1.1 RB 1 MHz;VB 10 Hz;Peak 5047.200 63.3 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;VB 3 MHz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 4861.800 61.6 H 74.0 -12.4 PK 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -41.6 PK 321 1.0 RB 1 MHz;VB 3 MHz;Peak 10904.270 42.8 V 54.0 -11.2 AVG 340 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.610 48.6 H 54.0 -5.4 AVG 346 1.0 Intermittent signal 1150.050 56.2 H 74.0 -17.8 PK 346 1.0	2299.970 42.7 H 74.0 -31.3 PK 13 5047.500 51.7 H 54.0 -2.3 AVG 282 5047.200 63.3 H 74.0 -10.7 PK 282 4861.480 49.9 H 54.0 -4.1 AVG 292 4861.800 61.6 H 74.0 -12.4 PK 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346 1150.050 56.2 H 74.0 -17.8 PK 346	82 82 92 92 21 40 40	1.1		,	
5047.200 63.3 H 74.0 -10.7 PK 282 1.1 RB 1 MHz;VB 3 MHz;Peak 4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 3 MHz;Peak 4861.800 61.6 H 74.0 -12.4 PK 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK 321 1.0 RB 1 MHz;VB 3 MHz;Peak 10904.270 42.8 V 54.0 -11.2 AVG 340 1.0 RB 1 MHz;VB 3 MHz;Peak 10904.470 54.2 V 74.0 -19.8 PK 340 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.610 48.6 H 54.0 -5.4 AVG 346 1.0 Intermittent signal 1150.050 56.2 H 74.0 -17.8 PK 346 1.0 Intermittent signal 8719.980 59.2 V 68.3 -8.5 PK 83 1.2	5047.200 63.3 H 74.0 -10.7 PK 282 4861.480 49.9 H 54.0 -4.1 AVG 292 4861.800 61.6 H 74.0 -12.4 PK 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346 1150.050 56.2 H 74.0 -17.8 PK 346	82 92 92 21 40 40				
4861.480 49.9 H 54.0 -4.1 AVG 292 1.0 RB 1 MHz;VB 10 Hz;Peak 4861.800 61.6 H 74.0 -12.4 PK 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK 321 1.0 RB 1 MHz;VB 3 MHz;Peak 10904.270 42.8 V 54.0 -11.2 AVG 340 1.0 RB 1 MHz;VB 10 Hz;Peak 10904.470 54.2 V 74.0 -19.8 PK 340 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.610 48.6 H 54.0 -5.4 AVG 346 1.0 Intermittent signal 1150.050 56.2 H 74.0 -17.8 PK 346 1.0 Intermittent signal 8719.980 59.2 V 68.3 -9.1 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.050 59.8 V 68.3 -8.5 PK 83 1.2 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna move	4861.480 49.9 H 54.0 -4.1 AVG 292 4861.800 61.6 H 74.0 -12.4 PK 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346 1150.050 56.2 H 74.0 -17.8 PK 346	92 92 21 40 40	1.1		RB 1 MHz;\	/B 10 Hz;Peak
4861.800 61.6 H 74.0 -12.4 PK 292 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.940 53.7 V 68.3 -14.6 PK 321 1.0 RB 1 MHz;VB 3 MHz;Peak 10904.270 42.8 V 54.0 -11.2 AVG 340 1.0 RB 1 MHz;VB 10 Hz;Peak 10904.470 54.2 V 74.0 -19.8 PK 340 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.610 48.6 H 54.0 -5.4 AVG 346 1.0 Intermittent signal 1150.050 56.2 H 74.0 -17.8 PK 346 1.0 Intermittent signal 8719.980 59.2 V 68.3 -9.1 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.050 59.8 V 68.3 -8.5 PK 83 1.2 RB 1 MHz;VB 3 MHz;Peak 17440.250 63.8 V 68.3 -4.5 PK 276 1.8	4861.800 61.6 H 74.0 -12.4 PK 292 3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346 1150.050 56.2 H 74.0 -17.8 PK 346	92 21 40 40			RB 1 MHz;∖	/B 3 MHz;Peak
3331.940 53.7 V 68.3 -14.6 PK 321 1.0 RB 1 MHz;VB 3 MHz;Peak 10904.270 42.8 V 54.0 -11.2 AVG 340 1.0 RB 1 MHz;VB 10 Hz;Peak 10904.470 54.2 V 74.0 -19.8 PK 340 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.610 48.6 H 54.0 -5.4 AVG 346 1.0 Intermittent signal 1150.050 56.2 H 74.0 -17.8 PK 346 1.0 Intermittent signal 8719.980 59.2 V 68.3 -9.1 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.050 59.8 V 68.3 -8.5 PK 83 1.2 RB 1 MHz;VB 3 MHz;Peak 17440.250 63.8 V 68.3 -4.5 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm the device indica	3331.940 53.7 V 68.3 -14.6 PK 321 10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346 1150.050 56.2 H 74.0 -17.8 PK 346	21 40 40				
10904.270 42.8 V 54.0 -11.2 AVG 340 1.0 RB 1 MHz;VB 10 Hz;Peak 10904.470 54.2 V 74.0 -19.8 PK 340 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.610 48.6 H 54.0 -5.4 AVG 346 1.0 Intermittent signal 1150.050 56.2 H 74.0 -17.8 PK 346 1.0 Intermittent signal 8719.980 59.2 V 68.3 -9.1 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.050 59.8 V 68.3 -8.5 PK 83 1.2 RB 1 MHz;VB 3 MHz;Peak 17440.250 63.8 V 68.3 -4.5 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	10904.270 42.8 V 54.0 -11.2 AVG 340 10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346 1150.050 56.2 H 74.0 -17.8 PK 346	40 40				
10904.470 54.2 V 74.0 -19.8 PK 340 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.610 48.6 H 54.0 -5.4 AVG 346 1.0 Intermittent signal 1150.050 56.2 H 74.0 -17.8 PK 346 1.0 Intermittent signal 8719.980 59.2 V 68.3 -9.1 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.050 59.8 V 68.3 -8.5 PK 83 1.2 RB 1 MHz;VB 3 MHz;Peak 17440.250 63.8 V 68.3 -4.5 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm the device indicated there were no significant emissions in this frequency range Note: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	10904.470 54.2 V 74.0 -19.8 PK 340 1150.610 48.6 H 54.0 -5.4 AVG 346 1150.050 56.2 H 74.0 -17.8 PK 346	40				
1150.610 48.6 H 54.0 -5.4 AVG 346 1.0 Intermittent signal 1150.050 56.2 H 74.0 -17.8 PK 346 1.0 Intermittent signal 8719.980 59.2 V 68.3 -9.1 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.050 59.8 V 68.3 -8.5 PK 83 1.2 RB 1 MHz;VB 3 MHz;Peak 17440.250 63.8 V 68.3 -4.5 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm the device indicated there were no significant emissions in this frequency range Note: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	1150.610 48.6 H 54.0 -5.4 AVG 346 1150.050 56.2 H 74.0 -17.8 PK 346		_			
1150.05056.2H74.0-17.8PK3461.0Intermittent signal8719.98059.2V68.3-9.1PK3571.3RB 1 MHz;VB 3 MHz;Peak13080.05059.8V68.3-8.5PK831.2RB 1 MHz;VB 3 MHz;Peak17440.25063.8V68.3-4.5PK2761.8RB 1 MHz;VB 3 MHz;PeakNote:Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cmthe device indicated there were no significant emissions in this frequency rangeFor emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	1150.050 56.2 H 74.0 -17.8 PK 346	46				
8719.980 59.2 V 68.3 -9.1 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.050 59.8 V 68.3 -8.5 PK 83 1.2 RB 1 MHz;VB 3 MHz;Peak 17440.250 63.8 V 68.3 -4.5 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method						-
13080.050 59.8 V 68.3 -8.5 PK 83 1.2 RB 1 MHz;VB 3 MHz;Peak 17440.250 63.8 V 68.3 -4.5 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method						<u>v</u>
17440.250 63.8 V 68.3 -4.5 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method			_			
Note: Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method			_			
Note: the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	1740.200 00.0 V 00.0 4.0 HK 270	10	1.0	,	110 1 10112,0	
For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	Scans made between 18 - 40 GHz with the measurement antenna moved a	oved ar	around t	he ca	rd and its ar	ntennas 20-50cm fro
	the device indicated there were no significant emissions in this frequency ra	ency rar	ange			
			(68.3dBi	uV/m)). The meas	surement method
required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).	or).				


Model:	Pace Americ	as, Inc						Job Number:	J97522
Model:							T-	Log Number:	T97548
	HR44-700					-		-	Irene Rademacher
Contact:	Mark Rieger						-	Coordinator:	
	FCC 15.407	(New Rules)				-,	Class:	
	ligh Channel	-)					010001	
	ingir onumoi								
Channel:	48		Mode:	n20					
x Chain:	2x2		Data Rate:	MCS0					
Fraguanav		Pol	15 200	9 / 15E	Detector	Azimuth	Hoight	Commonto	
Frequency MHz	Level	v/h	Limit	Margin	Detector Pk/QP/Avg	Azimuth	Height meters	Comments	
9000.450	dBµV/m 52.7	V/11 V	54.0	-1.3	AVG	degrees 14	1.0	RB 1 MHz·\	/B 10 Hz;Peak
9000.400	57.9	V	74.0	-16.1	PK	14	1.0		/B 3 MHz;Peak
8720.090	58.0	V	68.3	-10.1	PK	351	1.0		/B 3 MHz;Peak
3332.010	50.3	V	54.0	-3.7	AVG	322	1.7		/B 10 Hz;Peak
3332.390	54.7	V	74.0	-19.3	PK	322	1.7		/B 3 MHz;Peak
5052.000	47.8	H	54.0	-6.2	AVG	280	1.1		/B 10 Hz;Peak
5052.190	59.6	H	74.0	-14.4	PK	280	1.1		/B 3 MHz;Peak
0914.950	42.8	V	54.0	-11.2	AVG	274	1.0		/B 10 Hz;Peak
0913.790	54.3	V	74.0	-19.7	PK	274	1.0		/B 3 MHz;Peak
1150.190	41.0	Н	54.0	-13.0	AVG	51	1.0	Intermittent	
1150.020	42.8	Н	74.0	-31.2	PK	51	1.0	Intermittent	<u>v</u>
2299.830	38.1	Н	54.0	-15.9	AVG	7	1.0		/B 10 Hz;Peak
2298.790	43.3	Н	74.0	-30.7	PK	7	1.0		/B 3 MHz;Peak
17445.970	63.6	V	68.3	-4.7	PK	225	1.1	RB 1 MHz;V	/B 3 MHz;Peak
13079.790	59.8	V	68.3	-8.5	PK	81	1.1	RB 1 MHz;V	/B 3 MHz;Peak
	-								
lote:								ard and its an	tennas 20-50cm fror
010.					ssions in this				
lote:						• •	68.3dBuV/n	n). The meas	urement method
1010.	required is a	peak meas	urement (RB	=1MHz, VB≥	:3MHz, peak	detector).			


