

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C (15.247) DTS Specifications and Industry Canada RSS 210 Issue 5 for an Intentional Radiator on the 2Wire, Inc. Model: 1801HG Gateway, 1701HG Gateway, 171HG Gateway, RG1801HG-00, RG1701HG-00 and RG171HG-00

FCC ID: UPN:	PGR2WATHG01 3439-TWATHG01
GRANTEE:	2Wire, Inc. 1704 Automation Parkway San Jose, CA 95131
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086
REPORT DATE:	March 25, 2005
FINAL TEST DATE:	March 3, 2005

AUTHORIZED SIGNATORY:

mar

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model:

1801HG Gateway, 1701HG Gateway, 171HG Gateway, RG1801HG-00, RG1701HG-00 and RG171HG-00

Manufacturer:

2Wire, Inc. 1704 Automation Parkway San Jose, CA 95131

Tested to applicable standards:

RSS-210, Issue 5, November 2001 (Low Power License-Exempt Radiocommunication Devices) FCC Part 15.247 (DTS)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 SV1 Dated July 30, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4:2003 as detailed in section 5.3 of RSS-210, Issue 5); and that the equipment performed in accordance with the data submitted in this report.

Signature Name Title Company Address

Juan man

Juan Martinez
Senior EMC Engineer
Elliott Laboratories Inc.
684 W. Maude Ave
Sunnyvale, CA 94086
USA

Date: March 25, 2005

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	
SCOPE	5
OBJECTIVE	5
SUMMARY OF RESULTS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT EUT INTERFACE PORTS	
EUT OPERATION DURING TESTING	
ANTENNA REQUIREMENTS	9
TEST SITE	10
GENERAL INFORMATION	10
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN) POWER METER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS	
CONDUCTED EMISSIONS RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	15
FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS	16
RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS	
FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Data Log Sheets	2
EXHIBIT 3: Test Configuration Photographs	
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs	5
EXHIBIT 6: Operator's Manual	6
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	8
EXHIBIT 9: Theory of Operation	9
EXHIBIT 10: Advertising Literature	
EXHIBIT 11: RF Exposure Information	.11

SCOPE

An electromagnetic emissions test has been performed on the 2Wire, Inc. model 1801HG Gateway pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and RSS-210 Issue 5 for licence-exempt low power devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4:2003 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the 2Wire, Inc. model 1801HG Gateway and therefore apply only to the tested sample. The sample was selected and prepared by Jeremy Muir of 2Wire, Inc.

Testing performed on the 2Wire, Inc. model 1801HG Gateway covered the following models: 1701HG Gateway, 171HG Gateway, RG1801HG-00, RG1701HG-00 and RG171HG-00. The wireless circuitry is identical in all models.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules and RSS-210 Issue 5 for license-exempt low power devices for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Measured Value	Comments	Result
15.247(a)	6.2.2(o)(b)	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	6.2.2(o)(b)	6dB Bandwidth	16.8 MHz	Minimum allowed is 500kHz	Complies
	RSP 100	99% Bandwidth	16.8 MHz	For information only	Complies
15.247 (b) (3)	6.2.2(o)(b)	Output Power, 2400 - 2483.5 MHz	26 dBm (0.398 Watts) EIRP = 0.631 W	Multi-point applications: Maximum permitted is 1Watt, with EIRP limited to 4 Watts.	Complies
15.247(d)	6.2.2(o)(b)	Power Spectral Density	-0.12 dBm / MHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	6.2.2(o)(e1)	Antenna Port Spurious Emissions – 30MHz – 25 GHz	All spurious emissions < -20dBc	All spurious emissions < -20dBc.	Complies
15.247(c) / 15.209		Radiated Spurious Emissions – 30MHz – 25 GHz	53.8 dBuV/m @ 7311 MHz (-0.2 dB)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.207		AC Conducted Emissions	35.4 dBuV @ 20.199 MHz (-14.6 dB)		Complies
	6.6	AC Conducted Emissions	40.8 dBuV @ 20.199 MHz (-7.2 dB)		Complies
15.247 (b) (5)		RF Exposure Requirements	MPE calculation		Complies
15.203		RF Connector	Permanently attached	-	Complies

EIRP calculated using antenna gain of dBi (6) for the highest EIRP point-to-multipoint system.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The 2Wire, Inc. model 1801HG Gateway is an ADSL wireless router which is designed to route ADSL to the home network. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, placed in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 0.2 Amps.

The sample was received on March 3, 2005 and tested on March 3, 2005. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
2Wire, Inc	1801HG Gateway	ADSL Wireless	985211000291	PGR2WATHG01
2 1110, 110	1001110 Outoway	router	903211000291	1 01/2 01/111001

ENCLOSURE

The EUT enclosure is primarily constructed of ABS Plastic with a fabricated sheet steel shield internal to the unit. It measures approximately 22 cm wide by 6 cm deep by 210 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	PP01L	Laptop	-	DoC
Dell	AA20031	AC Adapter	-	-
Epson	Stylus Photo	Printer	ADA0013241	BKMFBP952A

No remote support equipment was used for emissions testing:

EUT INTERFACE PORTS

Port	Connected To	Cable(s)			
TOIL	Connected 10	Description	Shielded or Unshielded	Length(m)	
Ethernet	Laptop	CAT 5	Unshielded	3	
Ethernet (x4)	Hub	CAT 5	Unshielded	3	
USB	laptop	Multiwire	Shielded	1	
AC in	AC Mains	2 wire	Unshielded	1.5	

The I/O cabling configuration during emissions testing was as follows:

EUT OPERATION DURING TESTING

The EUT was transmitting continuously on either the low, 2412MHz, the middle, 2437MHz, or the high, 2462MHz, channels

ANTENNA REQUIREMENTS

The antenna port is permanently attached, which meets the requirements of 15.203.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on March 3, 2005at the Elliott Laboratories Open Area Test Site #1 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \quad \text{microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a)and RSS 210 (o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watts (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watts (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watts (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

RSS 210 (o) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS

T limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest inband signal level.

FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000 5.000 to 30.000	46.0 50.0	56.0 60.0

RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

^{*} Broadband Level - Per ANSI C63.4:2003, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

2 Pages

Radio Antenna Port (Power and Engineer: Chris Byleckie	d Spurious Emissions), 04-Mar-05		
Manufacturer	Description	Model #	Asset # Cal Due
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 40 GHz, Fremont	8564E (84125C)	1393 26-Oct-05

Radiated Emissions, 30 - 26,50	0 MHz, 03-Mar-05			
Engineer: Chris Byleckie				
<u>Manufacturer</u>	Description	<u>Model #</u>	<u>Asset #</u>	<u>Cal Due</u>
Hewlett Packard	EMC Spectrum Analyzer 9KHz-26.5GHz, non programmable	8563E	284	15-Mar-05
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	08-Nov-05
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	13-Jan-06
Hewlett Packard	High Pass filter, 3.5GHz	P/N 84300-80038	1157	12-Apr-05
	d Spurious Emissions), 04-Mar-05			
Engineer: Chris Byleckie				
<u>Manufacturer</u>	Description	<u>Model #</u>	<u>Asset #</u>	<u>Cal Due</u>
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 40 GHz, Fremont	8564E (84125C)	1393	26-Oct-05
Conducted Emissions - AC Pov	ver Ports, 17-Mar-05			
Engineer: Joseph Cadigal				
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset #	Cal Due
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	01-Sep-05
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	780	26-Mar-05
Solar Electronics	LISN	8028-50-TS-24-BNC support	904	10-Aug-05
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	31-Jan-06
Elliott Laboratories	LISN-2 + 2 Fischer (Solar 8028 + 6512 Cap)	LISN-1	198	19-Aug-05
Conducted Emissions - AC Pow	ver Ports, 23-Mar-05			
Engineer: Mehran Birgani		. <i></i>		
Manufacturer	Description	Model #		Cal Due
Elliott Laboratories	LISN-2 + 2 Fischer (Solar 8028 + 6512 Cap)	LISN-1	198	19-Aug-05
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	01-Sep-05
Solar Electronics	LISN	8028-50-TS-24-BNC support	904	10-Aug-05
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	31-Jan-06
Conducted Emissions - AC Pov Engineer: Peter Sales	ver and Telecommunications Ports, 28-Mar-05			
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	780	26-Apr-05
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812	11-Feb-06
Solar Electronics	LISN	8028-50-TS-24-BNC support	904	10-Aug-05
Fischer Custom Comm.	LISN, Freq. 0.9 -30 MHz,16 Amp	FCC-LISN-50/250-16-2	1079	01-Jul-05
Fischer Custom Communication	ISN, 9 KHz -30 MHz, sunnyvale	FCC-TLISN-T4	1263	11-Apr-05
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30	1337	12-Jan-06
Radiated Emissions, 30 - 2,000				
	MHz, 28-Mar-05			
Engineer: Peter Sales		 <i></i>	• • • •	
Engineer: Peter Sales <u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Engineer: Peter Sales <u>Manufacturer</u> Hewlett Packard	Description EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	780	26-Apr-05
Engineer: Peter Sales Manufacturer Hewlett Packard EMCO	Description EMC Spectrum Analyzer 9kHz - 6.5GHz Horn Antenna, D. Ridge 1-18GHz	8595EM 3115	780 786	26-Apr-05 08-Nov-05
Engineer: Peter Sales Manufacturer Hewlett Packard EMCO EMCO	Description EMC Spectrum Analyzer 9kHz - 6.5GHz Horn Antenna, D. Ridge 1-18GHz Biconical Antenna, 30-300 MHz	8595EM 3115 3110B	780 786 801	26-Apr-05 08-Nov-05 09-Jul-05
Engineer: Peter Sales Manufacturer Hewlett Packard EMCO EMCO Hewlett Packard	Description EMC Spectrum Analyzer 9kHz - 6.5GHz Horn Antenna, D. Ridge 1-18GHz Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1-26.5GHz	8595EM 3115 3110B 8449B	780 786 801 870	26-Apr-05 08-Nov-05 09-Jul-05 13-Jan-06
Engineer: Peter Sales Manufacturer Hewlett Packard EMCO EMCO Hewlett Packard Rohde & Schwarz	Description EMC Spectrum Analyzer 9kHz - 6.5GHz Horn Antenna, D. Ridge 1-18GHz Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1-26.5GHz Test Receiver, 9kHz-2750MHz	8595EM 3115 3110B 8449B ESCS 30	780 786 801 870 1337	26-Apr-05 08-Nov-05 09-Jul-05 13-Jan-06 12-Jan-06
Engineer: Peter Sales Manufacturer Hewlett Packard EMCO EMCO Hewlett Packard	Description EMC Spectrum Analyzer 9kHz - 6.5GHz Horn Antenna, D. Ridge 1-18GHz Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1-26.5GHz	8595EM 3115 3110B 8449B	780 786 801 870	26-Apr-05 08-Nov-05 09-Jul-05 13-Jan-06

