

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for FCC Grant of Equipment Authorization

FCC Part 15 Subpart C

Model: C61W-700 Wireless RVU Client

FCC ID:	PGRC61W
APPLICANT:	ARRIS 310 Providence Mine Road Nevada City, CA 95959
TEST SITE(S):	National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-4, 2845B-7
REPORT DATE:	March 27, 2017
REISSUE DATE:	May 10, 2017
FINAL TEST DATES:	January 30, February 6, March 8, 2017
TOTAL NUMBER OF PAGES:	65

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Report Date: March 27, 2017

VALIDATING SIGNATORIES

PROGRAM MGR

Mark E Hill Staff Engineer

TECHNICAL REVIEWER:

Mark E Hill Staff Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

lan

Gary Izard Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	March 27, 2017	First release	
1.0	May 8, 2017	Clarified the VBW for the duty cycle for the radiated measurements. Added 15.B data to demonstrate compliance with spurious emissions limits below 1GHz	MEH
2.0	May 10, 2017	Clarified the VBW for the duty cycle for the radiated measurements	MEH

TABLE OF CONTENTS

VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	10
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	12
INSTRUMENT CALIBRATION	12
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	13
RADIATED EMISSIONS	13
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	17
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMILE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	65

SCOPE

An electromagnetic emissions test has been performed on the ARRIS model C61W-700 Wireless RVU Client, pursuant to the following rules:

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2013 FCC DTS Measurement Guidance KDB558074

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of ARRIS model C61W-700 Wireless RVU Client complied with the requirements of the following regulations:

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of ARRIS model C61W-700 Wireless RVU Client and therefore apply only to the tested sample. The sample was selected and prepared by Mark Rieger of ARRIS.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	-	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	-	Digital Modulation	Digital Modulation Systems uses DSSS techniques		Complies
15.247 (a) (2)	-	6dB Bandwidth	1.6MHz minimum	>500kHz	Complies
15.247 (b) (3)	-	Output Power (multipoint systems)	5.9 dBm (3.9 mW) EIRP = 8mW ^{Note 1}	1Watt, EIRP limited to 4 Watts.	Complies
15.247(e)	-	Power Spectral Density	-8.9 dBm / 3kHz	8dBm/3kHz	Complies
15.247(d) / 15.209	-	Radiated Spurious Emissions 30MHz – 25 GHz	45.4 dBμV/m @ 2484.0 MHz (-8.6 dB)	Refer to the limits section (p19) for restricted bands, all others < -20dBc	Complies
Note 1: EIRP ca	alculated using ar	ntenna gains of 3.27 dBi for	the highest EIRP system.		•

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	-	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antenna is integral	Unique or integral antenna required	Complies
15.407 (b) (6)	-	AC Conducted Emissions	46.3 dBµV @ 0.532 MHz (-9.7 dB)	Refer to page 18	Complies
15.247 (i) 15.407 (f)	-	RF Exposure Requirements	Refer to MPE calculations in separate exhibit	Refer to OET 65, FCC Part 1 and RSS 102	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Dedicted emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Radiated emission (field strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The ARRIS model C61W-700 Wireless RVU Client is a high definition set top box, with RF4CE and 5GHz 802.11an/ac. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 100-120 Volts, 60 Hz, 0.5 Amps.

The sample was received on January 25, 2017 and tested on January 30, February 6, March 8, 2017. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
ARRIS	C61W-700	DirecTV Home Client	Refer to test results	PGAC61W
DirecTV	ESP10R4-15	AC/DC Power Supply	CL10G160R4900	-

ANTENNA SYSTEM

The EUT uses two pcb trace antennas, 3.27dBi gain, configured for transmit diversity.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 18 cm wide by 12 cm deep by 3 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Configuration #1

o oninguiwion in i					
Company	Model	Description	Serial Number	FCC ID	
JVC	EM39FT	TV	TA1SEI042503850	-	

	Configuration #2	(AC Conducted E	missions)			
Company Model Description Serial Number FCC ID						
Toshiba	24SL415U	TV	B46193T06429C1	-		

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID		
Dell	M4600	Precision laptop	F9N0MQ1			

Cor	figuration #2	

Company	Model	Description	Serial Number	FCC ID
Dell	Latitude	Precision laptop	E6540	

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

DI	TT.	
HI		
LU	' I	

Port	Connected To	Cable(s)				
1 011	Connected 10	Description	Shielded or Unshielded	Length(m)		
Serial*	USB	Serial	Shielded	5		
A/V	TV input	RCA	Shielded	1		
HDMI	TV Input	HDMI	Shielded	1		
Digital Audio (SPDIF)	75 Ohm Terminated	RCA	Shielded	1		
USB	USB Stick	USB	Shielded	1		
DC power Input	AC/DC power Output	2Wire	Unshielded	1		
AC/DC Adapter	AC Mains	2Wire	Unshielded	0.8		

Additional on Support Equipment

Port	Connected To	Cable(s)				
TOIL	Connected TO	Description	Shielded or Unshielded	Length(m)		
DC to RF Adapter Input	AC/DC Output	2Wire	Unshielded	1		
Laptop DC Input	AC/DC Output	2Wire	Unshielded	1		
AC/DC Adapter (x2)	AC Mains	2Wire	Unshielded	1		
TV AC input	AC Mains	2Wire	Unshielded	1.5		

* - temporary internal connection to allow for configuration of radios

EUT OPERATION

The EUT was configured to transmit continuously at the maximum output power. For AC conducted emissions, the RF4CE radio was configured for transmit at 2450MHz, while the 802.11 radio was configured for transmit at 5200MHz, 20MHz, MCS0.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Registration Numbers FCC Canada		Location
Chamber 4	US0027	2845B-4	41039 Boyce Road
Chamber 7	US0027	2845B-7	Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for measurements below 1GHz, and 1.5m for measurements above 1GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

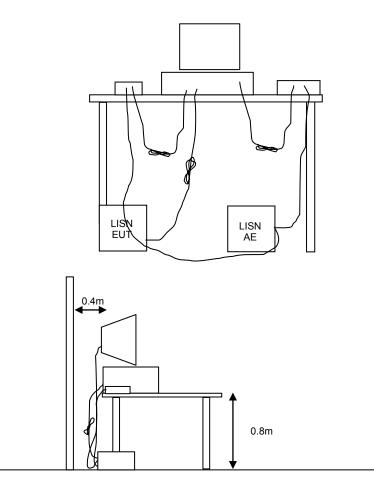
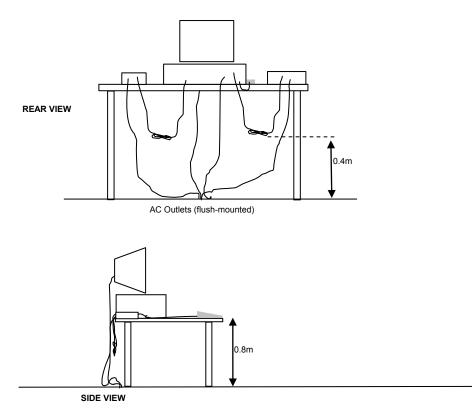
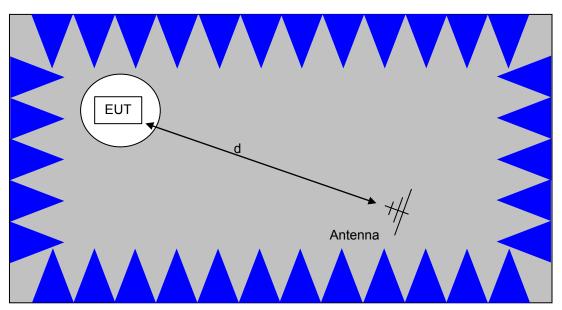


Figure 1 Typical Conducted Emissions Test Configuration

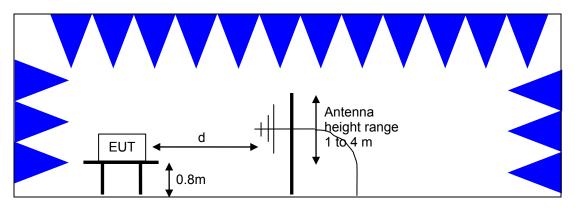
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

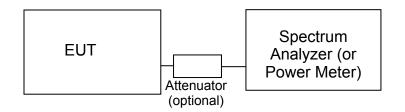

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Report Date: March 27, 2017

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density.

Operating Frequency (MHz)	Output Power	Power Spectral Density
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest inband signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 6

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$ where: $R_r =$ Receiver Reading in dBuV S = Specification Limit in dBuV M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$ where: $F_{d} = Distance Factor in dB$ $D_{m} = Measurement Distance in meters$ $D_{s} = Specification Distance in meters$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$\begin{array}{rcl} R_c &=& R_r \,+\, F_d \\ & \text{and} \\ M &=& R_c \,-\, L_S \\ & \text{where:} \\ & R_r &=& \text{Receiver Reading in dBuV/m} \\ & F_d &=& \text{Distance Factor in dB} \\ & R_c &=& \text{Corrected Reading in dBuV/m} \\ & L_S &=& \text{Specification Limit in dBuV/m} \end{array}$$

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer	<u>Description</u> , 1000 - 25,000 MHz, 30-Jan-17	<u>Model</u>	<u>Asset #</u>	Calibrated	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	9/29/2016	9/29/2018
HP / Miteq	SA40 Head (Red)	TTA1840-45-5P- HG-S	1145	8/24/2016	8/24/2017
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	10/31/2016	11/1/2017
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	9/30/2016	9/30/2017
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	10/14/2016	10/14/2017
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	2/20/2016	2/20/2017
Conducted Emission NTS EMCO EMCO Rohde & Schwarz Rohde & Schwarz	ns - AC Power Ports, 06-Feb-17 NTS EMI Software (rev 2.10) LISN, 10 kHz-100 MHz LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	N/A 3825/2 3825/2 ESH3 Z2 ESIB7	0 1292 1293 1401 9482	8/1/2016 6/7/2016 2/3/2017 10/28/2016	N/A 8/1/2017 6/7/2017 2/3/2018 10/28/2017
Radiated Emissions Sunol Sciences Com-Power Rohde & Schwarz	, 30 - 1,000 MHz, 08-Mar-17 Biconilog, 30-3000 MHz Preamplifier, 30-1000 MHz EMI Test Receiver, 20 Hz-7 GHz	JB3 PA-103 ESIB 7	1549 1632 9482	6/2/2015 3/8/2017 10/28/2016	6/2/2017 3/8/2018 10/28/2017
Radiated Emissions HP / Miteq	, 1000 - 40,000 MHz, 08-Mar-17 SA40 R Head HF preAmplifier, 18-40 GHz (w/1148)	TTA1840-45-5P- HG-S	1145	8/24/2016	8/24/2017
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	10/31/2016	11/1/2017
Micro-Tronics	Band Reject Filter, 5725-5875 MHz 12GHz	BRC50705-02	1682	5/9/2016	5/9/2017
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	9/30/2016	9/30/2017
A. H. Systems	Purple System Horn, 18- 40GHz	SAS-574, p/n: 2581	2160	8/28/2014	8/28/2017
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	10/14/2016	10/14/2017
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	9/19/2016	9/19/2017
Micro-Tronics	High Pass Filter 6400 MHz - 18000 MHz	HPM50112	2739	10/7/2016	10/7/2017
EMCO	Antenna, Horn, 1-18 GHz	3115	2870	8/31/2015	8/31/2017

Appendix B Test Data

T103891 Pages 24 - 64

Client:	ARRIS	Job Number:	JD102669
Product		T-Log Number:	
System Configuration:	•	Project Manager:	
Contact:	Mark Rieger	Project Coordinator:	
Emissions Standard(s):	FCC 15.B / FCC 15.247 / 15.E	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The


ARRIS

Product

C61W

Date of Last Test: 3/15/2017

	-			EMC Test Data
Client: ARRIS				Job Number: JD102669
Model: C61W			T-	Log Number: T103891
			Proj	ject Manager: Christine Krebill
Contact: Mark Rieger			Project	t Coordinator: -
Standard: FCC 15.B / FCC 15.2	247 / 15.E			Class: B
	Conducte (NTS Silicon Valley, Fremont	ed Emissions Facility, Semi-Ane	choic Chamb	ber)
Test Specific Details				
	ective of this test session is to per ation listed above.	rform final qualificati	on testing of t	the EUT with respect to the
Date of Test: 2/6/201		Config. Used		
Test Engineer: Joseph		Config Change		
Test Location: Fremon	Chamber #4	EUT Voltage	e: 120V/60Hz	<u>.</u>
General Test Configuratio	n			
passed through a ferrite clamp up Ambient Conditions:	Temperature: Rel. Humidity:	25 °C 30 %		
Summary of Results				
Run #	Test Performed	Limit	Result	Margin
1 CE	, AC Power,120V/60Hz	Class B	Pass	46.3 dBµV @ 0.532 MHz (-9.7 dB)
Modifications Made Durin No modifications were made to th Deviations From The Stan No deviations were made from th Sample S/N: G62DA ⁻ Driver: 201612 ⁻ Antenna: Internal	e EUT during testing dard e requirements of the standard.			

