

Emissions Test Report

EUT Name: Wireless Video Access Point

Model No.: 405

CFR 47 Part 15.407 2012 and RSS 210:2010

Prepared for:

Mark Rieger Pace Americas 310 Providence Mine Road, Ste. 200 Nevada City, CA 95959 Tel: (530) 274-5440 Fax: (530) 273-6340

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane, Ste. A Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

 Report/Issue Date:
 September 9, 2013

 Report Number:
 31360999.004

 Revision Number
 1

 Job #
 0000110737

Revisions

Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	06/07/2013	Original Document	N/A
1	09/09/2013	Add 802.11a test result.	J. Luong

Note: Latest revision report will replace all previous reports.

Statement of Compliance

Manufacturer: Requester / Applicant:	Pace Americas 310 Providence Mine Road, Ste. 200 Nevada City, CA 95959 (530) 274-5440 Mark Rieger
Name of Equipment:	Wireless Video Access Point
Model No.	405
Type of Equipment:	Intentional Radiator
Application of Regulations:	CFR 47 Part 15.407 2012 and RSS 210:2010
Test Dates:	April 29, 2013 to September 6, 2013

Guidance Documents:

Emissions: ANSI C63.10-2009, KDB 789033 D01 General UNII Test Procedure v01r03

Test Methods:

Emissions: ANSI C63.10-2009, KDB 789033 D01 General UNII Test Procedure v01r03

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

prening

Com by

Jeremy Luong09/09/2013Conan Boyle09/09/2013Test EngineerDateLaboratory SignatureDate

Testing Cert #3331.02

US5254

2932M-1

Table of Contents

1	Executive Summary	7
1.	.1 Scope	7
1.	.2 Purpose	7
1.	.3 Summary of Test Results	8
1.	.4 Special Accessories	8
1.	.5 Equipment Modifications	8
2	Laboratory Information	9
2.	Accreditations & Endorsements 2.1.1 US Federal Communications Commission	
	2.1.2 A2LA	9
	2.1.3 Canada – Industry Canada 2.1.4 Japan – VCCI	
	2.1.5 Acceptance by Mutual Recognition Arrangement	10
2.	.2 Test Facilities	
	2.2.1 Emission Test Facility 2.2.2 Immunity Test Facility	10 10
2.	.3 Measurement Uncertainty	
	2.3.1 Sample Calculation – radiated & conducted emissions	11
	2.3.2 Measurement Uncertainty2.3.1 Measurement Uncertainty Immunity	
2.	.4 Calibration Traceability	12
3	Product Information	
3.	.1 Product Description	13
3.	.2 Equipment Configuration	13
3.	.3 Operating Mode	13
3.	.4 Unique Antenna Connector	14
	3.4.1 Results	14
4	Emissions	15
4.		15
	4.1.1 Test Method 4.1.2 Results	15
4.		
	4.2.1 Test Method	37
	4.2.2 Results	
4.	.3 Peak Excursion 4.3.1 Test Method	57 57
	4.3.2 Results	58
4.	.4 Power Spectral Density	77
	4.4.1 Test Method 4.4.2 Results	77 78

Report Number: 31360999.004 EUT: Wireless Video Access Point Model: 405 Report Date: 06/07/2013 Reissue Date: 09/09/2013 Page 4 of 179

4.5	Transmitter Spurious Emissions	107
4.5.		107
4.5.2		108
4.5.3		
4.5.4		
4.6	AC Conducted Emissions	160
4.6.		
4.6.2	2 Test Results	160
4.7	Frequency Stability	165
4.7.		
4.7.2	2 Manufacturer Declaration	165
4.7.3	3 Limit	
4.7.4	4 Test results	166
4.8	Voltage Variation	168
4.8.1	1 Test Methodology	168
4.8.2	2 Test results	168
4.9	Maximum Permissible Exposure	170
4.9.1		
4.9.2	2 RF Exposure Limit	170
LIMITS	S FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)	170
4.9.3		
4.9.4	4 Classification	171
4.9.5		
4.9.6		
5 Tes	t Equipment Use List	172
5.1	Equipment List	172
6 EM	IC Test Plan	
6.1	Introduction	
6.2		173
6.3	Equipment Under Test (EUT)	
6.4	Test Specifications	179

Index of Tables

Table 1: Summary of Test Results	8
Table 2: RF Output Power at the Antenna Port – Test Results	16
Table 3: Average Output Power at the Antenna Port – Reference Only	18
Table 4: Occupied Bandwidth – Test Results	38
Table 5: Peak Excursion – Test Results	58
Table 6: Power Spectral Density – Test Results	78
Table 7: Transmit Spurious Emission at Band-Edge Requirements	.109
Table 8: AC Conducted Emissions – Test Results	.160
Table 9: Frequency Stability – Test Results	166
Table 10: Voltage Variation – Test Results	168
Table 11: Customer Information	.173
Table 12: Technical Contact Information	.173
Table 13: EUT Specifications	.174
Table 14: EUT Channel Power Specifications	.176
Table 15: Interface Specifications	.176
Table 16: Supported Equipment	. 177
Table 17: Description of Sample used for Testing	. 177
Table 18: Description of Test Configuration used for Radiated Measurement.	. 177
Table 19: Final Test Mode for 5470 - 5725 Band	. 177
Table 20: Test Specifications	.179

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.407 2012 and RSS 210:2010 based on the results of testing performed on April 29, 2013 to September 6, 2013 on the Wireless Video Access Point Model 405 manufactured by Pace Americas This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Report Number: 31360999.004

Model: 405

EUT: Wireless Video Access Point

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

This report will document the result for operating frequency band 5470 MHz to 5725 MHz.

Scope

1.3 Summary of Test Results

Table 1: Summary of Test Results

Test	Test Method ANSI C63.10	Test Parameters (from Standard)	Result
Spurious Emission in Transmitted Mode	CFR47 15.209, CFR47 15.407 (b) RSS-GEN Sect.7.2.3, RSS 210 Sect. A.9.2	Class B	Complied
Restricted Bands of Operation	CFR47 15.205, RSS 210 Sect.2.6	Class B	Complied
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect.7.2.2	Class B	Complied
Occupied Bandwidth	CFR47 15.407 (a), RSS GEN Sect.4.4.1	Na	N/A
Maximum Output Power	CFR47 15.407 (a), RSS 210 Sect. A.9.2	Band 3: 23.97 dBm	Complied
Peak Power Spectral Density	CFR47 15.407 (a), RSS 210 Sect. A.9.2	Band 2: 11 dBm/MHz	Complied
Peak Excursion Ratio	CFR47 15.407 (a)(6)	< 13 dB	Complied
Conducted Emission – Antenna Port	CFR47 15.407 (b), RSS 210 Sect.6.2.2	30 MHz - 40 GHz < 27 dBm/MHz	Complied
Frequency Stability	CFR47 15.407 (g), RSS GEN Sect. 4.7.	±20 ppm	Complied
RF Exposure	CFR47 15.247 (i), 2.1091	General Population	Complied

Note: This report will cover only band 5470 MHz to 5825 MHz.

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 **US Federal Communications Commission**

TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (US5254). The laboratory scope of accreditation includes: Title 47 CFR Parts 15,

18, and 90. The accreditation is updated every 3 years.

2.1.2 A2LA

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:2005 and ISO 9002 (Lab Code Testing Cert #3331.02). The scope of laboratory

accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 **Canada – Industry Canada**

TUV Rheinland of North America at the 1279 Quarry Ln, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services for the general public on a fee basis. This laboratory test facilities have been

fully described in reports submitted to and accepted by Industry Canada (File Number 2932M-1). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment,

and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0031

VCCI Registration No. for Santa Clara: A-0032

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Ln, Pleasanton, CA 94566 test results and test reports within the scope of the laboratory

A2LA accreditation will be accepted by each member country.

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA. The 2305 Mission College, Santa Clara, 95054, USA location is considered a Pleasanton annex.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2009, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Lab Code Testing Cert #3331.02). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2009, at a test distance of 3 meter and 5 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors.

For EFT, Surge, PQF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = RAW - AMP + CBL + ACF$

Where: RAW = Measured level before correction (dB μ V)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m

2.3.2 Measurement Uncertainty

Per CISPR 16-4-2	$\mathbf{U}_{\mathbf{lab}}$	$\mathbf{U}_{\mathbf{cispr}}$					
Radiated Disturbance @ 10 meters							
30 – 1,000 MHz	2.25 dB	4.51 dB					
Radiated Disturbance @ 3 n	neters						
30 – 1,000 MHz	2.26 dB	4.52 dB					
1 – 6 GHz	2.12 dB	4.25 dB					
6 – 40 GHz	2.47 dB	4.93 dB					
Conducted Disturbance @ M	Conducted Disturbance @ Mains Terminals						
150 kHz – 30 MHz	1.09 dB	2.18 dB					
Disturbance Power							
30 MHz – 300 MHz	3.92 dB	4.3 dB					

2.3.3 Measurement Uncertainty Immunity

The estimated combined standard uncertainty for ESD immunity measurements is \pm 8.2%.	Per IEC 61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is ± 4.10 dB.	Per IEC 61000-4-3
The estimated combined standard uncertainty for conducted immunity measurements with CDN is \pm 3.66 dB	Per IEC 61000-4-6
The estimated combined standard uncertainty for power frequency magnetic field immunity is $\pm 2.9\%$.	Per IEC 61000-4-8

Thermo KeyTek EMC Pro

The estimated combined standard uncertainty for EFT fast transient immunity measurements is $\pm 2.6\%$.

The estimated combined standard uncertainty for surge immunity measurements is $\pm 2.6\%$.

The estimated combined standard uncertainty for voltage variation and interruption measurements is $\pm 1.74\%$.

Measurement Uncertainty – Radio Testing

The estimated combined standard uncertainty for frequency error measurements is \pm 3.88 Hz
The estimated combined standard uncertainty for carrier power measurements is \pm 1.59 dB.
The estimated combined standard uncertainty for adjacent channel power measurements is \pm 1.47 dB.
The estimated combined standard uncertainty for modulation frequency response measurements is \pm 0.46 dB.
The estimated combined standard uncertainty for transmitter conducted emission measurements is ± 4.01 dB

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

3 Product Information

3.1 Product Description

The Pace 405 wireless video access point allows service providers to securely deliver high quality HD video to any location in a subscriber home. Using state of the art wireless technology including digital beam forming, customers retain traditional "wired" levels of service and quality while service providers enjoy the benefits of shortened installation times and more flexibility in how they deploy their IPTV or OTT services

Key Feature:

- 5 GHz 802.11n wireless access point
- 4x4 MIMO (up to 600 Mbps phy rate)
- High-Power Transmit For Maximum Coverage
- Gigabit Ethernet port
- Robust quality of service (QoS) and traffic management features
- Simple, push-button wireless setup for wireless set-tops
- TR-069 Management Client
- LEDs: Power, Wireless Signal Quality, Operational Mode (AP/STA), Ethernet Link, Wireless Pairing Indicator

3.2 Equipment Configuration

A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

A description of the operation mode is given in the Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.

The final operating mode was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 **Results**

The Wireless Video Access Point has 4 internal fixed antennas, 3 onboard PCB dipole antennas and 1 stamped metal loop antenna. All antennas are integrated on the PCB. There is no external antenna connection available.