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

 T59214
 6 Pages

 T59215
 25 Pages

 T59215 plots
 6 Pages

Client:	2Wire	Job Number:	J58759
Model:	1801HG Gateway with DVE DSA-12W-	T-Log Number:	T59214
	05AUS1 PS	Account Manager:	Rod Wong
Contact:	Jeremy Muir		
Emissions Spec:	FCC 15.247 / EN300328	Class:	В
Immunity Spec:	-	Environment:	-

EMC Test Data

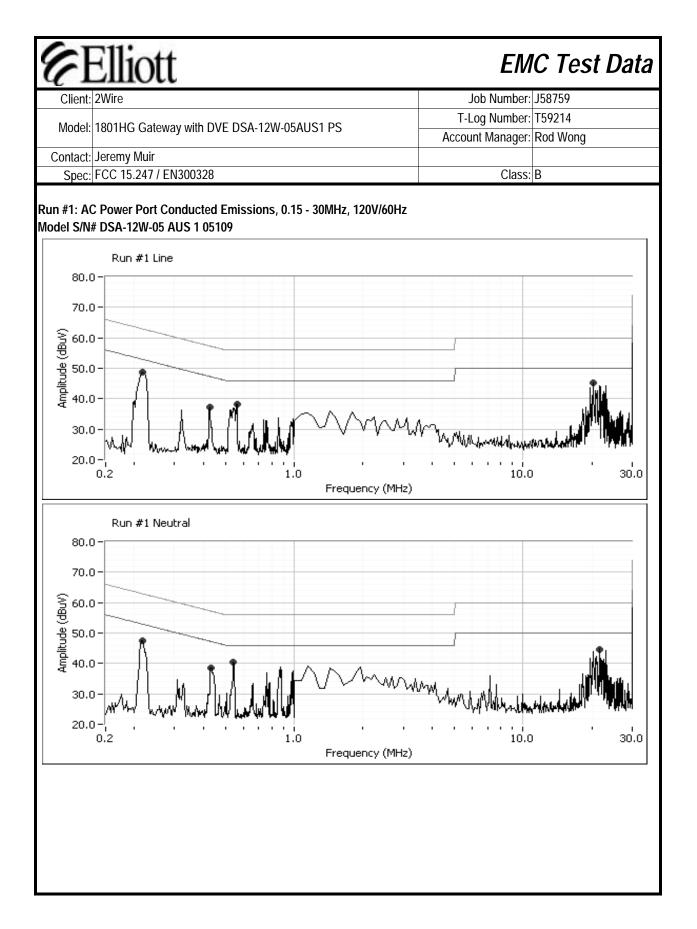
For The

2Wire

Model

1801HG Gateway with DVE DSA-12W-05AUS1 PS

Date of Last Test: 3/31/2005


6 Ellio	tt			FIN	C Test Data
4					
	2Wire			Job Number:	
IVIODEI:	1801HG Gateway with D 05AUS1 PS	VE DSA-12W-		T-Log Number: Account Manager:	
Contact	Jeremy Muir			Account Manager.	
	Spec: FCC 15.247 / EN300328			Class:	В
Immunity Spec:				Environment:	-
on a tabletop during op	vireless router which is des veration. The EUT was, the electrical rating of the EU	erefore, placed in this	ption to the hor position c) Hz, 0.2 A er Test	ne network. Normally, during emissions testir	-
• •	he 2Wire, Inc. model 1801 HG Gateway, RG1801HG		d the follo and RG17	•	circuitry is identical in all
The antenna is integral	to the device.	EUT Antenn	a		
-	orimarily constructed of AE ride by 6 cm deep by 210	cm high.	icated she	et steel shield internal	to the unit. It measures
Mod #	Toet	Modification His	SIDEY	Modification	
<u>Mod. #</u>	Test D	ate		Modification None	
·	-	<u> </u>			
Modifications applied a	re assumed to be used or	n subsequent tests ur	nless other	wise stated as a furth	er modification.

Elliot			EM	
Client:	2Wire		Job Number:	J58759
Model:	1801HG Gateway with DV	/E DSA-12W-	T-Log Number:	T59214
	05AUS1 PS		Account Manager:	Rod Wong
Contact:	Jeremy Muir			
	FCC 15.247 / EN300328		Class:	В
Immunity Spec:	-		Environment:	-
Manufacturer	Lo Model	cal Support Equipm	nent Serial Number	FCC ID
Dell	PP01L	Laptop		DoC
Dell	AA20031	AC Adapter	-	-
Epson	Stylus Photo	Printer	ADA0013241	BKMFBP952A
	Ren Model	note Support Equip	ment Serial Number	FCC ID
Manufacturer	INIOUCI	Description		
Manufacturer None	Model	Description		
		rface Cabling and P		
		rface Cabling and P	Cable(s)	
None Port	Inte Connected To	rface Cabling and P	Cable(s) Shielded or Unshield	
None Port Ethernet	Inte Connected To Laptop	rface Cabling and P Description CAT 5	Cable(s) Shielded or Unshield Unshielded	3
None Port Ethernet Ethernet (x4)	Inte Connected To Laptop Hub	rface Cabling and P Description CAT 5 CAT 5	Cable(s) Shielded or Unshield Unshielded Unshielded	3
None Port Ethernet	Inte Connected To Laptop	rface Cabling and P Description CAT 5	Cable(s) Shielded or Unshield Unshielded	3

EUT Operation During Emissions Tests

The ETU was transmitting continously on either the low, 2412MHz, the middle, 2437MHz, or the high ,2462MHz, channels and Remote support laptops was exercising/pinping the other ports.

Elliott EMC Test Data Job Number: J58759 Client: 2Wire T-Log Number: T59214 Model: 1801HG Gateway with DVE DSA-12W-05AUS1 PS Account Manager: Rod Wong Contact: Jeremy Muir Spec: FCC 15.247 / EN300328 Class: B **Conducted Emissions - Power Ports Test Specifics** The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above. Date of Test: 3/28/2005 Config. Used: 1 Test Engineer: Pete Sales Config Change: None Test Location: SVOATS #1 EUT Voltage: 120V/60Hz General Test Configuration The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located approximately 30 meters from the test area. All I/O connections were routed overhead. Ambient Conditions: Temperature: 58 °C Rel. Humidity: 53 % Summary of Results Test Performed Run # Limit Margin Result 35.4dBµV@ 1 CE, AC Power, 120V/60Hz EN 55022 B Pass 20.199MHz (-14.6dB) 40.8dBuV @ 1 CE, AC Power, 120V/60Hz **RSS-210** Pass 20.199MHz (-7.2dB) Modifications Made During Testing: No modifications were made to the EUT during testing **Deviations From The Standard** No deviations were made from the requirements of the standard.

Client:	111	ott					EM	C Test Data
							Job Number:	J58759
Model:	1801HG	Gateway v	vith DVE D	SA-12W-05	AUS1 PS		T-Log Number: Account Manager:	
Contact:	Jeremv N	luir					, looo un managon	
		247 / EN30	0328				Class:	В
						120V/60Hz		
Frequency	Level	AC		022 B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
20.199	35.4	Neutral	50.0	-14.6	Average			
20.199 0.215	35.3	Line	50.0	-14.7	Average QP			
0.215	47.3 36.9	Line Line	63.0 53.0	-15.7 -16.1				
0.215	36.9	Neutral	53.0	-16.1 -16.9	Average			
0.216	<u> </u>	Neutral	63.0	-16.9 -17.3	Average QP			
0.218	28.3	Neutral	46.0	-17.3	Average			
0.543	38.2	Neutral	40.0 56.0	-17.7	QP			
20.199	40.8	Line	60.0	-19.2	QP			
20.199	39.7	Neutral	60.0	-20.3	QP			
0.536	35.5	Line	56.0	-20.5	QP			
	24.8	Line	46.0					
0.536	24.0		40.0	-21.2	Average			
Frequency	Level	AC	RSS	-210	Detector	Comments		
Frequency MHz	Level dBµV	AC Line	RSS Limit	-210 Margin	Detector QP/Ave	Comments		
Frequency MHz 20.199	Level dBµV 35.4	AC Line Neutral	RSS Limit 48.0	-210 Margin -12.6	Detector QP/Ave Average	Comments		
Frequency MHz 20.199 20.199	Level dBµV 35.4 35.3	AC Line Neutral Line	RSS Limit 48.0 48.0	-210 Margin -12.6 -12.7	Detector QP/Ave Average Average	Comments		
requency MHz 20.199 20.199 0.543	Level dBµV 35.4 35.3 28.3	AC Line Neutral Line Neutral	RSS Limit 48.0 48.0 48.0	-210 Margin -12.6 -12.7 -19.7	Detector QP/Ave Average Average Average	Comments		
Frequency MHz 20.199 20.199 0.543 0.543	Level dBµV 35.4 35.3 28.3 38.2	AC Line Neutral Line Neutral Neutral	RSS Limit 48.0 48.0 48.0 48.0	-210 Margin -12.6 -12.7 -19.7 -9.8	Detector QP/Ave Average Average QP	Comments		
Frequency MHz 20.199 20.199 0.543 0.543 20.199	Level dBµV 35.4 35.3 28.3 38.2 40.8	AC Line Neutral Line Neutral Neutral Line	RSS Limit 48.0 48.0 48.0 48.0 48.0	-210 Margin -12.6 -12.7 -19.7 -9.8 -7.2	Detector QP/Ave Average Average QP QP	Comments		
Frequency MHz 20.199 20.199 0.543 0.543	Level dBµV 35.4 35.3 28.3 38.2	AC Line Neutral Line Neutral Neutral	RSS Limit 48.0 48.0 48.0 48.0	-210 Margin -12.6 -12.7 -19.7 -9.8	Detector QP/Ave Average Average QP	Comments		