		RSUCCESS					EM	C Test Dat
Client:	ARRIS	SUCCESS					Job Number:	JD102669
							T-Log Number:	T103891
Model:	C61W					_	Project Manager:	
Contact:	Mark Riege	r					Project Coordinator:	
	-	FCC 15.247	/ 15.E				Class:	
				-scan (neak	readings v	s. average lim		-
Frequency	Level	AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.171	53.5	Line 1	54.9	-1.4	Peak			
0.165	53.6	Line 1	55.2	-1.6	Peak			
0.151	54.0	Line 1	55.9	-1.9	Peak			
0.494	43.2	Line 1	46.1	-2.9	Peak			
2.806	42.6	Line 1	46.0	-3.4	Peak			
0.532	47.4	Line 1	46.0	1.4	Peak			
16.810	45.8	Line 1	50.0	-4.2	Peak			
0.168	54.0	Neutral	55.0	-1.0	Peak			
0.151	53.4	Neutral	56.0	-2.6	Peak			
0.157	53.0	Neutral	55.7	-2.7	Peak			
0.494	43.5	Neutral	46.1	-2.6	Peak			
2.917	42.0	Neutral	46.0	-4.0	Peak			
0.525	46.8 44.9	Neutral Neutral	46.0 50.0	0.8 -5.1	Peak Peak			
	-peak and a Level	verage read		ss B	Detector	Comments		
	Level				Detector QP/Ave	Comments		
Frequency		AC	Clas	ss B Margin -9.7		Comments QP (1.00s)		
Frequency MHz	Level dBµV	AC Line	Clas Limit	Margin	QP/Ave			
Frequency MHz 0.532	Level dBμV 46.3	AC Line Line 1	Clas Limit 56.0	Margin -9.7	QP/Ave QP	QP (1.00s)		
Frequency MHz 0.532 0.525	Level dBµV 46.3 45.7	AC Line Line 1 Neutral	Clas Limit 56.0 56.0 46.0 46.0	Margin -9.7 -10.3	QP/Ave QP QP	QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.532	Level dBµV 46.3 45.7 35.3	AC Line Line 1 Neutral Line 1 Neutral Line 1	Clas Limit 56.0 56.0 46.0 46.0 56.1	Margin -9.7 -10.3 -10.7 -12.3 -13.8	QP/Ave QP QP AVG AVG QP	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0	AC Line 1 Neutral Line 1 Neutral Line 1 Neutral	Clas Limit 56.0 56.0 46.0 46.0 56.1 56.1	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1	QP/Ave QP QP AVG AVG QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1	AC Line 1 Neutral Line 1 Neutral Line 1 Neutral Neutral	Clas Limit 56.0 56.0 46.0 46.0 56.1 56.1 46.1	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0	QP/Ave QP AVG AVG QP QP AVG	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7	AC Line Line 1 Neutral Line 1 Neutral Neutral Neutral Line 1	Clas Limit 56.0 56.0 46.0 46.0 56.1 56.1 46.1 46.1	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4	QP/Ave QP AVG AVG QP QP AVG AVG	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494 0.494 0.165	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3	AC Line Line 1 Neutral Line 1 Neutral Neutral Neutral Line 1 Line 1	Clas Limit 56.0 56.0 46.0 46.0 56.1 56.1 46.1 46.1 65.2	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9	QP/Ave QP AVG AVG QP QP AVG AVG QP	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.525 0.525 0.494 0.494 0.494 0.494 0.494 0.165 0.168	Level dB _µ V 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8	AC Line Line 1 Neutral Line 1 Neutral Neutral Line 1 Line 1 Neutral Neutral	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 65.2 65.1	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3	QP/Ave QP AVG AVG QP QP AVG AVG AVG QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.525 0.525 0.494 0.494 0.494 0.494 0.494 0.494 0.165 0.168 0.171	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1	AC Line 1 Neutral Line 1 Neutral Neutral Neutral Line 1 Line 1 Neutral Line 1	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 46.1 65.2 65.1 64.9	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8	QP/Ave QP AVG AVG QP QP AVG AVG QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494 0.494 0.494 0.165 0.168 0.171 2.806	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1 38.1	AC Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Line 1 Line 1 Line 1 Line 1	Clas Limit 56.0 56.0 46.0 56.1 56.1 46.1 46.1 46.1 65.2 65.1 64.9 56.0	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8 -17.9	QP/Ave QP AVG AVG QP QP AVG AVG AVG QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494 0.494 0.494 0.165 0.165 0.168 0.171 2.806 0.157	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1 38.1 47.1	AC Line 1 Neutral Line 1 Neutral Neutral Line 1 Line 1 Neutral Line 1 Line 1 Neutral Line 1 Neutral	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 46.1 65.2 65.1 64.9 56.0 65.6	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8 -17.9 -18.5	QP/Ave QP AVG AVG QP QP AVG AVG AVG QP QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.525 0.525 0.494 0.494 0.494 0.494 0.494 0.165 0.168 0.171 2.806 0.157 0.151	Level dB _µ V 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1 38.1 47.1 46.8	AC Line Line 1 Neutral Line 1 Neutral Line 1 Line 1 Neutral Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Neutral	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 46.1 65.2 65.1 64.9 56.0 65.6 65.9	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8 -17.8 -17.9 -18.5 -19.1	QP/Ave QP AVG AVG QP QP AVG AVG AVG QP QP QP QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494 0.494 0.494 0.494 0.494 0.165 0.165 0.168 0.171 2.806 0.157 0.151 0.151	Level dB _µ V 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1 38.1 47.1 46.8 46.6	AC Line Line 1 Neutral Line 1 Neutral Neutral Line 1 Line 1 Neutral Line 1 Line 1 Neutral Neutral Neutral Neutral Line 1	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 46.1 65.2 65.1 65.2 65.1 64.9 56.0 65.6 65.9 65.9	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8 -17.8 -17.9 -18.5 -19.1 -19.3	QP/Ave QP AVG AVG QP QP AVG AVG AVG QP QP QP QP QP QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494 0.494 0.494 0.165 0.165 0.168 0.171 2.806 0.157 0.151 0.151 2.917	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1 38.1 47.1 46.8 46.6 36.7	AC Line Line 1 Neutral Line 1 Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Neutral Neutral Neutral Neutral Neutral Neutral	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 65.2 65.1 64.9 56.0 65.6 65.9 65.9 56.0	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8 -17.8 -17.9 -18.5 -19.1 -19.3 -19.3	QP/Ave QP AVG AVG QP QP AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494 0.494 0.494 0.165 0.165 0.168 0.171 2.806 0.157 0.151 0.151 2.917 2.806	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1 38.1 47.1 38.1 47.1 46.8 46.6 36.7 25.5	AC Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Line 1 Line 1 Line 1 Neutral Neutral Neutral Line 1 Neutral Line 1 Neutral Line 1	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 65.2 65.1 65.2 65.1 64.9 56.0 65.6 65.9 65.9 56.0 46.0	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8 -17.9 -17.8 -17.9 -18.5 -19.1 -19.3 -19.3 -20.5	QP/Ave QP AVG AVG QP QP AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494 0.494 0.494 0.165 0.165 0.168 0.171 2.806 0.157 0.151 2.917 2.806 17.772	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1 38.1 47.1 46.8 46.6 36.7 25.5 38.8	AC Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Line 1 Neutral Line 1 Neutral Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 65.2 65.1 64.9 56.0 65.6 65.9 65.9 56.0 46.0 60.0	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8 -17.9 -18.5 -19.1 -19.3 -19.3 -20.5 -21.2	QP/Ave QP AVG AVG QP AVG AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494 0.494 0.494 0.165 0.165 0.168 0.171 2.806 0.157 0.151 2.917 2.806 17.772 16.810	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1 38.1 47.1 46.8 46.6 36.7 25.5 38.8 28.7	AC Line Line 1 Neutral Line 1 Neutral Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 46.1 65.2 65.1 64.9 56.0 65.6 65.9 65.9 65.9 56.0 46.0 46.0 50.0	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8 -17.9 -18.5 -19.1 -19.3 -19.3 -20.5 -21.2 -21.3	QP/Ave QP AVG AVG QP AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)		
Frequency MHz 0.532 0.525 0.532 0.525 0.494 0.494 0.494 0.494 0.494 0.494 0.165 0.165 0.168 0.171 2.806 0.157 0.151 2.917 2.806 17.772	Level dBµV 46.3 45.7 35.3 33.7 42.3 42.0 31.1 30.7 48.3 47.8 47.1 38.1 47.1 46.8 46.6 36.7 25.5 38.8	AC Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Line 1 Neutral Line 1 Neutral Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral	Clas Limit 56.0 56.0 46.0 56.1 56.1 56.1 46.1 46.1 65.2 65.1 64.9 56.0 65.6 65.9 65.9 56.0 46.0 60.0	Margin -9.7 -10.3 -10.7 -12.3 -13.8 -14.1 -15.0 -15.4 -16.9 -17.3 -17.8 -17.9 -18.5 -19.1 -19.3 -19.3 -20.5 -21.2	QP/Ave QP AVG AVG QP AVG AVG AVG QP QP QP QP QP QP QP QP QP QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		

Client:	ARRIS	Job Number:	JD102669
Model: (CE1W	T-Log Number:	T103891
	COTW	Project Manager:	Christine Krebill
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.B / FCC 15.247 / 15.E	Class:	В

Radiated Emissions

(NTS Silicon Valley, Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/6/2017 Test Engineer: Joseph Cadigal Test Location: Fremont Chamber #4 Config. Used: 2 Config Change: none EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment were routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

Radiated emissions tests above 1 GHz to FCC Part 15 were performed <u>with</u> floor absorbers in place in accordance with the test methods of ANSI C63.4 and CISPR 16-1-4.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

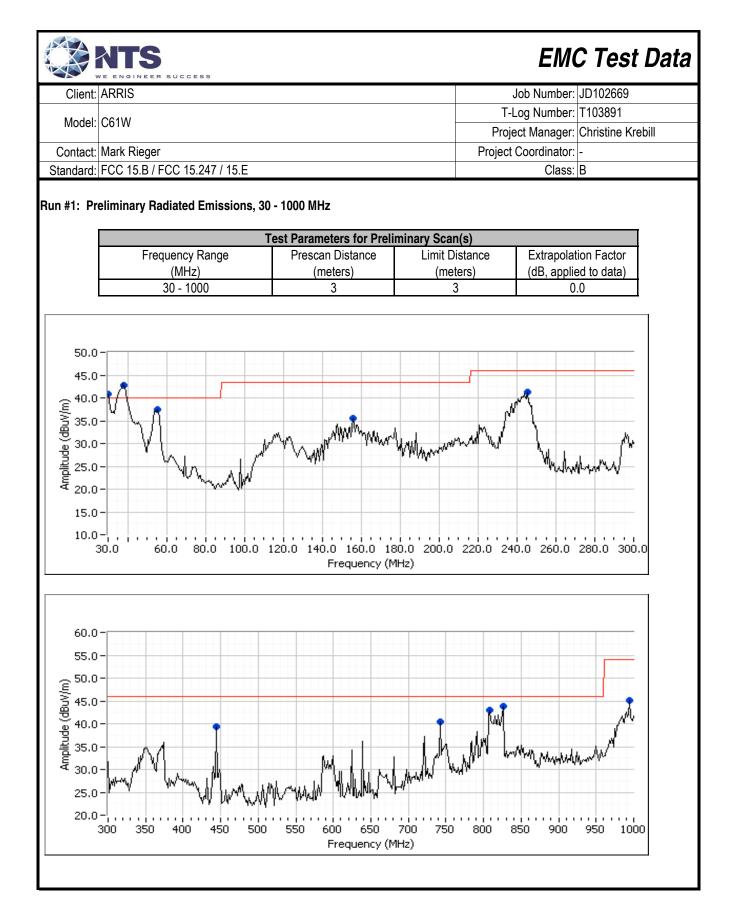
Temperature:	25 °C
Rel. Humidity:	30 %

Summary of Results

D #	To al Danfama ad	1 (Desult	Margin
Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions			
1	30 - 1000 MHz, Preliminary	Class B	Eval	Refer to individual runs
0	Radiated Emissions		D	38.0 dBµV/m @ 30.39 MHz (-2.0
Z	30 - 1000 MHz, Maximized	Class B	Pass	dB)
3b	Radiated Emissions	FCC Class B	Dees	50.6 dBµV/m @ 7373.4 MHz (-3.4
30	1 GHz - 12 GHz Maximized	FUC Class B	Pass	dB)