4 Emissions

Testing was performed in accordance with CFR 47 Part 15.407: 2012 and RSS 210 Annex 9: 2010. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in section 8 of the standard were used.

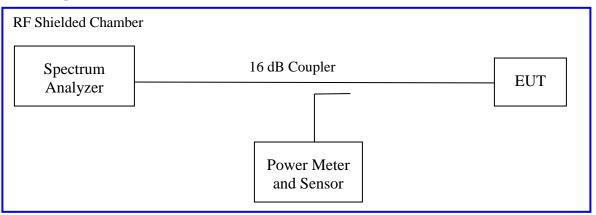
4.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power deLinering at the transmitting antenna under specified conditions of measurements in the presence of modulation.

The maximum output power and harmonics shall not exceed CFR47 Part 15.407 (a):2012 and RSS 210 A9.2: 2010.

The maximum transmitted powers are

Band 5150-5250 MHz:50 mW or 4 dBm + 10Log B.


Band 5250-5350 MHz, 5470-5725 MHz: 250 mW or 11 dBm + 10Log B.

Band 5725-5825 MHz: 1 W or 17 dBm + 10Log B. Where B is 26 dB Bandwidth.

4.1.1 Test Method

The ANSI C63.10-2009 Section 6.10.3.1 conducted method was used to measure the channel power output. The preliminary investigation was performed at different data rate/ chain to determine the highest power output for each mode. The worst findings were conducted on 3 channels in each mode on the sample, S/N 09130M000104, per CFR47 Part 15.407(a): 2012 and RSS 210 A.9.2; 5470 MHz to 5725 MHz. The worst mode results indicated below.

Test Setup:

Method SA-1 of "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices" applies since the EUT continuously transmit; where duty cycle is greater than 98%. Sample detector was used.

Each chain was measured individually and applied the measure-and-sum approach per KDB66291.

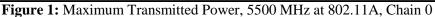
4.1.2 **Results**

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

					Results		
Test Conditi	ions: Conduc	cted Measu	urement, N	Normal Te	mperature		
Antenna Ty	pe: Integrate	d			Power S	Setting: See test	plan
Max. Direct	ional Gain:	+ 8 dBi			Signal S	tate: Modulated	l at 100%.
Ambient Temp.: 23 °CRelative Humidity:30%							
l			802.1	1a Mode,	, 4x4		
Operating Channel	Limit [dBm]	Ch0 [dBm]	Ch1 [dBm]	Ch2 [dBm]	Ch3 [dBm]	Total Power [dBm]	Margin [dB]
5500	21.97	15.26	15.91	15.71	15.83	21.70	-0.27
5580	21.97	15.36	15.79	15.83	16.14	21.81	-0.16
5700	21.97	14.85	14.80	14.38	15.00	20.78	-1.19
the lin	mit is reduced	d for every				ne limit would be	7 Part 15.407 (a), e 21.97 dBm.
Operating	Limit	Ch0	/ dBi gain 802.11n (Ch1	exceeding HT20) M Ch2	g 6 dBi. Th ode, 4x4 Ch3	Total Power	e 21.97 dBm. Margin
Operating Channel	Limit [dBm]	Ch0 [dBm]	7 dBi gain 802.11n (Ch1 [dBm]	exceeding HT20) M Ch2 [dBm]	g 6 dBi. Th ode, 4x4 Ch3 [dBm]	Total Power [dBm]	21.97 dBm. Margin [dB]
Operating	Limit	Ch0	/ dBi gain 802.11n (Ch1	exceeding HT20) M Ch2	g 6 dBi. Th ode, 4x4 Ch3	Total Power	e 21.97 dBm. Margin
Operating Channel 5500 5580 5700	Limit [dBm] 21.97 21.97 21.97	Ch0 [dBm] 13.16 13.08 12.77	<pre>/ dBi gain 802.11n (Ch1 [dBm] 13.75 14.18 13.39</pre>	exceeding HT20) M Ch2 [dBm] 13.15 13.59 12.76	g 6 dBi. Th ode, 4x4 Ch3 [dBm] 14.24 14.31 13.33	Total Power [dBm] 19.62 19.84 19.09	21.97 dBm. Margin [dB] -2.29 -2.07 -2.82
Operating Channel 5500 5580 5700 Note: 1.The 2. All per 1 3. The	Limit [dBm] 21.97 21.97 21.97 highest outp chains will t KDB 662911 e total directi	Ch0 [dBm] 13.16 13.08 12.77 ut power v be on at all onal gain v	<pre>/ dBi gain 802.11n (Ch1 [dBm] 13.75 14.18 13.39 was observ time and would be 3</pre>	exceeding HT20) M Ch2 [dBm] 13.15 13.59 12.76 ved at HT2 beam perf 8 dBi; 2 d	g 6 dBi. Th ode, 4x4 Ch3 [dBm] 14.24 14.31 13.33 20 6.5 Mb forming. F Bi +10*L0	Total Power [dBm] 19.62 19.84 19.09 ps, 4 Data Stream F output powers	Margin [dB] -2.29 -2.07 -2.82 -s.were summed 7 Part 15.407 (a),
Operating Channel 5500 5580 5700 Note: 1.The 2. All per 1 3. The	Limit [dBm] 21.97 21.97 21.97 highest outp chains will t KDB 662911 e total directi	Ch0 [dBm] 13.16 13.08 12.77 ut power v be on at all onal gain of for every	v dBi gain 802.11n (Ch1 [dBm] 13.75 14.18 13.39 was observed time and would be and v dBi gain	exceeding HT20) M Ch2 [dBm] 13.15 13.59 12.76 ved at HT2 beam perf 8 dBi; 2 d	g 6 dBi. Th ode, 4x4 Ch3 [dBm] 14.24 14.31 13.33 20 6.5 Mb forming. F Bi +10*Lo g 6 dBi. Th ode, 4x4	Total Power [dBm] 19.62 19.84 19.09 ps, 4 Data Strear RF output powers og(4). Per CFR4' he limit would be	Margin [dB] -2.29 -2.07 -2.82 -s.were summed 7 Part 15.407 (a),
Operating Channel 5500 5580 5700 Note: 1.The 2. All per 1 3. The	Limit [dBm] 21.97 21.97 21.97 highest outp chains will t KDB 662911 e total directi	Ch0 [dBm] 13.16 13.08 12.77 ut power v be on at all onal gain of for every	v dBi gain 802.11n (Ch1 [dBm] 13.75 14.18 13.39 was observed time and would be and v dBi gain	exceeding (HT20) M (ht2) (dBm) 13.15 13.59 12.76 ved at HT2 beam perf 8 dBi; 2 di exceeding	g 6 dBi. Th ode, 4x4 Ch3 [dBm] 14.24 14.31 13.33 20 6.5 Mb forming. F Bi +10*Lo g 6 dBi. Th	Total Power [dBm] 19.62 19.84 19.09 ps, 4 Data Stream RF output powers og(4). Per CFR4'	Margin [dB] -2.29 -2.07 -2.82 -s.were summed 7 Part 15.407 (a),

Table 2. RE Output P . . . 1. Port Test Pa 11t

5550	21.97	14.92	15.71	15.01	15.85	21.41	-0.56
5670	21.97	14.71	15.19	15.03	15.67	21.19	-0.78
Note: 1 The	highost outp	ut nowor a	voc obcom	rad at UT	10 12 5 M	hng 1 Data Stray	200


Note: 1.The highest output power was observed at HT40 13.5 Mbps, 4 Data Streams.2. All chains will be on at all time and beam performing. RF output powers were summed per KDB 662911.

3. The total directional gain would be 8 dBi; 2 dBi +10*Log(4). Per CFR47 Part 15.407 (a), the limit is reduced for every dBi gain exceeding 6 dBi. The limit would be 21.97 dBm

Test Condition	ons: Conduc	ted Measu	irement, N	Normal Te	mperature		
Antenna Typ	be: Integrate	d			Power S	Setting: See test	plan
Max. Directi	onal Gain:	+ 8 dBi			Signal S	tate: Modulated	at 100%.
Ambient Ter	np.: 23 °C		Relative Humidity: 30%				
			802.1	1a Mode,	4x4		
Operating Channel	Limit [dBm]	Ch0 [dBm]	Ch1 [dBm]	Ch2 [dBm]	Ch3 [dBm]	Total Power [dBm]	Margin [dB]
5500		14.29	14.91	14.79	14.86	20.74	
5580		14.26	14.66	14.74	15.04	20.70	
5700		14.13	14.06	13.62	14.26	20.05	
Note: The hig	ghest output	power wa	s observed	l at 802.11	a 6 Mbps	, 4 Data Streams	
			802.11n (HT20) M	ode, 4x4		
Operating Channel	Limit [dBm]	Ch0 [dBm]	Ch1 [dBm]	Ch2 [dBm]	Ch3 [dBm]	Total Power [dBm]	Margin [dB]
5500		14.05	14.72	14.14	15.25	20.59	
5580		14.64	15.77	15.21	15.93	21.43	
5700		15.24	15.32	14.54	15.24	21.12	
Note: The hig	ghest output	power wa	s observed	l at HT20	6.5 Mbps,	, 4 Data Streams	
			802.11n (HT40) M	ode, 4x4		
Operating Channel	Limit [dBm]	Ch0 [dBm]	Ch1 [dBm]	Ch2 [dBm]	Ch3 [dBm]	Total Power [dBm]	Margin [dB]
5510		15.82	15.66	15.62	16.11	21.83	
5550		15.24	16.05	15.27	15.93	21.66	
5670		14.96	15.48	15.31	15.65	21.38	
Note: The hig	ghest output	power wa	s observed	l at HT40	13.5 Mbp	s, 4 Data Stream	s