CEIIIOII

Client:	2Wire	Job Number:	J58759
Model:	1801HG Gateway Radio	T-Log Number:	T59215
		Account Manager:	Rod Wong
Contact:	Jeremy Muir		
Emissions Spec:	FCC 15.247 / EN300328	Class:	В
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

2Wire

Model

1801HG Gateway Radio

Date of Last Test: 4/15/2005

6Ell	int	t					
(LII	IUI					EM	C Test Data
-	Client:	2Wire				Job Number:	J58759
		1801HG Gatewa	v Radio			T-Log Number:	
)			Account Manager:	
		Jeremy Muir					Ŭ
Emissions	s Spec:	FCC 15.247 / EN	1300328			Class:	В
Immunity	y Spec:	-				Environment:	-
			EUT		ORMATI	ON	
			Ċ	Seneral	Description		
			•			home network. Normally,	•
						on during emissions testin	g to simulate the end
user environmer	nt. The	electrical rating of	f the EUT i	s 120/24	0 V, 50/60 Hz, 0	0.2 Amps.	
			_			_	
			Ec		nt Under Tes		1
Manufacture	er	Model			scription	Serial Number	FCC ID
2Wire, Inc		1801HG Gate	eway	ADSL W	/ireless router	985211000291	PGR2WATHG01
				Other I			
T		011/1			EUT Details	- II	
• •					5	ollowing models:	ation from the following of the self-
models.	ay, 1711	HG Galeway, RG	1801HG-0	I, RGI/U	THG-01 and R	G171HG-01. The wireless	circultry is identical in all
mouers.							
				EUT	Antenna		
The antenna is i	integral	to the device					
	into gi ui						
				EUT I	Enclosure		
The EUT enclos	sure is p	rimarily construct	ted of ABS	Plastic w	ith a fabricated	sheet steel shield internal	to the unit. It measures
	•	ide by 6 cm deep					
		y 1	5	U			
			Ν	lodifica	ntion History	,	
Mod. #		Test	Date			Modification	
1		-	-			None	
-			-	1			
Modifications ap	oplied ar	re assumed to be	used on s	ubsequei	nt tests unless o	therwise stated as a furthe	er modification.

Clien	t: 2Wire		Job Number:	J58759
	I: 1801HG Gateway Radio		T-Log Number:	
			Account Manager:	
	t: Jeremy Muir			¥
	:: FCC 15.247 / EN300328		Class:	В
Immunity Spec	<u>;</u> -		Environment:	-
		t Configuratio		
Manufacturer	Model	Description	Serial Number	FCC ID
Dell	PP01L	Laptop		DoC
Dell	AA20031	AC Adapter	-	-
Epson	Stylus Photo	Printer	ADA0013241	BKMFBP952
	Inte	rface Cabling and F	Ports	
	Connected To		Cable(s)	
Port	Connected 10	Description	Shielded or Unshield	<u> </u>
Port			Unshielded	3
Ethernet	Laptop	CAT 5	Line de Statuer d	2
Ethernet Ethernet (x4)	Hub	CAT 5	Unshielded	3
Ethernet Ethernet (x4) USB	Hub laptop	CAT 5 Multiwire	Shielded	1
Ethernet Ethernet (x4)	Hub	CAT 5		

E	Elliott	EM	IC Test Data
Client:	2Wire	Job Number:	J58759
Madal	1801HG Gateway Radio	T-Log Number:	T59215
wouer.	Too Tho Galeway Radio	Account Manager:	Rod Wong
Contact:	Jeremy Muir		
Spec:	FCC 15.247 / EN300328	Class:	N/A

FCC 15.247 DTS - Power, Bandwidth and Spurious Emissions

Test Specifics

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

Date of Test: 3/3/2005 Test Engineer: Chris Byleckie Test Location: SVOATS #1

Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

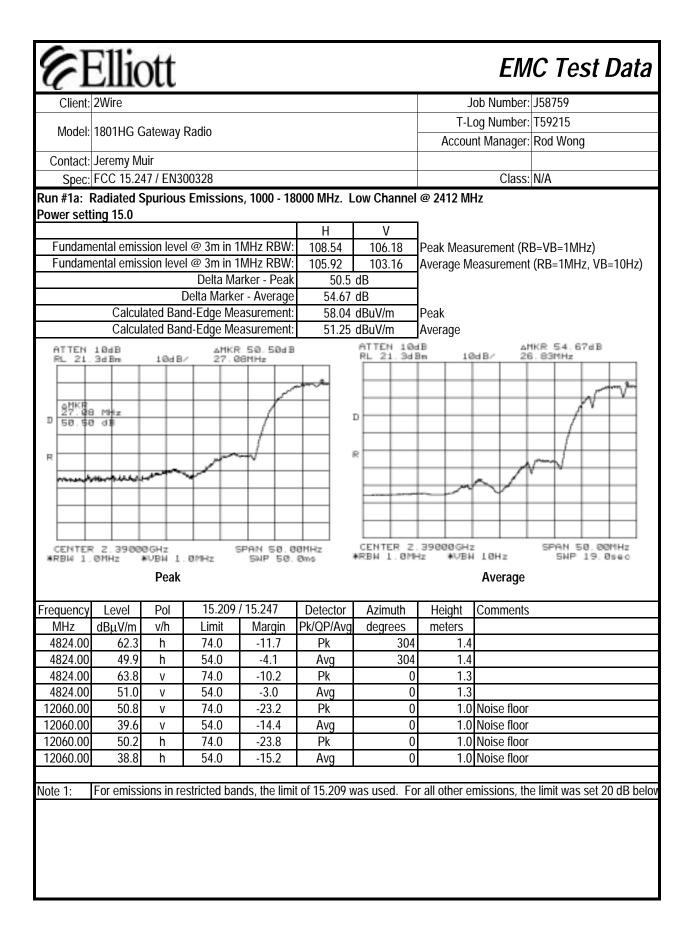
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions:	Temperature:	15 °C
	Rel. Humidity:	80 %

Summary of Results

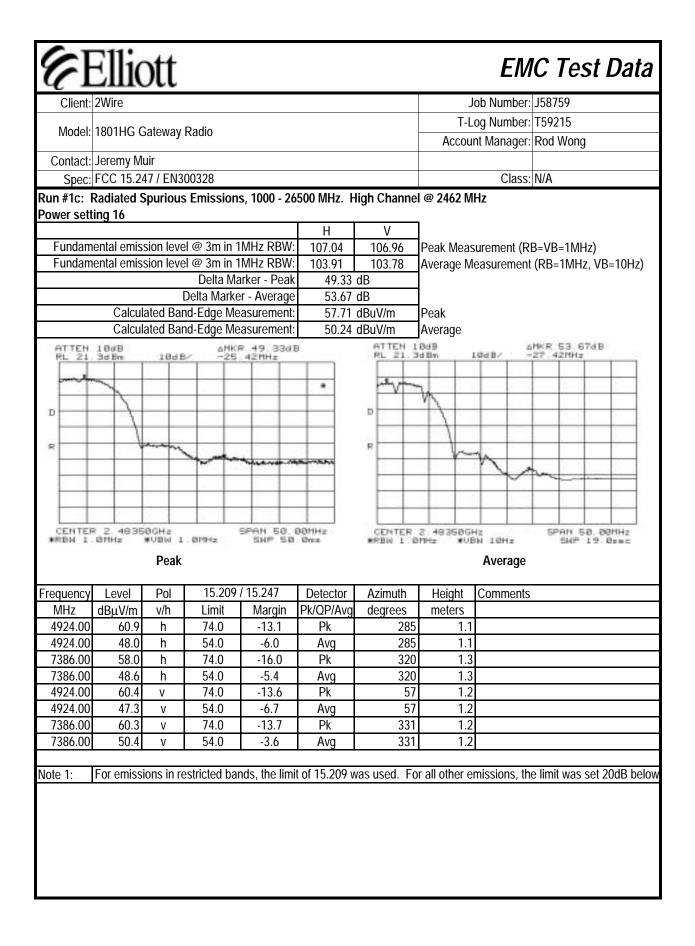

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	RE, 1000 - 26500 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	53.8dBuV/m (489.8 uV/m) @ 7311Mhz (- 0.2dB)
2	6dB Bandwidth	15.247(a)	Pass	12.83 MHz
3	Output Power	15.247(b)	Pass	25.9 dBm
4	Power Spectral Density (PSD)	15.247(d)	Pass	-0.12 dBm