Client:	ARRIS	Job Number:	JD102669
Model:	C61W	T-Log Number:	T103891
wouer.	Colw	Project Manager:	Christine Krebill
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.B / FCC 15.247 / 15.E	Class:	В

Modifications Made During Testing


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: G62DATB200100 Driver: 20161214_c61w-bcm_v1.24.1.5 Antenna: Internal

	ARRIS	SUCCESS						Job Number: JD102669
								Log Number: T103891
Model:	C61W							ect Manager: Christine Krebill
Contact	Mark Rieger						-	Coordinator: -
	FCC 15.B / F		7/15 5				Fiojeci	Class: B
Standard:	FUC 15.B/1	-00 15.24	/ / 15.E					Class: B
Proliminary	/ peak readir	nas cantur	ed during n	re-scan				
Frequency	Level	Pol		ss B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
55.019	37.5	V	40.0	-2.5	Peak	114	1.0	
245.569	41.2	Н	46.0	-4.8	Peak	198	1.0	
37.968	42.7	V	40.0	2.7	Peak	270	1.0	signal from TV
30.392	40.9	V	40.0	0.9	Peak	273	1.0	
155.772	35.6	Н	43.5	-7.9	Peak	349	2.0	
825.151	43.9	V	46.0	-2.1	Peak	191	1.0	
806.668	43.0	V	46.0	-3.0	Peak	217	1.0	
993.909	45.1	Н	54.0	-8.9	Peak	193	1.0	
741.769	40.5	Н	46.0	-5.5	Peak	243	2.0	
445.053	39.4	Н	46.0	-6.6	Peak	153	1.5	
reliminar	/ quasi-peak	readings	(no manipu	lation of EU	T interface c	ables)		
requency	Level	Pol		ss B	Detector	Azimuth	Height	Comments
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
MHz					ů.	114	1.0	QP (1.00s)
MHz 55.019	35.3	V	40.0	-4.7	QP	114	1.0	
		V H	40.0 46.0	-4.7 -6.9	QP QP	198	1.0	QP (1.00s)
55.019	35.3	H V						
55.019 245.569	35.3 39.1	Н	46.0	-6.9	QP	198	1.0	QP (1.00s)
55.019 245.569 37.968	35.3 39.1 41.8	H V	46.0 40.0	-6.9 1.8	QP QP	198 270	1.0 1.0	QP (1.00s) Signal from TV on Signal from TV off QP (1.00s)
55.019 245.569 37.968 37.968 30.392 155.772	35.3 39.1 41.8 37.7	H V V V	46.0 40.0 40.0 40.0 43.5	-6.9 1.8 -2.3	QP QP QP	198 270 270	1.0 1.0 1.0	QP (1.00s) Signal from TV on Signal from TV off
55.019 245.569 37.968 37.968 30.392 155.772 825.151	35.3 39.1 41.8 37.7 37.4 27.8 38.8	H V V H V	46.0 40.0 40.0 40.0 43.5 46.0	-6.9 1.8 -2.3 -2.6 -15.7 -7.2	QP QP QP QP QP QP	198 270 270 272 349 191	1.0 1.0 1.0 2.0 1.0	QP (1.00s) Signal from TV on Signal from TV off QP (1.00s) QP (1.00s) QP (1.00s)
55.019 245.569 37.968 37.968 30.392 155.772 825.151 806.668	35.3 39.1 41.8 37.7 37.4 27.8 38.8 38.0	H V V H V	46.0 40.0 40.0 40.0 43.5 46.0 46.0	-6.9 1.8 -2.3 -2.6 -15.7 -7.2 -8.0	QP QP QP QP QP QP QP QP	198 270 270 272 349 191 217	1.0 1.0 1.0 2.0 1.0 1.0	QP (1.00s) Signal from TV on Signal from TV off QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)
55.019 245.569 37.968 37.968 30.392 155.772 825.151 806.668 993.909	35.3 39.1 41.8 37.7 37.4 27.8 38.8 38.0 37.6	H V V H V H	46.0 40.0 40.0 43.5 46.0 46.0 54.0	-6.9 1.8 -2.3 -2.6 -15.7 -7.2 -8.0 -16.4	QP QP QP QP QP QP QP QP QP	198 270 270 272 349 191 217 192	1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0	QP (1.00s) Signal from TV on Signal from TV off QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)
55.019 245.569 37.968 37.968 30.392 155.772 825.151 806.668	35.3 39.1 41.8 37.7 37.4 27.8 38.8 38.0	H V V H V	46.0 40.0 40.0 40.0 43.5 46.0 46.0	-6.9 1.8 -2.3 -2.6 -15.7 -7.2 -8.0	QP QP QP QP QP QP QP QP	198 270 270 272 349 191 217	1.0 1.0 1.0 2.0 1.0 1.0	QP (1.00s) Signal from TV on Signal from TV off QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)

	NTS VE ENGINEER SUCCESS			ЕМС	C Test	Data
Client:	ARRIS			Job Number:	JD102669	
Madalı	C61W		T·	Log Number:	T103891	
Model:	COIV		Proj	ject Manager:	Christine Kre	bill
Contact:	Mark Rieger		Projec	t Coordinator:	-	
Standard:	FCC 15.B / FCC 15.247 / 15.E			Class: I	В	
Run #2: Ma	aximized Readings From Run #1	st Parameters for Maxin	nized Reading(s)			
	Frequency Range	Test Distance	Limit Distance	Extrapolati	ion Factor	
	(MHz)	(meters)	(meters)	(dB, applie		

3

0.0

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

30 - 1000

		5 1				/		
Frequency	Level	Pol	Clas	ss B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
30.392	38.0	V	40.0	-2.0	QP	273	1.0	QP (1.00s)
55.019	35.3	V	40.0	-4.7	QP	113	1.0	QP (1.00s)
245.569	39.1	Н	46.0	-6.9	QP	198	1.0	QP (1.00s)
825.151	38.8	V	46.0	-7.2	QP	191	1.0	QP (1.00s)
445.053	38.3	Н	46.0	-7.7	QP	153	1.4	QP (1.00s)
806.668	38.0	V	46.0	-8.0	QP	217	1.0	QP (1.00s)

3

X		Ser SUCCES	5					EIVIC	C Test D
Clien	t: ARRIS				Job Number:	JD102669			
							T-	Log Number:	T103891
Mode	el: C61W							-	Christine Krebill
Contac	t: Mark Rie	ner						t Coordinator:	
		90 3 / FCC 15.24	17 / 15 ⊑					Class:	
n #3: N	Maximized	Readings, 1	000 - 12000 N		5 requiremer	nte			
tenna l	neight scar	performed	during pre-s d 5GHz radio	can to satis o in transmi	fy FCC requit mode	irements			
					ters for Preli				
	F	Frequency Ra	ange		Distance		istance	Extrapolat	
		(MHz)			eters)		ters)	(dB, applie	
		1000 - 120	00		3		3	0.	0
W/Mplitude (dBu//m 50 30 30	0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 1000	hurr	what.	~n tom	Frequency (r	"ћ_{и,ћ. кон., ј ЧЈи} м , 1Hz)		L	10000 12000
	limit used f		i.e. worst cas		ak readings 22 and FCC) Detector	vs. average Azimuth	limit) Height	Comments	
MHz	dBµV/n		Limit	Margin	Pk/QP/Avg	degrees	meters	5011110110	
		V	-	-	Peak	207	1.0	5GHz radio	fundamental
		V	54.0	-0.6	Peak	340	1.6		
510.000		H	54.0	-6.0	Peak	177	1.3		
510.000 141.230	48.0			-5.7	Peak	221	1.6		
510.000 141.230 766.610 200.070		Н	54.0						
510.000 141.230 766.610	48.3	H V	54.0 54.0	-8.4	Peak	172	1.3		
510.000 141.230 766.610 200.070) 48.3) 45.6				Peak Peak	172 217	1.3 1.6		
510.000 141.230 766.610 200.070 519.510	48.3 45.6 44.8	V	54.0	-8.4					

Client:	ARRIS							Job Number:	JD102669
Model:	C61W						T-	Log Number:	T103891
	00100			Proj	ect Manager:	Christine Krebill			
Contact:	Mark Rieger						Project	Coordinator:	-
Standard:	FCC 15.B / F	-CC 15.24	7 / 15.E					Class:	В
final read	B limit (when	d at 3 mete applicable	ers test dista e) is by defau	nce, unless o Ilt a 3m limit	1 1		11-1-14	10	
requency		Pol	FCC C		Detector	Azimuth	Height	Comments	
MHz 7373.390	dBμV/m 50.6	v/h V	Limit 54.0	Margin -3.4	Pk/QP/Avg AVG	degrees 182	meters 1.3		R 10 Hz. Dook
6144.760	50.6 50.0	V	54.0 54.0	- 3.4 -4.0	AVG	339	1.3		' <u>B 10 Hz;Peak</u> 'B 10 Hz;Peak
6144.760 6144.860	49.9	V	54.0 54.0	-4.0	AVG	206	1.0		B 10 Hz;Peak
6758.980	49.9	V	54.0	-4.1	AVG	32	2.5		B 10 Hz;Peak
1199.350	40.2	H	54.0	-13.8	AVG	221	1.6		B 10 Hz;Peak
6759.680	38.3	H	54.0	-15.7	AVG	190	1.3		/B 10 Hz;Peak
1768.090	38.1	H	54.0	-15.9	AVG	176	1.2		/B 10 Hz;Peak
1200.360	57.7	Н	74.0	-16.3	PK	221	1.6	· · ·	B 3 MHz;Peak
2371.410	37.6	V	54.0	-16.4	AVG	217	1.6		/B 10 Hz;Peak
2371.670	56.4	V	74.0	-17.6	PK	217	1.6	· · · · ·	/B 3 MHz;Peak
1766.570	55.7	Н	74.0	-18.3	PK	176	1.2		'B 3 MHz;Peak
3519.970	33.9	V	54.0	-20.1	AVG	172	1.2		′B 10 Hz;Peak
7373.750	50.8	Н	74.0	-23.2	PK	182	1.3	,	'B 3 MHz;Peak
							2.5		
3519.730	46.8	V	/4.0	-27.2	PK	172	1.2	KB 1 MHz;V	'В 3 MHz;Peak
6759.720 48.6 V 74.0 -25.4 PK 32 2.5 RB 1 MHz;VB 3 MHz;Peak 6147.190 47.3 V 74.0 -26.7 PK 206 1.3 RB 1 MHz;VB 3 MHz;Peak 6143.400 47.0 V 74.0 -27.0 PK 339 1.6 RB 1 MHz;VB 3 MHz;Peak 3519.730 46.8 V 74.0 -27.2 PK 172 1.2 RB 1 MHz;VB 3 MHz;Peak Note 1: For FCC testing above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz can not exceed the average limit by more than 20 dB.									