Model: HR44-700 T-Log Number: T97548 Contact: Mark Rieger Project Manager: Itens Rademacher Standard: FCC 15 407 (New Rules) Class: IVA Run #2, Radiated Spurtous Emissions, 1,000 - 40,000 MHz. Operation in the 5725-5850 MHz Band Class: IVA Date of Test: 2/11/2015 0:00 Config. Used: 1 Class: IVA Test Enginee: Rafael Varelas Config. Used: 1 Test Location: FT Chamber #7 EUT Voltage: 120V/60Hz Run #2a: Low Channel E E Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBjuV/m v/h Limit Margin PkQP/Avg degrees meters 5425.670 52.3 H 54.0 -2.6 AVG 33 10 RB1 MHz/VB 3 MHz/Peak 9000.320 57.2 V 74.0 -10.6 PK 56 10. RB1 MHz/VB 3 MHz/Peak 1150.220 F1.0	Client:	Pace America	as, Inc						Job Number:	J97522
Model: IH444-700 Project Manager. Irene Rademacher Contact. Mark Rieger Project Coordinator. - Standard: FCC 15.407 (New Rules) Class: NA Run #2, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5725-5850 MHz Band Class: NA Run #2, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5725-5850 MHz Band Class: NA Run #2a: Low Channel Test Engineer: Rafael Varelas Config Used: 1 Test Engineer: Rafael Varelas Config Used: 1 Channel: 149 Mode:: n 20 rx Kani #2a: Low Channel Channel: 149 Mode:: n 20 rx Kani #2a: Low Channel Channel: 149 Mode:: n 20 rx Kani #2a: Low Channel Channel: 242 Data Rate: MCS0 McSo McSo Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments 6425.670 52.3 H 54.0 -1.7 AVG 56 1.0								T-	Log Number:	T97548
Contact: Mark Rieger Project Coordinator: Standard: FCC 15.407 (New Rules) Class:: N/A Run #2, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5725-5850 MHz Band Date of Test:: Class:: N/A Run #2, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5725-5850 MHz Band Date of Test:: Class:: N/A Test Engineer: Rafael Varelas Config. Used: 1 Test Engineer: Test Location: Channel: 149 Mode: n 20 FX Channel Comments Channel: 149 Mode: n 20 FX Channel Comments Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments 6425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.420 51.5 V 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 9000.380 57.2 V 74.0 -16.8 PK 99 1.0 <	Model:	HR44-700							-	
Standard: FCC 15.407 (New Rules) Class: IV/A Run #2, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5725-5850 MHz Band Date of Test: 2/11/2015 0:00 Config. Used: 1 Test Engineer: Rafael Varelas Config. Used: 1 Test Engineer: Rafael Varelas Config. Change: - Test Location: FT Chamber #7 EUT Voltage: 120V/60Hz Run #2a: Low Channel Mode: n.20 Channel: 149 Mode: n.20 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 10 Hz;Peak 5427.140 63.4 H 74.0 -10.6 PK 56 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 3 MHz;Peak 1514.3020 61.0 H 74.0 -13.0 <td< td=""><td>Contact:</td><td>Mark Rieger</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>	Contact:	Mark Rieger						-		
Run #2, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5725-5850 MHz Band Date of Test: 2/11/2015 0:00 Test Engineer: Rafael Varelas Test Location: FT Chamber #7 Config Change: - Test Location: FT Chamber #7 Run #2a: Low Channel Channel: 149 Mode: n20 Kr Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209/15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters S425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -2.7 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 1151.420 61.0 H 74.0 -13.0 PK		-		.)				110,000		
Date of Test: 2/11/2015 0:00 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: - Test Location: FT Chamber #7 EUT Voltage: 120//60Hz Run #2a: Low Channel EUT Voltage: 120//60Hz Channel: 149 Mode: n 20 fx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz MBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 5425.670 43.2 H 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 10 Hz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -27.0 AVG 9				1		0				IN/A
Test Engineer: Rafael Varelas Test Location: FT Chamber #7 Config Change: - EUT Voltage: 120V/60Hz Run #2a: Low Channel 149 Mode: n20 Data Rate: MCS0 Shannel: 149 Mode: n20 Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 10 Hz;Peak 1150.820 27.0 H 54.0 -2.5 AVG 66 1.3 RB 1 MHz;VB 10 Hz;Peak 1151.420 38.2 H 74.0 -35.8 PK 99 1.0 Intermittent signal 1151.420 38.2					40,000 MHz				and	
Test Location: FT Chamber #7 EUT Voltage: 120V/60Hz Run #2a: Low Channel Channel: 149 Mode: n20 Tx Chain: 2x2 n20 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dB_IV/m v/h Lived Pol 15.209 / 15E Detector Azimuth Height Comments MHz dB_IV/m v/h Lived Pol 15.209 / 15E Detector Azimuth Height Comments MHz dB_IV/m v/h Lived Pol 15.209 / 15E Detector Azimuth Height Comments State MdGe: no.10 RETURE MIZ V 74.0 -10 State V 74.0 -10 RETURE </td <td></td>										
Run #2a: Low Channel Channel: 149 Mode: n 20 Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 5427.140 63.4 H 74.0 -10.6 PK 56 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.020 61.0 H 74.0 -13.0 PK 66 1.3 RB 1 MHz;VB 3 MHz;Peak 1150.820 27.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1299.280 44.6 V 74.0 -35.8 PK 99										
Channel: 149 Mode: n 20 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 5427.140 63.4 H 74.0 -10.6 PK 56 1.0 RB 1 MHz;VB 10 Hz;Peak 900.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 10 Hz;Peak 900.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -2.7.0 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1151.420 38.2 H			1 Onumbe			-	or voltago.	120 0700112		
Channel: 149 Mode: n 20 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 900.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 10 Hz;Peak 900.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -2.7.0 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1151.820 27.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1226.540 32.0 V	Run #2a: Lo	ow Channel								
fx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 5427.140 63.4 H 74.0 -10.6 PK 56 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -27.0 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 5143.020 67.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1151.420 38.2 H 74.0 <										
Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµLV/m v/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 5427.140 63.4 H 74.0 -10.6 PK 56 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 10 Hz;Peak 5143.670 49.2 H 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 5143.020 61.0 H 74.0 -35.8 PK 99 1.0 Intermittent signal 1151.420 38.2 H 74.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Peak	Channel:	149		Mode:	n20					
MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 5425.670 52.3 H 74.0 -10.6 PK 56 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 10 Hz;Peak 5143.670 49.2 H 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 5143.020 61.0 H 74.0 -13.0 PK 66 1.3 RB 1 MHz;VB 3 MHz;Peak 1150.820 27.0 H 54.0 -22.0 AVG 99 1.0 Intermittent signal 12265.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 3 MHz	x Chain:	2x2		Data Rate:	MCS0					
MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 5425.670 52.3 H 74.0 -10.6 PK 56 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 10 Hz;Peak 5143.670 49.2 H 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 5143.020 61.0 H 74.0 -35.8 PK 99 1.0 Intermittent signal 1151.420 38.2 H 74.0 -35.8 PK 99 1.0 Intermittent signal 2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 3 MHz;Peak									-	
5425.670 52.3 H 54.0 -1.7 AVG 56 1.0 RB 1 MHz;VB 10 Hz;Peak 5427.140 63.4 H 74.0 -10.6 PK 56 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 5143.020 61.0 H 74.0 -13.0 PK 66 1.3 RB 1 MHz;VB 3 MHz;Peak 1150.820 27.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1151.420 38.2 H 74.0 -35.8 PK 99 1.0 Intermittent signal 2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 <					1				Comments	
5427.140 63.4 H 74.0 -10.6 PK 56 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 5143.020 61.0 H 74.0 -13.0 PK 66 1.3 RB 1 MHz;VB 3 MHz;Peak 1150.820 27.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Peak 2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 3 MHz;Peak 10906.800 42.8 V 74.0 -29.4 PK 140 1.0						Ŭ.				
9000.420 51.5 V 54.0 -2.5 AVG 33 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 3 MHz;Peak 5143.020 61.0 H 74.0 -13.0 PK 66 1.3 RB 1 MHz;VB 3 MHz;Peak 1150.820 27.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1151.420 38.2 H 74.0 -35.8 PK 99 1.0 Intermittent signal 2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Peak 10906.800 42.8 V 54.0 -11.2 AVG 295 1.0 RB 1 MHz;VB 3 MHz;Peak 10907.080 54.8 V 74.0 -19.2 PK 295 1.0										
9000.380 57.2 V 74.0 -16.8 PK 33 1.0 RB 1 MHz;VB 3 MHz;Peak 5143.670 49.2 H 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 10 Hz;Peak 5143.020 61.0 H 74.0 -13.0 PK 66 1.3 RB 1 MHz;VB 3 MHz;Peak 1150.820 27.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1151.420 38.2 H 74.0 -35.8 PK 99 1.0 Intermittent signal 2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 44.6 V 74.0 -29.4 PK 140 1.0 RB 1 MHz;VB 3 MHz;Peak 10906.800 42.8 V 54.0 -11.2 AVG 295 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.970 50.5 V 54.0 -3.5 AVG 320 1.6										
5143.670 49.2 H 54.0 -4.8 AVG 66 1.3 RB 1 MHz;VB 10 Hz;Peak 5143.020 61.0 H 74.0 -13.0 PK 66 1.3 RB 1 MHz;VB 3 MHz;Peak 1150.820 27.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1151.420 38.2 H 74.0 -35.8 PK 99 1.0 Intermittent signal 2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 44.6 V 74.0 -29.4 PK 140 1.0 RB 1 MHz;VB 10 Hz;Peak 10906.800 42.8 V 54.0 -11.2 AVG 295 1.0 RB 1 MHz;VB 10 Hz;Peak 10907.080 54.8 V 74.0 -19.2 PK 295 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.970 50.5 V 54.0 -3.5 AVG 320 1.6										
5143.020 61.0 H 74.0 -13.0 PK 66 1.3 RB 1 MHz;VB 3 MHz;Peak 1150.820 27.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1151.420 38.2 H 74.0 -35.8 PK 99 1.0 Intermittent signal 2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 44.6 V 74.0 -29.4 PK 140 1.0 RB 1 MHz;VB 3 MHz;Peak 10906.800 42.8 V 54.0 -11.2 AVG 295 1.0 RB 1 MHz;VB 10 Hz;Peak 10907.080 54.8 V 74.0 -19.2 PK 295 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.970 50.5 V 54.0 -3.5 AVG 320 1.6 RB 1 MHz;VB 3 MHz;Peak 332.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 3080.250 58.7 V 68.3 -9.6			-							
1150.820 27.0 H 54.0 -27.0 AVG 99 1.0 Intermittent signal 1151.420 38.2 H 74.0 -35.8 PK 99 1.0 Intermittent signal 2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 44.6 V 74.0 -29.4 PK 140 1.0 RB 1 MHz;VB 3 MHz;Peak 10906.800 42.8 V 54.0 -11.2 AVG 295 1.0 RB 1 MHz;VB 3 MHz;Peak 10907.080 54.8 V 74.0 -19.2 PK 295 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.970 50.5 V 54.0 -3.5 AVG 320 1.6 RB 1 MHz;VB 3 MHz;Peak 3332.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 332.320 54.0 V 68.3 -8.8 PK 357 1.2 RB 1 MHz;VB 3 MHz;Peak 13080.250 58.7 V 68.3 -9.										
1151.420 38.2 H 74.0 -35.8 PK 99 1.0 Intermittent signal 2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 44.6 V 74.0 -29.4 PK 140 1.0 RB 1 MHz;VB 3 MHz;Peak 10906.800 42.8 V 54.0 -11.2 AVG 295 1.0 RB 1 MHz;VB 10 Hz;Peak 10907.080 54.8 V 74.0 -19.2 PK 295 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.970 50.5 V 54.0 -3.5 AVG 320 1.6 RB 1 MHz;VB 3 MHz;Peak 3332.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 8720.040 59.5 V 68.3 -8.8 PK 357 1.2 RB 1 MHz;VB 3 MHz;Peak 13080.250 58.7 V 68.3 -9.6 PK 218 1.0 RB 1 MHz;VB 3 MHz;Peak 17439.820 63.8 V 68.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
2296.540 32.0 V 54.0 -22.0 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Peak 2299.280 44.6 V 74.0 -29.4 PK 140 1.0 RB 1 MHz;VB 3 MHz;Peak 10906.800 42.8 V 54.0 -11.2 AVG 295 1.0 RB 1 MHz;VB 10 Hz;Peak 10907.080 54.8 V 74.0 -19.2 PK 295 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.970 50.5 V 54.0 -3.5 AVG 320 1.6 RB 1 MHz;VB 10 Hz;Peak 3332.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 8720.040 59.5 V 68.3 -8.8 PK 357 1.2 RB 1 MHz;VB 3 MHz;Peak 13080.250 58.7 V 68.3 -9.6 PK 286 1.9 RB 1 MHz;VB 3 MHz;Peak 17439.820 63.8 V 68.3 -4.5 PK 218 1.0										-
2299.280 44.6 V 74.0 -29.4 PK 140 1.0 RB 1 MHz;VB 3 MHz;Peak 10906.800 42.8 V 54.0 -11.2 AVG 295 1.0 RB 1 MHz;VB 3 MHz;Peak 10907.080 54.8 V 74.0 -19.2 PK 295 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.970 50.5 V 54.0 -3.5 AVG 320 1.6 RB 1 MHz;VB 10 Hz;Peak 3332.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 8720.040 59.5 V 68.3 -8.8 PK 357 1.2 RB 1 MHz;VB 3 MHz;Peak 13080.250 58.7 V 68.3 -9.6 PK 286 1.9 RB 1 MHz;VB 3 MHz;Peak 17439.820 63.8 V 68.3 -4.5 PK 218 1.0 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm fround the device indicated										
10906.800 42.8 V 54.0 -11.2 AVG 295 1.0 RB 1 MHz;VB 10 Hz;Peak 10907.080 54.8 V 74.0 -19.2 PK 295 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.970 50.5 V 54.0 -3.5 AVG 320 1.6 RB 1 MHz;VB 3 MHz;Peak 3332.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 3322.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 8720.040 59.5 V 68.3 -8.8 PK 357 1.2 RB 1 MHz;VB 3 MHz;Peak 13080.250 58.7 V 68.3 -9.6 PK 286 1.9 RB 1 MHz;VB 3 MHz;Peak 17439.820 63.8 V 68.3 -4.5 PK 218 1.0 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm fround the device indicated										
10907.080 54.8 V 74.0 -19.2 PK 295 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.970 50.5 V 54.0 -3.5 AVG 320 1.6 RB 1 MHz;VB 3 MHz;Peak 3332.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 3322.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 8720.040 59.5 V 68.3 -8.8 PK 357 1.2 RB 1 MHz;VB 3 MHz;Peak 13080.250 58.7 V 68.3 -9.6 PK 286 1.9 RB 1 MHz;VB 3 MHz;Peak 17439.820 63.8 V 68.3 -4.5 PK 218 1.0 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method <td></td>										
3331.970 50.5 V 54.0 -3.5 AVG 320 1.6 RB 1 MHz;VB 10 Hz;Peak 3332.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 8720.040 59.5 V 68.3 -8.8 PK 357 1.2 RB 1 MHz;VB 3 MHz;Peak 13080.250 58.7 V 68.3 -9.6 PK 286 1.9 RB 1 MHz;VB 3 MHz;Peak 17439.820 63.8 V 68.3 -4.5 PK 218 1.0 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method										,
3332.320 54.0 V 74.0 -20.0 PK 320 1.6 RB 1 MHz;VB 3 MHz;Peak 8720.040 59.5 V 68.3 -8.8 PK 357 1.2 RB 1 MHz;VB 3 MHz;Peak 13080.250 58.7 V 68.3 -9.6 PK 286 1.9 RB 1 MHz;VB 3 MHz;Peak 17439.820 63.8 V 68.3 -4.5 PK 218 1.0 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method										
8720.040 59.5 V 68.3 -8.8 PK 357 1.2 RB 1 MHz;VB 3 MHz;Peak 13080.250 58.7 V 68.3 -9.6 PK 286 1.9 RB 1 MHz;VB 3 MHz;Peak 17439.820 63.8 V 68.3 -4.5 PK 218 1.0 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method										
13080.250 58.7 V 68.3 -9.6 PK 286 1.9 RB 1 MHz;VB 3 MHz;Peak 17439.820 63.8 V 68.3 -4.5 PK 218 1.0 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method										
17439.820 63.8 V 68.3 -4.5 PK 218 1.0 RB 1 MHz;VB 3 MHz;Peak Note: Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range Note: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method			V						,	1
Note: the device indicated there were no significant emissions in this frequency range Inte: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	17439.820		V	68.3	-4.5		218	1.0	RB 1 MHz;V	/B 3 MHz;Peak
Note: the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method										
For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	loto:	Scans made	between 18	8 - 40 GHz wi	th the meas	urement antei	nna moved a	round the c	ard and its an	tennas 20-50cm fro
	NOLE.									
required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).	lote.							68.3dBuV/n	n). The meas	urement method
	010.	required is a	peak meas	urement (RB:	=1MHz, VB≧	≥3MHz, peak	detector).			