Table 3: Average Output Power at the Antenna Port – Reference Only



Figure 2: Maximum Transmitted Power, 5500 MHz at 802.11A, Chain 1

Figure 3: Maximum Transmitted Power, 5500 MHz at 802.11A, Chain 2

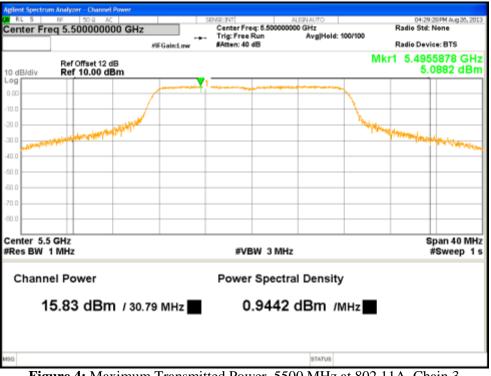


Figure 4: Maximum Transmitted Power, 5500 MHz at 802.11A, Chain 3

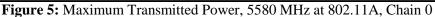


Figure 6: Maximum Transmitted Power, 5580 MHz at 802.11A, Chain 1

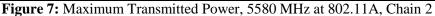


Figure 8: Maximum Transmitted Power, 5580 MHz at 802.11A, Chain 3

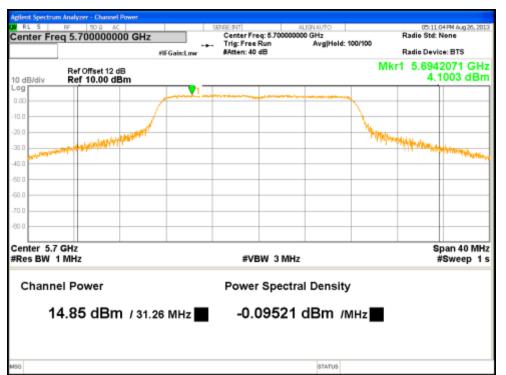


Figure 9: Maximum Transmitted Power, 5700 MHz at 802.11A, Chain 0

Figure 10: Maximum Transmitted Power, 5700 MHz at 802.11A, Chain 1

Figure 12: Maximum Transmitted Power, 5700 MHz at 802.11A, Chain 3



Figure 14: Maximum Transmitted Power, 5500 MHz at HT20, Chain 1

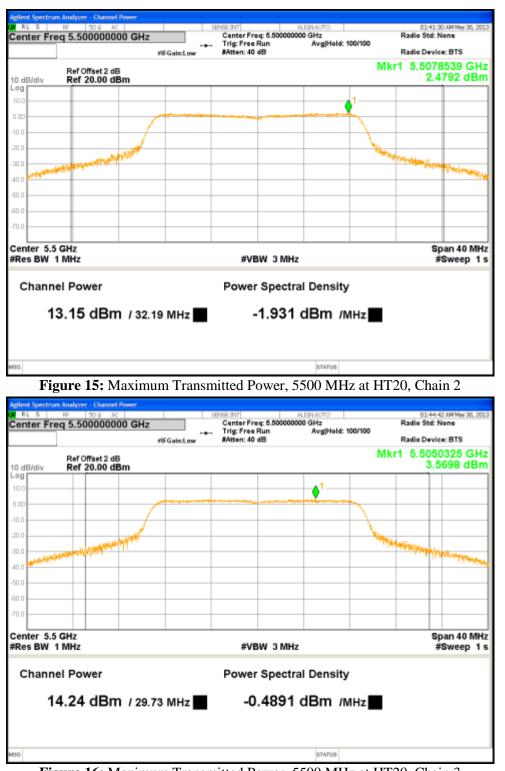


Figure 16: Maximum Transmitted Power, 5500 MHz at HT20, Chain 3

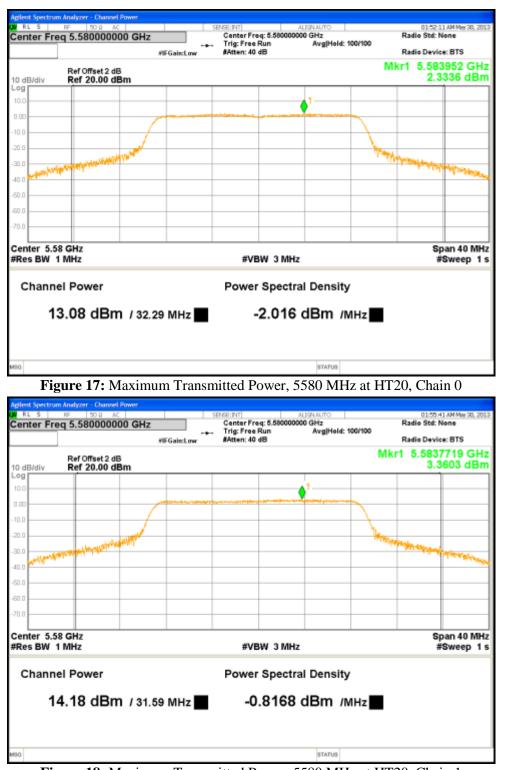


Figure 18: Maximum Transmitted Power, 5580 MHz at HT20, Chain 1

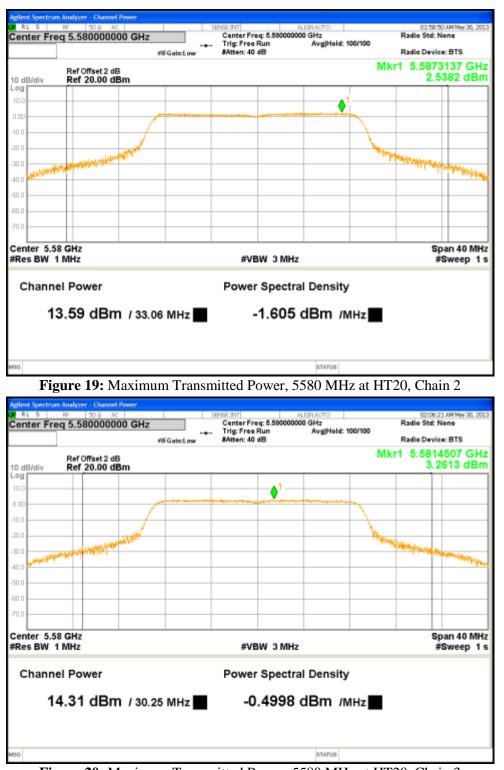


Figure 20: Maximum Transmitted Power, 5580 MHz at HT20, Chain 3

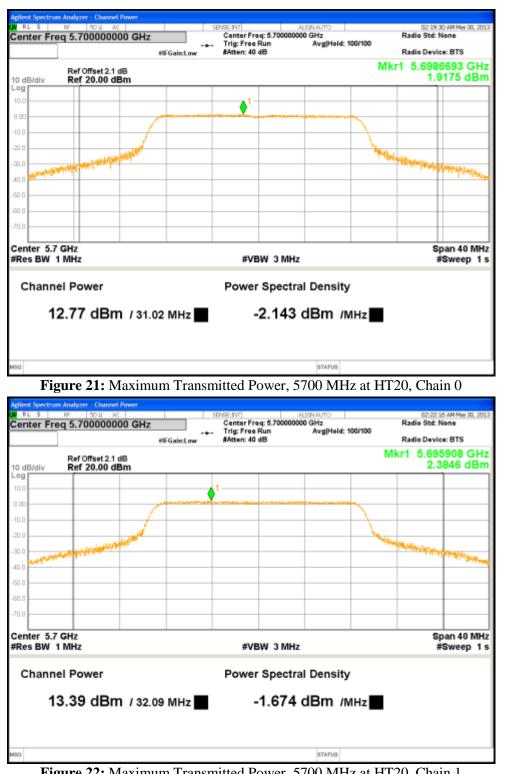


Figure 22: Maximum Transmitted Power, 5700 MHz at HT20, Chain 1

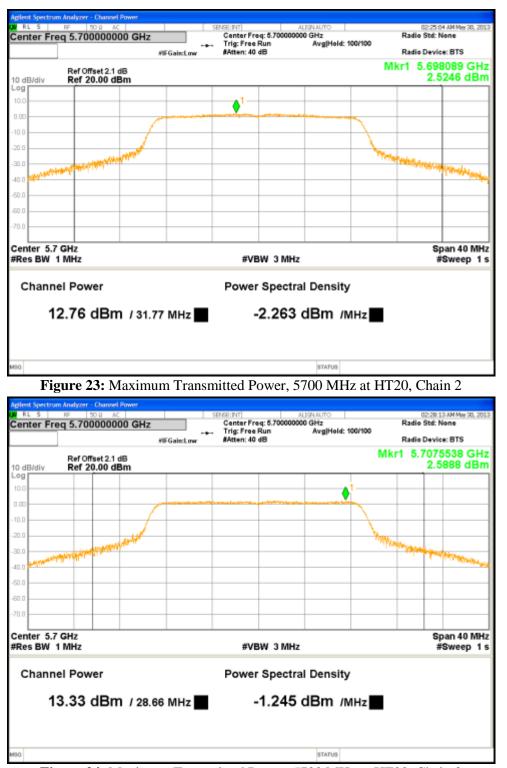


Figure 24: Maximum Transmitted Power, 5700 MHz at HT20, Chain 3

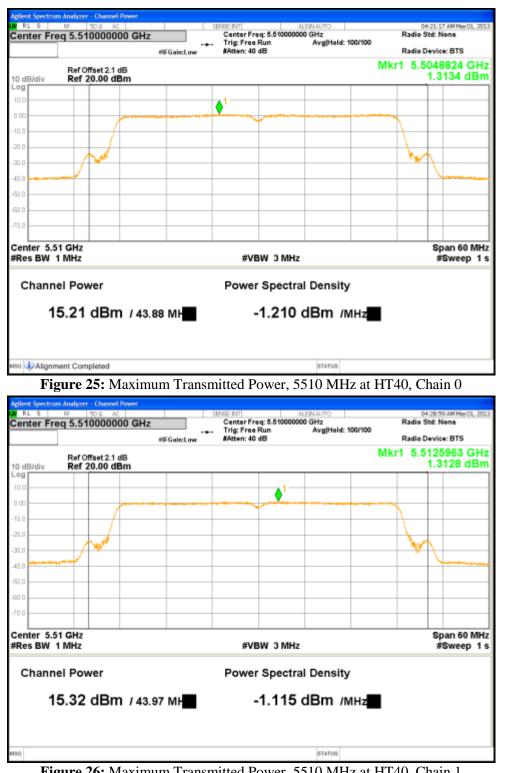


Figure 26: Maximum Transmitted Power, 5510 MHz at HT40, Chain 1

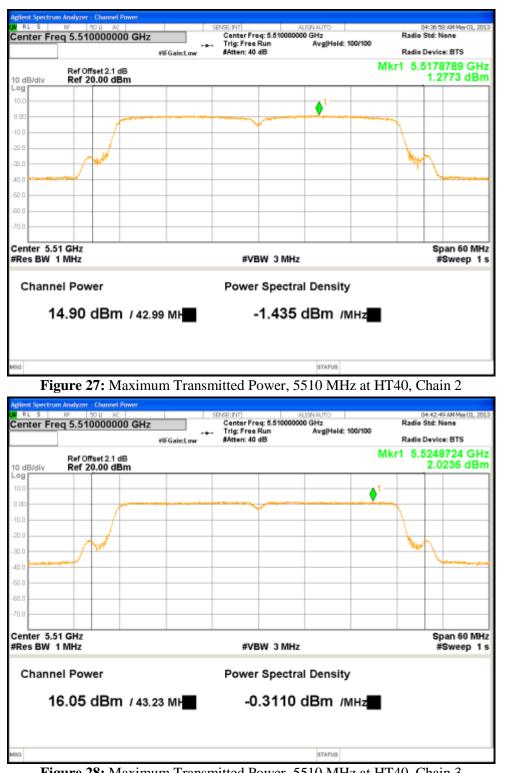


Figure 28: Maximum Transmitted Power, 5510 MHz at HT40, Chain 3

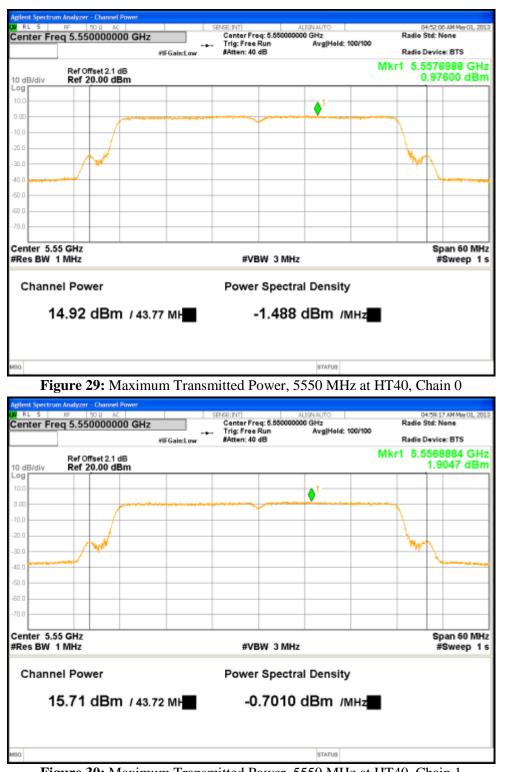


Figure 30: Maximum Transmitted Power, 5550 MHz at HT40, Chain 1

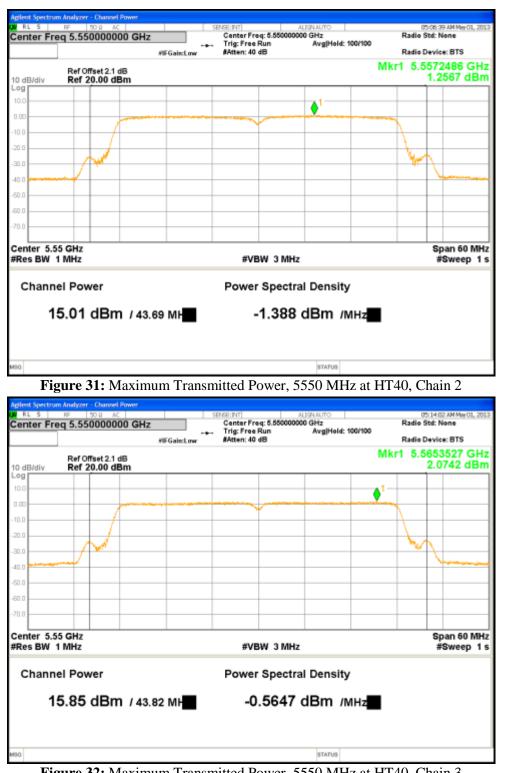


Figure 32: Maximum Transmitted Power, 5550 MHz at HT40, Chain 3

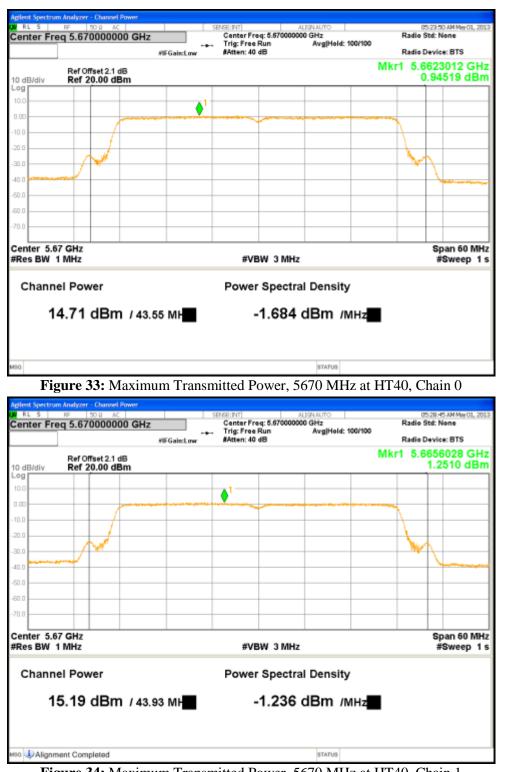


Figure 34: Maximum Transmitted Power, 5670 MHz at HT40, Chain 1

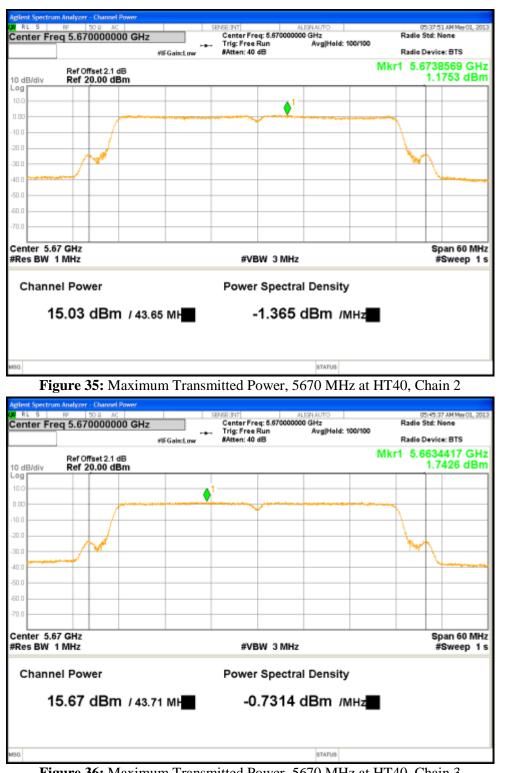


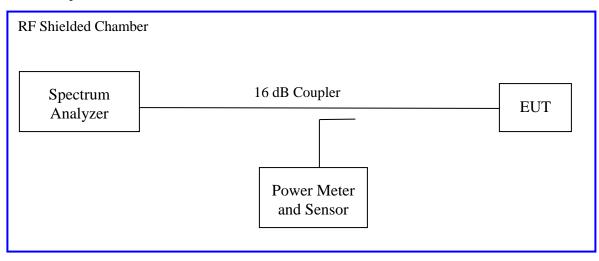
Figure 36: Maximum Transmitted Power, 5670 MHz at HT40, Chain 3

4.2 Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.

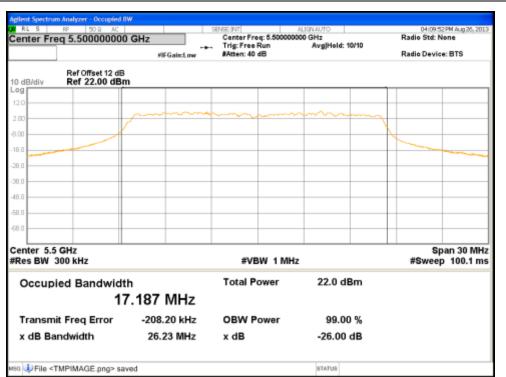
The 26 dB bandwidth is defined the bandwidth of 26 dBr from highest transmitted level of the fundamental frequency.