Client:	ARRIS	Job Number:	JD102669
Madal	C61W	T-Log Number:	T103891
Model.	COIW	Project Manager:	Christine Krebill
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.B / FCC 15.247 / 15.E	Class:	N/A

RSS-247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

TS

SUCCESS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	20.1 °C
Rel. Humidity:	40 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
1	RF4CE	2425MHz	3	3	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	32.4 dBµV/m @ 2361.5 MHz (-21.6 dB)
	RF4CE	2475MHz	3	3	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	45.4 dBµV/m @ 2484.0 MHz (-8.6 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

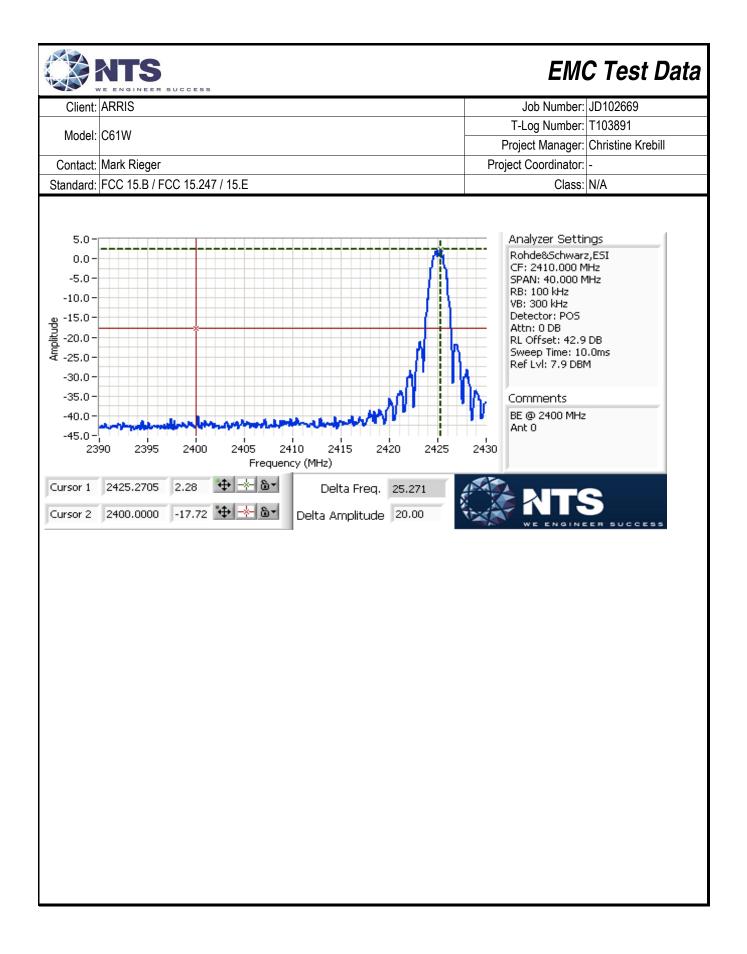
Sample S/N: G62DA6TB200126 Driver: -Antenna: PCB trace

Client:	ARRIS	Job Number:	JD102669
Madal	C61W	T-Log Number:	T103891
wouer.	COTW	Project Manager:	Christine Krebill
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.B / FCC 15.247 / 15.E	Class:	N/A

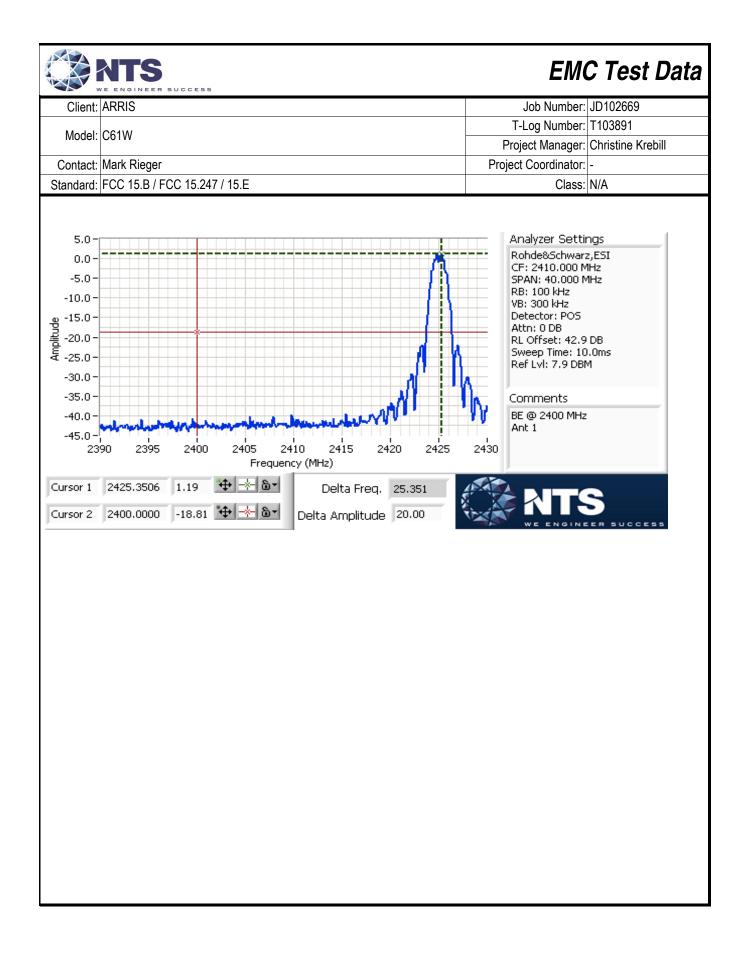
Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

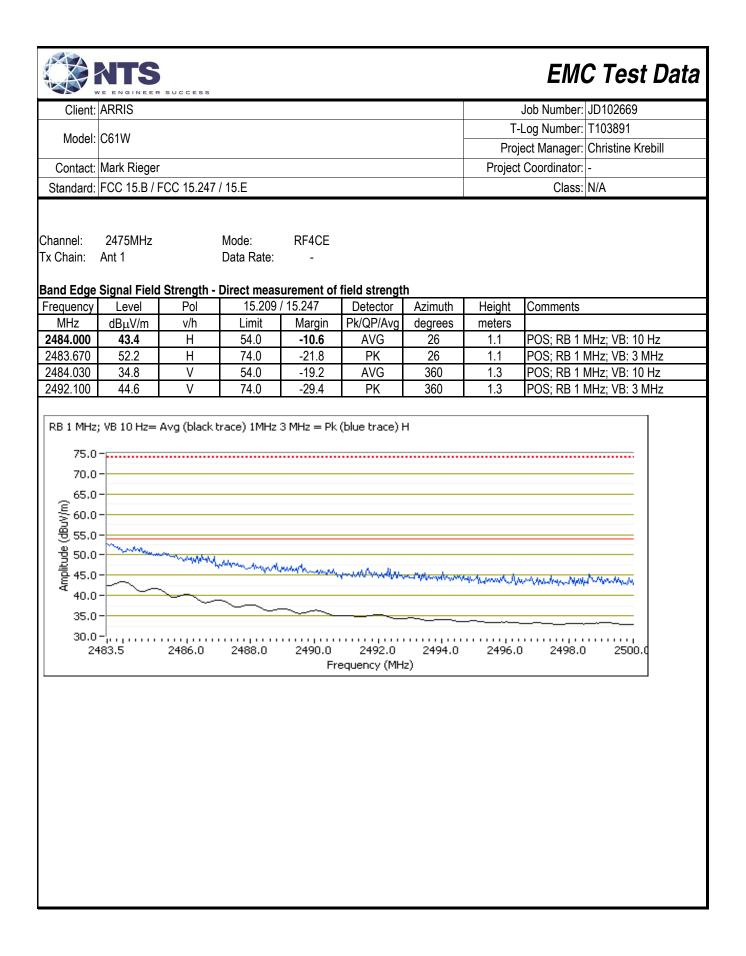
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time


Unless otherwise stated/noted, emission has a duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
RF4CE	-	1.00	Yes	1	0	0	10


Measurement Specific Notes:

Note 1:	Emission in non-restricted band, but limit of 15.209 used.				
Note 2:	Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz.				
Note 3.	Emission has a duty cycle ≥ 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto				
	sweep, trace average 100 traces				
	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,				
	peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear voltage correction				
	factor				
Noto 5	Emission has constatnt duty cycle < 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power				
	averaging, auto sweep, trace average 100 traces, measurement corrected by Pwr correction factor				


	ARRIS	SUCCESS						Job Number:	
Model.								Log Number:	
modol.	C61W								Christine Krebill
Contact.	Mark Rieger							Coordinator:	
	FCC 15.B / I		/ 15.E					Class:	
C Te	idiated Banc Date of Test: est Engineer: est Location:	1/30/2017 0 Joseph Cad	:00 igal		Cor	onfig. Used: fig Change: UT Voltage:	none		
hannel: ‹ Chain:	2425MHz Ant 0		Mode: Data Rate:	RF4CE -					
and Edge	Signal Field	Strength -			field strengt	h			
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg		meters		
353.930	32.3	V V	54.0	-21.7	AVG	333	1.0		MHz; VB: 10 Hz
2371.880 2352.570	44.4 32.3	H	74.0 54.0	-29.6 -21.7	PK AVG	333 314	1.0 1.0		MHz; VB: 3 MHz MHz; VB: 10 Hz
2352.080	44.1	 H	74.0	-29.9	PK	314	1.0		MHz; VB: 3 MHz
	- - - - - - - - - - - - - - - - - - -	M	MALMANNA,	manamadda		······································	Webnerskennen	۸/۲۰۰۰۰۱۹۷۰۰۰۰۰۰۸/ 2385	

		SUCCESS						ЕМС	C Test Data
Client:	ARRIS							Job Number:	JD102669
							T-	Log Number:	T103891
Model:	C61W							3	Christine Krebill
Contact [.]	Mark Rieger						Project Coordinator: -		
	FCC 15.B / I		/ 15 F					Class:	
otanuaru.	10010.071	00 10.241	/ 10.L					01000.	
Channel: Tx Chain:	2425MHz Ant 1		Mode: Data Rate:	RF4CE	<i>.</i>				
					field strengt		11.2.1.1		
Frequency MHz		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
2361.540	dBμV/m 32.4	v/h V	Limit 54.0	Margin -21.6	Pk/QP/Avg AVG	degrees 14	meters 1.0		MHz; VB: 10 Hz
2359.540	32.4 43.9	V	74.0	-30.1	PK	14	1.0		MHz; VB: 3 MHz
2353.340	32.3	H	54.0	-21.7	AVG	307	2.5		MHz; VB: 10 Hz
2350.080	44.6	H	74.0	-29.4	PK	307	2.5		MHz; VB: 3 MHz
70.0 (@,60.0) \$0.0 (W,Ange) (2365	ладиМанара 2370 equency (MH	2375			

		SUCCESS						ЕМС	C Test Data
Client:	ARRIS							Job Number:	JD102669
							T-	Log Number:	T103891
Model:	C61W					-		-	Christine Krebill
Contact:	Mark Rieger						-	Coordinator:	
	FCC 15.B / I		/ 15.E				,	Class:	
Channel:	2475MHz		Mode:	RF4CE					
Tx Chain:	Ant 0		Data Rate:	-					
L			.						
		Pol		urement of 15.247	field strengt	n Azimuth	Hoight	Comments	
Frequency MHz	Level dBµV/m	v/h	Limit	Margin	Detector Pk/QP/Avg	degrees	Height meters	Comments	
2484.000	45.4	H	54.0	-8.6	AVG	158	1.0		MHz; VB: 10 Hz
2483.530	54.0	H	74.0	-20.0	PK	158	1.0		MHz; VB: 3 MHz
2484.000	40.7	V	54.0	-13.3	AVG	174	1.3		MHz; VB: 10 Hz
2483.530	49.9	V	74.0	-24.1	PK	174	1.3		MHz; VB: 3 MHz
75.0 70.0 65.0 (Jan (W) (W) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M			······	2490.0	~~~			······································	

Client:	ARRIS	Job Number:	JD102669
Model: C61W	CE1W	T-Log Number:	T103891
woder.	COTW	Project Manager:	Christine Krebill
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.B / FCC 15.247 / 15.E	Class:	N/A

RSS-247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

TS

SUCCESS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	20.1 °C
Rel. Humidity:	40 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

				<u> </u>			
Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
	RF4CE 2425MHz 3		2	Radiated Emissions,	FCC Part 15.209 /	40.0 dBµV/m @ 4851.0	
			3	3	1 - 25 GHz	15.247(c)	MHz (-14.0 dB)
1	RF4CE		3	2	Radiated Emissions,	FCC Part 15.209 /	39.3 dBµV/m @ 4901.0
	RF4CE	2450MHz	3	3	1 - 25 GHz	15.247(c)	MHz (-14.7 dB)
		2475MHz	3	2	Radiated Emissions,	FCC Part 15.209 /	35.1 dBµV/m @ 4949.0
	RF4CE		3	3	1 - 25 GHz	15.247(c)	MHz (-18.9 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: G62DA6TB200126 Driver: -Antenna: PCB trace

Client:	ARRIS	Job Number:	JD102669
Model:	CE1W	T-Log Number:	T103891
wouer.	Colw	Project Manager:	Christine Krebill
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.B / FCC 15.247 / 15.E	Class:	N/A

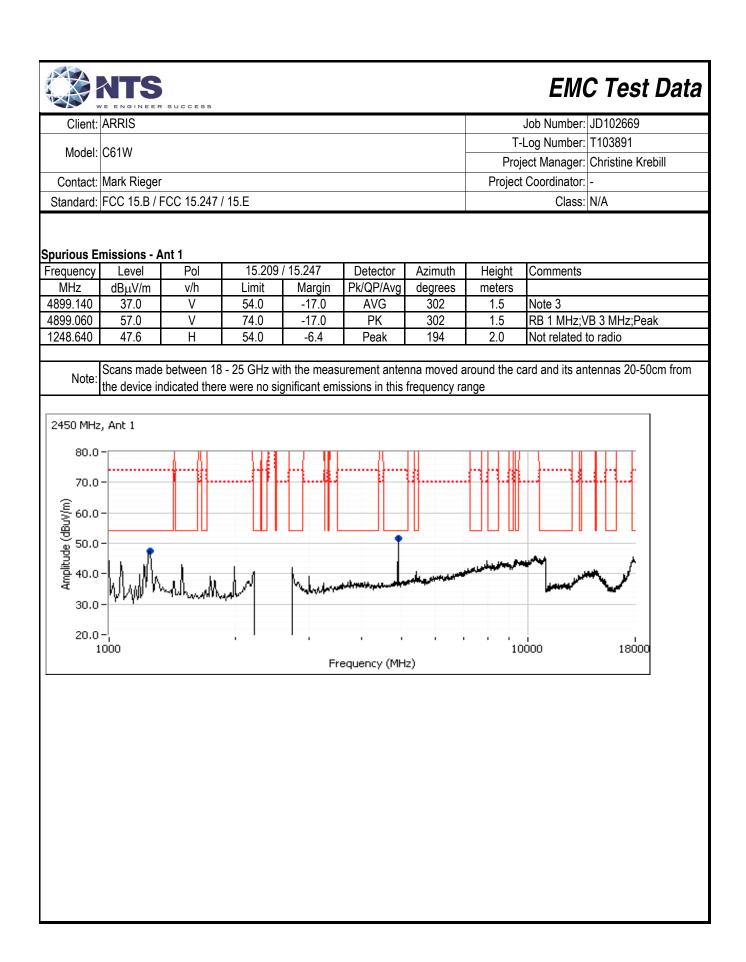
Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

2.4GHz band reject filter used


Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
RF4CE	-	1.00	Yes	1	0	0	10

Measurement Specific Notes:

mououroi	
Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz.
	Average value calculated from peak measurement and duty cycle correction for actual operation (0.5ms per every 100ms, 20log(0.5/100) = -46dB (FCC maximum value of 20dB used). Refer to operational description for more details.