Channel: 157 Tx Chain: 2x2 Frequency Level MHz dBµV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	el Mode: Data Ra	5.209 / 15E it Margin	Detector	Azimuth	Proje	Log Number: ect Manager: Coordinator: Class:	Irene Rademacher -
Contact: Mark Rieger Standard: FCC 15.407 (Run #2b: Center Channel Channel: 157 Frequency Level MHz dBµV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	Pol 1 V/h Limi H 54.0 H 74.0	ate: MCS0 5.209 / 15E it Margin		Arimuth	-	Coordinator:	-
Standard: FCC 15.407 (Run #2b: Center Channel Channel: 157 Tx Chain: 2x2 Frequency Level MHz dBµV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	Pol 1 V/h Limi H 54.0 H 74.0	ate: MCS0 5.209 / 15E it Margin		Arimuth	-	Coordinator:	-
Standard: FCC 15.407 (Run #2b: Center Channel Channel: 157 Tx Chain: 2x2 Frequency Level MHz dBµV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	Pol 1 V/h Limi H 54.0 H 74.0	ate: MCS0 5.209 / 15E it Margin		Arimuth			
Run #2b: Center Channel Channel: 157 Tx Chain: 2x2 Frequency Level MHz dBμV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	Pol 1 V/h Limi H 54.0 H 74.0	ate: MCS0 5.209 / 15E it Margin		Arimuth			
Channel: 157 Tx Chain: 2x2 Frequency Level MHz dBµV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	Mode: Data Ra Pol 1! v/h Limi H 54.0 H 74.0	ate: MCS0 5.209 / 15E it Margin		Azimuth			
Tx Chain: 2x2 Frequency Level MHz dBµV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	Data Ra Pol 1: v/h Limi H 54.(H 74.(ate: MCS0 5.209 / 15E it Margin		Azimuth			
Frequency Level MHz dBμV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	Pol 1: v/h Limi H 54.(H 74.(5.209 / 15E it Margin		Azimuth			
MHz dBμV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	v/h Limi H 54.0 H 74.0	it Margin		Azimuth			
MHz dBμV/m 5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	v/h Limi H 54.0 H 74.0	it Margin		Azimuth	<u></u>		
5410.170 53.8 5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	H 54.0 H 74.0	Ŭ			Height	Comments	
5409.850 65.9 8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	Н 74.(Pk/QP/Avg	degrees	meters		
8719.860 57.7 3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8			AVG PK	71 71	<u> </u>		' <u>B 10 Hz;Peak</u> 'B 3 MHz;Peak
3332.070 50.0 3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	v 00.		PK PK	351	1.4		B 3 MHZ;Peak
3332.440 53.7 10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	V 54.0		AVG	321	1.0		B 10 Hz;Peak
10900.010 47.2 10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	V 74.0		PK	321	1.5		B 3 MHz;Peak
10900.010 55.6 1150.920 41.8 1149.890 58.3 2300.040 50.3 2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	V 54.0		AVG	290	2.0		B 10 Hz;Peak
1150.92041.81149.89058.32300.04050.32299.06051.65065.65051.35066.74063.09000.42051.19000.29056.8	V 74.0		PK	290	2.0		B 3 MHz;Peak
1149.89058.32300.04050.32299.06051.65065.65051.35066.74063.09000.42051.19000.29056.8	V 54.0		AVG	222	1.0	Intermittent	
2299.060 51.6 5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	V 74.0		PK	222	1.0	Intermittent	<u> </u>
5065.650 51.3 5066.740 63.0 9000.420 51.1 9000.290 56.8	V 54.0) -3.7	AVG	152	1.0	RB 1 MHz;V	B 10 Hz;Peak
5066.74063.09000.42051.19000.29056.8	V 74.(-22.4	PK	152	1.0	RB 1 MHz;V	'B 3 MHz;Peak
9000.42051.19000.29056.8	H 54.0		AVG	95	1.1		'B 10 Hz;Peak
9000.290 56.8	H 74.(PK	95	1.1		'B 3 MHz;Peak
	V 54.0		AVG	5	1.0		'B 10 Hz;Peak
17436.980 63.1	V 74.0		PK	5	1.0		B 3 MHz;Peak
40070 070 50 0	V 68.3		PK	223	1.1		B 3 MHz;Peak
13079.970 58.6	V 68.3	3 -9.7	PK	285	1.7	RB 1 MHz;V	'B 3 MHz;Peak
Soona mada k	hotwoon 19 10 CL	Jz with the mean	uromont onto	no moved o	round the e	ard and its an	tennas 20-50cm fron
Noto.	dicated there were r					and and its an	termas 20-50cm iron
	s outside of the rest) The meas	urement method
Noto:	peak measurement			• •	50.00D0 V/II	. The meas	
	pour mououromone		-om 12, pour	401001017.			