There is no restriction limits for the bandwidth. The 26 dB bandwidth was used to determine the limit for maximum conducted output power per CFR47 Part 15.407(a).

To obtain the tighter limit,

4.2.1 Test Method

The conducted method was used to measure the occupied bandwidth. The measurement was performed with modulation per CFR47 15.407(a) 2012 and RSS Gen Sect. 4.4.1:2010. The preliminary investigation was performed to find the narrowest 26 dB bandwidth for each operational mode at different data rates. This worst finding was performed on 3 channels in each operating frequency range; 5470 MHz to 5725 MHz on the sample, S/N 09130M000104. The results indicated below.


Test Setup:

4.2.2 **Results**

These occupied bandwidth measurements were taken for references only.

1 abic 4. (Эссиріец Ба	ndwidth – T	est Results							
Test Cond	litions: Con	ducted Meas	surement, No	rmal Tempe	rature and V	oltage only				
Antenna 7	Fype: Integr	ated	Power Setting: See Test Plan							
Max. Directional Gain: + 8 dBi Ambient Temp.: 23 °C			Signal State: Modulated at 100%. Relative Humidity:30%							
Freq.	,	26 dB Band	width (MHz)	99% Bandwidth (MHz)					
(MHz)	Ch0	Ch1	Ch2	Ch3	Ch0	Ch1	Ch2	Ch3		
5500	26.235	24.959	28.29	25.769	17.187	17.014	17.386	17.093		
5580	26.609	25.008	27.03	25.512	17.181	17.065	17.36	17.087		
5700	26.850	25.148	25.97	26.393	17.212	17.093	17.091	17.121		
Note: The	bandwidth	was measure	d at 6 Mbps f	for 802.11a 1	node.					
			Bandwidt	h (MHz) for	802.11n H	Г20				
Freq.		26 dB Band	width (MHz)	99% Bandwidth (MHz)					
(MHz)	Ch0	Ch1	Ch2	Ch3	Ch0	Ch1	Ch2	Ch3		
5500	26.994	27.106	25.851	25.578	18.147	18.310	18.231	18.089		
5580	26.852	28.340	25.790	25.673	18.157	18.351	18.158	18.086		
5700	26.931	27.936	25.254	25.859	18.169	18.438	18.014	18.133		
Note: The	bandwidth	was measure	d at 6.5 Mbp	s for 802.11	n HT20 mod	e.				
			Bandwidth	n (MHz) for	802.11n H7	F40				
Freq.	,	26 dB Band	width (MHz	·	99% Bandwidth (MHz)					
(MHz)	Ch0	Ch1	Ch2	Ch3	Ch0	Ch1	Ch2	Ch3		
5510	44.019	44.491	44.028	43.772	36.428	36.699	36.366	36.232		
5550	43.984	44.427	43.894	43.896	36.413	36.667	36.399	36.219		
5670	43.963	44.423	44.020	43.638	36.432	36.648	36.585	36.238		
	1	was measure	1	f = 000 1		d a				

