

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to

FCC Part 15 Subpart C

on the 2Wire, Inc. Transmitter Model: RG2701HGV-00

FCC ID: PGR2W2701HGV GRANTEE: 2Wire, Inc.

1704 Automation Parkway San Jose, CA 95131

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE:

April 14, 2007

FINAL TEST DATES:

February 16, February 23, February 28 and March 2, 2007

AUTHORIZED SIGNATORY:

Bai

David W. Bare Chief Technical Officer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

File: R67609 Rev 1 Page 1 of 21

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	April 27, 2007	Initial Release	David Guidotti

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	7
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
-	
GENERAL	
ANTENNA SYSTEM ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	13
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS	14
RADIATED EMISSIONS	14
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS.	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS.	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	3

SCOPE

An electromagnetic emissions test has been performed on the 2Wire, Inc. model RG2701HGV-00 pursuant to the following rules:

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards. Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the 2Wire, Inc. model RG2701HGV-00 and therefore apply only to the tested sample. The sample was selected and prepared by John Reynolds of 2Wire, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of 2Wire, Inc. model RG2701HGV-00 complied with the requirements of the following regulations:

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	Digital Modulation	System uses OFDM or DSSS techniques	-	Complies
15.247 (a) (2)	6dB Bandwidth	16.1 MHz	>500kHz	Complies
15.247 (b) (3)	Output Power (multipoint systems)	27.0 dBm (0.5 Watts) EIRP = $0.63 \text{ W}^{\text{Note 1}}$	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	Power Spectral Density	-0.7 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	Antenna Port Spurious Emissions 30MHz – 25 GHz	Minimum -46dBc	< -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	Radiated Spurious Emissions 30MHz – 25 GHz	53.0dBµV/m (446.7µV/m) @ 4874.0MHz (-1.0dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies
15.203	RF Connector	Integral Antenna	Non standard connector or integral antenna	Complies
15.207	AC Conducted Emissions	38.0dBµV @ 0.415MHz (-9.5dB)	Refer to standard	Complies
15.247 (b) (5) 15.407 (f)	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11 and User Manual statements.	Refer to OET 65 and FCC Part 1	Complies

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

Note 1: EIRP calculated using antenna gain of 1 dBi (1.3) for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under 15.247(b)(3).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$\pm 2.4 \\ \pm 3.0 \\ \pm 3.6 \\ \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The 2Wire, Inc. model RG2701HGV-00 is a DSL wireless gateway that is designed to be used in the home. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT power adapter is 100-240 Volts, 50/60 Hz, 1 Amp.

The sample was received on February 16, 2007 and tested on February 16, February 23, February 28 and March 2, 2007. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
2Wire	RG2701HGV-00	DSL Wireless	426211100204	PGR2W2701HGV
		Gateway		

ANTENNA SYSTEM

The single transmit antenna is integral to the device. 2Wire stated that the gain is 2dBi.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 23 cm wide by 19 cm deep by 4 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Latitude	Laptop Computer	Service Tag J4RN331	-

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Config 1						
Port	Connected To	Cable(s)		Cable(s)		
TOIT	Connected 10	Description	Shielded or Unshielded	Length(m)		
EUT	Laptop Ethernet	Cat5 Twisted Pair	Unshielded	30.0		
Ethernet						
DC Input	External	DC Leads	Unshielded	2.0		
	GoodPower					
	Adapter					

Config 2

Port	Connected To	Cable(s)		
TOIT	Connected 10	Description	Shielded or Unshielded	Length(m)
EUT	Laptop Ethernet	Cat5 Twisted Pair	Unshielded	30.0
Ethernet				
EUT	Unterminated	Cat5 Twisted Pair	Unshielded	1.0
Ethernet				
EUT	Unterminated	Cat5 Twisted Pair	Unshielded	1.0
Ethernet				
RJ-11	Telephone	Multiwire	Unshielded	1.0
RJ-11	Unterminated	Multiwire	Unshielded	2.0
USB	Laptop	Multiwire	Shielded	1.5
DC Input	External	DC Leads	Unshielded	2.0
	GoodPower			
	Adapter			

EUT OPERATION

During emissions testing the EUT was in continuous transmit or receive mode on the channel selected as noted.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on February 16, February 23, February 28 and March 2, 2007 at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California or 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

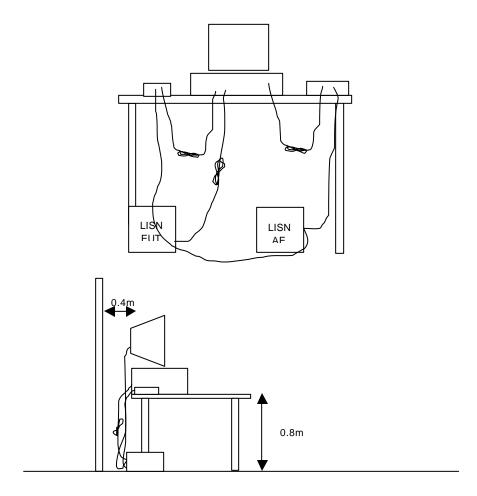
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

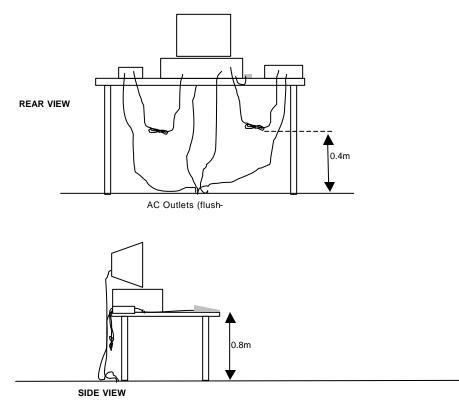

TEST PROCEDURES

EUT AND CABLE PLACEMENT

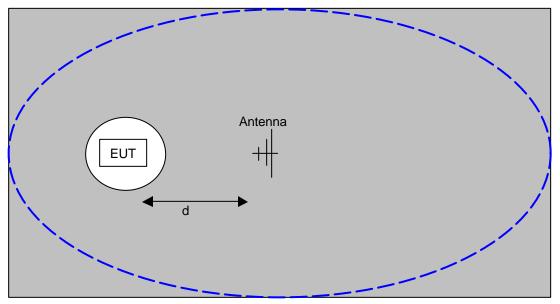
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

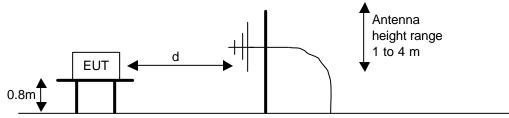
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.


RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

Test Configuration for Radiated Field Strength Measurements OATS- Plan and Side Views

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3}$ microvolts per meter

where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Antenna Port Conducted Emissions, 23-Feb-07 Engineer: Mark Hill

<u>Manufacturer</u> Hewlett Packard	<u>Description</u> SpecAn 9 kHz - 40 GHz, Purple (SA40)	<u>Model #</u> 8564E (84125C)	<u>Asset #</u> 1771	<u>Cal Due</u> 11-Jul-07
Radiated Emissions, 30	- 26,500 MHz, 28-Feb-07			
Engineer: Mehran Birga	ani			
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	07-Mar-07
Hewlett Packard	High Pass filter, 3.5 GHz	P/N 84300-80038	1157	24-Apr-07
EMCO	Log Periodic Antenna, 0.2-1 GHz	3146	1294	25-May-07
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	21-Nov-07
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	11-Jul-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	11-Jul-07
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	15-Nov-07
Radio Conducted Emiss Engineer: Juan Martine	sions - AC Power Ports, 02-Mar-07			
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304	30-Jun-07
Elliott Laboratories	LISN, FCC / CISPR	LISN-4, OATS	362	30-Jun-07
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	28-Aug-07
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	780	05-Sep-07
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	21-Nov-07

EXHIBIT 2: Test Measurement Data

43 Pages

-			
Client:	2Wire	Job Number:	J66193
Model:	RG2701HGV-00	Test-Log Number:	T67017
		Project Manager:	Susan Pelzl
Contact:	John Reynolds		
Emissions Spec:	FCC 15.247 / 15.209	Class:	В
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

2Wire

Model

RG2701HGV-00

Date of Last Test: 3/2/2007

|--|

Client:	2Wire	Job Number:	J66193
Model:	RG2701HGV-00	Test-Log Number:	T67017
		Project Manager:	Susan Pelzl
Contact:	John Reynolds		
Emissions Spec:	FCC 15.247 / 15.209	Class:	В
Immunity Spec:	-	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions(s).

General Description

The EUT is a DSL wireless gateway that is designed to be used in the home. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT power adapter is 100-240 Volts , 50/60 Hz, 1 Amp.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
2Wire	RG2701HGV-00	DSL Wireless Gateway	426211100204	PGR2W2701HGV
DVE	DSA-36W-12	Exernal AC-DC Adaptor	-	-

Other EUT Details

The following EUT details should be noted: Board ASSY: 3200-000631 Rev. 33 with X12, X13, X14, X15, X16, X17, X18, X21, X22 and X23.

EUT Antenna (Intentional Radiators Only)

The antenna is integral to the device.

EUT Enclosure

The EUT enclosure is primarily constructed of plastic. It measures approximately 23 cm wide by 19 cm deep by 4 cm high.

Modification History

Mod. #	Test	Date	Modification
1			
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Elliott

EMC Test Data

Client:	2Wire	Job Number:	J66193
Model:	RG2701HGV-00	T-Log Number:	T67017
		Project Manager:	Susan Pelzl
Contact:	John Reynolds		
Emissions Spec:	FCC 15.247 / 15.209	Class:	В
Immunity Spec:	-	Environment:	-

Test Configuration #1

Local Support Equipment					
Manufacturer	Model	Description	Serial Number	FCC ID	
None	-	-	-	-	

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Latitude	Laptop Computer	Service Tag J4RN331	-

Cabling and Ports

Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
EUT Ethernet	Laptop Ethernet	Cat5 Twisted Pair	Unshielded	30.0
DC Input	External GoodPower Adapter	DC Leads	Unshielded	2.0

Note: Additional ports not cabled during radio evaluation testing prescan.

EUT Operation During Emissions Tests

During emissions testing the EUT was in continuous transmit or receive mode on the channel selected as noted.

EUT Operation During Immunity Tests

During immunity test the EUT will be exercised by ______. Normal operation is indicated by ______ and shall be monitored by ______.

<i>Elliot</i>	l	EM	C Test Dat
Client:	2Wire	Job Number:	J66193
Model:	RG2701HGV-00	T-Log Number:	T67017
		Project Manager:	Susan Pelzl
Contact:	John Reynolds		
	FCC 15.247 / 15.209	Class:	В
Immunity Spec:	-	Environment:	-
riterion A: During and after testing	Performance Criteria for Immu the EUT shall continue to	unity Tests	
• • • •	e transient test, degradation of performance includin operation after testing without any operator interven	•	d provided that the EU
riterion C: Loss of function is allow	ed provided that normal operation can be restored b	ру	

E	iott

Client:	2Wire	Job Number:	J66193
Model:	RG2701HGV-00	T-Log Number:	T67017
		Project Manager:	Susan Pelzl
Contact:	John Reynolds		
Emissions Spec:	FCC 15.247 / 15.209	Class:	В
Immunity Spec:	-	Environment:	-

Test Configuration #2

	L	ocal Support Equipm	nent	
Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Latitude	Laptop Computer	Service Tag J4RN331	-
		Telephone	-	-

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

Cabling and Ports

Port	Connected To		Cable(s)	
		Description	Shielded or Unshielded	Length(m)
EUT Ethernet	Laptop Ethernet	Cat5 Twisted Pair	Unshielded	30.0
EUT Ethernet	Unterminated	Cat5 Twisted Pair	Unshielded	1.0
EUT Ethernet	Unterminated	Cat5 Twisted Pair	Unshielded	1.0
RJ-11	Telephone	Multiwire	Unshielded	1.0
RJ-11	Unterminated	Multiwire	Unshielded	2.0
USB	Laptop	Multiwire	Shielded	1.5
DC Input	External GoodPower Adapter	DC Leads	Unshielded	2.0

EUT Operation During Emissions Tests

During emissions testing the EUT was in continuous transmit or receive mode on the channel selected as noted.