Channel: 165 Mode: n 20 fx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Peak 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.460 57.9 V 74.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 42.9 H 66.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Peak 4887.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 -4.5 AVG 81 1.9 RB 1 MHz;V	Model: HR44-700 Project Manager: Irene Rade Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.407 (New Rules) Class: N/A Run #2c: High Channel Class: N/A Channel: 165 Mode: n 20 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;/VB 10 Hz;Pe 5420.340 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;/VB 3 MHz;Pi 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;/VB 3 MHz;Pi 200.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;/VB 3 MHz;Pi 200.680 49.5 H
Project Manager: Ifene Rademach Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.407 (New Rules) Class: N/A	Contact: Mark Rieger Project Manager: Irene Rade Standard: FCC 15.407 (New Rules) Class: N/A Run #2c: High Channel Class: N/A Channel: 165 Mode: n 20 x Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBj_LV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Pe 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Pe 49883.330 50.3 H
Standard: FCC 15.407 (New Rules) Class: N/A Run #2c: High Channel Channel: 165 Mode: n20 Standard: 2x2 Data Rate: MCS0 Frequency Level Pol 15:209 / 15E Detector Azimuth Height Comments MHz dBu/V/m V/h Limit Margin Pk/OP/Avg degrees meters Status of the state of the stat	Standard: FCC 15.407 (New Rules) Class: N/A Run #2c: High Channel Channel: 165 Mode: n20 Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµU/m v/h Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Margin MHz dBµU/m v/h 15.209 / 15E Detector Azimuth Height Comments MHz dBµU/m v/h 0.15.209 / 15E Detector Azimuth Height Comments MHz dBµU/m v/h 0.0 RE C
Standard: FCC 15.407 (New Rules) Class: N/A Run #2c: High Channel Channel: 165 Mode: n 20 Standard: Class: N/A Mede: n 20 Frequency Level Pol 15:209 / 15E Detector Azimuth Height Comments MHz dBuy/m vh Limit Margin Pk/QP/Avg degrees meters Standard: MHz dBuy/m vh VHz AvG 68 1.0 RB 1 MHz;VB 10 Hz;Peak Standard: N 74.0 -16.1 PK 18 1.0 RB 1 MHz;VB 3 MHz;Peak 200.680 49.5 H 54.0 -16.1 PK RS 1.0	Standard: Class: N/A Run #2c: High Channel Channel: 165 Mode: n 20 Standard: Class: N/A Channel: 165 Mode: n 20 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz Meters MHz OB Standard: Pk/QP/Avg degrees meters Standard: MHz OB Standard: N/A MHz OB Standard: Comments MHz OB Standard: Reters Standard: Comments Standard: N/A
Run #2c: High Channel Channel: 165 Mode: n20 Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Peak 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 30 Hz;Peak 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 30 Hz;Peak 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 30 MHz;Peak 2300.680 42.9 H 64.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 10 Hz;Peak 3883.390 47.1 H 54.0 -15.0 AVG <td< td=""><td>Run #2c: High Channel Channel: 165 Mode: n20 Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dB_µV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Pe 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 30 Hz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 30 Hz;Pe 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 30 Hz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 30 Mz;Pe 3883.390 47.1 H 54.0 -6.9 AVG 81</td></td<>	Run #2c: High Channel Channel: 165 Mode: n20 Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dB _µ V/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Pe 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 30 Hz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 30 Hz;Pe 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 30 Hz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 30 Mz;Pe 3883.390 47.1 H 54.0 -6.9 AVG 81
Channel: 165 Mode: n 20 fx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBjiV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Peak 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 10 Hz;Peak 3883.330 50.3 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Peak <	Channel: 165 Data Rate: Mode: MCS0 n20 MCS0 Frequency Level Pol 15.209 / 15E Data Rate: Detector Azimuth Height Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Pe 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Pe 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Pe 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MLz;Pe 3883.330 50.3 H <td< td=""></td<>
Tx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Peak 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 10 Hz;Peak 383.300 47.1 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 <t< td=""><td>fx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Pe 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Pe 2306.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Pe 4986.600 49.5 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Pe 4987.100 60.8 H 74.0 -23.7</td></t<>	fx Chain: 2x2 Data Rate: MCS0 Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Pe 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Pe 2306.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Pe 4986.600 49.5 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Pe 4987.100 60.8 H 74.0 -23.7
Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Peak 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 900.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 200.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Peak 4883.30 50.3 H 74.0 -23.7 PK 78 1.0 RB 1 MHz;VB 3 MHz;Peak <	Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Pe 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Pe 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Pe 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Pe <t< td=""></t<>
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Peak 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 10 Hz;Peak 3883.330 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Peak 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;P	MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Pe 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Pe 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 10 Hz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 10 Hz;Pe 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Pe 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Pe </td
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Peak 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 10 Hz;Peak 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Peak 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;P	MHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters5423.11053.5H54.0-0.5AVG681.0RB 1 MHz;VB 10 Hz;Pe5420.94066.1H74.0-7.9PK681.0RB 1 MHz;VB 3 MHz;Pe9000.36052.8V54.0-1.2AVG131.0RB 1 MHz;VB 3 MHz;Pe9000.46057.9V74.0-16.1PK131.0RB 1 MHz;VB 3 MHz;Pe2300.68042.9H68.3-25.4PK231.0RB 1 MHz;VB 3 MHz;Pe2300.68049.5H54.0-4.5AVG781.0RB 1 MHz;VB 10 Hz;Pe4986.60049.5H54.0-4.5AVG781.0RB 1 MHz;VB 3 MHz;Pe4987.10060.8H74.0-13.2PK781.0RB 1 MHz;VB 10 Hz;Pe3883.39047.1H54.0-6.9AVG811.9RB 1 MHz;VB 3 MHz;Pe3883.33050.3H74.0-23.7PK781.0Intermittent signal1150.10044.7H74.0-29.3PK1561.0Intermittent signal10912.42042.7V54.0-11.3AVG3101.0RB 1 MHz;VB 10 Hz;Pe3331.96051.0V68.3-17.3AVG3181.5RB 1 MHz;VB 3 MHz;Pe3332.06054.5V74.0-19.5PK3181.5
5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Peak 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Peak 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Peak 3883.330 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0	5423.110 53.5 H 54.0 -0.5 AVG 68 1.0 RB 1 MHz;VB 10 Hz;Pe 5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Pe 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Pe 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Pe 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Pe 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermitt
5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Peak 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Peak 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Peak 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0	5420.940 66.1 H 74.0 -7.9 PK 68 1.0 RB 1 MHz;VB 3 MHz;Pe 9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Pe 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Pe 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Pe 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Pe 4987.100 60.8 H 74.0 -23.7 PK 78 1.0 RB 1 MHz;VB 3 MHz;Pe 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Pe 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermitt
9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Peak 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 10 Hz;Peak 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 10 Hz;Peak 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Peak 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0	9000.360 52.8 V 54.0 -1.2 AVG 13 1.0 RB 1 MHz;VB 10 Hz;Pe 9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Pe 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Pe 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Pe 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 10 Hz;Pe 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Pe 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 M
9000.460 57.9 V 74.0 -16.1 PK 13 1.0 RB 1 MHz;VB 3 MHz;Peak 2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 10 Hz;Peak 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Peak 383.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 10 Hz;Peak 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0	9000.46057.9V74.0-16.1PK131.0RB 1 MHz;VB 3 MHz;Pe2300.68042.9H68.3-25.4PK231.0RB 1 MHz;VB 3 MHz;Pe4986.60049.5H54.0-4.5AVG781.0RB 1 MHz;VB 10 Hz;Pe4987.10060.8H74.0-13.2PK781.0RB 1 MHz;VB 3 MHz;Pe3883.39047.1H54.0-6.9AVG811.9RB 1 MHz;VB 10 Hz;Pe3883.30050.3H74.0-23.7PK811.9RB 1 MHz;VB 3 MHz;Pe1150.02039.0H54.0-15.0AVG1561.0Intermittent signal1150.10044.7H74.0-29.3PK1561.0Intermittent signal10912.42042.7V54.0-11.3AVG3101.0RB 1 MHz;VB 3 MHz;Pe3331.96051.0V68.3-17.3AVG3181.5RB 1 MHz;VB 3 MHz;Pe3332.06054.5V74.0-19.5PK3181.5RB 1 MHz;VB 3 MHz;Pe3332.06054.5V74.0-19.5PK3181.5RB 1 MHz;VB 3 MHz;Pe3080.11059.0V68.3-9.3PK2851.8RB 1 MHz;VB 3 MHz;Pe
2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Peak 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 3 MHz;Peak 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Peak 383.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Peak 383.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Peak 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5	2300.680 42.9 H 68.3 -25.4 PK 23 1.0 RB 1 MHz;VB 3 MHz;Pe 4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 10 Hz;Pe 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Pe 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 10 Hz;Pe 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Pe 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Pe 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Pe 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1
4986.600 49.5 H 54.0 -4.5 AVG 78 1.0 RB 1 MHz;VB 10 Hz;Peak 4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Peak 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Peak 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Peak 331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 3 MHz;Peak 332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 319.970 59.1 V 68.3 -9.3 <td>4986.60049.5H54.0-4.5AVG781.0RB 1 MHz;VB 10 Hz;Pe4987.10060.8H74.0-13.2PK781.0RB 1 MHz;VB 3 MHz;Pe3883.39047.1H54.0-6.9AVG811.9RB 1 MHz;VB 10 Hz;Pe3883.33050.3H74.0-23.7PK811.9RB 1 MHz;VB 3 MHz;Pe1150.02039.0H54.0-15.0AVG1561.0Intermittent signal1150.10044.7H74.0-29.3PK1561.0Intermittent signal10912.42042.7V54.0-11.3AVG3101.0RB 1 MHz;VB 10 Hz;Pe3331.96051.0V68.3-17.3AVG3181.5RB 1 MHz;VB 3 MHz;Pe3332.06054.5V74.0-19.5PK3181.5RB 1 MHz;VB 3 MHz;Pe3380.11059.0V68.3-9.2PK3571.3RB 1 MHz;VB 3 MHz;Pe13080.11059.0V68.3-9.3PK2851.8RB 1 MHz;VB 3 MHz;Pe</td>	4986.60049.5H54.0-4.5AVG781.0RB 1 MHz;VB 10 Hz;Pe4987.10060.8H74.0-13.2PK781.0RB 1 MHz;VB 3 MHz;Pe3883.39047.1H54.0-6.9AVG811.9RB 1 MHz;VB 10 Hz;Pe3883.33050.3H74.0-23.7PK811.9RB 1 MHz;VB 3 MHz;Pe1150.02039.0H54.0-15.0AVG1561.0Intermittent signal1150.10044.7H74.0-29.3PK1561.0Intermittent signal10912.42042.7V54.0-11.3AVG3101.0RB 1 MHz;VB 10 Hz;Pe3331.96051.0V68.3-17.3AVG3181.5RB 1 MHz;VB 3 MHz;Pe3332.06054.5V74.0-19.5PK3181.5RB 1 MHz;VB 3 MHz;Pe3380.11059.0V68.3-9.2PK3571.3RB 1 MHz;VB 3 MHz;Pe13080.11059.0V68.3-9.3PK2851.8RB 1 MHz;VB 3 MHz;Pe
4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Peak 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 3 MHz;Peak 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 3 MHz;Peak 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 3 MHz;Peak 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.110 59.0 V 68.3 -9.	4987.100 60.8 H 74.0 -13.2 PK 78 1.0 RB 1 MHz;VB 3 MHz;Pe 3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 10 Hz;Pe 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Pe 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Pe 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Pe 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 3 MHz;Pe 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 R
3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 10 Hz;Peak 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Peak 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Peak 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 3 MHz;Peak 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 8719.970 59.1 V 68.3 -9.2 PK 357 1.3	3883.390 47.1 H 54.0 -6.9 AVG 81 1.9 RB 1 MHz;VB 10 Hz;Pe 3883.330 50.3 H 74.0 -23.7 PK 81 1.9 RB 1 MHz;VB 3 MHz;Pe 1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Pe 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Pe 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 3 MHz;Pe 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Pe 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 R
1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Peak 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 10 Hz;Peak 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 3080.110 59.0 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 17439.520 64.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna m	1150.020 39.0 H 54.0 -15.0 AVG 156 1.0 Intermittent signal 1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Pe 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Pe 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 3 MHz;Pe 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Pe 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Pe 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Pe 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 <td< td=""></td<>
1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Peak 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 10 Hz;Peak 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Peak 17439.520 64.0 V 68.3 -4.3 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna	1150.100 44.7 H 74.0 -29.3 PK 156 1.0 Intermittent signal 10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Pe 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Pe 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 10 Hz;Pe 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Pe 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Pe 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Pe
10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Peak 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 3 MHz;Peak 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Peak 17439.520 64.0 V 68.3 -4.3 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm 100000000000000000000000000000000000	10912.420 42.7 V 54.0 -11.3 AVG 310 1.0 RB 1 MHz;VB 10 Hz;Pe 10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Pe 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 10 Hz;Pe 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Pe 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Pe 3332.060 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Pe 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Pe
10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Peak 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 10 Hz;Peak 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Peak 17439.520 64.0 V 68.3 -4.3 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm f 1.6 evice indicated there were no significant emissions in this frequency range Note: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	10912.080 54.3 V 74.0 -19.7 PK 310 1.0 RB 1 MHz;VB 3 MHz;Pe 3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 10 Hz;Pe 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Pe 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Pe 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Pe
3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 10 Hz;Peak 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Peak 17439.520 64.0 V 68.3 -4.3 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm 100000000000000000000000000000000000	3331.960 51.0 V 68.3 -17.3 AVG 318 1.5 RB 1 MHz;VB 10 Hz;Pe 3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Pe 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Pe 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Pe
3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Peak 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Peak 17439.520 64.0 V 68.3 -4.3 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm 1 Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm 1 Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm 1 Note: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	3332.060 54.5 V 74.0 -19.5 PK 318 1.5 RB 1 MHz;VB 3 MHz;Pe 8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Pe 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Pe
8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Peak 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Peak 17439.520 64.0 V 68.3 -4.3 PK 276 1.8 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm for the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	8719.970 59.1 V 68.3 -9.2 PK 357 1.3 RB 1 MHz;VB 3 MHz;Pe 13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Pe
13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz; VB 3 MHz; Peak 17439.520 64.0 V 68.3 -4.3 PK 276 1.8 RB 1 MHz; VB 3 MHz; Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm for the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	13080.110 59.0 V 68.3 -9.3 PK 285 1.8 RB 1 MHz;VB 3 MHz;Pe
17439.520 64.0 V 68.3 -4.3 PK 276 1.8 RB 1 MHz; VB 3 MHz; Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm for the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	
Note: Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm is the device indicated there were no significant emissions in this frequency range For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	17439 520 64 0 V 68 3 -4 3 PK 276 1.8 RB 1 MHz VB 3 MHz P(
Note: the device indicated there were no significant emissions in this frequency range Interview For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	
For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method	Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-5
	the device indicated there were no significant emissions in this frequency range
	Noto:
required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

EMC Test Data

v v	E ENGINEER SUCCESS		
Client:	Pace Americas, Inc	Job Number:	J97522
Model	HR44-700	T-Log Number:	T97548
MOUEI.	11/44-700	Project Manager:	Irene Rademacher
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.407 (New Rules)	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