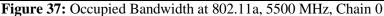


Figure 38: Occupied Bandwidth at 802.11a, 5500 MHz, Chain 1



Figure 40: Occupied Bandwidth at 802.11a, 5500 MHz, Chain 3

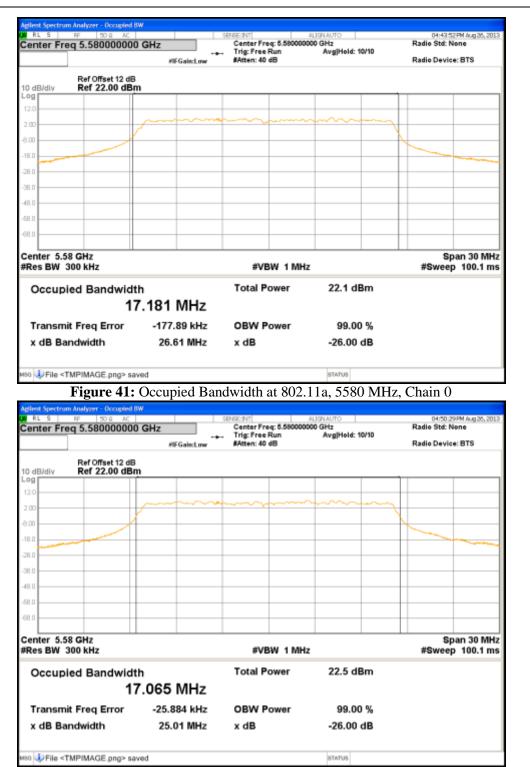


Figure 42: Occupied Bandwidth at 802.11a, 5580 MHz, Chain 1

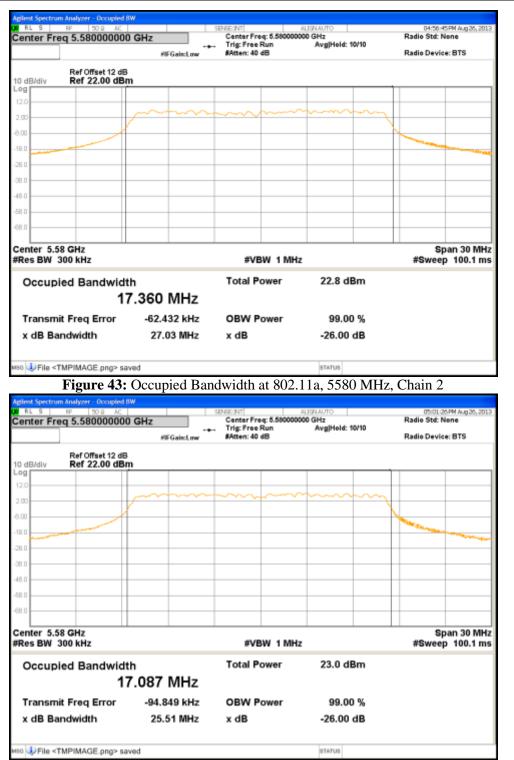


Figure 44: Occupied Bandwidth at 802.11a, 5580 MHz, Chain 3

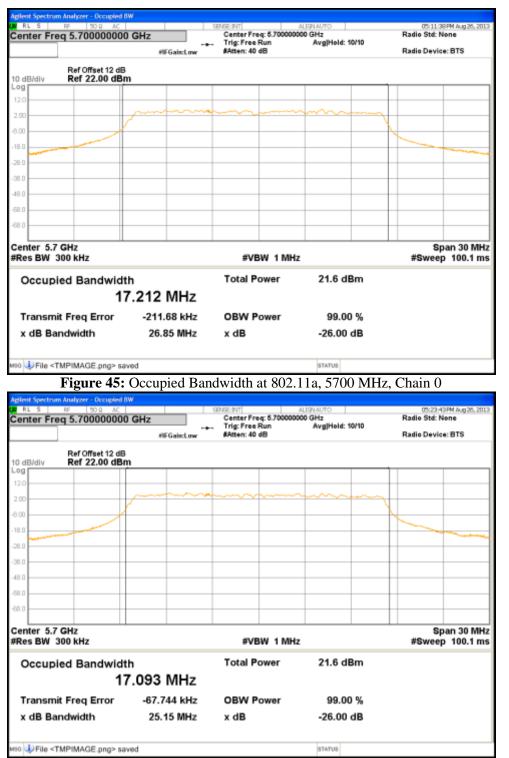


Figure 46: Occupied Bandwidth at 802.11a, 5700 MHz, Chain 1

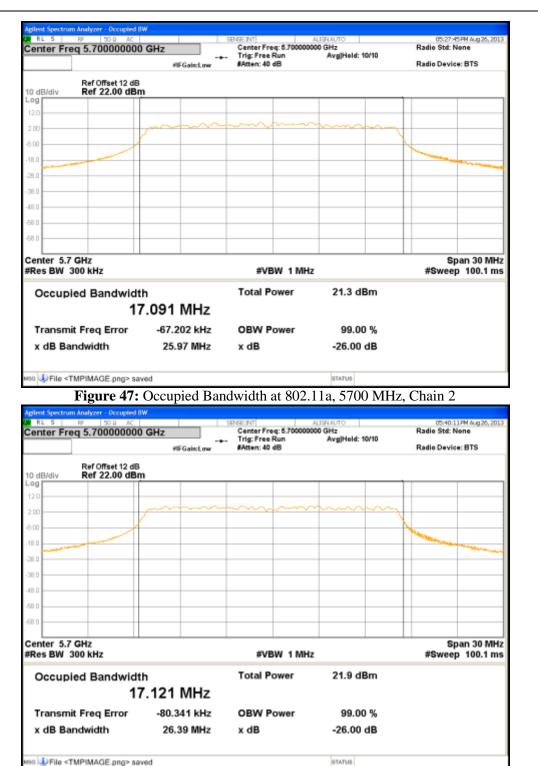
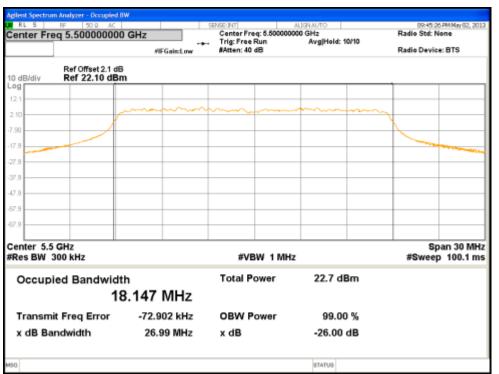
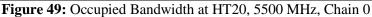




Figure 48: Occupied Bandwidth at 802.11a, 5700 MHz, Chain 3

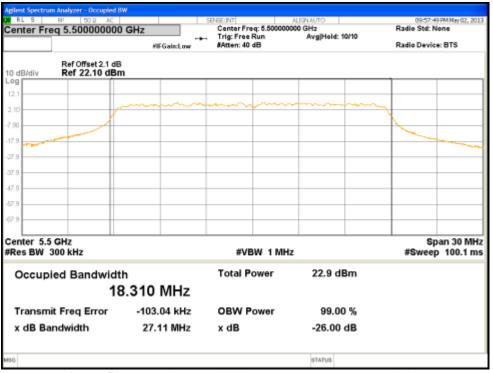
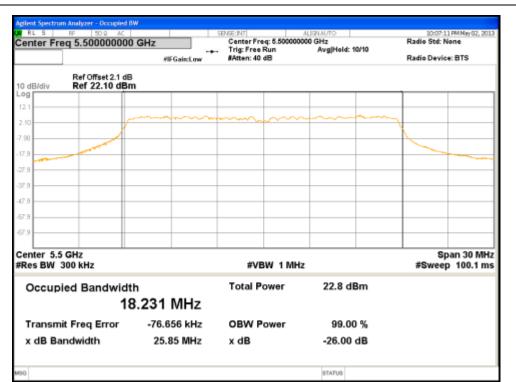
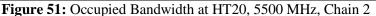




Figure 50: Occupied Bandwidth at HT20, 5500 MHz, Chain 1

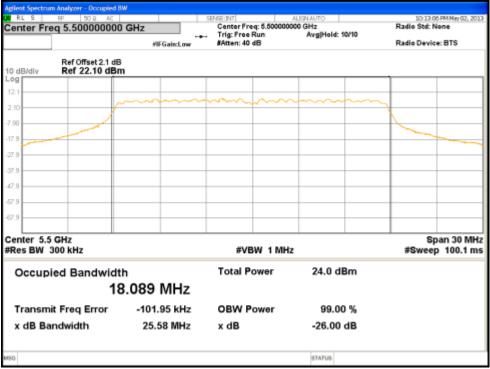
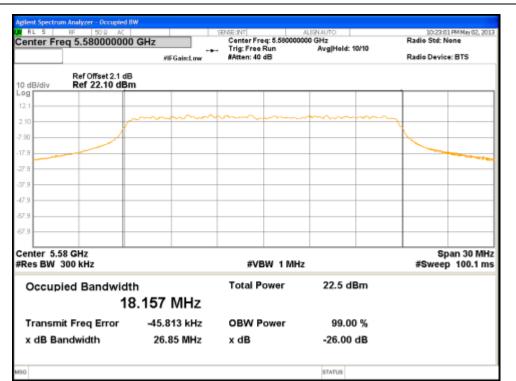
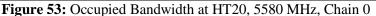




Figure 52: Occupied Bandwidth at HT20, 5500 MHz, Chain 3

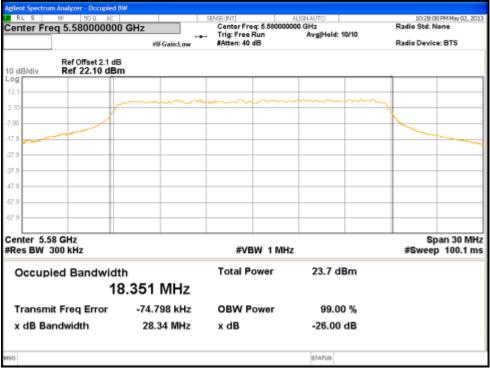
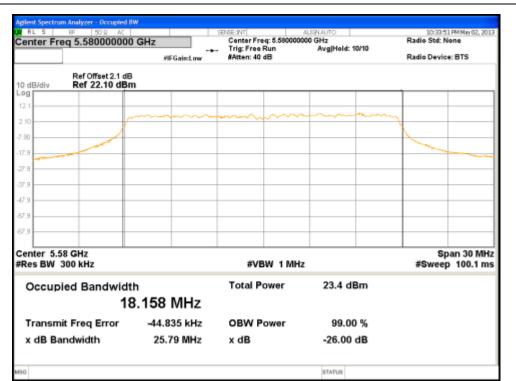
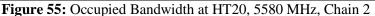




Figure 54: Occupied Bandwidth at HT20, 5580 MHz, Chain 1

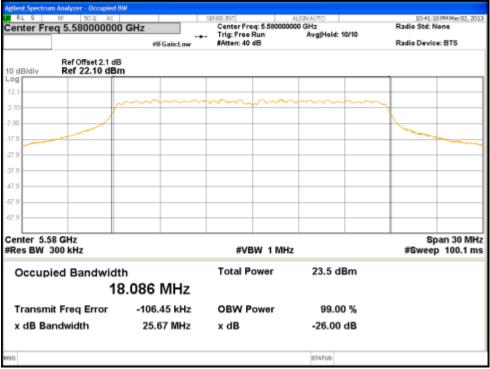
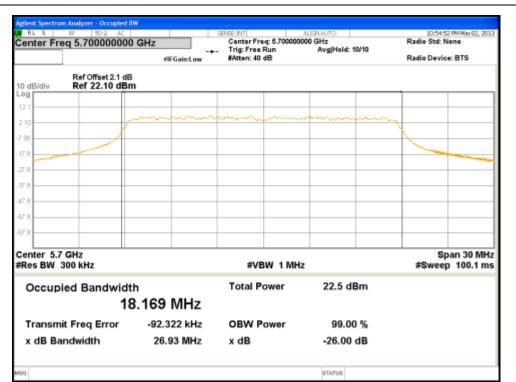
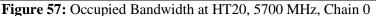




Figure 56: Occupied Bandwidth at HT20, 5580 MHz, Chain 3

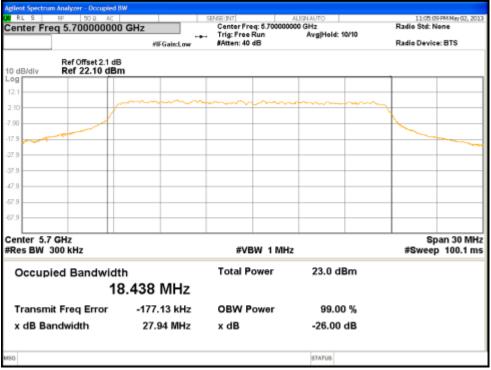
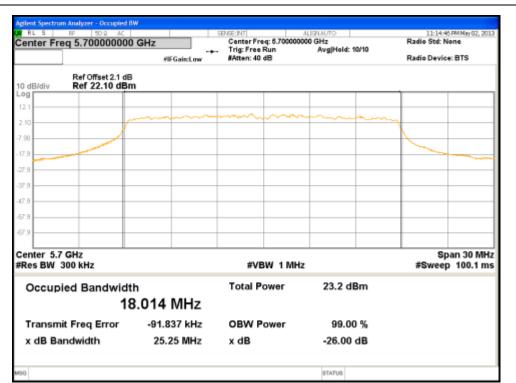
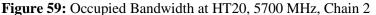