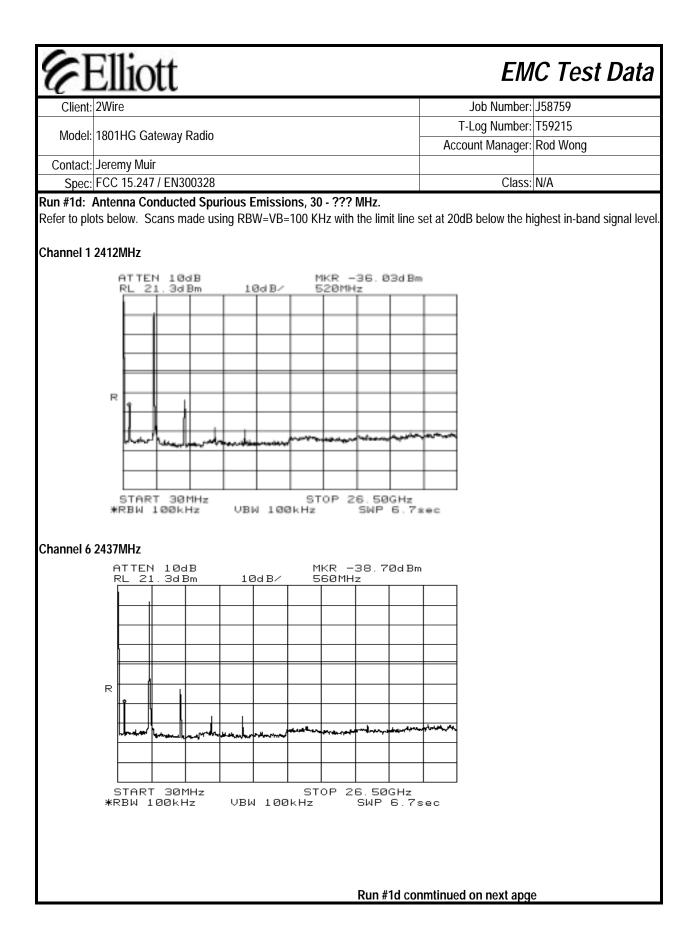
Modifications Made During Testing:

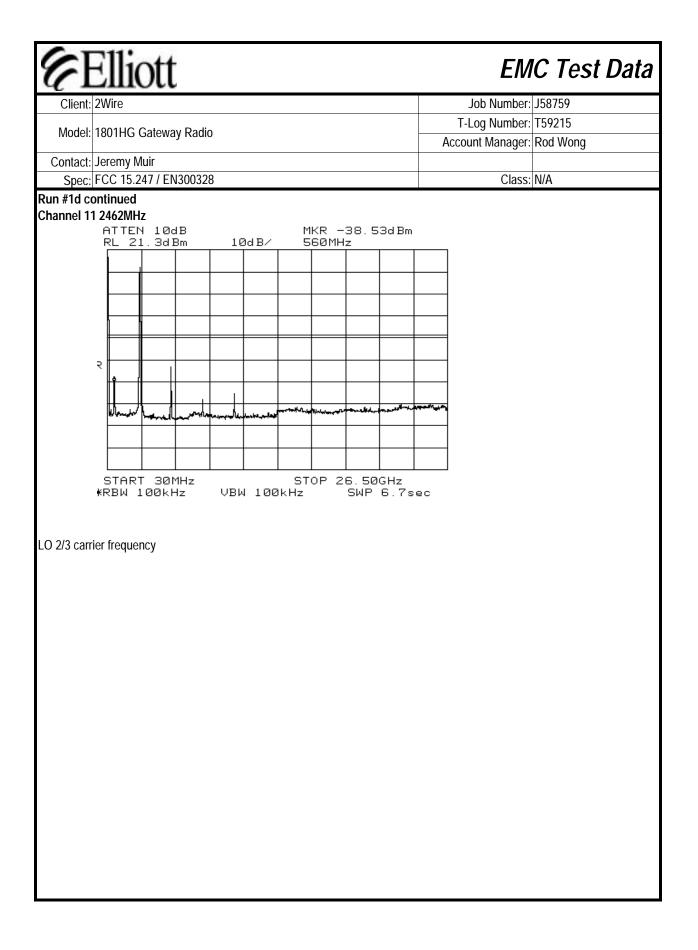
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.


	1.
SH I	liott
	IIOU


I


Client:	2Wire	Job Number:	J58759
Model:	1801HG Gateway Radio	T-Log Number:	T59215
	Too The Galeway Radio	Account Manager:	Rod Wong
Contact:	Jeremy Muir		
Spec:	FCC 15.247 / EN300328	Class:	N/A

Run #1b: Radiated Spurious Emissions, 1000 - 26500 MHz. Center Channel @ 2437 MHz Power setting 20.0

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4874.000	59.5	V	74.0	-14.5	Pk	325	1.3	
4874.000	45.7	V	54.0	-8.3	Avg	325	1.3	
7311.000	63.5	V	74.0	-10.5	Pk	281	1.3	
7311.000	53.8	V	54.0	-0.2	Avg	281	1.3	
4874.000	61.4	h	74.0	-12.6	Pk	245	1.2	
4874.000	48.6	h	54.0	-5.4	Avg	245	1.2	
7311.000	58.0	h	74.0	-16.0	Pk	309	1.3	
7311.000	48.8	h	54.0	-5.3	Avg	309	1.3	