NTS

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Summary of Results

5 anniai 5 anniai 5	T I B ()	1	1	
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
				a: 22.1dBm (0.162mW)
1	Power, 5150 - 5250MHz	15.407(a) (1) (iv)	Pass	n20: 22.5dBm (0.178mW)
				n40: 23.4dBm (0.219mW)
				a: 10.2 dBm/MHz
1	PSD, 5150 - 5250MHz	15.407(a) (1) (iv)	Pass	n20: 9.8 dBm/MHz
				n40: 8.1 dBm/MHz
				a: 22.2dBm (0.168mW)
1	Power, 5725 - 5850MHz	15.407(a) (3)	Pass	n20: 24.8dBm (0.300mW)
				n40: 24.6dBm (0.288mW)
				a: 9.6 dBm/MHz
1	PSD, 5725 - 5850MHz	15.407(a) (3)	Pass	n20: 11.8 dBm/MHz
				n40: 9.4 dBm/MHz
				a: 16.4 MHz
3	6dB BW (UNII3)	15.407(e)	Pass	n20: 17.6 MHz
				n40: 35.1 MHz

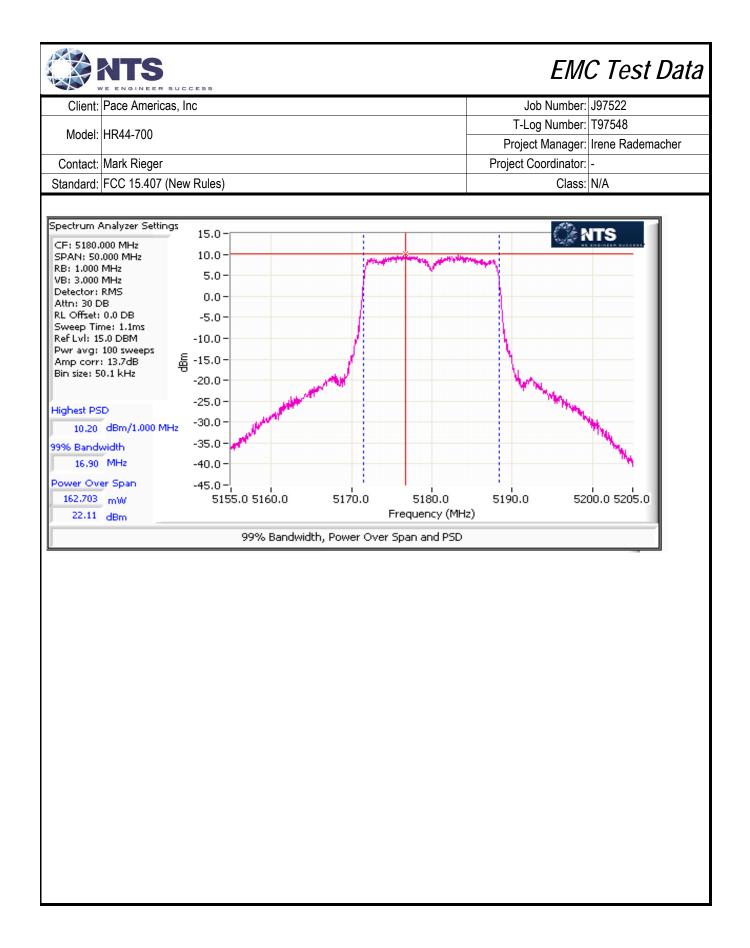
General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

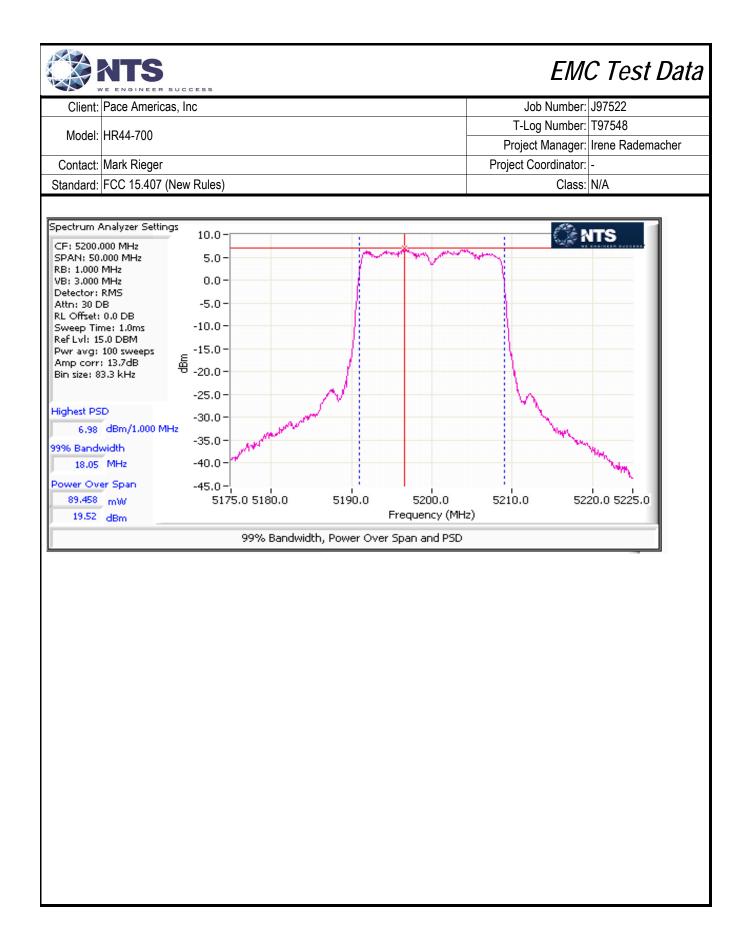
Ambient Conditions:	Temperature:	18-20 °C
	Rel. Humidity:	30-35 %

Modifications Made During Testing

No modifications were made to the EUT during testing

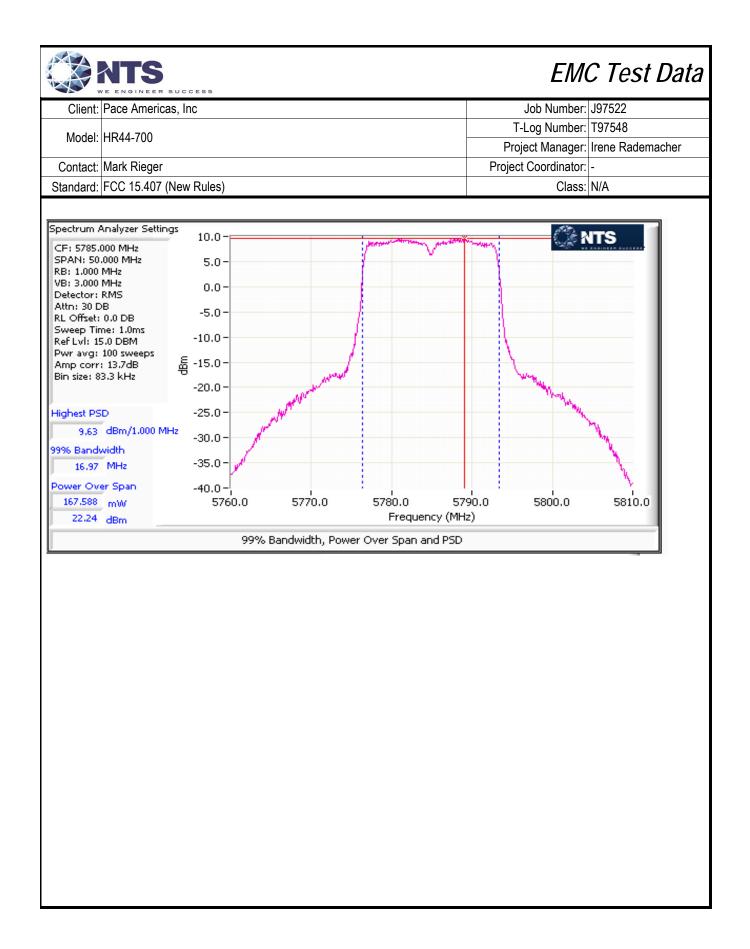

Deviations From The Standard

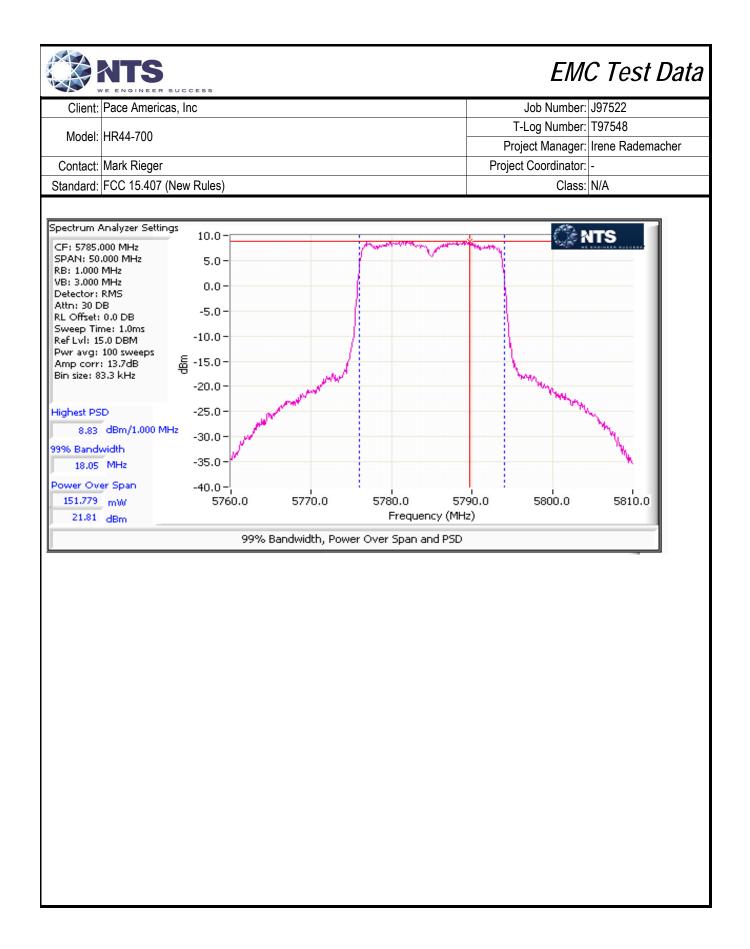
No deviations were made from the requirements of the standard.