Figure 58: Occupied Bandwidth at HT20, 5700 MHz, Chain 1

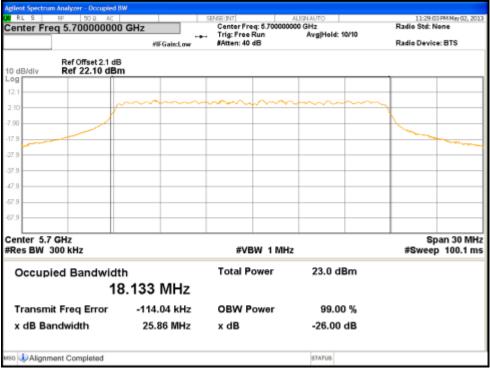
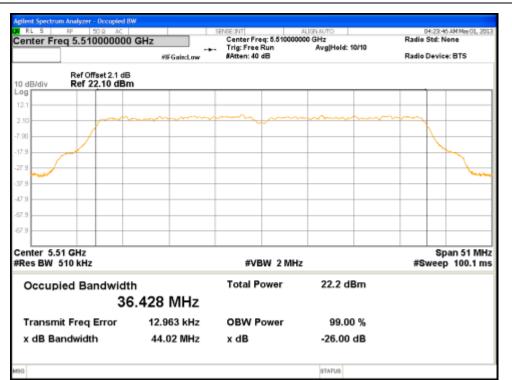
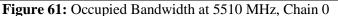




Figure 60: Occupied Bandwidth at HT20, 5700 MHz, Chain 3

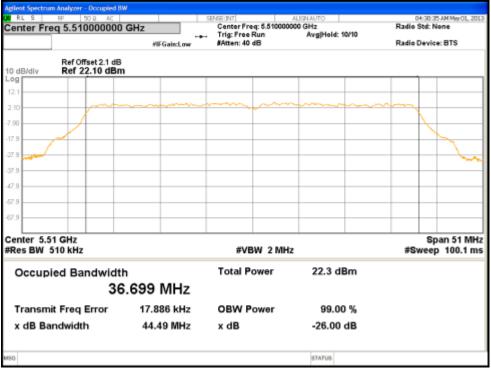
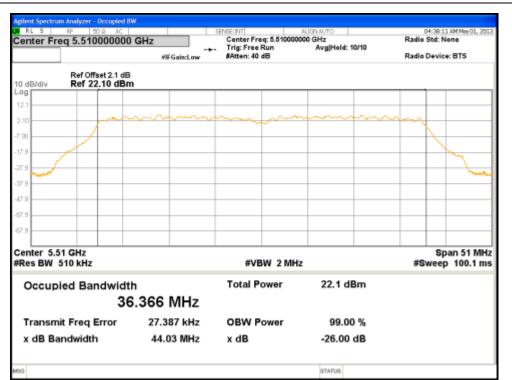
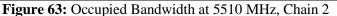




Figure 62: Occupied Bandwidth at 5510 MHz, Chain 1

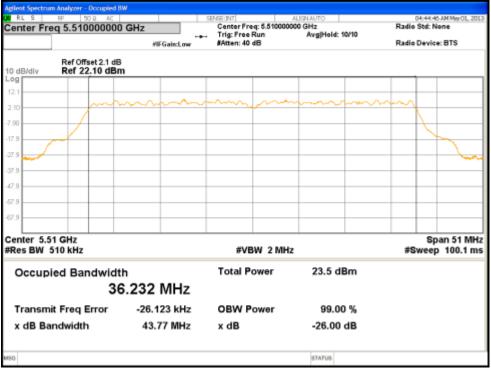
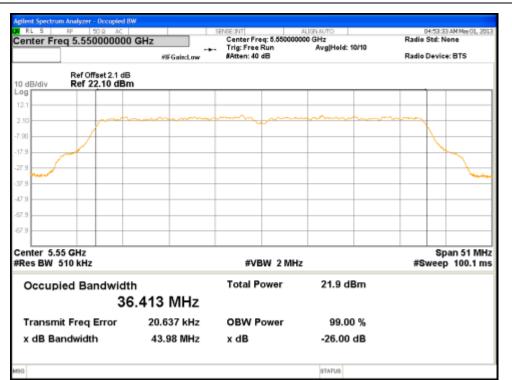
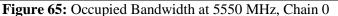




Figure 64: Occupied Bandwidth at 5510 MHz, Chain 3

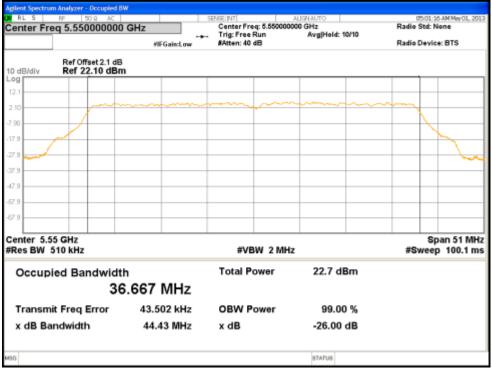
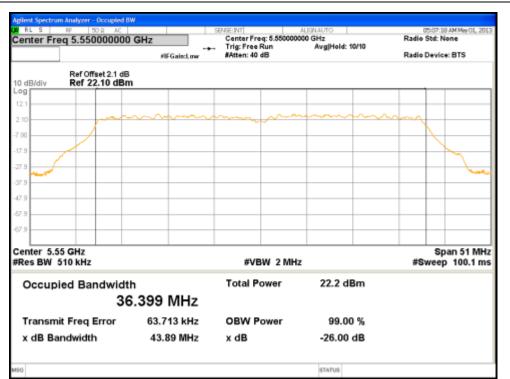
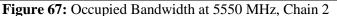




Figure 66: Occupied Bandwidth at 5550 MHz, Chain 1

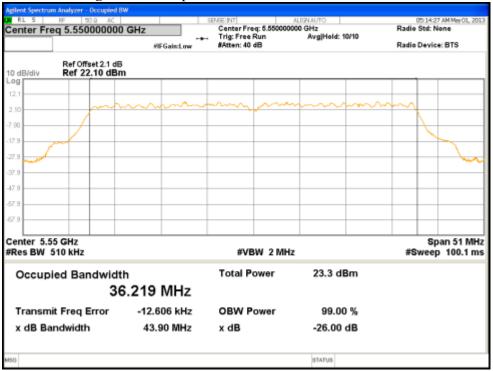
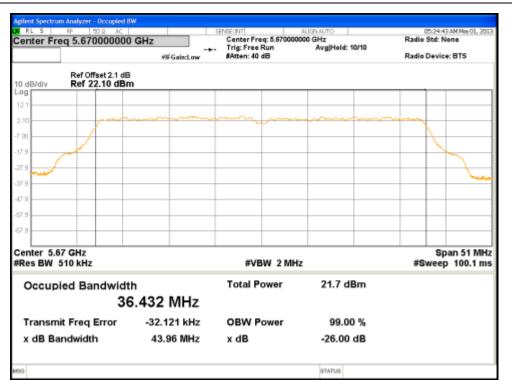
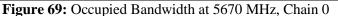




Figure 68: Occupied Bandwidth at 5550 MHz, Chain 3

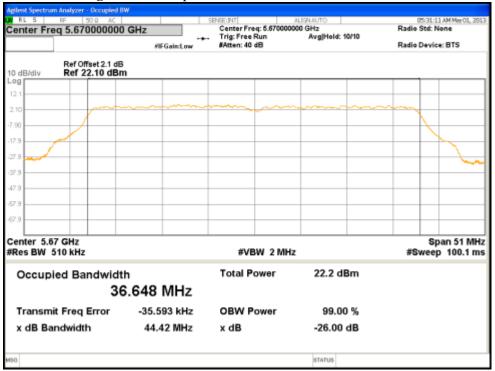
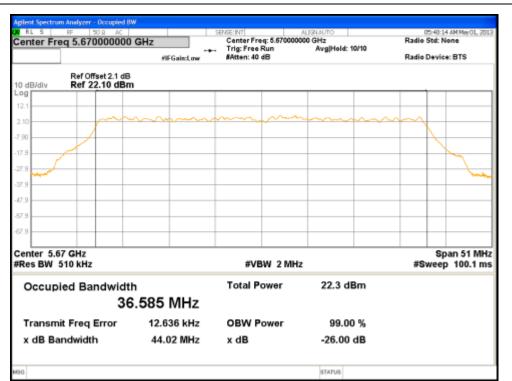
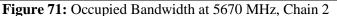




Figure 70: Occupied Bandwidth at 5670 MHz, Chain 1

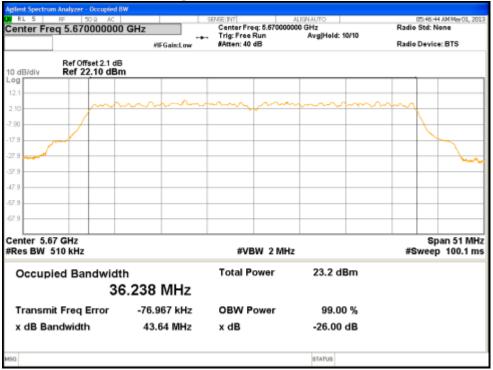
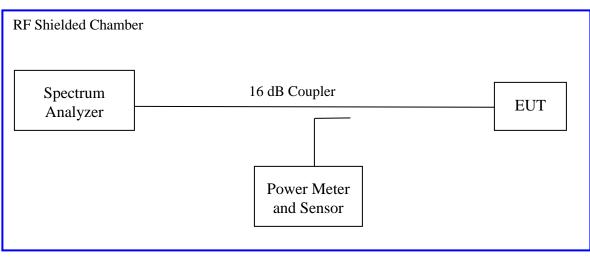


Figure 72: Occupied Bandwidth at 5670 MHz, Chain 3

4.3 Peak Excursion


According to the CFR47 Part 15.407 (a)(6), the ratio of the peak excursion of the modulation envelope(measured suing a peak hold function) to the maximum conducted output power shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

4.3.1 Test Method

The ANSI C63.10-2009 Section 6.10.4 conducted method was used to measure the peak excursion.

The measurement was performed with modulation per CFR47 Part 15.407 (a) (6). This test was conducted on 3 channels in each operating mode in frequency range 5470 MHz to 5725 MHz on the test sample, S/N 09130M000104. The worst sample result indicated below.