6E	Elliott	
Client:	2Wire	Job Nu
Model	RG2701HGV-00	T-Log Nu

Client:	2Wire	Job Number:	J66193
Model	RG2701HGV-00	T-Log Number:	T67017
MOUEI.	KG2701HGV-00	Account Manager:	Susan Pelzl
Contact:	John Reynolds		
Standard:	FCC 15.247 / 15.209	Class:	В

Conducted Emissions - Power Ports

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

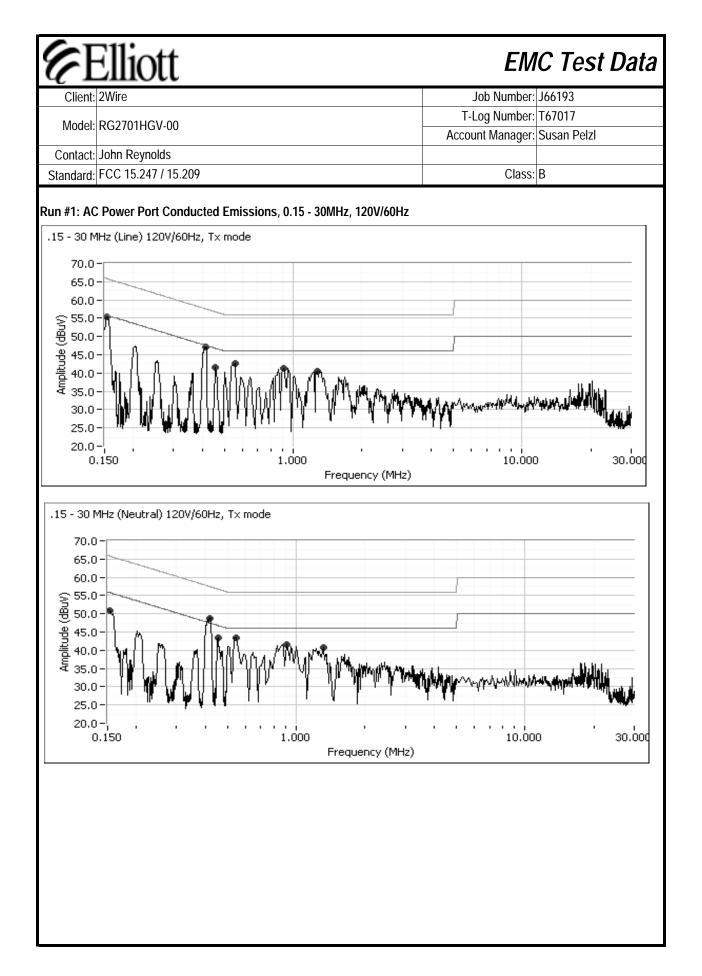
Date of Test: 3/2/2007 13:00 Test Engineer: Juan Martinez Test Location: SVOATS #2 Config. Used: 2 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

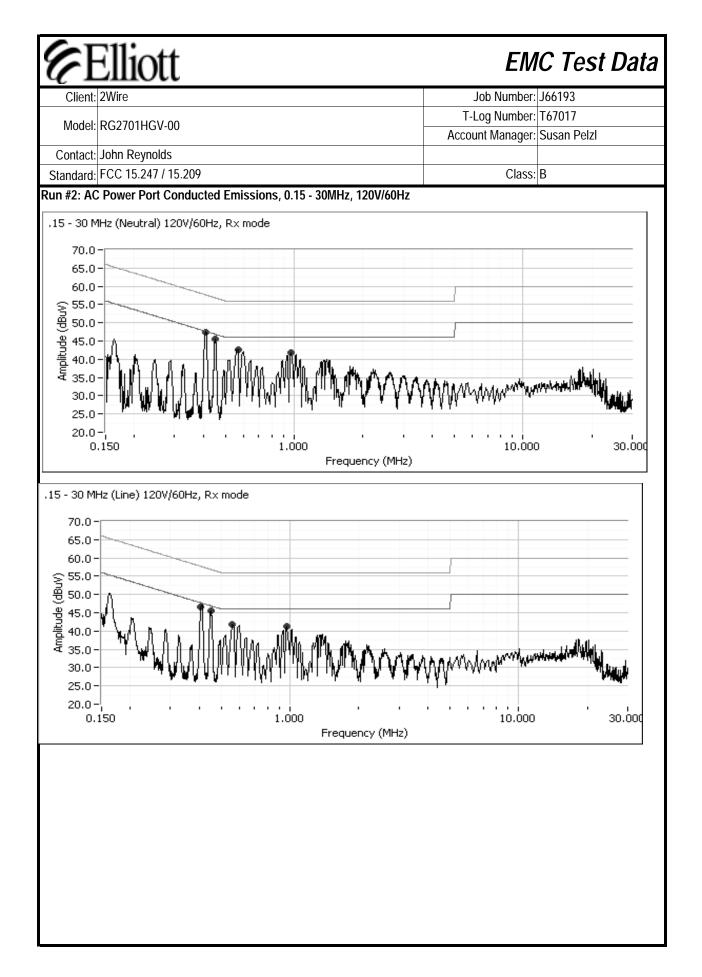
The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located approximately 30 meters from the test area. All I/O connections were running on top of the groundplane.

Ambient Conditions:	Temperature:	16 °C
	Rel. Humidity:	48 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	EN55022 B	Pass	38.0dBµV (79.4µV) @ 0.415MHz (-9.5dB)
2	CE, AC Power,120V/60Hz	EN55022 B	Pass	44.0dBµV (158.5µV) @ 0.410MHz (-3.6dB)

Modifications Made During Testing:


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client 2Wire Job Number: J66193 Model: RG2701HGV-00 T-Log Number: T67017 Account Manager: Susan Pelzl Contact: John Reynolds Standard: FCC 15.247 / 15.209 Class: B Frequency Level AC EN55022 B Detector Comments MHz dBµV Line Limit Margin OP/Ave Class: B Frequency Level AC EN55022 B Detector Comments 0.415 46.3 Neutral 57.5 -11.2 OP OP/Ave 0.415 46.3 Neutral 57.5 -11.2 OP OP O 0.555 32.0 Neutral 57.5 -11.2 OP O O 0.413 43.4 Line 1 65.8 -13.4 OP O O 0.413 43.4 Line 1 57.6 AVG O O O 0.454 40.5	-								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	Ellio	ott					EM	IC Test Data
Model: RC2/01HGV-00 Account Manager: Susan Pelzl Contact: John Reynolds Class: B Standard: FCC 15.247 / 15.209 Class: B Frequency Level AC EN55022 B Detector Comments MHz dBµV Line Limit Margin QP/Ave OP/Ave 0.415 38.0 Neutral 47.5 -9.5 AVG	-							Job Number:	J66193
Model: RC2/01HGV-00 Account Manager: Susan Pelzl Contact: John Reynolds Class: B Standard: FCC 15.247 / 15.209 Class: B Frequency Level AC EN55022 B Detector Comments MHz dBµV Line Limit Margin QP/Ave OP/Ave 0.415 38.0 Neutral 47.5 -9.5 AVG		D.0.07041						T-Log Number:	T67017
Standard: FCC 15.247 / 15.209 Class: B Frequency Level AC EN55022 B Detector Comments 0.415 38.0 Neutral 47.5 -9.5 AVG AVG 0.415 46.3 Neutral 57.5 -11.2 QP QP 0.415 46.3 Neutral 57.5 -11.2 QP QP <td>Model:</td> <td>RG2/01F</td> <td>IGV-00</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>	Model:	RG2/01F	IGV-00					•	
Standard: FCC 15.247 / 15.209 Class: B Frequency Level AC EN55022 B Detector Comments 0.415 38.0 Neutral 47.5 -9.5 AVG AVG 0.415 46.3 Neutral 57.5 -11.2 QP QP 0.415 46.3 Neutral 57.5 -11.2 QP QP <td>Contact:</td> <td>John Rey</td> <td>nolds</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Contact:	John Rey	nolds						
Frequency Level AC EN55022 B Detector Comments MHz dBµV Line Limit Margin QP/Ave Comments 0.415 38.0 Neutral 47.5 -9.5 AVG Comments 0.415 46.3 Neutral 57.5 -11.2 QP Comments 0.556 33.0 Line 1 46.0 -13.4 QP Comments 0.555 32.0 Neutral 46.0 -14.0 AVG Comments 0.413 43.4 Line 1 57.6 -14.2 QP Comments 0.413 43.4 Line 1 57.6 -14.2 QP Comments 0.413 33.2 Line 1 57.6 -14.2 QP Comments 0.413 33.2 Line 1 56.0 -15.2 AVG Comments 0.454 31.3 Line 1 56.0 -15.5 OP Comments 0.555 40.5 Neutral				09				Class:	В
MHz dBµV Line Limit Margin QP/Ave 0.415 38.0 Neutral 47.5 -9.5 AVG 0.415 46.3 Neutral 57.5 -11.2 QP 0.556 33.0 Line 1 46.0 -13.0 AVG 0.154 52.4 Line 1 65.8 -13.4 QP 0.555 32.0 Neutral 46.0 -14.0 AVG 0.413 43.4 Line 1 57.6 -14.2 QP 0.413 33.2 Line 1 47.6 -14.4 AVG 0.413 33.2 Line 1 46.8 -15.5 AVG 0.454 31.3 Line 1 56.0 -15.5 OP 0.555 40.5 Neutral 55.8 -16.8 AVG 0.454 39.0 Line 1 56.0 -17.2 OP 0.556 39.6 Line 1 56.0 -17.4 AVG 0.454 <td< td=""><td>otunuuru.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>	otunuuru.								-
MHz dBµV Line Limit Margin QP/Ave 0.415 38.0 Neutral 47.5 -9.5 AVG 0.415 46.3 Neutral 57.5 -11.2 QP 0.556 33.0 Line 1 46.0 -13.0 AVG 0.154 52.4 Line 1 65.8 -13.4 QP 0.555 32.0 Neutral 46.0 -14.0 AVG 0.413 43.4 Line 1 57.6 -14.2 QP 0.413 33.2 Line 1 47.6 -14.4 AVG 0.413 33.2 Line 1 46.8 -15.5 AVG 0.454 31.3 Line 1 56.0 -15.5 OP 0.555 40.5 Neutral 55.8 -16.8 AVG 0.454 39.0 Line 1 56.0 -17.2 OP 0.556 39.6 Line 1 56.0 -17.4 AVG 0.454 <td< td=""><td>Frequency</td><td>Level</td><td>AC</td><td>EN55</td><td>022 B</td><td>Detector</td><td>Comments</td><td></td><td></td></td<>	Frequency	Level	AC	EN55	022 B	Detector	Comments		
0.415 38.0 Neutral 47.5 -9.5 AVG 0.415 46.3 Neutral 57.5 -11.2 QP 0.556 33.0 Line 1 46.0 -13.0 AVG 0.154 52.4 Line 1 65.8 -13.4 QP 0.555 32.0 Neutral 46.0 -14.0 AVG 0.413 43.4 Line 1 57.6 -14.2 QP 0.413 33.2 Line 1 47.6 -14.4 AVG 0.413 33.2 Line 1 47.6 -14.4 AVG 0.413 33.2 Line 1 57.8 -15.2 AVG 0.454 31.3 Line 1 56.0 -15.5 OP 0.555 40.5 Neutral 56.0 -16.4 QP 0.154 39.0 Line 1 56.0 -17.2 QP 1.275 28.6 Line 1 46.8 -17.0 AVG 0.907 3							Commonto		
0.415 46.3 Neutral 57.5 -11.2 QP 0.556 33.0 Line 1 46.0 -13.0 AVG 0.154 52.4 Line 1 65.8 -13.4 QP 0.555 32.0 Neutral 46.0 -14.0 AVG 0.413 43.4 Line 1 57.6 -14.2 QP 0.413 33.2 Line 1 47.6 -14.4 AVG 0.153 40.6 Neutral 55.8 -15.2 AVG 0.413 31.3 Line 1 46.8 -15.5 AVG 0.454 31.3 Line 1 56.0 -15.5 QP 0.555 40.5 Neutral 56.0 -15.5 QP 0.556 39.6 Line 1 56.0 -15.5 QP 0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.907 38.8 Line 1 56.0 -17.4 AVG 0.153 48.2 <td></td> <td></td> <td></td> <td></td> <td>V</td> <td></td> <td></td> <td></td> <td></td>					V				
0.556 33.0 Line 1 46.0 -13.0 AVG 0.154 52.4 Line 1 65.8 -13.4 QP 0.555 32.0 Neutral 46.0 -14.0 AVG 0.413 43.4 Line 1 57.6 -14.2 QP 0.413 33.2 Line 1 47.6 -14.4 AVG 0.413 33.2 Line 1 47.6 -14.4 AVG 0.413 33.2 Line 1 47.6 -14.4 AVG 0.453 40.6 Neutral 55.8 -15.2 AVG 0.454 31.3 Line 1 46.8 -15.5 QP 0.555 40.5 Neutral 56.0 -16.4 QP 0.154 39.0 Line 1 56.0 -17.2 QP 0.454 29.8 Neutral 46.8 -17.0 AVG 0.153 48.2 Neutral 56.8 -17.6 QP 0.454 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