Elliott

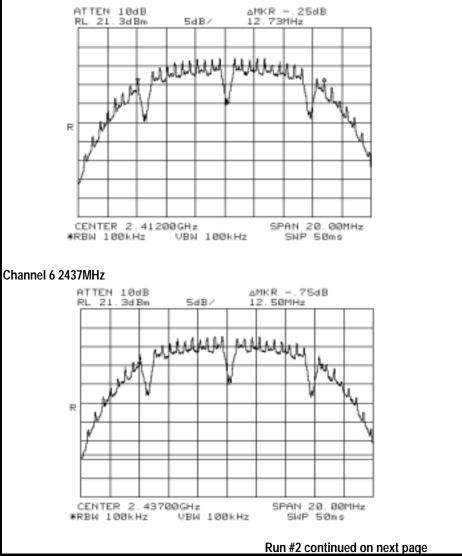
EMC Test Data

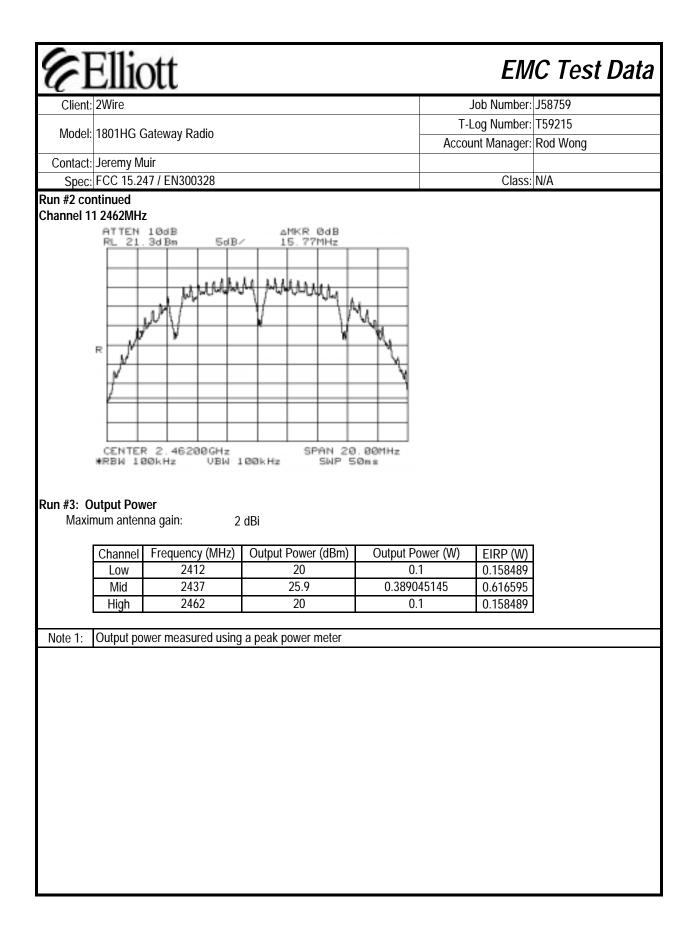
Client: 2Wire

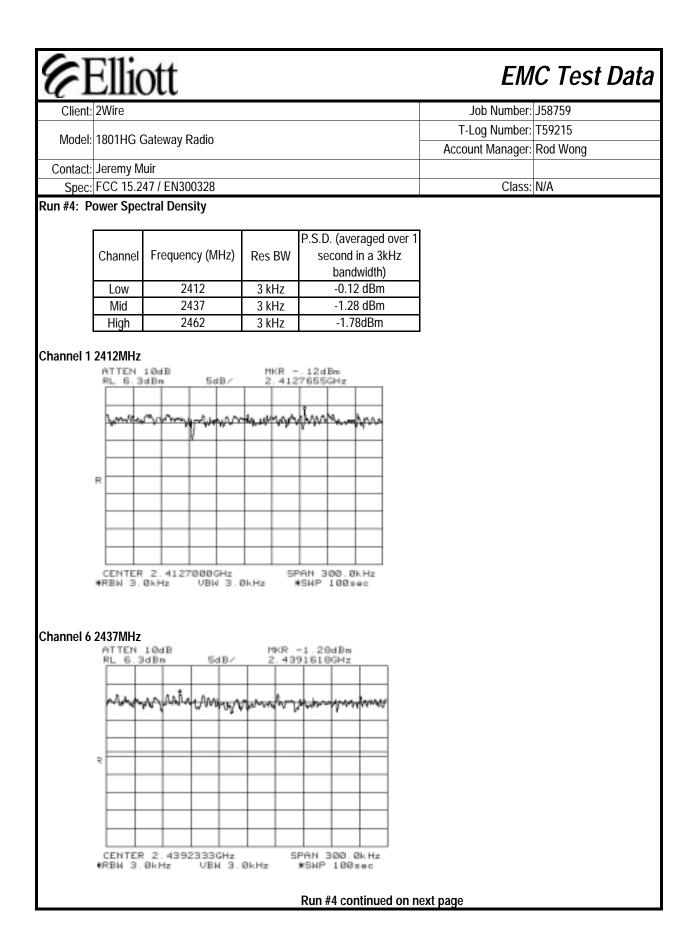
Job Number: J58759

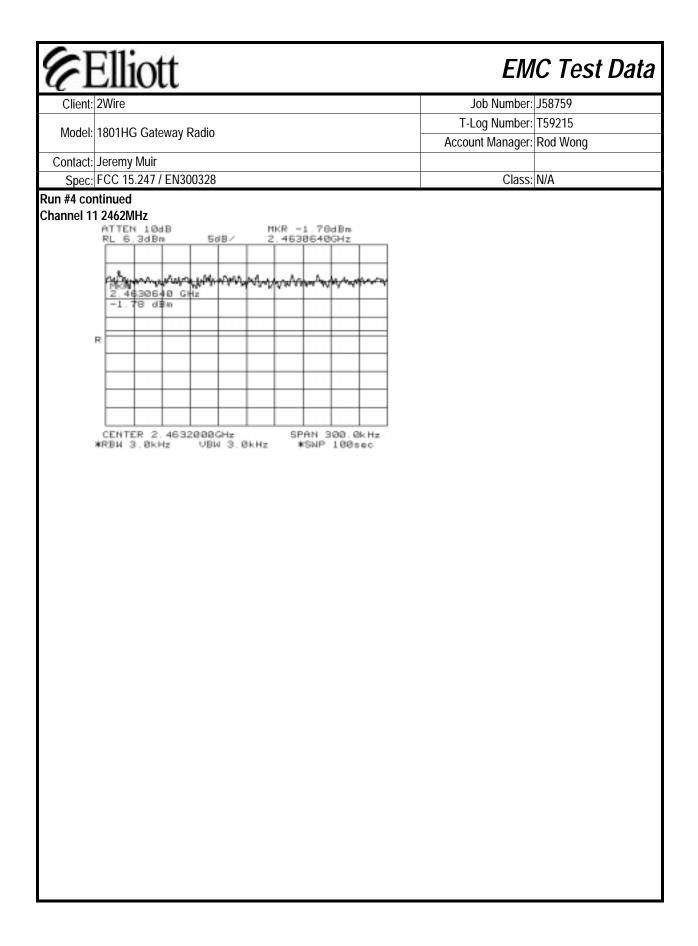
Model: 1801HG Gateway Radio

T-Log Number: T59215 Account Manager: Rod Wong


Contact: Jeremy Muir Spec: FCC 15.247 / EN300328


Class: N/A


Run #2: Signal Bandwidth


Channel	Frequency (MHz)	Resolution Bandwidth	6dB Signal Bandwidth	99% Signal Bandwidth
Low	2412	100kHz	12.73 MHz	15.77 MHz
Mid	2437	100kHz	12.50 MHz	15.77 MHz
High	2462	100kHz	12.83 MHz	15.77 MHz

Channel 1 2412MHz

EMC Test Data

E	Elliott EN			
Client:	2Wire	Job Number:	J58759	
Madal	1801HG Gateway Radio	T-Log Number:	T59215	
wouer.	Too The Galeway Radio	Account Manager:	Rod Wong	
Contact:	Jeremy Muir			
Spec:	FCC 15.247 / EN300328	Class:	N/A	

FCC 15.247 DTS - Power, Bandwidth and Spurious Emissions

Test Specifics

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

Date of Test: 3/3/2005 Test Engineer: Chris Byleckie Test Location: SVOATS #1

Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

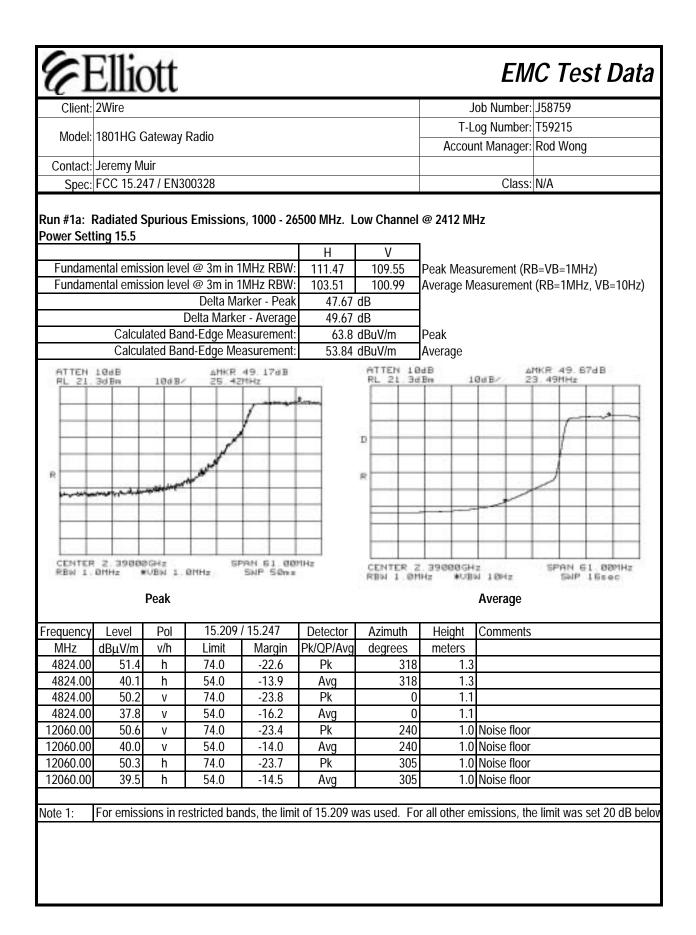
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

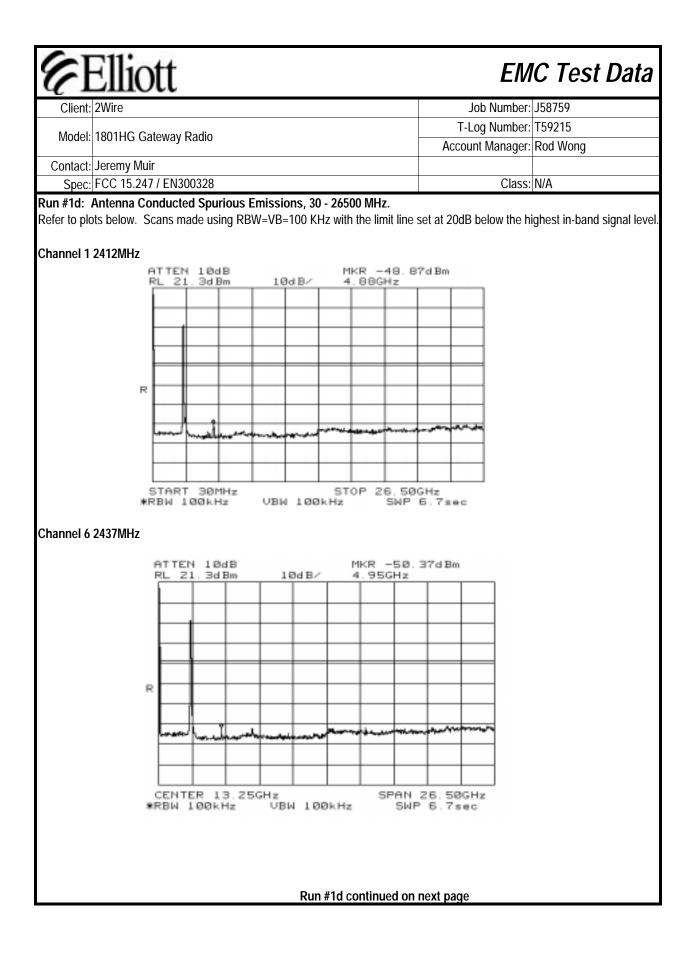
Ambient Conditions:	Temperature:	15 °C
	Rel. Humidity:	80 %