Test Setup:

4.3.2 **Results**

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 5: Peak Excursion – Test Results												
Test Conditions: Conducted Measurement, Normal Temperature												
Antenna Typ	e: Integrated	Power Setting: see test plan										
Max. Directi	onal Gain: + 8 dl	Bi	Signal State: Modulated at 100%.									
Ambient Ten	np.: 23 °C	Relative Humidity: 32%										
802.11a Mode												
Operating Channel	Limit [dB]	Ch0 [dB]	Ch1 [dB]	Ch2 [dB]	Ch3 [dB]	Margin [dB]						
5500	13.0	-7.40	-7.01	-7.26	-7.64	-5.36						
5580	13.0	-7.17	-7.16	-7.27	-7.57	-5.43						
5700	13.0	-7.11	-6.86	-7.29	-7.21	-5.71						
Note: The peak excursion was observed at 802.11a 6 Mbps per Data Stream.												
802.11n (HT20) Mode												
Operating Channel	Limit [dB]	Ch0 [dB]	Ch1 [dB]	Ch2 [dB]	Ch3 [dB]	Margin [dB]						
5500	13.0	-7.10	-7.30	-7.67	-8.30	-5.90						
5580	13.0	-7.50	-6.96	-7.68	-8.51	-6.04						
5700	13.0	-7.89	-7.13	-8.37	-8.48	-5.87						
Note: The peak excursion was observed at HT20 6.5 Mbps per Data Stream.												
802.11n (HT40) Mode												
Operating Channel	Limit [dB]	Ch0 [dB]	Ch1 [dB]	Ch2 [dB]	Ch3 [dB]	Margin [dB]						
5510	13.0	-7.14	-7.28	-6.96	-7.57	-6.05						
5550	13.0	-7.21	-7.32	-7.46	-7.73	-5.79						
5670	13.0	-7.65	-6.70	-7.66	-8.22	-6.30						
Note: The peak excursion was observed at HT40 13.5 Mbps per Data Stream												