0.555 32.0 Neutral 46.0 -14.0 AVG 0.413 43.4 Line 1 57.6 -14.2 QP 0.413 33.2 Line 1 47.6 -14.4 AVG 0.153 40.6 Neutral 55.8 -15.2 AVG 0.454 31.3 Line 1 46.8 -15.5 AVG 0.555 40.5 Neutral 56.0 -15.5 QP 0.556 39.6 Line 1 56.0 -16.4 QP 0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.454 29.8 Neutral 65.8 -17.6 QP 1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 56.8 -17.6 QP 0.454									
0.555 32.0 Neutral 46.0 -14.0 AVG 0.413 43.4 Line 1 57.6 -14.2 QP 0.413 33.2 Line 1 47.6 -14.4 AVG 0.153 40.6 Neutral 55.8 -15.2 AVG 0.454 31.3 Line 1 46.8 -15.5 AVG 0.555 40.5 Neutral 56.0 -15.5 QP 0.556 39.6 Line 1 56.0 -16.4 QP 0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.454 29.8 Neutral 65.8 -17.4 AVG 0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.0 Line 1 56.0 -18.7 QP 0.454	0.154	52.4	Line 1	65.8	-13.4	QP			
0.413 43.4 Line 1 57.6 -14.2 QP 0.413 33.2 Line 1 47.6 -14.4 AVG 0.153 40.6 Neutral 55.8 -15.2 AVG 0.454 31.3 Line 1 46.8 -15.5 AVG 0.555 40.5 Neutral 56.0 -15.5 QP 0.556 39.6 Line 1 56.0 -16.4 QP 0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.907 38.8 Line 1 56.0 -17.2 QP 1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 56.8 -17.6 QP 0.454 <	0.555	32.0	Neutral	46.0	-14.0	AVG	1		
0.153 40.6 Neutral 55.8 -15.2 AVG 0.454 31.3 Line 1 46.8 -15.5 AVG 0.555 40.5 Neutral 56.0 -15.5 QP 0.556 39.6 Line 1 56.0 -16.4 QP 0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.907 38.8 Line 1 56.0 -17.2 QP 1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.0 -18.7 QP 1.275 37.3 Line 1 56.0 -20.2 AVG 1.245 34.9<	0.413	43.4	Line 1	57.6		QP	1		
0.454 31.3 Line 1 46.8 -15.5 AVG 0.555 40.5 Neutral 56.0 -15.5 QP 0.556 39.6 Line 1 56.0 -16.4 QP 0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.907 38.8 Line 1 56.0 -17.2 QP 1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 1.275 37.3 Line 1 56.0 -18.7 QP 1.275 37.3 Line 1 56.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 <td>0.413</td> <td>33.2</td> <td>Line 1</td> <td>47.6</td> <td>-14.4</td> <td>AVG</td> <td></td> <td></td> <td></td>	0.413	33.2	Line 1	47.6	-14.4	AVG			
0.555 40.5 Neutral 56.0 -15.5 QP 0.556 39.6 Line 1 56.0 -16.4 QP 0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.907 38.8 Line 1 56.0 -17.2 QP 1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 1.275 37.3 Line 1 56.0 -18.7 QP 0.907 25.8 Line 1 56.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 3	0.153	40.6	Neutral	55.8	-15.2	AVG			
0.556 39.6 Line 1 56.0 -16.4 QP 0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.907 38.8 Line 1 56.0 -17.2 QP 1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.8 QP 1.275 37.3 Line 1 56.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -20.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 1	0.454	31.3	Line 1	46.8	-15.5	AVG			
0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.907 38.8 Line 1 56.0 -17.2 QP 1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 1.275 37.3 Line 1 56.0 -18.7 QP 0.907 25.8 Line 1 46.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	0.555	40.5	Neutral	56.0	-15.5	QP			
0.154 39.0 Line 1 55.8 -16.8 AVG 0.454 29.8 Neutral 46.8 -17.0 AVG 0.907 38.8 Line 1 56.0 -17.2 QP 1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 1.275 37.3 Line 1 56.0 -18.7 QP 0.907 25.8 Line 1 46.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	0.556	39.6	Line 1	56.0	-16.4	QP			
0.454 29.8 Neutral 46.8 -17.0 AVG 0.907 38.8 Line 1 56.0 -17.2 QP 1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 1.275 37.3 Line 1 56.0 -18.7 QP 1.275 37.3 Line 1 56.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.907 25.8 Line 1 56.0 -26.0 QP 1.245 34.9 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	0.154	39.0		55.8		AVG			
1.275 28.6 Line 1 46.0 -17.4 AVG 0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.8 QP 0.454 39.0 Line 1 56.8 -17.8 QP 1.275 37.3 Line 1 56.0 -18.7 QP 0.907 25.8 Line 1 46.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	0.454	29.8	Neutral	46.8		AVG			
0.153 48.2 Neutral 65.8 -17.6 QP 0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.8 QP 1.275 37.3 Line 1 56.0 -18.7 QP 0.907 25.8 Line 1 46.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	0.907	38.8	Line 1	56.0	-17.2	QP			
0.454 39.2 Neutral 56.8 -17.6 QP 0.454 39.0 Line 1 56.8 -17.8 QP 1.275 37.3 Line 1 56.0 -18.7 QP 0.907 25.8 Line 1 46.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	1.275	28.6	Line 1	46.0	-17.4	AVG			
0.454 39.0 Line 1 56.8 -17.8 QP 1.275 37.3 Line 1 56.0 -18.7 QP 0.907 25.8 Line 1 46.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	0.153	48.2	Neutral	65.8	-17.6	QP			
1.275 37.3 Line 1 56.0 -18.7 QP 0.907 25.8 Line 1 46.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	0.454	39.2	Neutral	56.8	-17.6	QP			
0.907 25.8 Line 1 46.0 -20.2 AVG 1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	0.454	39.0	Line 1	56.8	-17.8	QP			
1.245 34.9 Neutral 56.0 -21.1 QP 0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	1.275	37.3	Line 1	56.0	-18.7	QP			
0.949 30.0 Neutral 56.0 -26.0 QP 1.245 15.2 Neutral 46.0 -30.8 AVG	0.907	25.8	Line 1	46.0	-20.2	AVG			
1.245 15.2 Neutral 46.0 -30.8 AVG	1.245	34.9	Neutral	56.0	-21.1	QP			
	0.949	30.0	Neutral	56.0	-26.0	QP			
0.949 6.4 Neutral 46.0 -39.6 AVG	1.245	15.2	Neutral	46.0	-30.8	AVG			
	0.949	6.4	Neutral	46.0	-39.6	AVG			