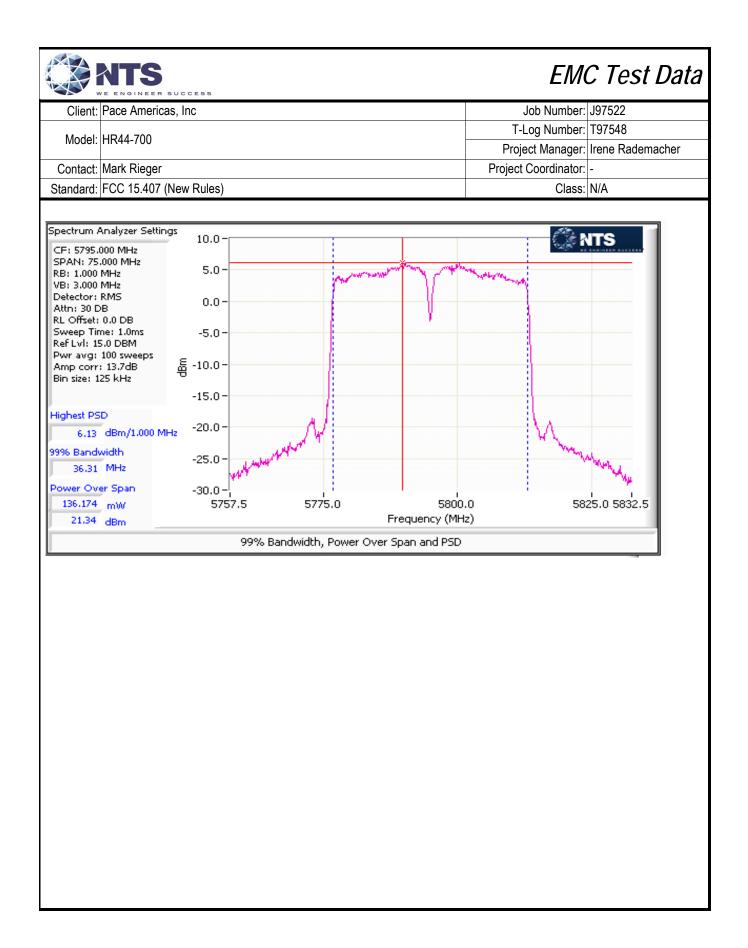

		SUCCESS						EM	C Test Data
Client:	Pace Ameri	cas, Inc						Job Number:	J97522
Madal	HR44-700						T-I	Log Number:	T97548
	NR44-700						Proje	ect Manager:	Irene Rademacher
Contact:	Mark Rieger	•					Project	Coordinator:	-
Standard:	FCC 15.407	(New Rules)					Class:	N/A
Procedur Measuren			dance with F	CC KDB 789	033 D01 v01	r03, dated A	pril 8, 2013		
	Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
	11a	6Mbps	98.6%	Yes	1.33	0	0	752	
	n20	MCS0	98.6%	Yes	1.33	0	0	752	
	n40	MCS0	94.8%	Yes	0.362	0.23	0.47	2762	1
Te Te Run #1: Bar	C307D5B7E RC 188.10 Date of Test: st Engineer: est Location: ndwidth, Ou	36 02/12/15 Mehran Birg Lab 4 tput Power	and Power S	trum analyze	Cor E nsity - MIMO er (see plots l	pelow). RBW	- 120V/ 60Hz /=1MHz, VB:	=3 MHz, # of	points in sweep ≥
	80211a an	d n20 modes	and over 75	MHz for 802	2.11n 40MHz	(method SA	,	•	egration over 50 MHz for
Note 2:			e analyzer se				na agin ag ti		aira allawad ia
	10dBm/MHz PSD (calculation the measure	z. The limits a ated from the ed value exce	are also corre e measured p eeds the aver	ected for insta ower divideo rage by more	ances where d by the meas e than 3dB.	the highest i sured 99% b	measured va andwidth) by	llue of the PS more than 3	eirp allowed is SD exceeds the average dB by the amount that
Note 4:			ed in accorda						
Note 5:	(in linear ter mode of the the limits is chain. If the	ms). The an MIMO devic the highest g signals are	tenna gain us e. If the sign ain of the ind	sed to detern als on the no lividual chain n the effectiv	nine the EIRI on-coherent t is and the EII re antenna ga	P and limits f between the RP is the sur	or PSD/Outp transmit cha n of the prod	out power dep ins then the lucts of gain a	of the individual chains bends on the operating gain used to determine and power on each ains for each chain and
					·				

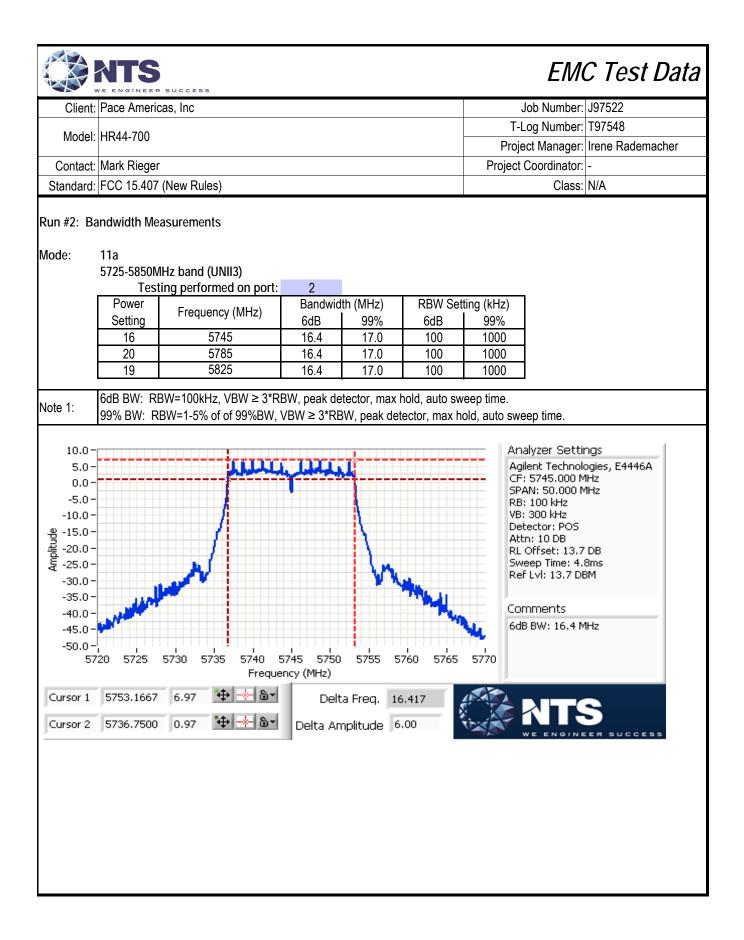
	VE ENGINEER	SUCCESS							C Test	
Client:	Pace Americ	cas, Inc						Job Number:	J97522	
Model:	HR44-700						T-	Log Number:	T97548	
								ect Manager:		nacher
	Mark Rieger						Projec	Coordinator:		
Standard:	FCC 15.407	(New Rules)					Class:	N/A	
ntonna Cr	ain Informati	ion								
			n (dBi) / Chain		55	MultiChain	000	Sectorized	Dir G	Dir G
Freq	1	2	3	4	BF	Legacy	CDD	/ Xpol	(PWR)	(PSD)
150-5250	4.1	4.1			No	No	Yes	No	4.1	7.1
250-5350	4.1	4.1			No	No	Yes	No	4.1	7.1
470-5725	4.1	4.1			No	No	Yes	No	4.1	7.1
5725-5825	4.1	4.1			No	No	Yes	No	4.1	7.1
Notes:		-			• •	2.11 legacy data s supported, Se	•	•		
Notes: Notes:	CDD = Cycli cross polariz Dir G (PWR)	ic Delay Dive zed.) = total gain	ersity (or Cyclic (Gant + Array	Shift Diver Gain) for p	sity) modes		D) = total	Kpol = antenn gain for PSD	as are sector calculations l	rized or based on
	CDD = Cycli cross polariz Dir G (PWR FCC KDB 60 value. Array gain fo condition. A	ic Delay Dive zed.) = total gain 62911. Depe or power/psd vray gain = 1	(Gant + Array ending on the r calculated per 0*log(4/2) = 30	Shift Diver Gain) for p nodes supp r DKB 6629 dB.	ower calcu over calcu ported, the 11 D01, v0	s supported, Se lations; GA (PS Array Gain valu 11r02. Spatial M	D) = total be for powe	Kpol = antenn gain for PSD o r could be diff	as are sector calculations I ferent from th	rized or based on he PSD
Notes:	CDD = Cycli cross polariz Dir G (PWR FCC KDB 6i value. Array gain fo condition. A For systems Option 1: D calculated b Option 2: A	ic Delay Dive zed.) = total gain 62911. Depe or power/psd array gain = 1 s with Beamfor elays are op ased on bea ntennas are	(Gant + Array ending on the r calculated per 0*log(4/2) = 30 orming and CD timized for bea mforming critel paired for bear	Gain) for p Gain) for p nodes supp r DKB 6629 dB. D, choose imforming, ria. mforming, a	ower calcu oorted, the 11 D01, v0 one the foll rather than	s supported, Se lations; GA (PS Array Gain valu	torized / 2 D) = total te for powe fultiplexing from cyclic d to use th	Gain for PSD (r could be diff with Nant=4, c delay table c e cyclic delay	as are sector calculations f ferent from th Nss=2, for w of 802.11; Arr diversity of 8	rized or based on he PSD vorse cas ray gains 302.11; th

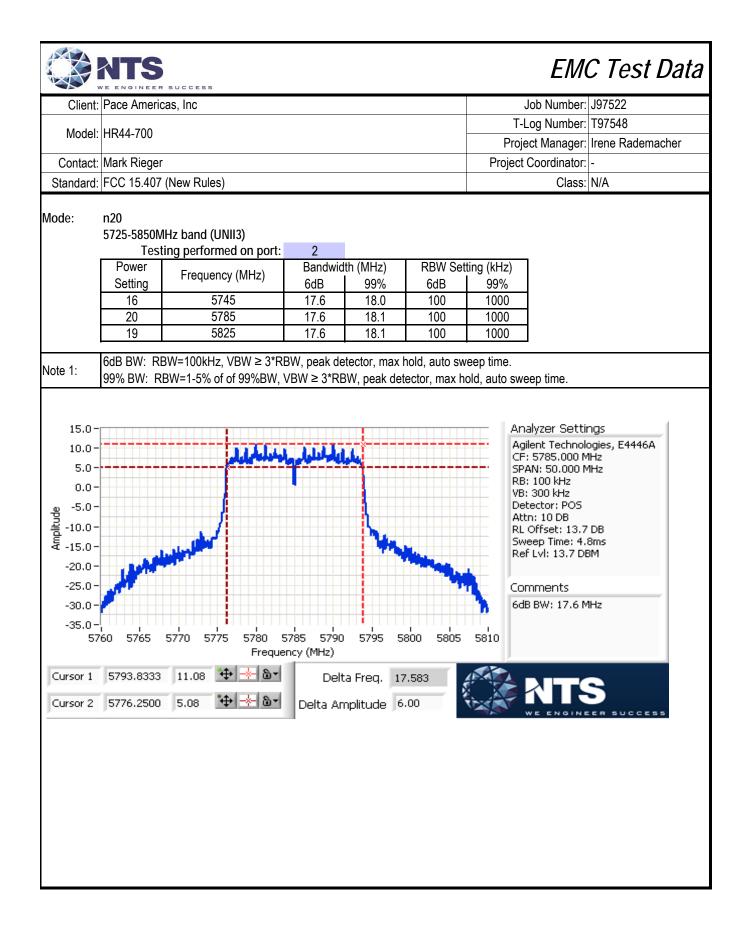
Client:	Pace Americ	cas, Inc						Job Number:	J97522	
	HR44-700						T-L	_og Number:	T97548	
woder:	HR44-700								Irene Radem	acher
	Mark Rieger						Project	Coordinator:		
Standard:	FCC 15.407	(New Rules))					Class:	N/A	
/IMO Devid Mode:	ce - 5150-52 11a	50 MHz Ban	d - FCC				Мах	EIRP (mW):	416.9	
requency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	Result
(MHz)		Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
5180	1 3 4 2	20		100	22.1	162.2	22.1	24.0		Pass
5200	1 3 4 2	19		100	21.0	124.7	21.0	24.0	0.162	Pass
					•				1 -	
5240	1 3 4 2	19		100	21.1	128.2	21.1	24.0		Pass
150-5250 F Mode: Frequency	1 3 4 2	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit		Pass
150-5250 F Mode:	1 3 4 2 PSD - FCC 11a Chain 1 3 4		99% BW (MHz) 16.9		PSD dBm/MHz		PSD ¹	FCC Limit	IC Limit /MHz -	
150-5250 F Mode: requency (MHz)	1 3 4 2 PSD - FCC 11a Chain 1 3	Software Setting	(MHz)	Duty Cycle %	PSD	Total mW/MHz	PSD ¹ dBm/MHz	FCC Limit dBm	/MHz	Result