		SUCCESS						EMC Test Data		
Client: AR	RIS							Job Number: JD102669		
Model: C6	4147						T-l	Log Number: T103891		
	0177						Project Manager: Christine Krebill			
Contact: Ma	ark Rieger						Project	Coordinator: -		
Standard: FC	C 15.B / F	-CC 15.247	/ 15.E				Class: N/A			
Run #1: Radia	ted Spuri	ious Emissi	ons, 1,000 -	25000 MHz			L			
Test E Test	Engineer: Location:	FT Chamber	igal / R. Vare	elas	Cor	onfig. Used: ifig Change: UT Voltage:	none			
Run #1a: Low	Channel	- Ant 0								
Channel: 24	425MHz		Mode:	RF4CE						
Tx Chain: An	-		Data Rate:	-						
Fundamental S						A	11.2.17			
Frequency MHz c		Pol v/h		/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height meters	Comments		
2424.770	lBμV/m 90.7	V/II V	Limit -	Margin -	PK/QP/AVg	degrees 221	1.0	POS; RB 100 kHz; VB: 300 kHz		
2424.890	94.7	H	_		Pk	160	1.0	POS; RB 100 kHz; VB: 300 kHz		
	•									
	Limit for e Limit for e	emissions ou	I @ 3m in 10 tside of restr tside of restr	icted bands:	74.7	dBμV/m dBμV/m dBμV/m		IBc (Peak power measurement) IBc (UNII power measurement)		
Spurious Emis	1	<u> </u>	45.000	45.047		A : 11				
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz c 4850.980	lBμV/m 40.0	v/h V	Limit 54.0	Margin -14.0	Pk/QP/Avg AVG	degrees 236	meters 1.9	Note 3		
4849.020	60.0	V	74.0	-14.0	PK	236	1.9	RB 1 MHz;VB 3 MHz;Peak		
1248.840	47.1	Ĥ	54.0	-6.9	Peak	201	2.0	Not related to radio		
2425 MHz, A 80.0 - 70.0 - (w) 60.0 - (w) 60.0 - 900 - 30.0 - 30.0 - 20.0 - 100	Ambh	nthumh.		Free Contraction of the second	equency (MH	z)				

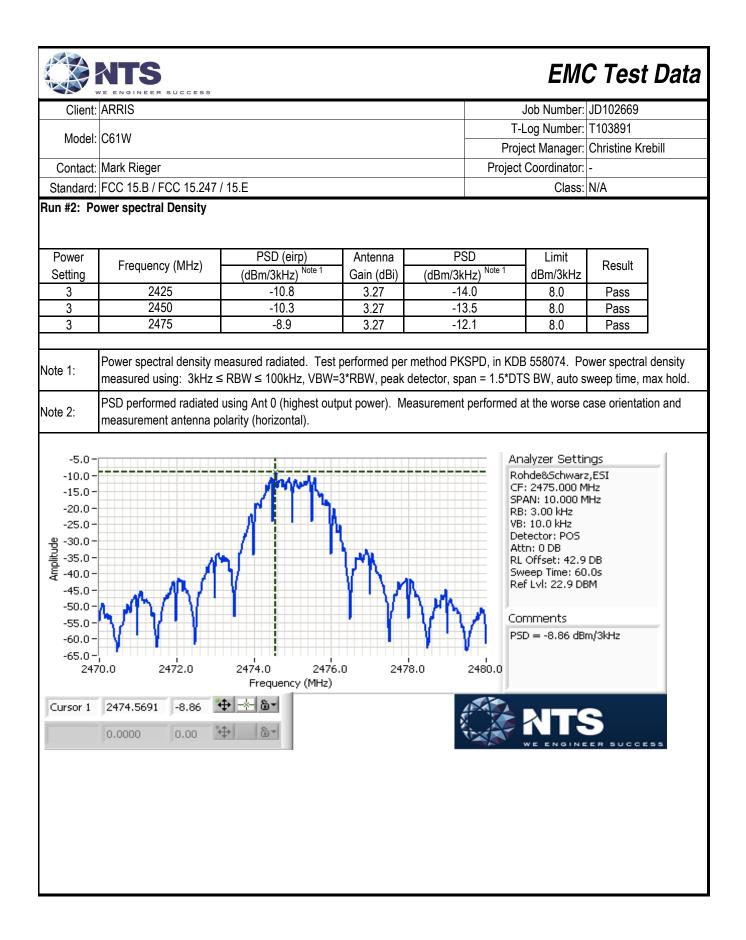
		SUCCESS						EMC Test Dat
Client:	ARRIS							Job Number: JD102669
								Log Number: T103891
Model:	C61W							ect Manager: Christine Krebill
Contact:	Mark Rieger						-	Coordinator: -
	FCC 15.B / I		/ 15.E				,	Class: N/A
	Center Chani		-					
Channel: Tx Chain:	2450MHz Ant 0		Mode: Data Rate:	RF4CE -				
undament	tal Signal Fie	eld Strength			n 100kHz			
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2450.210	89.1	V	-	-	Pk	172	1.3	POS; RB 100 kHz; VB: 300 kHz
2449.730	95.8	Н	-	-	Pk	161	1.0	POS; RB 100 kHz; VB: 300 kHz
Fi	undamental e	mission leve	1 @ 3m in 1 0	0kHz BBW [.]	95.8	dBµV/m		
			Itside of restr			dBμV/m dBμV/m	Limit is -200	dBc (Peak power measurement)
			tside of restr			dBµV/m		dBc (UNII power measurement)
							4	
nurique E	missions - A	hat 0						
	missions - A Level		15.209	/ 15.247	Detector	Azimuth	Height	Comments
	Level	Ant 0 Pol v/h	15.209 Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments
requency MHz		Pol		1				Comments Note 3
requency MHz 4900.950 4901.080	Level dBµV/m 39.3 59.3	Pol v/h V V	Limit 54.0 74.0	Margin -14.7 -14.7	Pk/QP/Avg AVG PK	degrees 234 234	meters 2.0 2.0	Note 3 RB 1 MHz;VB 3 MHz;Peak
requency MHz 4900.950 4901.080 1249.220	Level dBµV/m 39.3 59.3 48.1	Pol v/h V V H	Limit 54.0 74.0 54.0	Margin -14.7 -14.7 -5.9	Pk/QP/Avg AVG PK Peak	degrees 234 234 227	meters 2.0 2.0 2.5	Note 3 RB 1 MHz;VB 3 MHz;Peak Not related to radio
Frequency	Level dBµV/m 39.3 59.3 48.1 Scans made the device in a c, Ant 0 - - - - - - - - - - - - -	Pol v/h V V H	Limit 54.0 74.0 54.0	Margin -14.7 -14.7 -5.9 th the measu	Pk/QP/Avg AVG PK Peak	degrees 234 234 227 nna moved a	meters 2.0 2.0 2.5 around the ca	Note 3 RB 1 MHz;VB 3 MHz;Peak

		SUCCESS						EMC Test Data	
Client:	ARRIS							Job Number: JD102669	
Model:	C61W						T-L	og Number: T103891	
woder.	COIV						Proje	ect Manager: Christine Krebill	
Contact:	Mark Rieger						Project Coordinator: -		
Standard:	FCC 15.B / I	FCC 15.247	/ 15.E			Class: N/A			
Run #1c: H i Channel:	igh Channel 2475MHz		Mode:	RF4CE					
	Ant 0		Data Rate:	-					
	al Signal Fie					A _:	11-2-64	lo-manuta	
Frequency MHz	Level dBµV/m	Pol v/h	Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
2474.740	<u>авµv/ш</u> 91.9	V/II V	-	-	Pk Pk	170	1.2	POS; RB 100 kHz; VB: 300 kHz	
2474.890	98.0	H	-	-	Pk	160	1.2	POS; RB 100 kHz; VB: 300 kHz	
								<u> </u>	
Fι	undamental e	mission leve	el @ 3m in 10	OkHz RBW:	98	dBµV/m			
			tside of restr		78			Bc (Peak power measurement)	
	Limit for e	emissions ou	tside of restr	icted bands:	68	dBµV/m	Limit is -30d	Bc (UNII power measurement)	
Spurious E	missions								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4949.020	35.1	V	54.0	-18.9	AVG	197	1.6	Note 3	
4949.050	55.1	V	74.0	-18.9	PK	197	1.6	RB 1 MHz;VB 3 MHz;Peak	
1248.850	48.1	Н	54.0	-5.9	Peak	191	2.0	Not related to radio	
2475 MHz 80.0 70.0 (W/\ngp) 60.0 9pnjijdwy 40.0 30.0 20.0 1	- - - - - - -	M. M.		Fre	under ywar, an ar af fer	z)			

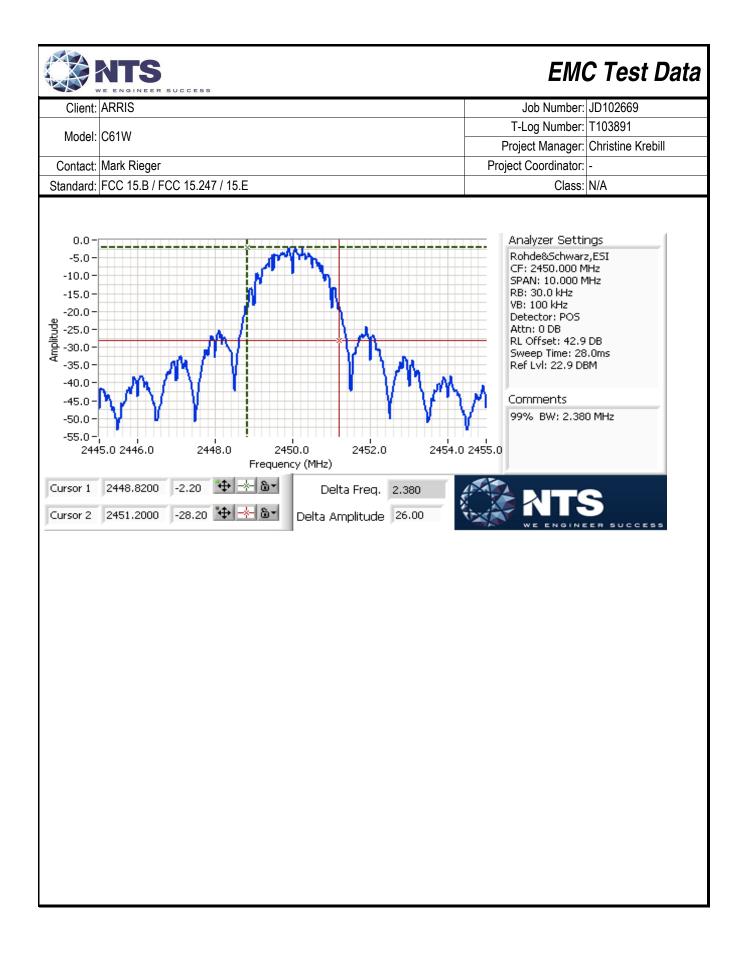
		SUCCESS			EM	C Test Data
Client	: ARRIS				Job Number:	JD102669
Malat	004114				T-Log Number:	T103891
IVIODEI	: C61W				Project Manager:	Christine Krebill
Contact	: Mark Rieger				Project Coordinator:	-
	: FCC 15.B / F		15.E		Class:	N/A
		F	C 15.247 (DTS) Antenna Power, PSD, Bandwidth and			
Test Spe			of this test session is to perform final listed above.	al qualification test	ing of the EUT with	respect to the
Т	Date of Test: est Engineer: est Location:	Rafael Varela	as Co	Config. Used: 1 nfig Change: Non EUT Voltage: 120		
The EUT do strength wa	as maximized	e an RF conr at a distance	nector. All measurements performed of 3m. d to allow for the external attenuators		ver and PSD measu	rements, the field
	Conditions y of Result	Te Re	emperature: 20.1 °C I. Humidity: 40 %			
Run #	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	3	Avy Fwi	Output Power	15.247(b)	Pass	5.9 dBm
2	3	-	Power spectral Density (PSD)	15.247(d)		-8.9 dBm/3kHz
3	3	-	Minimum 6dB Bandwidth	15.247(a)		1.6 MHz
3	3	-	99% Bandwidth	RSS GEN		2.4 MHz
No modifica Deviatio	ns From Th	ade to the EL	T during testing			