Elliott	
---------	--

2Wire						Job Number:	J66193
D0070411014.00						T-Log Number:	T67017
RG2/UIF	IGV-00					Account Manager:	Susan Pelzl
John Rey	nolds						
FCC 15.2	47 / 15.2	09				Class:	В
Level	AC	EN55	022 B	Detector	Comments		
	Line	Limit		QP/Ave			
44.0	Neutral	47.6	-3.6	AVG			
43.2	Line 1	47.6	-4.4	AVG			
41.3	Neutral	46.9	-5.6	AVG			
40.8	Line 1	46.9	-6.1	AVG			
36.6	Neutral	46.0	-9.4	AVG			
35.8	Line 1	46.0	-10.2	AVG			
45.9	Neutral	57.6	-11.7	QP			
33.9	Line 1						
	Line 1						
42.9	Line 1	56.9	-14.0	QP			
31.9	Neutral	46.0	-14.1	AVG			
40.3	Neutral	56.0	-15.7	QP			
39.5	Line 1	56.0	-16.5	QP			
38.7	Line 1	56.0	-17.3	QP			
38.5	Neutral	56.0	-17.5	QP			
	2Wire RG2701H John Rey FCC 15.2 Level dBμV 44.0 43.2 41.3 40.8 36.6 35.8 45.9 33.9 45.0 43.1 42.9 31.9 40.3 39.5 38.7	RG2701HGV-00 John Reynolds FCC 15.247 / 15.20 Level AC dBµV Line 44.0 Neutral 43.2 Line 1 41.3 Neutral 40.8 Line 1 36.6 Neutral 35.8 Line 1 45.9 Neutral 33.9 Line 1 45.0 Line 1 43.1 Neutral 42.9 Line 1 31.9 Neutral 40.3 Neutral 39.5 Line 1 38.7 Line 1	2Wire RG2701HGV-00 John Reynolds FCC 15.247 / 15.209 Level AC EVE AC Level AC Line Limit 44.0 Neutral 47.6 43.2 Line 1 41.3 Neutral 46.9 40.8 Line 1 46.0 35.8 Line 1 45.9 Neutral 45.0 Line 1 45.0 Line 1 45.0 Line 1 45.0 Line 1 57.6 33.9 Line 1 56.9 42.9 Line 1 56.9 31.9 Neutral 56.0 39.5 Line 1 56.0 38.7	2Wire RG2701HGV-00 John Reynolds FCC 15.247 / 15.209 Level AC EN55022 B dBµV Line Limit Margin 44.0 Neutral 47.6 -3.6 43.2 Line 1 47.6 -4.4 41.3 Neutral 46.9 -5.6 40.8 Line 1 46.9 -6.1 36.6 Neutral 46.0 -9.4 35.8 Line 1 46.0 -10.2 45.9 Neutral 57.6 -11.7 33.9 Line 1 46.0 -10.2 45.9 Neutral 57.6 -11.7 33.9 Line 1 57.6 -12.1 45.0 Line 1 57.6 -12.6 43.1 Neutral 56.9 -13.8 42.9 Line 1 56.9 -14.0 31.9 Neutral 56.0 -15.7 39.5 Line 1 56.0 -16.5 38.7 Line 1 56.0 -17.3	2Wire RG2701HGV-00 John Reynolds FCC 15.247 / 15.209 Level AC EN55022 B Detector dBµV Line Limit Margin QP/Ave 44.0 Neutral 47.6 -3.6 AVG 43.2 Line 1 47.6 -4.4 AVG 41.3 Neutral 46.9 -5.6 AVG 40.8 Line 1 46.9 -6.1 AVG 36.6 Neutral 46.0 -9.4 AVG 35.8 Line 1 46.0 -10.2 AVG 35.8 Line 1 46.0 -10.2 AVG 35.8 Line 1 46.0 -10.2 AVG 35.8 Line 1 46.0 -11.7 QP 33.9 Line 1 57.6 -11.7 QP 33.9 Line 1 57.6 -12.6 QP 43.1 Neutral 56.9 -13.8 QP 42.9 Line 1 56.9 -14.0 QP 31.9 Neutral 56.0 -15.7 QP 39.5 Line 1 56.0 -16.5 QP 38.7 Line 1 56.0 -17.3 QP	2Wire RG2701HGV-00 John Reynolds FCC 15.247 / 15.209 Level AC EN55022 B Detector Comments dBµV Line Limit Margin QP/Ave 44.0 Neutral 47.6 -3.6 AVG 43.2 Line 1 47.6 -4.4 AVG 41.3 Neutral 46.9 -5.6 AVG 40.8 Line 1 46.0 -9.4 AVG 36.6 Neutral 46.0 -9.4 AVG 35.8 Line 1 46.0 -10.2 AVG 45.9 Neutral 57.6 -11.7 QP 33.9 Line 1 57.6 -12.1 AVG 45.0 Line 1 57.6 -12.6 QP 43.1 Neutral 56.9 -13.8 QP 42.9 Line 1 56.9 -14.0 QP 31.9 Neutral 56.0 -15.7 QP 39.5 Line 1 56.0 -16.5 QP 38.	Job Number: T-Log Number: RG2701HGV-00 John Reynolds FCC 15.247 / 15.209 Class: Level AC EN55022 B Detector Comments dB μ V Line Limit Margin QP/Ave 44.0 Neutral 47.6 -3.6 AVG 44.0 Neutral 46.9 -5.6 AVG 41.3 Neutral 46.9 -5.6 AVG 40.8 Line 1 46.9 -6.1 AVG

Elli	ott			EM	C Test D	
Client: 2Wire				Job Number: J66193		
Model: RG2701H	GV-00			og Number:		
Contact: John Reyr	nolds		Accou	nt Manager: S	Susan Peizi	
Standard: FCC 15.24				Class:	N/A	
		Radiated Em	issions	5		
	ails The objective of this test session specification listed above.	is to perform final qua	lification testi	ng of the EUT	T with respect to t	
Date of Test: Test Engineer: Test Location:	Mehran Birgani	Config. Used Config Change				
For radiated emissic Ambient Conditio Summary of Resu	Rel. Humidity:	enna was located 3 me 8 °C 60 %	ters from the	EUI.		
Run #	Test Performed	Limit	Result	Ma	rgin	
1	RE, 30 - 18,000 MHz Maximized Emissions	RSS 210	Pass	45.4df (186.2µ	Bμ V/m V/m) @ Hz (-0.6dB)	
No modifications we Deviations From	de During Testing: re made to the EUT during testin The Standard made from the requirements of th	-				

Elliott

EMC Test Data

Client:	2Wire	Job Number:	J66193
Model:	RG2701HGV-00	T-Log Number:	T67017
	KG2701HGV-00	Account Manager:	Susan Pelzl
Contact:	John Reynolds		
Standard:	FCC 15.247 / 15.209	Class:	N/A

Run #1: Receive Radiated Emissions, 30 - 18,000 MHz (802.11b @ 2437 MHz)

Measured at 3m

Measureu at sin										
Frequency	Level	Pol	RSS	5 210	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
800.003	45.4	V	46.0	-0.6	QP	347	1.0			
400.008	35.8	Н	46.0	-10.2	QP	316	1.0			
85.912	26.0	V	40.0	-14.0	QP	0	1.4			
387.724	23.2	Н	46.0	-22.8	QP	10	1.0			
30.636	14.8	Н	40.0	-25.2	QP	257	2.5			
40.351	12.5	Н	40.0	-27.5	QP	243	3.3			