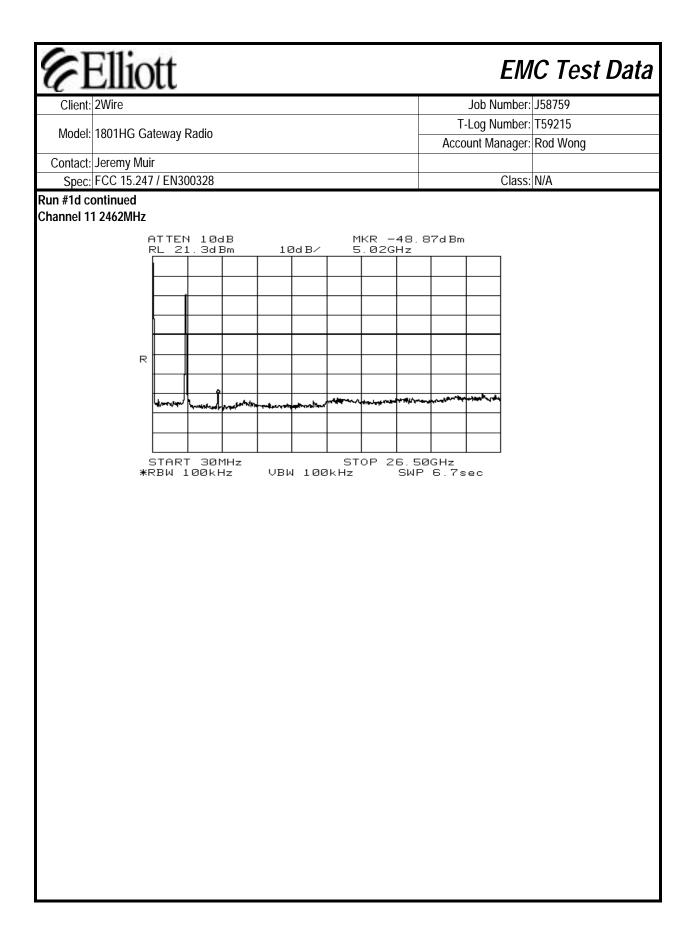
Summary of Results


Run #	Test Performed	Limit	Pass / Fail	Result / Margin
	RE, 30 - 26500 MHz - FCC Part 15.209 /		53.8dBµ V/m (489	
1	Spurious Emissions In		Pass	μV/m) @ 2412MHz (-
	Restricted Bands	15.247(c)		0.2dB)
2	6dB Bandwidth	15.247(a)	Pass	16.8 MHz
3	Output Power	15.247(b)	Pass	26 dBm
4	Power Spectral Density (PSD)	15.247(d)	Pass	-7.12 dBm

Modifications Made During Testing:

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Client:	Ellic ^{2Wire}						J	ob Number:	J58759
								og Number:	
Model:	1801HG Gateway Radio						nt Manager:		
Contact:	Jeremy Mu	ıir						-	-
Spec:	FCC 15.24	7 / EN30	00328					Class:	N/A
		purious	Emission	s, 1000 - 20	6500 MHz. C	enter Chann	el @ 2437	MHz	
equency	ing 15.5 Level	Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	COMMENTS	
374.000	49.8	V	74.0	-24.2	Pk	317	1.2		
74.000	36.9	V	54.0	-17.2	Avg	317	1.2		
311.000	60.5	V	74.0	-13.5	Pk	11	1.3		
11.000	47.4	V	54.0	-6.6	Avg	11	1.3		
74.000	53.4	h	74.0	-20.7	Pk	138	1.2		
74.000	41.0	h	54.0	-13.0	Avg	138	1.2		
11.000	53.8	h	74.0	-20.2	Pk	142	1.3		
11.000	42.1	h	54.0	-11.9	Avg	142	1.3		
			stricted bar		101 13.207 W				
					<u>ii (ii 13.207 w</u>				

	2Wire						,	Job Number	: J587	/59		
Model: 1801HG Gateway Radio						T-Log Number: T59215						
Wodel.		atewayı	land				Accou	int Manager	: Rod	Wong	g	
	Jeremy Mu											
Spec: F	FCC 15.24	7 / EN30	00328					Class	: N/A			
		purious	Emission	s, 1000 - 26	500 MHz. F	ligh Channe	el @ 2462 M	1Hz				
wer setti	ng 16				I		-					
Fundama	ntal amica	ion lova		IMHz RBW:	H	V 100	Dook Moo	ouromont (D		11.11	1-1-1	
			-	IMHZ RBW:		109 100.26		surement (R leasuremen				_10H
				arker - Peak			Average IV		י עועם=	- 11111	12, VD	- 1017
		[er - Average			1					
		ited Ban	d-Edge Me	easurement:	63.33	dBuV/m	Peak					
	Calcula	ted Ban	d-Edge Me	easurement:	51.79	dBuV/m	Average					
ATTEN 1 RL 21.3		1048/		45.67dB		ATTEN 10				48.67	"dB	
	30.54	100.0				RL 21.30	1Bm 1	BdB/ -2	24 10	214915		
1										-	-	-
	N											
		1				D						
		Y				R			_	-	_	_
		-	margin was	we pass motion		°	5		_	-		-
-		_						-		-		-
												-
									-			
		-										
	2.48350			PAN 61.00			2 48358GH			AN 6		
CENTER RBH 1.6		UBN 1.1		PAN 61 00 SHP 50ns		CENTER 2 RBN 1 29		W 18Hz		AN 5J SWP 1		
RBW 1.8	amuz w	Peak	8MHz	SHP 50ns		RBH 1.09	1Hz WUBI	Average				
RBM 1.0		UBN 1.1	8MHz			RBH 1.2*		W 18Hz				
equency MHz	Level	Peak Pol	амн <i>а</i> 15.209	SHP 50mm / 15.247	Detector	RBH 1.2*	Hz VB	Average				
equency MHz 4924.00 4924.00	Level dBµV/m 55.6 43.5	Peak Pol v/h h h	15.209 Limit 74.0 54.0	SHP 50mm / 15.247 Margin -18.4 -10.5	Detector Pk/QP/Avg Pk Avg	Azimuth degrees 252 252	Height Meters 1.2 1.2	Average Comments 2				
equency MHz 4924.00 7386.00	Level dBµV/m 55.6 43.5 52.3	Peak Pol v/h h h h	15.209 Limit 74.0 54.0 74.0	/ 15.247 Margin -18.4 -10.5 -21.8	Detector Pk/QP/Avg Pk Avg Pk	Azimuth degrees 252 252 248	Hz *UB Height meters 1.2 1.2 1.2	Average Comments				
equency MHz 4924.00 7386.00 7386.00	Level dBµV/m 55.6 43.5 52.3 40.2	Peak Pol v/h h h h h	15.209 Limit 74.0 54.0 74.0 54.0 54.0	/ 15.247 Margin -18.4 -10.5 -21.8 -13.8	Detector Pk/QP/Avg Pk Avg Pk Avg	Azimuth degrees 252 252 248 248	Height Height 1.2 1.2 1.2 1.2	Average Comments 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
equency MHz 4924.00 4924.00 7386.00 7386.00 4924.00	Level dBµV/m 55.6 43.5 52.3 40.2 53.1	Peak Pol v/h h h h h v	15.209 Limit 74.0 54.0 74.0 54.0 74.0 74.0	/ 15.247 Margin -18.4 -10.5 -21.8 -13.8 -20.9	Detector Pk/QP/Avg Pk Avg Pk Avg Pk	Azimuth degrees 252 252 248 248 257	Height Height 1.2 1.2 1.2 1.2 1.2 1.1	Average Comments 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
RBH4 1 6 equency MHz 4 4924.00 4 4 7386.00 7 3 4924.00 4 4 4924.00 4 4 4924.00 4 4 4924.00 4 4	Level dBµV/m 55.6 43.5 52.3 40.2 53.1 39.7	Pol V/h h h h h v v v	15.209 Limit 74.0 54.0 74.0 54.0 74.0 54.0 54.0	SHP SDms / 15.247 Margin -18.4 -10.5 -21.8 -13.8 -20.9 -14.3	Detector Pk/QP/Avg Pk Avg Pk Avg Pk Avg	Azimuth degrees 252 252 248 248 257 257	Height Height 1.2 1.2 1.2 1.2 1.1 1.1	Average Comments				
equency MHz 4924.00 7386.00 7386.00 4924.00	Level dBµV/m 55.6 43.5 52.3 40.2 53.1	Peak Pol v/h h h h h v	15.209 Limit 74.0 54.0 74.0 54.0 74.0 74.0	/ 15.247 Margin -18.4 -10.5 -21.8 -13.8 -20.9	Detector Pk/QP/Avg Pk Avg Pk Avg Pk	Azimuth degrees 252 252 248 248 257	Height Height 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1	Average Comments Comm				