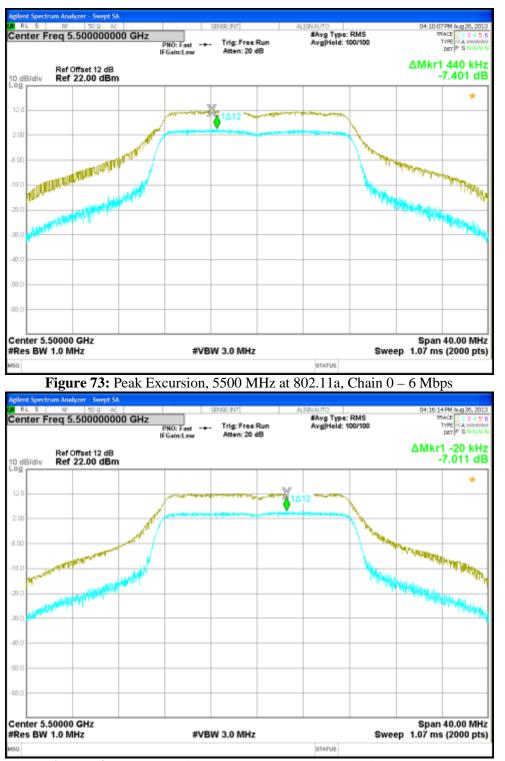


Figure 74: Peak Excursion, 5500 MHz at 802.11a, Chain 1 – 6 Mbps

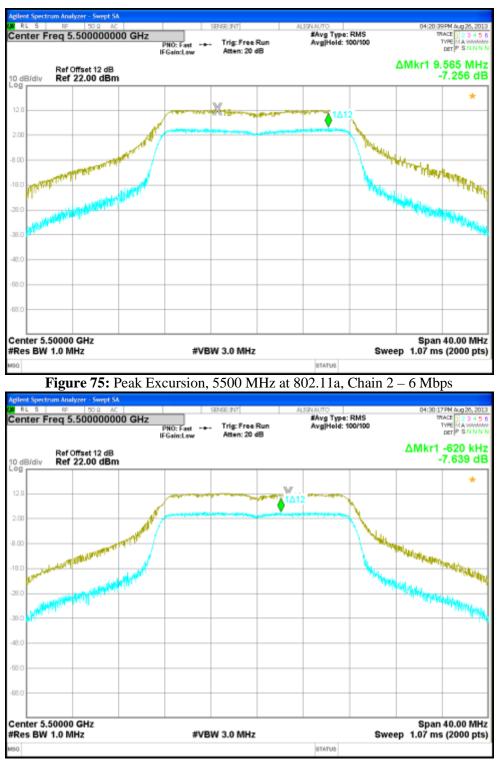


Figure 76: Peak Excursion, 5500 MHz at 802.11a, Chain 3 – 6 Mbps

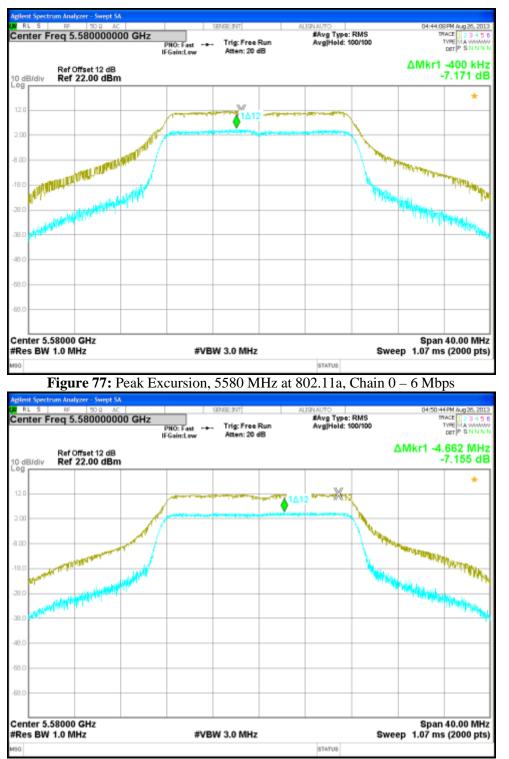


Figure 78: Peak Excursion, 5580 MHz at 802.11a, Chain 1 – 6 Mbps

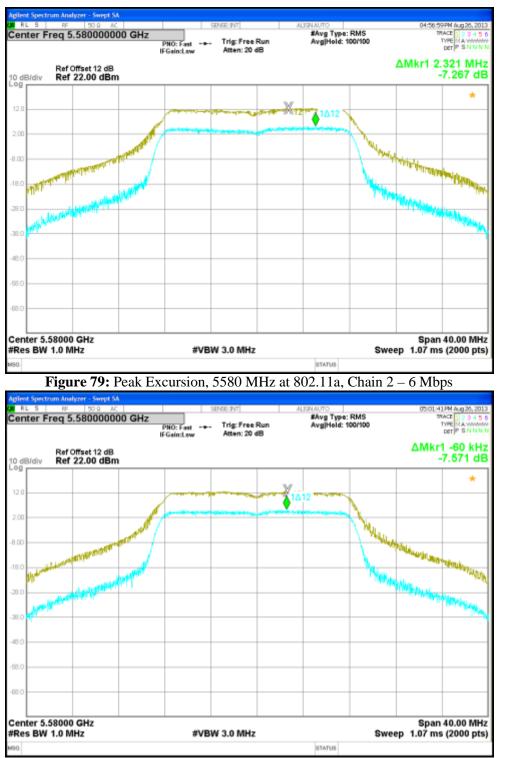


Figure 80: Peak Excursion, 5580 MHz at 802.11a, Chain 3 – 6 Mbps

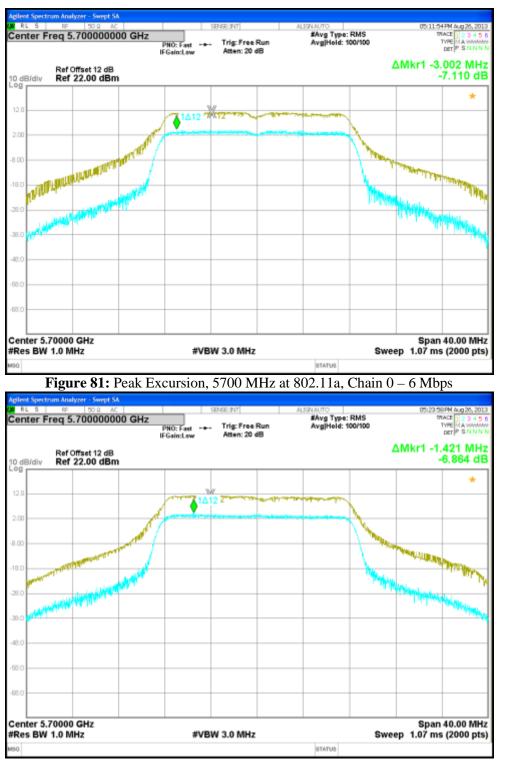


Figure 82: Peak Excursion, 5700 MHz at 802.11a, Chain 1 – 6 Mbps

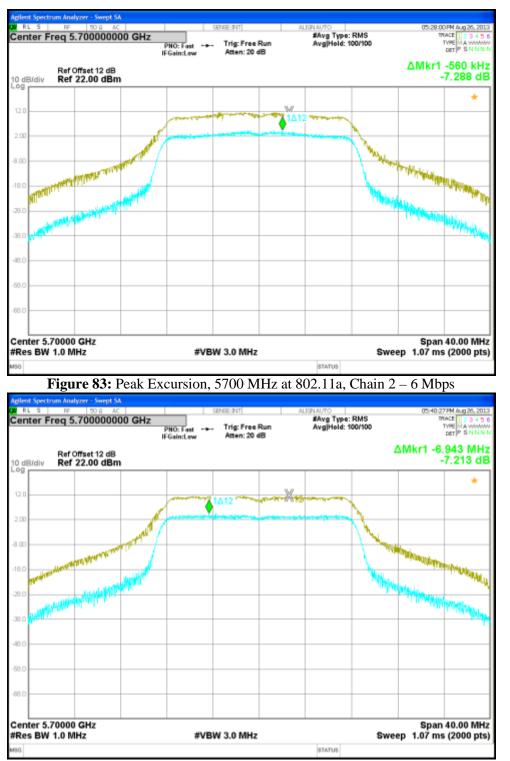


Figure 84: Peak Excursion, 5700 MHz at 802.11a, Chain 3 – 6 Mbps

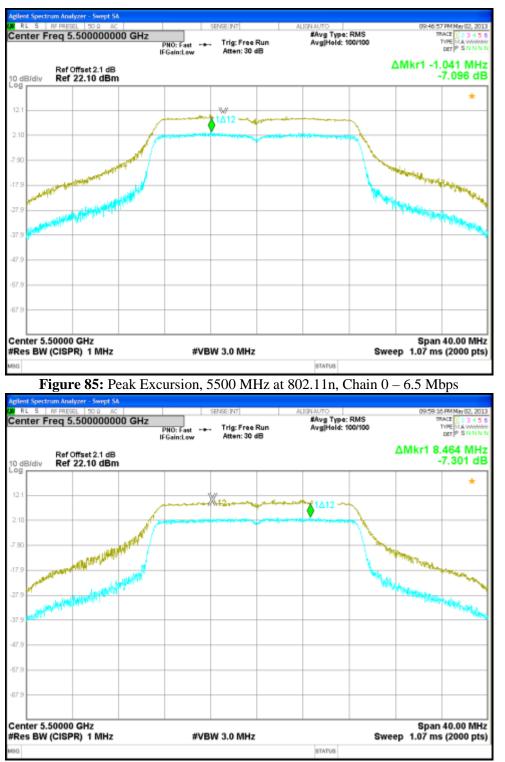


Figure 86: Peak Excursion, 5500 MHz at 802.11n, Chain 1 – 6.5 Mbps

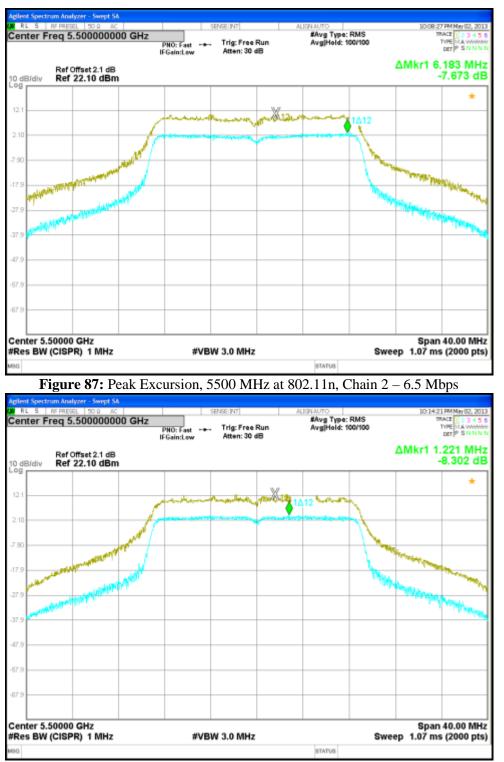


Figure 88: Peak Excursion, 5500 MHz at 802.11n, Chain 3 - 6.5 Mbps

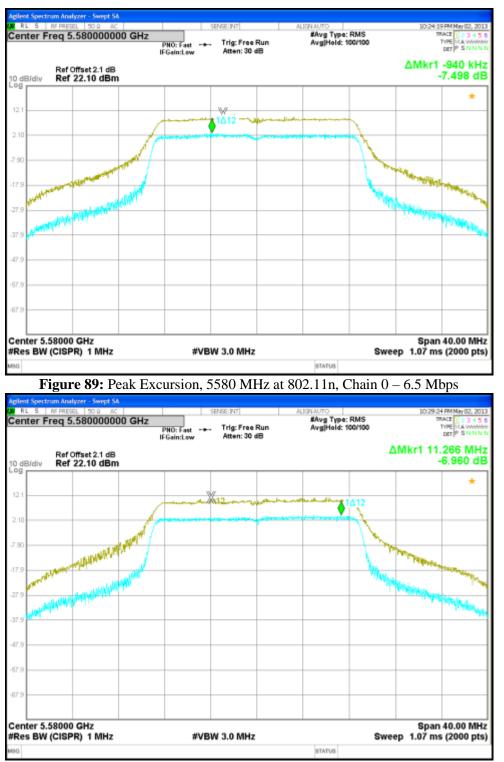


Figure 90: Peak Excursion, 5580 MHz at 802.11n, Chain 1 - 6.5 Mbps

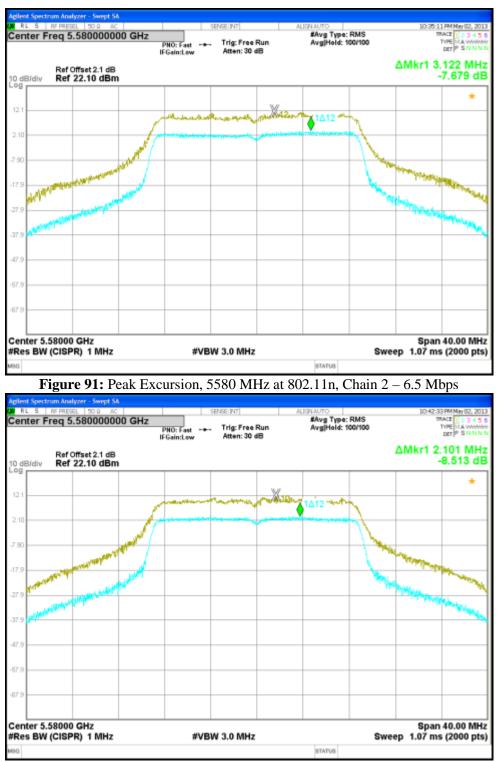


Figure 92: Peak Excursion, 5580 MHz at 802.11n, Chain 3 - 6.5 Mbps

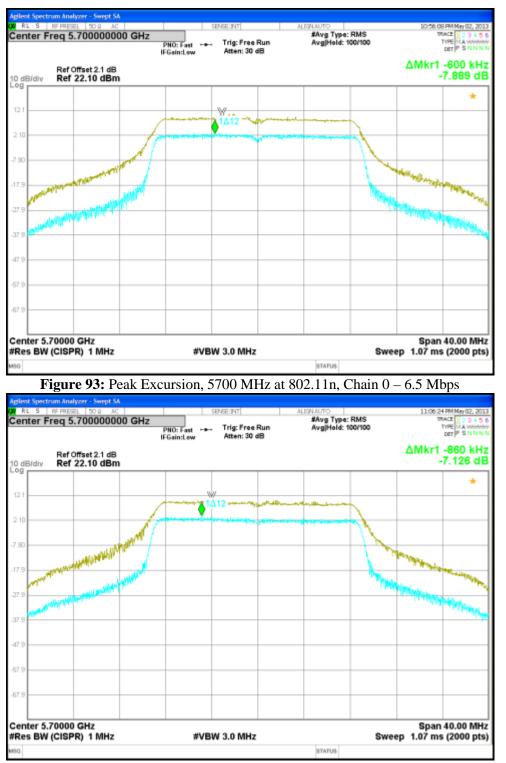


Figure 94: Peak Excursion, 5700 MHz at 802.11n, Chain 1 – 6.5 Mbps

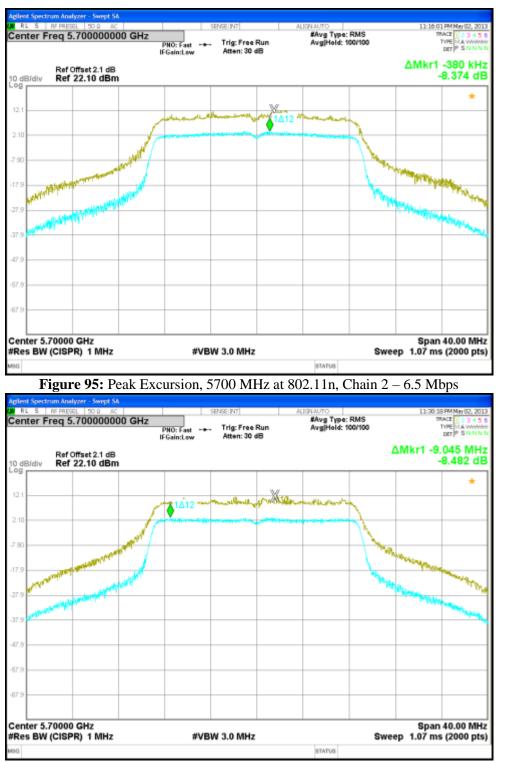


Figure 96: Peak Excursion, 5700 MHz at 802.11n, Chain 3 - 6.5 Mbps

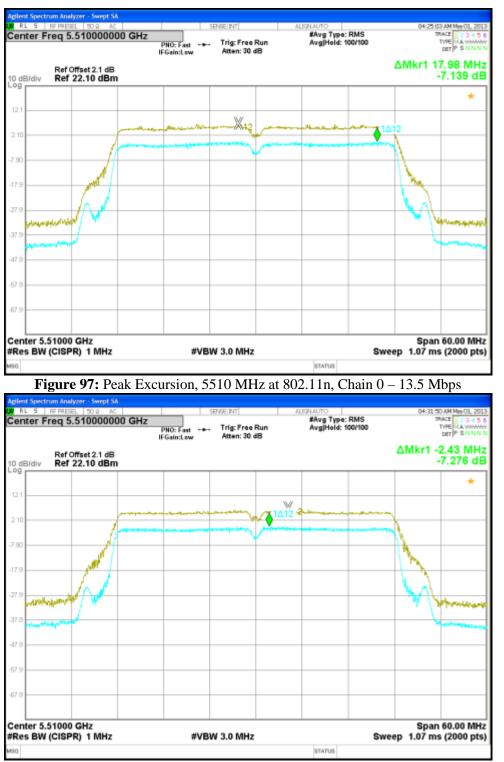


Figure 98: Peak Excursion, 5510 MHz at 802.11n, Chain 1 – 13.5 Mbps

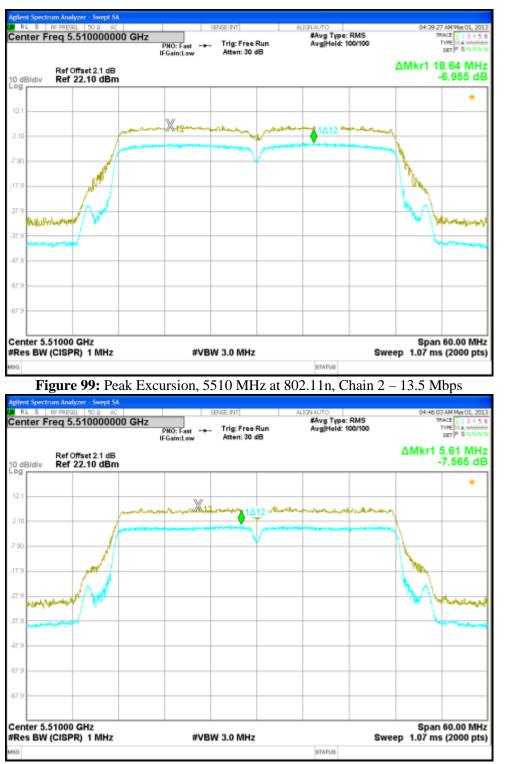


Figure 100: Peak Excursion, 5510 MHz at 802.11n, Chain 3 – 13.5 Mbps

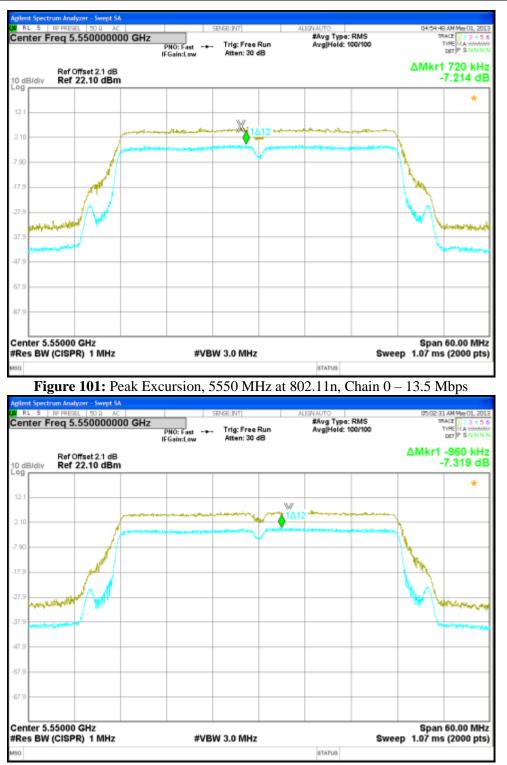


Figure 102: Peak Excursion, 5550 MHz at 802.11n, Chain 1 – 13.5 Mbps