Elliott

EMC Test Data

- v -			
Client:	2Wire	Job Number:	J66193
Madal	RG2701HGV-00	T-Log Number:	T67017
wouer.	KG2701HGV-00	Account Manager:	Susan Pelzl
Contact:	John Reynolds		
Standard:	FCC 15.247 / 15.209	Class:	N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/28/2007 Test Engineer: Mark Hill Test Location: SVOATS #2 Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

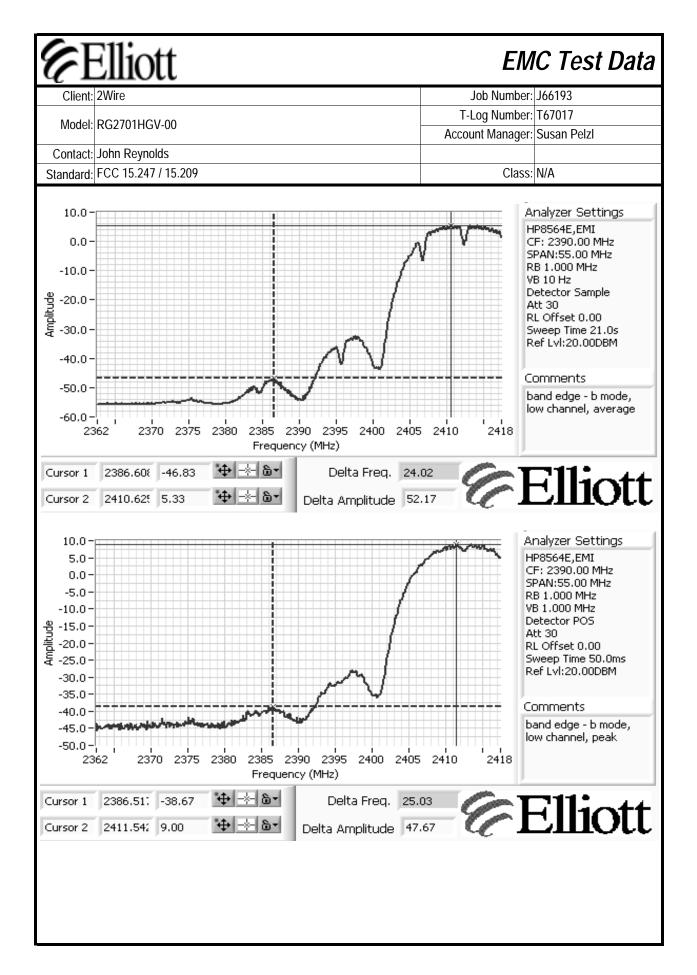
The EUT was located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	11 °C
	Rel. Humidity:	52 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
		FCC Part 15.209 /		53.0dBµ V/m
1 (802.11b Mode)	RE, 30 - 25000 MHz		Pass	(446.7µV/m) @
	Spurious Emissions	15.247(c)		4874.0MHz (-1.0dB)
	RE, 30 - 25000 MHz	FCC Part 15.209 /		49.8dBµ V/m
2 (802.11g Mode)			Pass	(309.0µ V/m) @
-	Spurious Emissions	15.247(c)		4875.3MHz (-4.2dB)


Modifications Made During Testing:

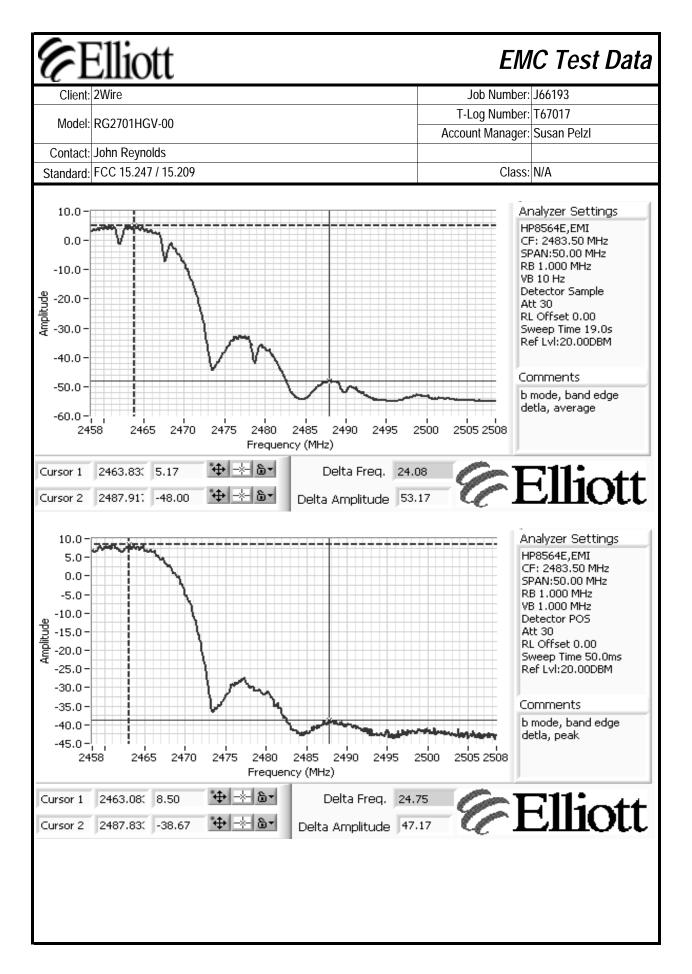
No modifications were made to the EUT during testing

Deviations From The Standard

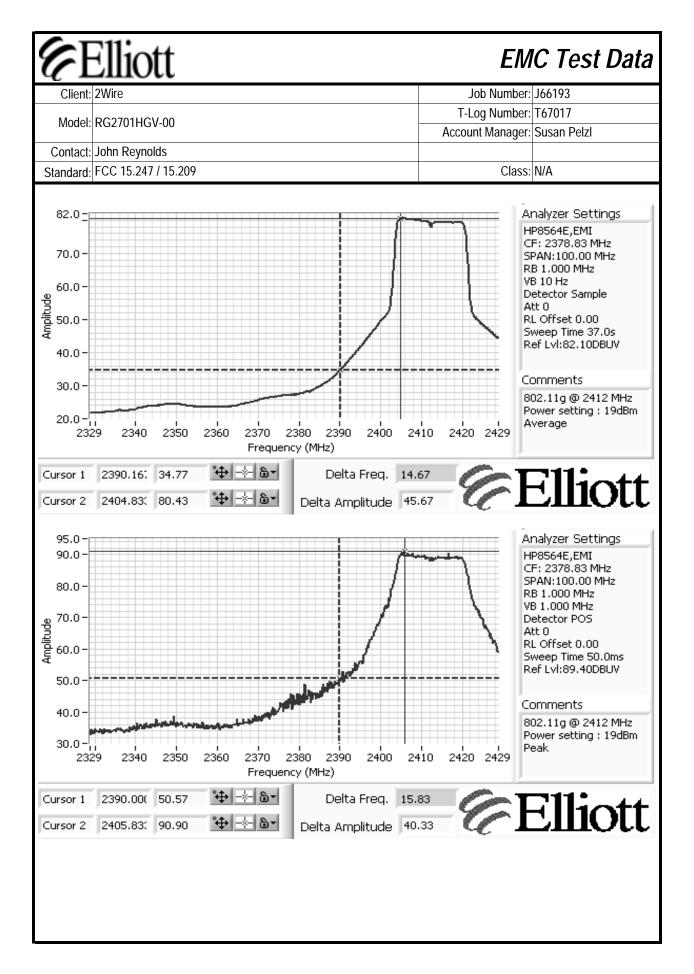
No deviations were made from the requirements of the standard.