	NTS He engineer success	EMO	C Test Data
Client:	ARRIS	Job Number:	JD102669
Model:	CE1W	T-Log Number:	T103891
woder.	Colm	Project Manager:	Christine Krebill
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.B / FCC 15.247 / 15.E	Class:	N/A

Procedure Comments:


Measurements performed in accordance with FCC KDB 558074

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
RF4CE	-	1.00	Yes	1	0	0	10


Sample Notes

Sample S/N: G62DA6TB200126 Driver: -

Client: ARRI	Client: ARRIS								JD102669
Madel: 004V	101- C61W							Log Number:	T103891
Model: C61V	el: C61W							ect Manager:	Christine Krebill
Contact: Mark	ntact: Mark Rieger							Coordinator:	: -
Standard: FCC	15.B / F0	CC 15.247 /	15.E					Class	N/A
un #1: Output	Power								
Power _			Ell	RP ¹	Antenna	Output	Power	D	1
Setting ²	requency	(IVIHZ)	dBm	W	Gain (dBi)	(dBm) ¹	mW	Result	
3	242		8.4	0.007	3.27	5.1	3.3	Pass	Ant 0
3	245		8.6	0.007	3.27	5.3	3.4	Pass	Ant 0
3	245 247		7.1 9.2	0.005	3.27 3.27	3.8 5.9	2.4 3.9	Pass	Ant 1 Ant 0
J	24/3	5	9.2	0.008	J.21	5.9	১.খ	Pass	
Note 1: Output	ut power	measured	usina RBW	> OBW. VBV	V=3xRBW, pe	eak detector	max hold		
					luring testing,			nly.	
Noto 2.	er measu	rement perfo	ormed at th	e worse case	e orientation a	and measure	ment anten	na polarity (H	orizontal). Refer to
Note 3: funda	amental f ne device	ield strength operates us	n measuren sing Tx dive	nents in the s ersity, the pov	purious emis	sions results output was m	leasured at t		orizontal). Refer to annel. Measuremen
Note 3: funda Note 4: As th the lo Spectrum Analyz CF: 2475.000 MI	amental f ne device ow and hi zer Setting IHz	ield strength operates us igh channels	n measuren sing Tx dive s were perfo	nents in the s ersity, the pov	purious emis ver for each c	sions results output was m	leasured at t		-
Note 3: funda Note 4: As th the lo Spectrum Analyz CF: 2475.000 MI SPAN: 20.000 M RB: 3.000 MHz	amental f ne device ow and hi zer Setting IHz 4Hz	ield strength operates us igh channels	n measuren sing Tx dive s were perfe	nents in the s ersity, the pov	purious emis ver for each c	sions results output was m	leasured at t		-
Note 3: funda Note 4: As th the lo Spectrum Analyz CF: 2475.000 MI SPAN: 20.000 M RB: 3.000 MHz VB: 10.000 MHz Detector: POS	amental f ne device ow and hi zer Setting IHz 4Hz	ield strength operates us igh channels ^{gs} 10.0 -	n measuren sing Tx dive s were perfo	nents in the s ersity, the pov	purious emis ver for each c	sions results output was m	leasured at t		-
Note 3: funda Note 4: As th the lo Spectrum Analyz CF: 2475.000 MI SPAN: 20.000 MI SPAN: 20.00	amental f ne device ow and hi zer Setting IHz 4Hz 9B .0s	ield strength operates us igh channels ^{gs} 10.0 - 5.0 -	n measuren sing Tx dive s were perfo	nents in the s ersity, the pov	purious emis ver for each c	sions results output was m	leasured at t		-
Note 3: funda Note 4: As the brectrum Analyz CF: 2475.000 MI SPAN: 20.000 MI SPAN: 20.000 MI CF: 2475.000 MI SPAN: 20.000 MI SPAN: 20.000 MI SPAN: 0 DB RL Offset: 0.0 D Sweep Time: 1.0 Sweep Time: 1	amental f ne device ow and hi zer Setting Hz 4Hz 4Hz 2B 05 8B 05 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B	ield strength operates us igh channels 9 ^s 10.0 - 5.0 - 0.0 - -5.0 -	n measuren sing Tx dive s were perfo	nents in the s ersity, the pov	purious emis ver for each c	sions results output was m	leasured at t		-
Note 3: funda Note 4: As th the lo Spectrum Analyz CF: 2475,000 MI SPAN: 20,000 MI RB: 3,000 MHz VB: 10,000 MHz VB: 10,000 MHz VB: 10,000 MHz NB: 3,000 MHz VB: 10,000 MHz NB: 3,000 MHz VB: 10,000 MHz VB: 10,000 MHz NB: 3,000 MHz VB: 10,000 MHz NB: 3,000 MHz VB: 10,000 MHz VB: 10,000 MHz NB: 10,000 MHz VB: 10,000 MHz NB: 10,000 MHz VB:	amental f ne device ow and hi zer Setting Hz 4Hz 4Hz 2B 05 8B 05 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B	ield strength operates us igh channels 9 ⁵ 10.0 - 5.0 - 0.0 -	n measuren sing Tx dive s were perfo	nents in the s ersity, the pov	purious emis ver for each c	sions results output was m	leasured at t		-
Note 3: funda Note 4: As the the loc Spectrum Analyz CF: 2475.000 MI SPAN: 20.000 M RB: 3.000 MHz VB: 10.000 MHz Detector: POS Attn: 0 DB RL Offset: 0.0 D Sweep Time: 1.0 Ref LvI: -20.0 DI Max hold: 60 sw Amp corr: 42.96	amental f ne device ow and hi zer Setting Hz 4Hz 4Hz 2B 05 8B 05 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B	ield strength operates us igh channels ^{gs} 10.0 - 5.0 - 0.0 - -5.0 -	n measuren sing Tx dive s were perfo	nents in the s ersity, the pov	purious emis ver for each c	sions results output was m	leasured at t		-
Note 3: funda Note 4: As the brectrum Analyz CF: 2475.000 MI SPAN: 20.000 MI SPAN: 20.000 MI CF: 2475.000 MI SPAN: 20.000 MI SPAN: 20.000 MI SPAN: 0 DB RL Offset: 0.0 D Sweep Time: 1.0 Sweep Time: 1	amental f ne device ow and hi zer Setting Hz 4Hz 2B 0S BM veeps dB Hz	ield strength operates us igh channels 9 ⁵ 10.0 - 5.0 - 0.0 - -5.0 - -5.0 - -15.0 - -20.0 -	n measuren sing Tx dive s were perfo	nents in the s ersity, the pov	purious emis ver for each c	sions results output was m	leasured at t		-
Note 3: funda Note 4: As th the lo 5pectrum Analyz CF: 2475,000 MI SPAN: 20,000 MI SP	amental f ne device ow and hi zer Setting IHz 4Hz 4Hz 05 9B 05 9B 9B 9B 9B 9B 9B 9B 9B 9B 9B 9B 9B 9B	ield strength operates us igh channels 9 ⁵ 10.0 - 5.0 - -5.0 - 長 -10.0 - -15.0 -	n measuren sing Tx dive s were perfo	nents in the s ersity, the pov	purious emis ver for each c	sions results output was m	leasured at t		-
Note 3: funda Note 4: As the pectrum Analyz CF: 2475,000 MI SPAN: 20,000 M SPAN: 20,000 MHz VB: 10,000 MHz VB: 10,000 MHz VB: 10,000 MHz VB: 10,000 MHz Nax hold: 00 sw Attn: 0 DB RL Offset: 0.0 D Sweep Time: 1.1 Ref LvI: -20,0 DI Max hold: 60 sw Amp corr: 42,96 Bin size: 40,1 kH 8,48 MHz Power Over Spa	amental f ne device ow and hi zer Setting Hz Hz Hz BM weeps dB Hz Hz	ield strength operates us igh channels 9 ⁵ 10.0 - 5.0 - 0.0 - -5.0 - -5.0 - -15.0 - -20.0 -	n measuren sing Tx dive s were perfo	nents in the s prsity, the pov prmed on the	purious emis ver for each o	sions results putput was m highest EIR	easured at t	the center cha	
Note 3: funda Note 4: As th the lo Spectrum Analyz CF: 2475,000 MI SPAN: 20,000 MI SP	amental f ne device ow and hi zer Setting IHz 4Hz B 05 BM weeps dB Hz	ield strength operates us igh channels gs 10.0 - 5.0 - 0.0 - -5.0 - -5.0 - -15.0 - -20.0 - -25.0 - -30.0 -	n measuren sing Tx dive s were perfo	nents in the s ersity, the pov	purious emis wer for each of port with the	sions results putput was m highest EIR	easured at 1 P.		
Note 3: funda Note 4: As the pectrum Analyz CF: 2475,000 MI SPAN: 20,000 M SPAN: 20,000 M SPAN: 20,000 MHz VB: 10,000 MHz VB: 10,000 MHz VB: 10,000 MHz VB: 10,000 MHz Nax hold: 00 sw Amp corr: 42,96 Bin size: 40,1 kH 8,48 MHz Power Over Spa	amental f ne device ow and hi zer Setting IHz 4Hz B 05 BM weeps dB Hz	ield strength operates us igh channels gs 10.0 - 5.0 - 0.0 - -5.0 - -5.0 - -15.0 - -20.0 - -25.0 - -30.0 -	n measuren sing Tx dive s were perfo	Prents in the sprsity, the povormed on the pov	purious emis wer for each of port with the	sions results putput was m highest EIR	easured at 1 P.	the center cha	

		SUCCESS					EMC Test Data
Client:	ARRIS						Job Number: JD102669
	004144			T-Log Number: T103891			
Model:	C61W					Pi	roject Manager: Christine Krebill
Contact:	Mark Rieger					Proje	ect Coordinator: -
Standard:	FCC 15.B / F	CC 15.247 / 15.E					Class: N/A
Run #3: Sig	gnal Bandwi	dth					
Mode:	RF4CE						
	Power	Frequency (MHz)		th (MHz)	RBW Set	ting (kHz)	
	Setting	,	6dB	99%	6dB	99%	
	3	2425	1.6	2.4	100	30	
	3	2450	1.6	2.4	100	30	_
	3	2475	1.6	2.4	100	30]
5.0 - 0.0 - -5.0 - -10.0 - -15.0 - -15.0 - W -25.0 - -30.0 - -35.0 -		tion and measurement ar			n. 		Analyzer Settings Rohde&Schwarz,ESI CF: 2450.000 MHz SPAN: 10.000 MHz RB: 100 kHz VB: 300 kHz Detector: POS Attn: 0 DB RL Offset: 42.9 DB Sweep Time: 5.0ms Ref LvI: 22.9 DBM
-40.0- -45.0- 244 Cursor 1 Cursor 2		Freque		2452.0 :a Freq. 1. nplitude 6	563	2455.0	6dB BW: 1.563 MHz

Client:	ARRIS	Job Number:	JD102669
Model:	CE1W	T-Log Number:	T103891
wouer.	COTW	Project Manager:	Christine Krebill
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.B / FCC 15.247 / 15.E	Class:	N/A

RSS-247, FCC 15.247, FCC 15.407 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

TS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	22.4 °C
Rel. Humidity:	41 %