Elliott

EMC Test Data

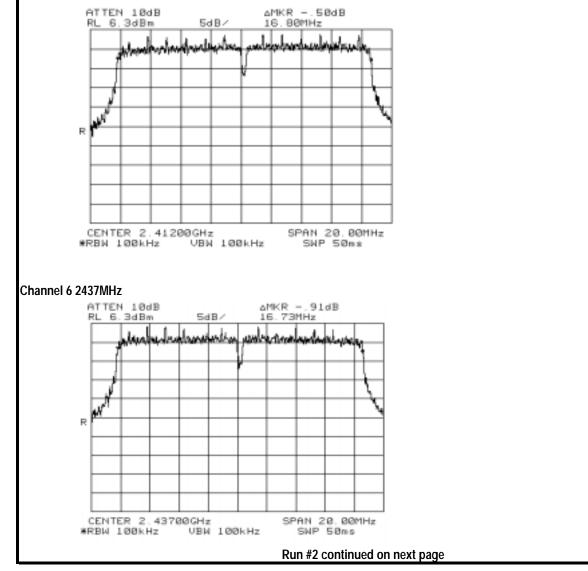
Client: 2Wire

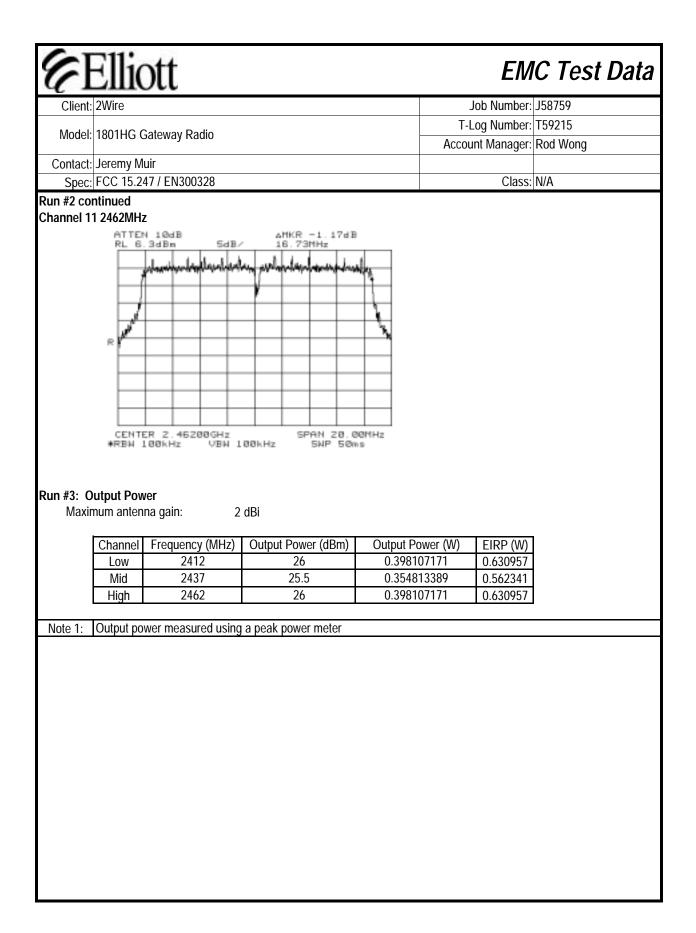
Job Number: J58759

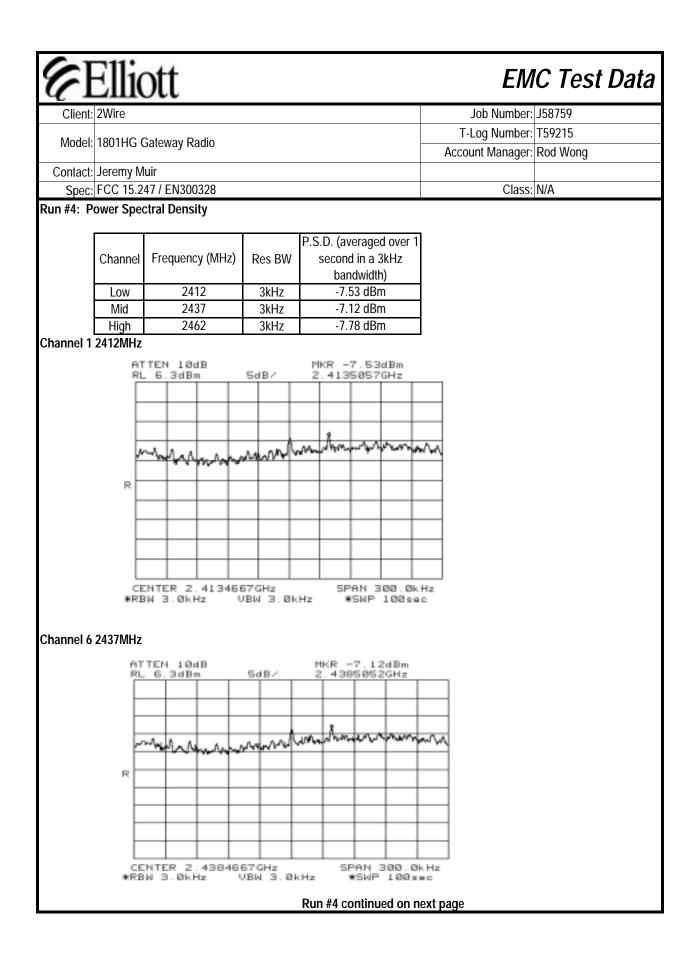
Model: 1801HG Gateway Radio

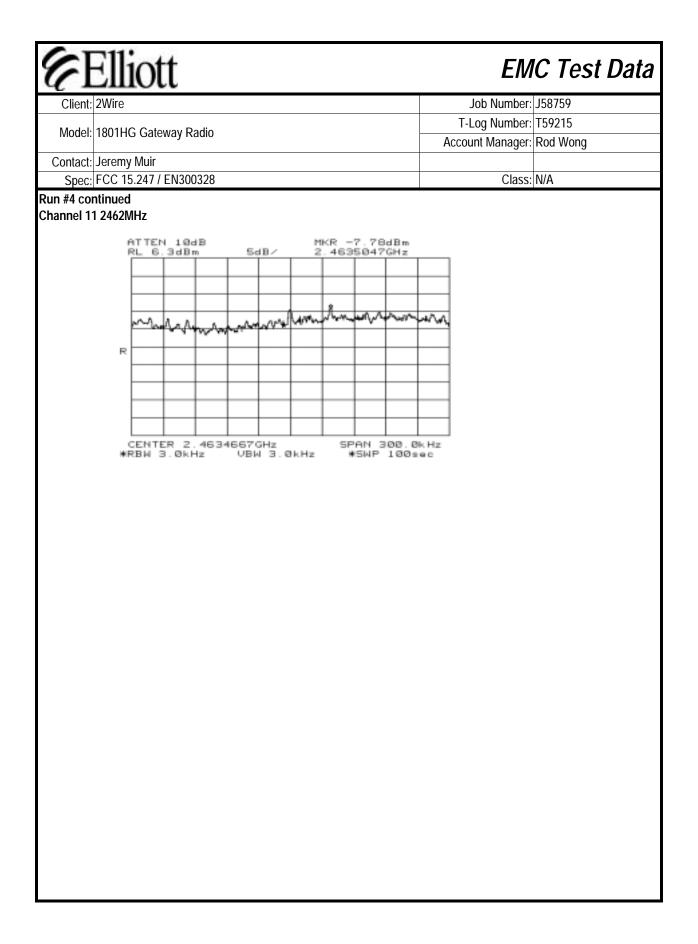
T-Log Number: T59215 Account Manager: Rod Wong

Contact: Jeremy Muir


Spec: FCC 15.247 / EN300328


Class: N/A


Run #2: Signal Bandwidth


Channel	Frequency (MHz)	Resolution Bandwidth	6dB Signal Bandwidth	99% Signal Bandwidth
Low	2412	100kHz	16.80MHz	16.80MHz
Mid	2437	100kHz	16.73MHz	16.77MHz
High	2462	100kHz	16.73MHz	16.77MHz

Channel 1 2412MHz

	ott			EIVI	C Test D
Client: 2Wire			J	ob Number:	J58759
Model: 1801HG (Sateway Radio			og Number: ⁻ nt Manager: I	
Contact: Jeremy M	uir		710000	nt Manager.	tou wong
Spec: FCC 15.2				Class:	В
	Rx En	nissions (RSS-	-210)		
Test Specifics Objective:	The objective of this test sessic specification listed above.	on is to perform final qualif	ication testi	ng of the EUT	Γ with respect to th
Date of Test: Test Engineer: Test Location:	Juan Martinez	Config. Used: Config Change: EUT Voltage:	None	:	
General Test Col The EUT and all loo	nfiguration cal support equipment were loca	ated on the turntable for ra	idiated emis	ssions testing	
The test distance a	nd extrapolation factor (if used)	are detailed under each r	un descriptio	on.	
peak reading of any	ove 1 GHz, the FCC specifies th emission above 1 GHz, can not ons: Temperature:	ot exceed the average limit			he FCC states tha
ampiont ('onditi	Rel. Humidity:				
Ambient Conditio	. con annung				
		Limit	Result	Ma	
Ambient Condition Summary of Res Run # 1-2	ults	Limit RSS-210 Rx mode	Result Pass	44.3dl	BuV/m V/m) @

6	Ellic)II						ΕM	C Test L
Client:	2Wire						J	ob Number:	J58759
Madal	1801HG Gateway Radio					T-L	og Number:	T59215	
Model.		aleway	Raulu			-	Accour	nt Manager:	Rod Wong
Contact:	Jeremy Mu	uir							
Spec:	FCC 15.24	17 / EN3	00328					Class:	В
Run #1 Ma 802.11G	aximized re	eadings	;, 1000 - 800						
Frequency	Level	Pol		5-210	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
CH: 2412	40.0		(0.0	17.0			4.0		
1608.000		V	60.0	-17.0	Avg	0 360	1.0		
3219.000 4824.000		V	60.0 60.0	-19.0 -15.7	Avg Avg	360 0	1.0 1.0		
4824.000 CH: 2437	44.3	V	00.0	-10.7	Avg	0	1.0		
1624.000	31.8	V	60.0	-28.2	Avq	0	1.0		
3248.000		V	60.0	-20.2	Avg	360	1.0		
4872.000		v	60.0	-16.8	Avg	0	1.0		
CH: 2462					3	-			
1641.000	31.4	V	60.0	-28.6	Avg	360	1.0		
3265.000	39.0	V	60.0	-21.0	Avg	0	1.0		
4889.000	43.7	V	60.0	-16.3	Avg	360	1.0		
302.11B Frequency	Level	Pol		5-210	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
	30.7		60.0	-29.3	Δισ	0	1 0		
CH: 2412	30.7	V V	60.0 60.0	-29.3	Avg Avg	0 360	1.0 1.0		
1608.000	30 E		00.0		ě.	<u> </u>			
1608.000 3219.000			60.0	-16.2	Δva			1	
1608.000 3219.000 4824.000		V	60.0	-16.3	Avg	0	1.0		
1608.000 3219.000 4824.000 CH: 2437	43.7	V							
1608.000 3219.000 4824.000 CH: 2437 1624.000	43.7 31.6		60.0	-28.5	Avg	0	1.0		
1608.000 3219.000 4824.000 CH: 2437	43.7 31.6 39.3	V							
1608.000 3219.000 4824.000 CH: 2437 1624.000 3248.000	43.7 31.6 39.3	V V V	60.0 60.0	-28.5 -20.7	Avg Avg	0 360	1.0 1.0		
1608.000 3219.000 4824.000 CH: 2437 1624.000 3248.000 4872.000	43.7 31.6 39.3 42.5	V V V	60.0 60.0	-28.5 -20.7	Avg Avg	0 360	1.0 1.0		
1608.000 3219.000 4824.000 CH: 2437 1624.000 3248.000 4872.000 CH: 2462	43.7 31.6 39.3 42.5 31.0 31.0 40.0	V V V V	60.0 60.0 60.0	-28.5 -20.7 -17.5	Avg Avg Avg	0 360 0	1.0 1.0 1.0		