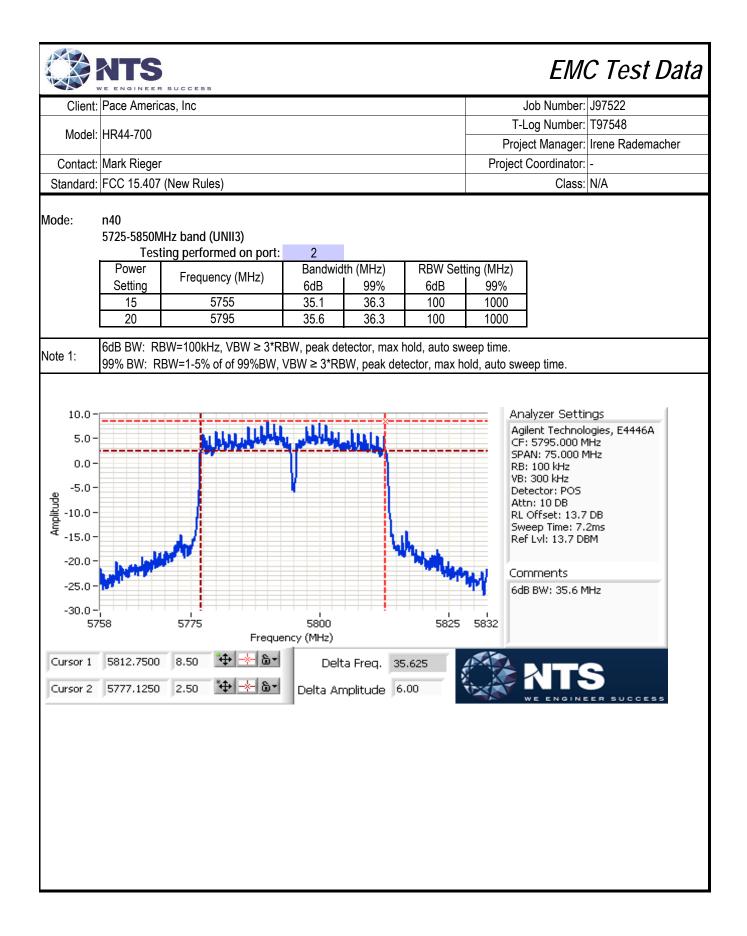

(MHz) Setting (MHz) % dBm mW dBm dBm (W) 1 1 1 1 100 18.8 151.4 21.8 24.0 Pass 5180 3 17 100 18.8 151.4 21.8 24.0 Pass 5200 3 18 100 19.5 178.0 22.5 24.0 0.178 Pass 5240 4 18 100 19.5 176.2 22.5 24.0 0.178 Pass 5150-5250 PSD - FCC 19.5 176.2 22.5 24.0 Pass 5150-5250 PSD - FCC 19.4 176.2 22.5 24.0 Pass 5180 3 18 100 19.4 176.2 22.5 24.0 Pass 5180 4 17 18.1 100 6.0 9.1 9.9 - Pass 5200 1 18 18.1 100	Model: HR44-700 T-Log Number: T97548 Contact: Mark Rieger Project Manager: irene Radema Standard: FCC 15.407 (New Rules) Class: N/A MIMO Device - 5150-5250 MHz Band - FCC Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power dBm Max Power GBm WW 457.7 Frequency Chain Software 26dB BW Duty Cycle Power Total Power FCC Limit Max Power (W) 457.7 5180 1 1 100 18.8 151.4 21.8 24.0 (W) 457.7 5200 1 1 100 151.4 21.8 24.0 0.178 5240 1 18 100 19.5 176.2 22.5 24.0 0.178 5150-5250 PSD - FCC Mdde: n20 MHz) % dBm/MHz dBm/MHz dBm/MHz 5180 1 17 18.1 </th <th>Data</th> <th>C Test</th> <th>EMO</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>SUCCESS</th> <th></th> <th></th>	Data	C Test	EMO						SUCCESS			
Model: HH44-700 Project Manager: Irene Rademacher Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.407 (New Rules) Class: N/A VIIMO Device - 5150-5250 MHz Band - FCC Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power' Total Power FCC Limit Max Power Result 5180 3 17 100 18.8 151.4 21.8 24.0 Pass 5200 3 18 100 19.5 176.2 22.5 24.0 0.178 Pass 5150-5250 PSD - FCC 19.5 19.5 19.5 176.2 22.5 24.0 Pass 5150-5250 PSD - FCC Mode: n20 19.4 176.2 22.5 24.0 Pass 5180 1 18 100 19.4 Total PSD ¹ FCC Limit IC Limit Result 618 0 9.1 9.9 - Pass	Model: IHR44-700 Project Manager: Irene Radema Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.407 (New Rules) Class: N/A MIMO Device - 5150-5250 MHz Band - FCC Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power ¹ Total Power FCC Limit Max Power (MHz) 1 1 1 1 Max Power 457.7 5180 3 17 100 18.8 151.4 21.8 24.0 1 5200 3 18 100 18.8 151.4 21.8 24.0 0.178 5200 3 18 100 19.5 176.2 22.5 24.0 0.178 5150-5250 PSD - FCC Mode: n20 19.4 176.2 22.5 24.0 0.178 5180 3 17 18.1 100 6.0 8.0 9.1 9.9 - <td< td=""><td></td><td>J97522</td><td>Job Number:</td><td>J</td><td></td><td></td><td></td><td></td><td>cas, Inc</td><td>Pace Americ</td><td>Client:</td></td<>		J97522	Job Number:	J					cas, Inc	Pace Americ	Client:	
Project Manager: Irene Rademacher Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.407 (New Rules) Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power Total Power FCC Limit Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power Total Power FCC Limit Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power Total Power Result 1 1 Power Total Post Max EIRP (mW): 457.7 Frequency Max 18.00 17.8.0 22.5 24.0 0.178 Pass 5240 3 <th colsp<="" td=""><td>Project Manager: [inene Radema Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.407 (New Rules) MIMO Device - 5150-5250 MHz Band - FCC Mode: n20 Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power1 Total Power FCC Limit Max Power 1 100 18.8 151.4 21.8 24.0 Max EIRP (mW): 457.7 5200 1 1 100 18.8 151.4 21.8 24.0 5200 3 18 100 19.5 178.0 22.5 24.0 0.178 5240 3 18 100 19.5 176.2 22.5 24.0 0.178 5150-5250 PSD - FCC Mode: n20 Mode: n20 Mode: n20 Frequency Chain Software 99% BW Duty Cycle PSD Total PSD¹ FCC Limit IC Limit Grading and a</td><td></td><td>T97548</td><td>og Number:</td><td>T-L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Project Manager: [inene Radema Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.407 (New Rules) MIMO Device - 5150-5250 MHz Band - FCC Mode: n20 Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power1 Total Power FCC Limit Max Power 1 100 18.8 151.4 21.8 24.0 Max EIRP (mW): 457.7 5200 1 1 100 18.8 151.4 21.8 24.0 5200 3 18 100 19.5 178.0 22.5 24.0 0.178 5240 3 18 100 19.5 176.2 22.5 24.0 0.178 5150-5250 PSD - FCC Mode: n20 Mode: n20 Mode: n20 Frequency Chain Software 99% BW Duty Cycle PSD Total PSD¹ FCC Limit IC Limit Grading and a</td> <td></td> <td>T97548</td> <td>og Number:</td> <td>T-L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Project Manager: [inene Radema Contact: Mark Rieger Project Coordinator: - Standard: FCC 15.407 (New Rules) MIMO Device - 5150-5250 MHz Band - FCC Mode: n20 Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power1 Total Power FCC Limit Max Power 1 100 18.8 151.4 21.8 24.0 Max EIRP (mW): 457.7 5200 1 1 100 18.8 151.4 21.8 24.0 5200 3 18 100 19.5 178.0 22.5 24.0 0.178 5240 3 18 100 19.5 176.2 22.5 24.0 0.178 5150-5250 PSD - FCC Mode: n20 Mode: n20 Mode: n20 Frequency Chain Software 99% BW Duty Cycle PSD Total PSD ¹ FCC Limit IC Limit Grading and a		T97548	og Number:	T-L							
Standard: FCC 15.407 (New Rules) Class: N/A MMX EIRP (mW): 457.7 Mino Device - 5150-5250 MHz Band - FCC Max EIRP (mW): 457.7 Frequency (MHz) Chain 3 Software MHz 26dB BW (MHz) Duty Cycle % Power dBm Total Power mW FCC Limit dBm Max Power (W): 457.7 Resul (W) 5180 1	Standard: FCC 15.407 (New Rules) Class: N/A MIMO Device - 5150-5250 MHz Band - FCC Max EIRP (mW): 457.7 Mode: n20 Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power ¹ Total Power FCC Limit Max Power 1 1 1 100 18.8 151.4 21.8 24.0 457.7 5180 3 17 100 18.8 151.4 21.8 24.0 457.7 5200 3 18 100 19.5 177.0 22.5 24.0 0.178 5240 3 18 100 19.5 176.2 22.5 24.0 0.178 5150-5250 PSD - FCC Mode: n20 56.0 9.1 9.9 - 6.0 9.1 9.9 - 5180 3 17 18.1 100 6.0 9.5 9.8 9.9 - 5180 4 1 7.0	acher	Irene Radem	ect Manager:	Proje						HR44-700	Model:	
MIMO Device - 5150-5250 MHz Band - FCC Max EIRP (mW): 457.7 Frequency Chain Software 26dB BW Duty Cycle Power Total Power Max EIRP (mW): 457.7 5180 1 3 17 100 18.8 151.4 21.8 24.0 Pass 5180 4 1 100 18.8 151.4 21.8 24.0 Pass 5200 4 18 100 19.5 178.0 22.5 24.0 0.178 Pass 5240 3 18 100 19.5 176.2 22.5 24.0 0.178 Pass 5150-5250 PSD - FCC Mode: n20 19.4 176.2 22.5 24.0 Pass 5180 3 17 18.1 100 176.2 22.5 24.0 Pass 5180-5250 PSD - FCC Mode: n20 1 6.0 8.0 9.1 9.9 - Pass 5180 3 17 <t< td=""><td>MIMO Device - 5150-5250 MHz Band - FCC Max EIRP (mW): 457.7 Mode: n20 Max Power FCC Limit Max Power (MHz) Chain Software 26dB BW Duty Cycle Power¹ Total Power FCC Limit Max Power (MHz) 1 100 18.8 101 11.4 21.8 24.0 (W) 5180 4 1 100 18.8 17.8.0 22.5 24.0 0.178 5200 4 1 18 100 19.5 178.0 22.5 24.0 0.178 5240 4 18 100 19.5 176.2 22.5 24.0 0.178 5150-5250 PSD - FCC Mode: n20 MHz MmV/MHz MmV/MHz dBm/MHz GBm/MHz 6.0 9.1 9.9 - - - - - 5150-5250 PSD - FCC Mde: 9.9 0.4 - - - - - 618</td><td></td><td>-</td><td>Coordinator:</td><td>Project</td><td></td><td></td><td></td><td></td><td></td><td>Mark Rieger</td><td>Contact:</td></t<>	MIMO Device - 5150-5250 MHz Band - FCC Max EIRP (mW): 457.7 Mode: n20 Max Power FCC Limit Max Power (MHz) Chain Software 26dB BW Duty Cycle Power ¹ Total Power FCC Limit Max Power (MHz) 1 100 18.8 101 11.4 21.8 24.0 (W) 5180 4 1 100 18.8 17.8.0 22.5 24.0 0.178 5200 4 1 18 100 19.5 178.0 22.5 24.0 0.178 5240 4 18 100 19.5 176.2 22.5 24.0 0.178 5150-5250 PSD - FCC Mode: n20 MHz MmV/MHz MmV/MHz dBm/MHz GBm/MHz 6.0 9.1 9.9 - - - - - 5150-5250 PSD - FCC Mde: 9.9 0.4 - - - - - 618		-	Coordinator:	Project						Mark Rieger	Contact:	
Mode: n20 Max EIRP (mW): 457.7 Frequency (MHz) Chain 3 Software Setting 26dB BW (MHz) Duty Cycle (MHz) Power ¹ dBm Total Power mW FCC Limit dBm Max Power (W) Result (W) 5180 1 1 100 18.8 151.4 21.8 24.0 Pass 5200 3 18 100 18.8 151.4 21.8 24.0 0.178 Pass 5200 3 18 100 19.5 178.0 22.5 24.0 0.178 Pass 5240 3 18 100 19.5 176.2 22.5 24.0 0.178 Pass 5150-5250 PSD - FCC Mode: n20 19.4 176.2 22.5 24.0 Pass 5150-5250 PSD - FCC Mode: n20 6.0 8.0 9.1 9.9 - Pass 5180 1 18 18.1 100 6.6 9.5 9.8 9.9 - Pass 5200	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		N/A	Class:)	(New Rules)	FCC 15.407	Standard:	
Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle % Power ¹ dBm Total Power mW FCC Limit dBm Max Power (W) Resul (W) 1	Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle (MHz) Power ¹ dBm Total Power mW FCC Limit dBm Max Power dBm 5180 1 3 3 17 100 18.8 151.4 21.8 24.0 5180 1 2 1 3 17 100 18.8 151.4 21.8 24.0 5200 4 1 19.5 178.0 22.5 24.0 0.178 5240 1 18 100 19.5 176.2 22.5 24.0 0.178 5150-5250 PSD - FCC Mode: 100 19.4 176.2 22.5 24.0 0.178 Frequency (MHz) Chain Software Setting 99% BW (MHz) Duty Cycle PSD dBm/MHz Total PSD ¹ mW/MHz FCC Limit dBm/MHz IC Limit dBm/MHz 5180 1 4 17 18.1 100 8.0 9.1 9.9 - 5200 3 4 18 18.1 100 6.6 9.5 9.8 9.9 -		457 7		Мах				d - FCC	50 MHz Band			
(MHz) Chain Setting (MHz) '''' dBm mW dBm dBm dBm (W) Result 5180 3 17 100 18.8 151.4 21.8 24.0 Pass 5200 4 1 18.8 151.4 21.8 24.0 0.178 Pass 5200 4 18 100 19.5 178.0 22.5 24.0 0.178 Pass 5240 4 1 100 19.5 176.2 22.5 24.0 0.178 Pass 5240 4 1 100 19.5 176.2 22.5 24.0 Pass 5150-5250 PSD - FCC Mde: n20 101 19.4 176.2 22.5 24.0 Pass 5180 1 100 6.0 8.0 9.1 9.9 - Pass 5180 1 17 18.1 100 6.0 8.0 9.1 9.9 -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Total I	Power ¹	Duty Cycle	26dB BW	Software			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Result									Chain		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(11)	QDIII	dDin	11177		/0	()		1	()	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pace		24.0	21.8	151 /		100		17	3	5180	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 055		24.0	21.0	131.4		100		17		5100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						19.5						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pass	0.178	24.0	22.5	178.0		100		18		5200	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						19.5						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		í F										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Deee		24.0	22 F	176.0		100		10	3	5240	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F 855		24.0	22.0	170.2		100		10		5240	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						19.4				2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Result				-					n20	Mode: Frequency	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		IMHZ	aBm/	dBm/MHz	mW/MHz		%	(IVI⊓ <i>Z)</i>	Setting	1	(IVI⊓Z)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pass	-	9.9	9.1	8.0		100	18.1	17	3 4	5180	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pass	_	99	98	9.5		100	18 1	18		5200	
1 6.6 3 18 18.1 100 9.0 9.5 9.9 - Pass	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 400		0.0	0.0	0.0		100	10.1	10		0200	
5240 3 18 18.1 100 9.0 9.5 9.9 - Pass	5240 3 18 18.1 100 9.0 9.5 9.9 -												
3240 <u>4</u> 10 10.1 100 <u>9.0</u> 9.5 9.9 - Pass	3240 4 10 10.1 100 9.0 9.5 9.9 -						6.6						
		Pass	-	9.9	9.5	9.0		100	18.1	18		5240	
							6.5				2		