Summary of Results

je anna y	01110041						
Run #	Mode	Channel	Target Power	Passing Power Setting	Test Performed	Limit	Result / Margin
Simultaneou	us Tx operati	on					
	RF4CE	2425MHz	3	3	Radiated Emissions,	FCC 15.209 / 15.247 /	42.5 dBµV/m @ 152.47
1	а	40	90	90	30 - 1000MHz	15 E	MHz (-1.0 dB)
	RF4CE	2425MHz	3	3	Radiated Emissions,	FCC 15.209 / 15.247 /	67.5 dBµV/m @
	а	40	90	86	1 - 40 GHz	15 E	10399.0 MHz (-0.8 dB)
	RF4CE	2475MHz	3	3	Radiated Emissions,	FCC 15.209 / 15.247 /	42.0 dBµV/m @ 152.47
2	а	157	90	90	30 - 1000MHz	15 E	MHz (-1.5 dB)
2	RF4CE	2475MHz	3	3	Radiated Emissions,	FCC 15.209 / 15.247 /	52.7 dBµV/m @
	а	157	90	90	1 - 40 GHz	15 E	11567.8 MHz (-1.3 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	ATS	EMO	C Test Data
Client:	ARRIS	Job Number:	JD102669
Model:	C61W	T-Log Number:	T103891
MOUEI.	Corw	Project Manager:	Christine Krebill
Contact:	Mark Rieger	Project Coordinator:	-
Standard:	FCC 15.B / FCC 15.247 / 15.E	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

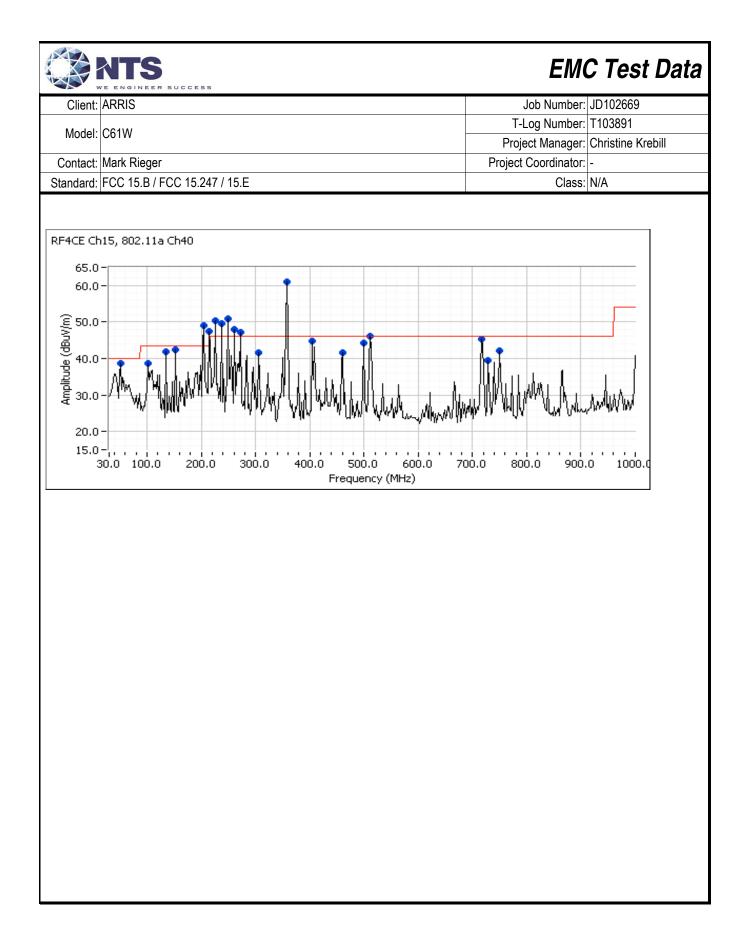
	Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
	RF4CE	-	1.00	Yes	1	0	0	10
1SS	11a	6MB/s	0.99	Yes	1.952	0	0	10

Sample Notes

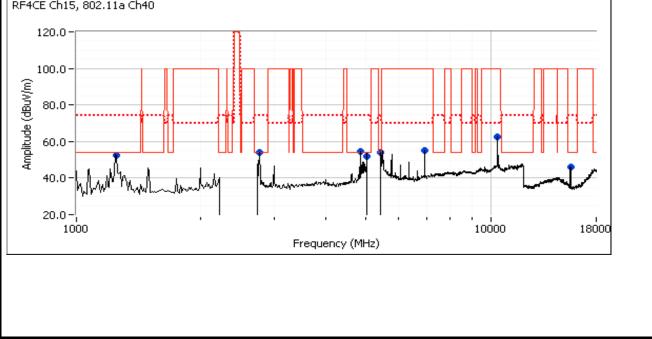
Sample S/N: G62DA7BU20005B

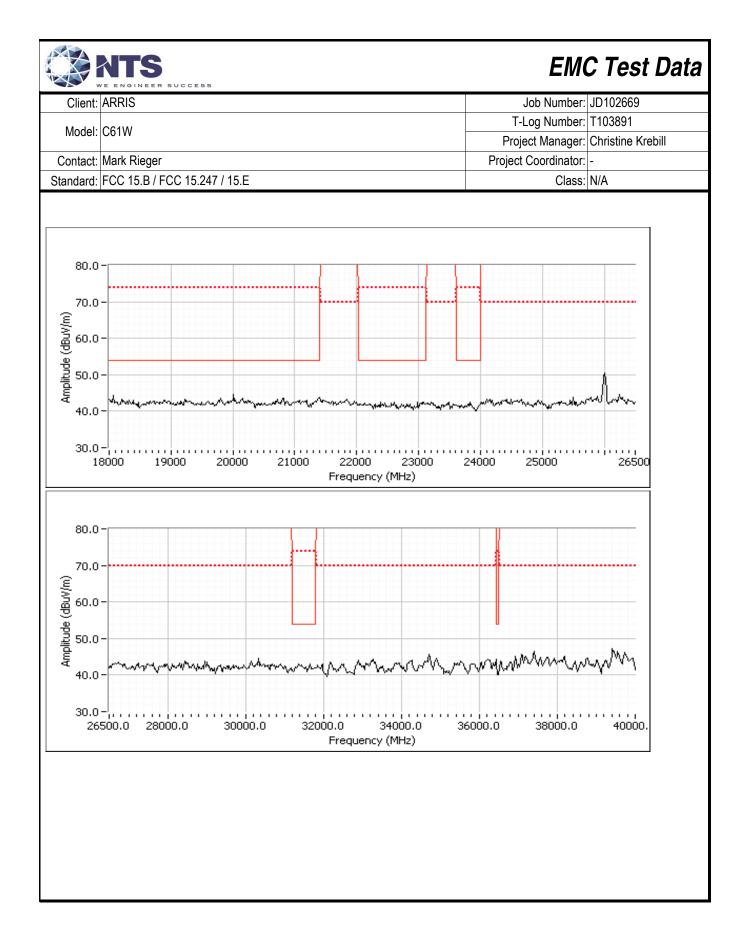
Driver: -

Antenna: Internal 4x4

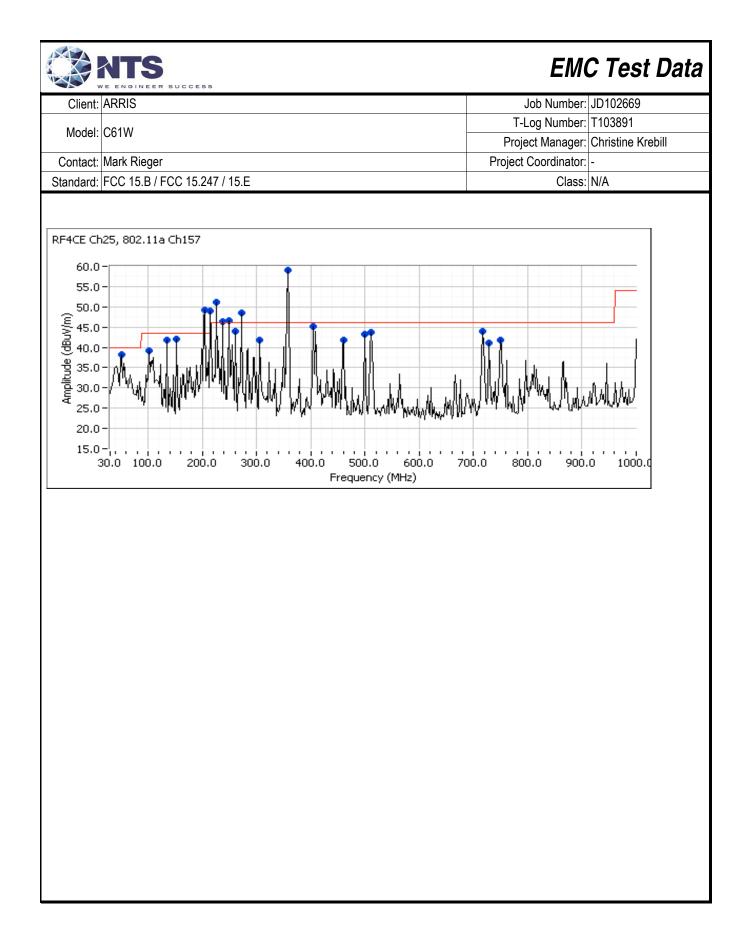

Measurement Specific Notes:

	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 1:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Note 2:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
NOLE 2.	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)

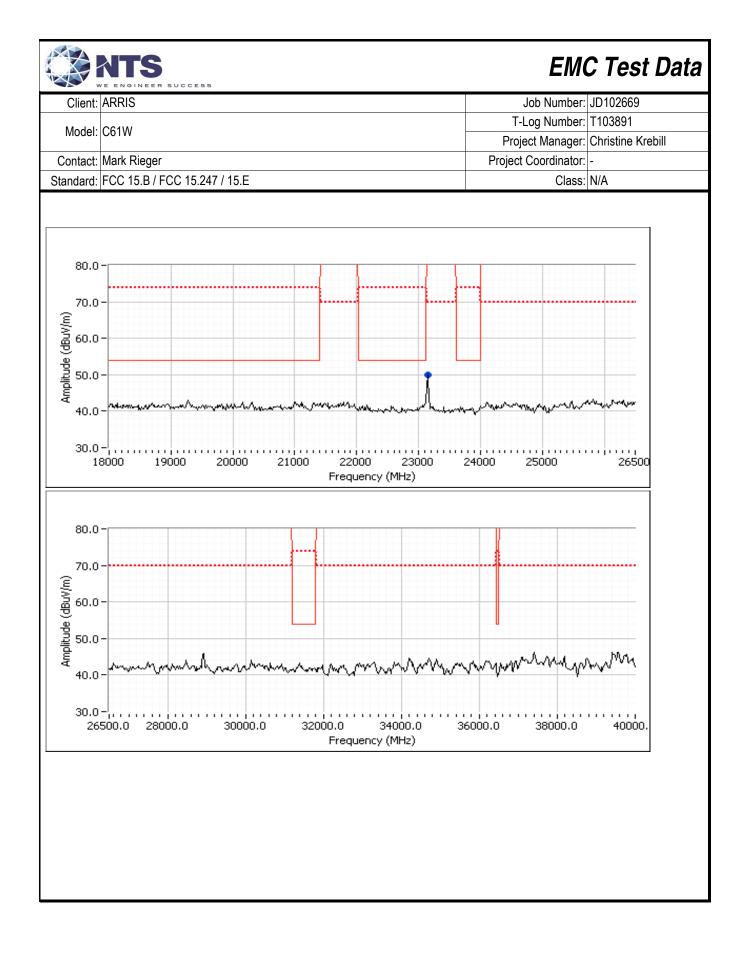

Notes:


Serial cable connected directly to the motherboard to configure the radio operation. Responsible for non-radio reltated emissions observed below 1GHz. Would not be present during normal use.