EMC Test Data

Client:	2Wire	Job Number:	J58759
Modol	Model: 1801HG Gateway Radio	T-Log Number:	T59215
wouer.	Too The Galeway Radio	Account Manager:	Rod Wong
Contact:	Jeremy Muir		
Spec:	FCC 15.247 / EN300328	Class:	N/A

FCC 15.247 DTS - Power, Bandwidth and Spurious Emissions

Test Specifics

Elliott

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

Date of Test: 4/15/2005 Test Engineer: Chris Byleckie Test Location: EMC Lab Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

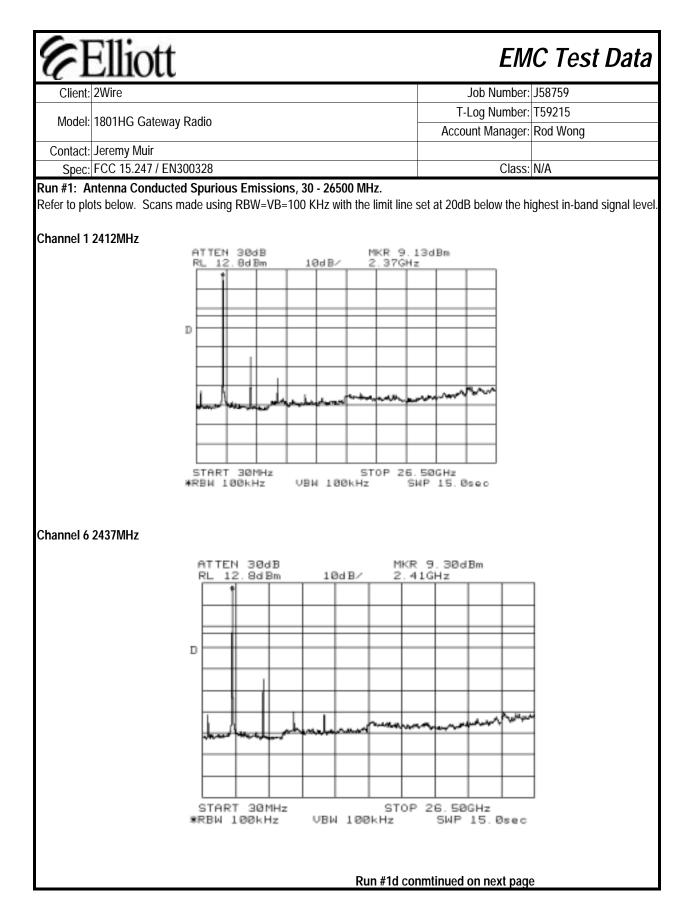
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions:	Temperature:	22 °C
	Rel. Humidity:	33 %

Summary of Results


Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Antenna Conducted Spurious Emissions, 30 - 26500 MHz	FCC Part 15.209 / 15.247(c)	Pass	


Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	2Wire	Job Number:	J58759				
Model:	1801HG Gateway Radio	T-Log Number:	T59215				
		Account Manager:	Rod Wong				
Contact:	Jeremy Muir						
Spec:	FCC 15.247 / EN300328	Class:	N/A				

FCC 15.247 DTS - Power, Bandwidth and Spurious Emissions

Test Specifics

Elliott

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

Date of Test: 4/15/2005 Test Engineer: Chris Byleckie Test Location: EMC Lab Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

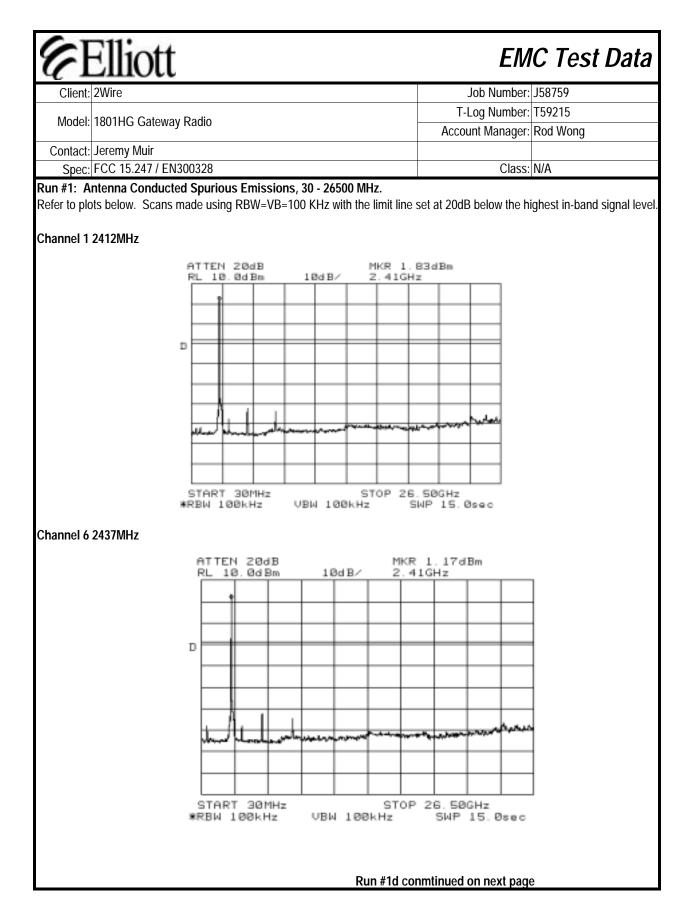
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

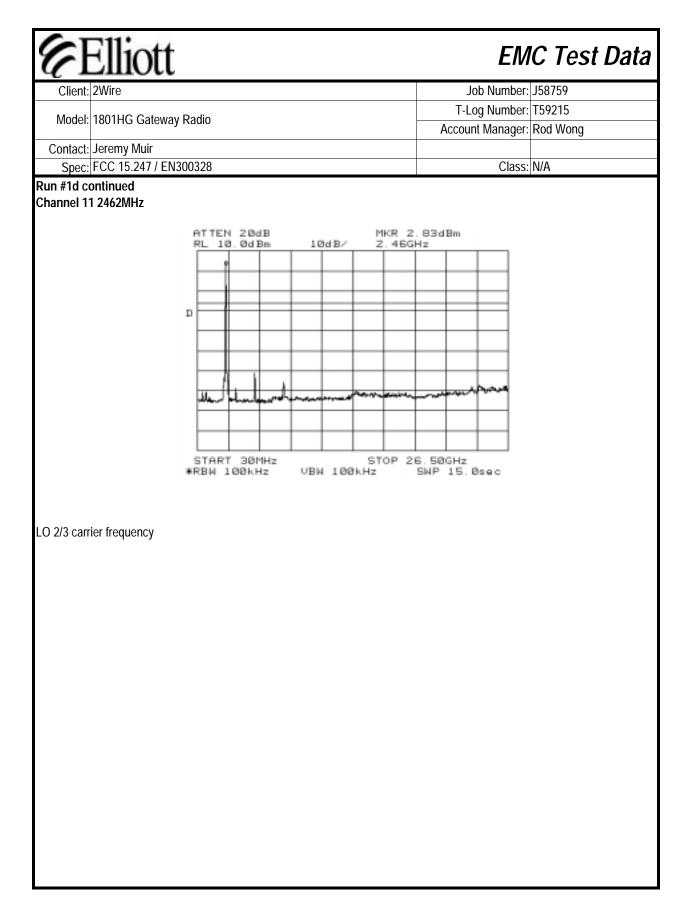
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions:	Temperature:	22 °C	
	Rel. Humidity:	33 %	

Summary of Results


Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Antenna Conducted Spurious Emissions, 30 - 26500 MHz	FCC Part 15.209 / 15.247(c)	Pass	


Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EXHIBIT 3: Test Configuration Photographs

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of 2Wire, Inc. Model 1801HG Gateway, 1701HG Gateway, 171HG Gateway, RG1801HG-00, RG1701HG-00 and RG171HG-00Construction

EXHIBIT 6: Operator's Manual For 2Wire, Inc. Model 1801HG Gateway, 1701HG Gateway, 171HG Gateway, RG1801HG-00, RG1701HG-00 and RG171HG-00

EXHIBIT 7: Block Diagram of 2Wire, Inc. Model 1801HG Gateway, 1701HG Gateway, 171HG Gateway, RG1801HG-00, RG1701HG-00 and RG171HG-00

1 Page

EXHIBIT 8: Schematic Diagrams for 2Wire, Inc. Model 1801HG Gateway, 1701HG Gateway, 171HG Gateway, RG1801HG-00, RG1701HG-00 and RG171HG-00

EXHIBIT 9: Theory of Operation for 2Wire, Inc. Model 1801HG Gateway, 1701HG Gateway, 171HG Gateway, RG1801HG-00, RG1701HG-00 and RG171HG-00

EXHIBIT 10: Advertising Literature

None at this time.

EXHIBIT 11: RF Exposure Information

2 Page