01:		SUCCESS						EM	C Test	Data
Client: I	Pace Americ	cas, Inc						lob Number:	J97522	
Madalal							T-L	og Number:	T97548	
	HR44-700						Proje	ct Manager:	Irene Radem	acher
Contact:	Mark Rieger	,					Project	Coordinator:	-	
Standard: I	FCC 15.407	(New Rules))					Class:	N/A	
MIMO Devic Mode:	e - 5150-525 n40	50 MHz Ban	d - FCC				Max	EIRP (mW):	564.0	
Frequency		Software	26dB BW	Duty Cycle	Power	Total F			Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
	1		, , , , , , , , , , , , , , , , , , ,		15.4					
5190	3	14		94.8		69.7	18.4	24.0		Pass
-	4				45.0		-	-		
	2				15.0 20.2	<u> </u>			0.219	
	3				20.2	- · - ·				_
5230	4	19		94.8		219.4	23.4	24.0		Pass
F	2				20.1					
Mode: Frequency (MHz)	n40 Chain	Software Setting	99% BW (MHz)	Duty Cycle %	dBm/MHz	Total mW/MHz	PSD ¹ dBm/MHz	FCC Limit dBm	IC Limit /MHz	Result
5190	1 3 4	14	36.2	94.8	-0.2	2.0	3.0	9.9	-	Pass
F	2	1	1		-0.4					


		SUCCESS						EM	C Test	Data
Client:	Pace Americ	cas, Inc						Job Number:	J97522	
Model:	HR44-700						T-L	og Number:	T97548	
							Proje	ect Manager:	Irene Radem	acher
Contact:	Mark Rieger	•					Project	Coordinator:		
Standard:	FCC 15.407	(New Rules))					Class:	N/A	
MIMO Devi Mode:	ce - 5725-58 11a	50 MHz Ban	d - FCC				Мах	EIRP (mW):	430.5	
Frequency		Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
5745	1 3 4 2	16		100	18.2	66.2	18.2	30.0		Pass
5785	1 3 4 2	20		100	22.2	167.5	22.2	30.0	0.168	Pass
5825	1 3 4 2	19		100	21.3	135.8	21.3	30.0		Pass
5725-5850 Mode: Frequency (MHz)		Software Setting	99% BW (MHz)	Duty Cycle %	PSD dBm/MHz	Total mW/MHz	PSD ¹ dBm/MHz	FCC Limit	IC Limit 00kHz	Result
	1 3									
5745	4	16	17.0	100	5.6	3.6	5.6	30.0	-	Pass
5745 5785		16 20	17.0	100	9.6	3.6 9.2	5.6 9.6	30.0	-	Pass




Model: HR44-700 Pro Contact: Mark Rieger Project Standard: FCC 15.407 (New Rules) MIMO Device - 5725-5850 MHz Band - FCC	t Coordinator Class x EIRP (mW)	: T97548 : Irene Raden : - : N/A	nacher Result Pass Pass
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	x EIRP (mW) FCC Limit 30.0	: Irene Raden : - : N/A : 299.6 Max Power (W)	Result Pass
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t Coordinator Class x EIRP (mW) FCC Limit dBm 30.0 30.0	: - : N/A : 299.6 Max Power (W)	Result Pass
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Class x EIRP (mW) FCC Limit dBm 30.0 30.0	: N/A : 299.6 Max Power (W)	Pass
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x EIRP (mW) FCC Limit dBm 30.0 30.0	: 299.6 Max Power (W)	Pass
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FCC Limit dBm 30.0 30.0	Max Power (W)	Pass
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FCC Limit dBm 30.0 30.0	Max Power (W)	Pass
$\begin{array}{c c c c c c c c c } \hline (MHz) & Chain & Setting & (MHz) & \% & dBm & mW & dBm \\ \hline & 1 & & & & & & & & & & & & & & & & &$	dBm 30.0 30.0	(W)	Pass
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.0	0.300	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.0	0.300	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.0	0.300	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.300	Pass
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.300	Pass
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.300	Pass
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.0	-	
5825 3 19 100 255.6 24.1	30.0		
3623 4 19 100 233.6 24.1	30.0		
			Pass
5725-5850 PSD - FCC Mode: n20 Frequency Chain Software 99% BW Duty Cycle PSD Total PSD ¹	FCC Limit	IC Limit	
(MHz) Chain Setting (MHz) % dBm/MHz mW/MHz dBm/MHz		500kHz	Result
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28.9	-	Pass
$5785 \frac{1}{3} \\ \frac{3}{2} \\ 2 \\ 18.1 \\ 100 \\ 8.8 \\ 15.2 \\ 15.2 \\ 11.8 \\ 11.8 \\ 11.8 \\ 100 \\ 15.2 \\ 11.8 \\ 11.8 \\ 100 \\ $	28.9	-	Pass
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.9	-	Pass



Model: HR44-700 T-Log Number: T97548 Contact: Mark Rieger Project Manager: Irene Radema Standard: FCC 15.407 (New Rules) Class: N/A MIMO Device - 5725-5850 MHz Band - FCC Max EIRP (mW): 740.8 Frequency (MHz) Chain Software 26dB BW (MHz) Duty Cycle Power Total Power ¹ FCC Limit Max Power (W) Max Power 5755 1 3 15 94.8 95.7 19.8 30.0 0.288 <	acher Resul Pass
Contact: Mark Rieger Project Manager: Irene Radema Standard: FCC 15.407 (New Rules) Class: N/A NIMO Device - 5725-5850 MHz Band - FCC Max EIRP (mW): 740.8 Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle % Power Total Power ¹ FCC Limit Max Power (W) 5755 4 15 94.8 16.8 95.7 19.8 30.0 0.288 5795 4 20 94.8 21.3 288.2 24.6 30.0 0.288 725-5850 PSD - FCC/IC Mode: n40 16.3 21.4 21.4 24.6 30.0 0.288	Resul
Standard: FCC 15.407 (New Rules) Class: N/A IIMO Device - 5725-5850 MHz Band - FCC Mode: n40 Max EIRP (mW): 740.8 Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle Power dBm Total Power ¹ mW FCC Limit dBm Max Power (W) 5755 1 1 94.8 95.7 19.8 30.0 0.288 5795 3 15 94.8 21.3 0.288 0.288 0.288 5795 3 20 94.8 21.4 288.2 24.6 30.0 0.288 725-5850 PSD - FCC/IC Mode: n40 1 <td></td>	
MIMO Device - 5725-5850 MHz Band - FCC Mode: n40 Max EIRP (mW): 740.8 Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle Power Total Power ¹ FCC Limit Max Power 0 1 % dBm mW dBm dBm (W) 1 94.8 16.8 95.7 19.8 30.0 0.288 2 1 94.8 21.3 0.288 0.288 0.288 5795 3 20 94.8 21.4 288.2 24.6 30.0 725-5850 PSD - FCC/IC Mode: n40 10 10 10 10 10	
Mode: n40 Max EIRP (mW): 740.8 Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle % Power dBm Total Power ¹ mW FCC Limit dBm Max Power (W) 5755 1 3 15 94.8 16.8 95.7 19.8 30.0 0.288 2 1 94.8 16.3 95.7 19.8 30.0 0.288 5795 3 20 94.8 21.3 288.2 24.6 30.0 0.288 5795 3 20 94.8 21.4 288.2 24.6 30.0 0.288 725-5850 PSD - FCC/IC Mode: n40 1	
Frequency (MHz) Chain Software Setting 26dB BW (MHz) Duty Cycle % Power dBm Total Power ¹ mW FCC Limit dBm Max Power (W) 1 3 15 94.8 16.8 95.7 19.8 30.0 0.288 2 15 94.8 16.3 21.3 0.288 0.288 0.288 5795 3 20 94.8 21.3 288.2 24.6 30.0 0.288 5795 4 20 94.8 21.4 288.2 24.6 30.0 0.288	
(MHz) Chain Setting (MHz) % dBm mW dBm dBm dBm (W) 1 3 15 94.8 16.8 95.7 19.8 30.0 0.288 5755 4 2 16.3 94.8 16.3 0.288 0.288 5795 3 20 94.8 21.3 288.2 24.6 30.0 0.288 5795 3 20 94.8 21.4 288.2 24.6 30.0 0.288 725-5850 PSD - FCC/IC 10 10 21.4 10 10 10 10	
1 1 16.8 94.8 95.7 19.8 30.0 0.288 2 16.3 16.3 0.288 0.288 0.288 0.288 5795 3 20 94.8 21.3 0.288 0.288 5795 3 20 94.8 21.4 24.6 30.0 0.288 725-5850 PSD - FCC/IC Mode: n40 n40 10 10 10 10	Pass
5735 4 15 94.8 95.7 19.8 30.0 2 1 16.3 0.288 5795 3 20 94.8 21.3 0.288 725-5850 PSD - FCC/IC Mode: n40 16.3 10.288	Pass
2 16.3 0.288 1 21.3 21.3 5795 3 20 94.8 21.4 2 21.4	
1 21.3 0.268 5795 3 20 94.8 2 21.4 288.2 24.6 30.0 21.4 21.4	
5795 3 20 94.8 288.2 24.6 30.0 725-5850 PSD - FCC/IC Mode: n40	
4 21.4 725-5850 PSD - FCC/IC 21.4 Mode: n40	Pass
725-5850 PSD - FCC/IC Mode: n40	
Mode: n40	
Frequency (MHz) Chain Software Setting 99% BW (MHz) Duty Cycle PSD Total PSD ¹ FCC Limit IC Limit 1 1 1 1.5 Image: Setting set	Resul
5755 1 36.3 94.8 1.5 2.9 4.7 28.9 -	Pass
2 1.4	
5795 3 20 36.3 94.8 8.8 9.4 28.9 -	Pass
2 6.2	

End of Report

This page is intentionally blank and marks the last page of this test report.