Onorit.	ARRIS				Job Number: JD102669			
Madal	C61W						T-	Log Number: T103891
woder.	COTW						Proj	ect Manager: Christine Krebill
Contact:	Mark Rieger						Project	Coordinator: -
Standard:	FCC 15.B / F	CC 15.247	/ 15.E					Class: N/A
	adiated Spuri				0	ممائح الممطر	4	
	Date of Test: 3 est Engineer: 3					onfig. Used: fig Change:		
	est Location: F	•	-	35		UT Voltage:		
			51#1		L	or voltage.	120 0/00112	
Channel:	2425MHz		Mode:	RF4CE				
Tx Chain:	Ant 0		Data Rate:	-				
Chancel	40		Madai	11-				
Channel: Tx Chain:	40 4Tx		Mode: Data Rate:	11a 6MB/s				
i A Urialiti.	418		Dala Rale.	UIVID/S				
Run #1a: 3	0-1000MHz							
Frequency	Level	Pol		5.247 / 15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
152.465	42.5	V	43.5	-1.0	Peak	324	1.0	
51.383 101.924	38.7 38.6	V V	40.0 43.5	-1.3 -4.9	Peak Peak	136 274	1.0 1.0	
134.970	41.9	V	43.5	-4.9	Peak	234	1.0	
204.950	49.1	V	-	-	Peak	0	1.5	Not related to Radio
214.669	47.5	V	-	-	Peak	76	1.0	Not related to Radio
226.333	50.5	Н	-	-	Peak	126	2.5	Not related to Radio
237.996	49.5	Н	-	-	Peak	155	1.0	Not related to Radio
249.659	51.0	Н	-	-	Peak	71	1.5	Not related to Radio
261.323	48.0	H	-	-	Peak	224	3.0	Not related to Radio
	47.3	<u>V</u>	-	-	Peak	210	1.0	Not related to Radio
272.986	41.6	<u>H</u>	46.0	-4.4	Peak	338	1.5	Not related to Dadia
306.032	61.0	H V	- 46.0	-1.2	Peak	244 225	2.0 1.0	Not related to Radio
306.032 358.517	110	V	46.0	-1.2	Peak Peak	309	1.0	+
306.032 358.517 405.170	44.8 41.6	v	46.0	-4.4	Peak	220	1.5	
306.032 358.517 405.170 461.543	41.6	Н		1.0	1	269	1.5	Not related to Radio
306.032 358.517 405.170 461.543 500.421	41.6 44.2	H H	-	-	Реак і			
306.032 358.517 405.170 461.543 500.421 512.084	41.6 44.2 46.0	Н	-	-	Peak Peak	229	1.0	Not related to Radio
306.032 358.517 405.170 461.543 500.421	41.6 44.2		-	- - -6.4	Peak Peak Peak		1.0 1.5	Not related to Radio



Client:	ARRIS							Job Number: JD102669		
								T-Log Number: T103891		
Model:	C61W			Project Manager: Christine Krebill						
Contact:	Mark Rieger							Project Coordinator: -		
	FCC 15.B / F		/ 15 F	Class: N/A						
un #1b: 1	000-40000M									
requency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
q90										
2772.430	51.3	Н	54.0	-2.7	AVG	92	1.0	RB 1 MHz;VB 10 Hz;Peak		
2772.100	60.9	Н	74.0	-13.1	PK	92	1.0	RB 1 MHz;VB 3 MHz;Peak		
1248.700	41.0	Н	54.0	-13.0	AVG	186	2.4	RB 1 MHz;VB 10 Hz;Peak		
1249.160	67.6	Н	74.0	-6.4	PK	186	2.4	RB 1 MHz;VB 3 MHz;Peak		
4850.960	51.1	V	54.0	-2.9	AVG	227	2.0	RB 1 MHz;VB 10 Hz;Peak		
4851.180	58.5	V	74.0	-15.5	PK	227	2.0	RB 1 MHz;VB 3 MHz;Peak		
5036.410	51.2	V	54.0	-2.8	AVG	254	1.5	RB 1 MHz;VB 10 Hz;Peak		
5035.470	62.2	V	74.0	-11.8	PK	254	1.5	RB 1 MHz;VB 3 MHz;Peak		
6933.300	58.1	V	68.3	-10.2	PK	336	1.0	RB 1 MHz;VB 3 MHz;Peak		
5445.680	47.8	V	54.0	-6.2	AVG	342	1.0	RB 1 MHz;VB 10 Hz;Peak		
5445.130	59.2	V	74.0	-14.8	PK	342	1.0	RB 1 MHz;VB 3 MHz;Peak		
	48.5	V	54.0	-5.5	AVG	10	1.1	RB 1 MHz;VB 10 Hz;Peak		
	60.4	V	74.0	-13.6	PK	10	1.1	RB 1 MHz;VB 3 MHz;Peak		
15592.560 15589.160 10399.030	67.5	V	68.3	-0.8	PK	44	1.0	RB 1 MHz;VB 3 MHz;Peak		



Client:	ARRIS							Job Number: JD102669		
							T-Log Number: T103891			
Model:	el: C61W						Project Manager: Christine Krebill			
Contact:	Contact: Mark Rieger						Project Coordinator: -			
Standard: FCC 15.B / FCC 15.247 / 15.E							Class: N/A			
otanuara.	100 10.071	00 10.24	7 10.L							
Run #2• R	adiated Spuri	ous Emis	sions							
	Date of Test: 3				С	onfig. Used:	1			
	est Engineer: I					fig Change:				
	est Location: I					UT Voltage:				
Channel:	2475MHz		Mode:	RF4CE						
Tx Chain:	Ant 0		Data Rate:	-						
Channel:	157		Mode:	11a						
Tx Chain:	4Tx		Data Rate:	6MB/s						
				•						
Run #1a: 3	0-1000MHz									
Frequency	Level	Pol	15.209 / 15	5.247 / 15E	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
152.465	42.0	V	43.5	-1.5	Peak	299	1.0			
51.383	38.2	V	40.0	-1.8	Peak	126	1.0			
101.924	39.1	V	43.5	-4.4	Peak	348	1.0			
134.970	41.7	V	43.5	-1.8	Peak	259	1.0			
204.950	49.2	V	-	-	Peak	185	1.0	Not related to Radio		
214.669	49.1	V	-	-	Peak	27	1.0	Not related to Radio		
226.333	51.1	Н	-	-	Peak	121	1.5	Not related to Radio		
237.996	46.3	H	-	-	Peak	111	2.5	Not related to Radio		
249.659	46.7	Н	-	-	Peak	334	3.5	Not related to Radio		
261.323	43.9	H	46.0	-2.1	Peak	313	2.0			
272.986	48.5	H	-	-	Peak	120	1.0	Not related to Radio		
306.032	41.7	V	46.0	-4.3	Peak	224	1.5			
358.517	59.0	H	-	-	Peak	224	3.0	Not related to Radio		
405.170	45.1	V	-	-	Peak	210	1.0	Not related to Radio		
461.543	41.7	V	46.0	-4.3	Peak	289	1.0			
500.421	43.2	H	46.0	-2.8	Peak	215	1.5			
512.084	43.8	V	46.0	-2.2	Peak	304	1.0			
716.192	44.0	H	46.0	-2.0	Peak	254	1.0			
727.856	41.0	V	46.0 46.0	-5.0 -4.3	Peak Peak	353 224	1.0 1.0			

MHz dB 11567.750 5 11568.850 6 4949.060 4 4948.930 5 2722.240 3 2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6	W k Rieger C 15.B / FCC 15	l 15.20 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	09 / 15E Margin -1.3 -7.8 -6.3 -18.8 -14.4	Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 356 356 228	T- Project Project Height meters 1.0 1.0	Job Number: JD102669 Log Number: T103891 ect Manager: Christine Krebill Coordinator: - Class: N/A Comments RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
Model: C611 Contact: Mark Standard: FCC Run #1b: 1000-4 Frequency L MHz dB 11567.750 5 11568.850 6 4949.060 4 2722.240 3 2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6	W k Rieger 2 15.B / FCC 15 40000MHz evel Po 8µV/m v/r 52.7 V 66.2 V 47.7 V 55.2 V 39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	l 15.20 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -1.3 -7.8 -6.3 -18.8 -14.4	Pk/QP/Avg AVG PK AVG	degrees 356 356	Project Project Height meters 1.0 1.0	Coordinator: - Class: N/A Comments RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
Contact: Mark Standard: FCC Run #1b: 1000-4 Frequency L MHz dB 11567.750 5 11568.850 6 4949.060 4 948.930 5 2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6	k Rieger 2 15.B / FCC 15 40000MHz evel Po 3µV/m v/r 52.7 V 66.2 V 47.7 V 55.2 V 39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	l 15.20 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -1.3 -7.8 -6.3 -18.8 -14.4	Pk/QP/Avg AVG PK AVG	degrees 356 356	Project Height meters 1.0 1.0	Coordinator: - Class: N/A Comments RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
Standard: FCC Run #1b: 1000-4 Frequency L MHz dB 11567.750 5 11568.850 6 4949.060 4 4948.930 5 2722.240 3 2722.510 5 1248.780 4 248.840 6 6032.760 6 5549.810 6 23142.260 6	2 15.B / FCC 15 40000MHz evel Po 8µV/m v/r 52.7 V 66.2 V 47.7 V 55.2 V 39.6 H 51.7 H 66.0 H 66.3 V	l 15.20 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -1.3 -7.8 -6.3 -18.8 -14.4	Pk/QP/Avg AVG PK AVG	degrees 356 356	Project Height meters 1.0 1.0	Coordinator: - Class: N/A Comments RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
Standard: FCC Run #1b: 1000-4 Frequency L MHz dB 11567.750 5 11568.850 6 4949.060 4 4948.930 5 2722.240 3 2722.510 5 1248.780 4 248.840 6 6032.760 6 5549.810 6 23142.260 6	2 15.B / FCC 15 40000MHz evel Po 8µV/m v/r 52.7 V 66.2 V 47.7 V 55.2 V 39.6 H 51.7 H 66.0 H 66.3 V	l 15.20 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -1.3 -7.8 -6.3 -18.8 -14.4	Pk/QP/Avg AVG PK AVG	degrees 356 356	Height meters 1.0 1.0	Class: N/A Comments RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
Run #1b: 1000-4 Frequency L MHz dB 11567.750 5 11568.850 6 4949.060 4 4948.930 5 2722.240 3 2722.510 5 1248.840 6 6032.760 6 5549.810 6	40000MHz .evel Po βμV/m v/r 52.7 V 66.2 V 47.7 V 55.2 V 39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	l 15.20 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -1.3 -7.8 -6.3 -18.8 -14.4	Pk/QP/Avg AVG PK AVG	degrees 356 356	meters 1.0 1.0	Comments RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
Frequency L MHz dB 11567.750 5 11568.850 6 4949.060 4 4948.930 5 2722.240 3 2722.510 5 1248.840 6 6032.760 6 5549.810 6	evel Po βμV/m v/r 52.7 V 66.2 V 47.7 V 55.2 V 39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0	Margin -1.3 -7.8 -6.3 -18.8 -14.4	Pk/QP/Avg AVG PK AVG	degrees 356 356	meters 1.0 1.0	RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
MHz dB 11567.750 5 11568.850 6 4949.060 4 4948.930 5 2722.240 3 2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6	βμV/m v/h 52.7 V 66.2 V 47.7 V 55.2 V 39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0	Margin -1.3 -7.8 -6.3 -18.8 -14.4	Pk/QP/Avg AVG PK AVG	degrees 356 356	meters 1.0 1.0	RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
11567.750 5 11568.850 6 4949.060 4 4948.930 5 2722.240 3 2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6	52.7 V 66.2 V 47.7 V 55.2 V 39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0	-1.3 -7.8 -6.3 -18.8 -14.4	AVG PK AVG	356 356	1.0 1.0	RB 1 MHz;VB 3 MHz;Peak
11568.850 6 4949.060 4 4948.930 5 2722.240 3 2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6 23142.260 6	66.2 V 47.7 V 55.2 V 39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	74.0 54.0 74.0 54.0 74.0 54.0 54.0	-7.8 -6.3 -18.8 -14.4	PK AVG	356	1.0	RB 1 MHz;VB 3 MHz;Peak
4949.060 4 4948.930 5 2722.240 3 2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6 23142.260 6	47.7 V 55.2 V 39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	54.0 74.0 54.0 74.0 54.0	-6.3 -18.8 -14.4	AVG			
4948.930 5 2722.240 3 2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6 23142.260 6	55.2 V 39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	74.0 54.0 74.0 54.0	-18.8 -14.4		228		
2722.240 3 2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6 23142.260 6	39.6 H 51.7 H 41.7 H 66.0 H 66.3 V	54.0 74.0 54.0	-14.4			1.7	RB 1 MHz;VB 10 Hz;Peak
2722.510 5 1248.780 4 1248.840 6 6032.760 6 5549.810 6 23142.260 6	51.7 H 41.7 H 66.0 H 66.3 V	74.0 54.0		PK	228	1.7	RB 1 MHz;VB 3 MHz;Peak
1248.780 4 1248.840 6 6032.760 6 5549.810 6 23142.260 6	41.7 H 66.0 H 66.3 V	54.0		AVG	185	1.0	RB 1 MHz;VB 10 Hz;Peak
1248.840 6 6032.760 6 5549.810 6 23142.260 6	66.0 H 66.3 V		-22.3	PK	185	1.0	RB 1 MHz;VB 3 MHz;Peak
6032.760 6 5549.810 6 23142.260 6	66.3 V		-12.3	AVG	169	1.6	RB 1 MHz;VB 10 Hz;Peak
5549.810 6 23142.260 6		74.0	-8.0	PK	169	1.6	RB 1 MHz;VB 3 MHz;Peak
23142.260 6	668 I V	68.3	-2.0	PK	162	1.6	RB 1 MHz;VB 3 MHz;Peak
	62.6 V	68.3 68.3	-2.5 -5.7	PK PK	96 4	<u>1.2</u> 1.8	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
RF4CE Ch25, 8 120.0 - 100.0 - (III) 80.0 - PD 60.0 - 40.0 - 1000	802.11a Ch157	n Manuelundy	Fi	requency (MH		· · · · · · · · · · · · · · · · · · ·	

End of Report

This page is intentionally blank and marks the last page of this test report.