U L	Ellic	ott						EM	C Test Dat
Client:							J	lob Number:	J66193
							T-I	og Number:	T67017
Model:	RG2701H	GV-00						•	Susan Pelzl
Contact:	John Reyr	nolds							
Standard:	FCC 15.24	47 / 15.2	09					Class:	N/A
Run #1a: L	Low Chanr	nel @ 24	112 MHz (Sc	oftware Pov	ver Setting			peak value r	neasured in 100kHz
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2413.950	101.0	V	-	-	AVG	181	1.1	RB = 1MHz	z, VB = 10Hz
2413.950	104.1	V	-	-	PK	181	1.1	RB = VB =	
2415.150	98.8	V	-	-	PK	181	1.1	RB = VB =	
2413.650	96.1	H	-	-	AVG	159	1.0		z, VB = 10Hz
2413.650	98.9	Н	-	-	PK	159	1.0	RB = VB =	
	t for emissi	ons outs				dBμV/m dBμV/m dB	-		ower measurement) in-band and highest
			Delta Marke					oon nightoot	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2412.000		V	54.0	-5.2	AVG	181	1.1	Note 1	
2412.000	56.4	V	74.0	-17.6	PK	181	1.1	Note 1	
NL-1	Calculat	ted by su	ubtracting th	e marker de	elta values fr	om the funda	amental field	l strength me	easurements.
Note 1: Other Spur	ious Emis	sions							
)ther Spur	tious Emis	sions Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
)ther Spur			15.209 / Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
Dther Spur Frequency MHz	Level	Pol						Comments	
Dther Spur Frequency MHz 4823.980	Level dBµV/m	Pol V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
Dther Spur Frequency MHz 4823.980 4824.020	Level dBµV/m 48.8	Pol V/H V H H	Limit 54.0	Margin -5.2	Pk/QP/Avg AVG	degrees 295	meters 1.0	Comments	
Other Spur requency MHz 4823.980 4824.020 7233.470	Level dBµV/m 48.8 48.0	Pol V/H V H	Limit 54.0 54.0	Margin -5.2 -6.0	Pk/QP/Avg AVG AVG	degrees 295 179	meters 1.0 2.0	Comments	
Other Spur Frequency MHz 4823.980 4824.020 7233.470 7234.370	Level dBµV/m 48.8 48.0 37.1	Pol V/H V H H V H	Limit 54.0 54.0 54.0	Margin -5.2 -6.0 -16.9	Pk/QP/Avg AVG AVG AVG	degrees 295 179 197	meters 1.0 2.0 1.7	Comments	
Other Spur Frequency MHz 4823.980 4824.020 7233.470 7234.370 9649.580 4823.980	Level dBµV/m 48.8 48.0 37.1 36.8 36.5 51.0	Pol V/H V H H V H V	Limit 54.0 54.0 54.0 54.0 54.0	Margin -5.2 -6.0 -16.9 -17.2 -17.5 -23.0	Pk/QP/Avg AVG AVG AVG AVG AVG PK	degrees 295 179 197 177	meters 1.0 2.0 1.7 1.0 1.0 1.0		
Other Spur Frequency MHz 4823.980 4824.020 7233.470 7234.370 9649.580 4823.980 4823.980 4823.980 4823.980	Level dBµV/m 48.8 48.0 37.1 36.8 36.5 51.0 50.6	Pol V/H V H H V H V H	Limit 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0	Margin -5.2 -6.0 -16.9 -17.2 -17.5 -23.0 -23.4	Pk/QP/Avg AVG AVG AVG AVG AVG PK PK	degrees 295 179 197 177 180 295 179	meters 1.0 2.0 1.7 1.0 1.0 2.0	Note 2	
Other Spur Frequency MHz 4823.980 4824.020 7233.470 7234.370 9649.580 4824.020 9649.580 9649.580	Level dBµV/m 48.8 48.0 37.1 36.8 36.5 51.0	Pol V/H H H V H V H H H	Limit 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0	Margin -5.2 -6.0 -16.9 -17.2 -17.5 -23.0 -23.4 -26.3	Pk/QP/Avg AVG AVG AVG AVG AVG PK PK PK	degrees 295 179 197 177 180 295 179 180	meters 1.0 2.0 1.7 1.0 1.0 1.0		
Other Spur Frequency MHz 4823.980 4824.020 7233.470 7234.370 9649.580 4824.020 9649.580 9649.580 7233.470	Level dBµV/m 48.8 48.0 37.1 36.8 36.5 51.0 50.6	Pol V/H H H V H H H H	Limit 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0	Margin -5.2 -6.0 -16.9 -17.2 -17.5 -23.0 -23.4	Pk/QP/Avg AVG AVG AVG AVG PK PK PK PK PK	degrees 295 179 197 177 180 295 179 180 197	meters 1.0 2.0 1.7 1.0 1.0 2.0	Note 2	
Other Spur Frequency	Level dBµV/m 48.8 48.0 37.1 36.8 36.5 51.0 50.6 47.7	Pol V/H H H V H V H H H	Limit 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0	Margin -5.2 -6.0 -16.9 -17.2 -17.5 -23.0 -23.4 -26.3	Pk/QP/Avg AVG AVG AVG AVG AVG PK PK PK	degrees 295 179 197 177 180 295 179 180	meters 1.0 2.0 1.7 1.0 1.0 2.0 1.7 1.0 1.0 1.0 1.0 1.0 1.0	Note 2	
Dther Spur Frequency MHz 4823.980 4824.020 7233.470 7234.370 9649.580 4824.020 9649.580 9649.580 7233.470	Level dBμV/m 48.8 48.0 37.1 36.8 36.5 51.0 50.6 47.7 47.6 47.2 For emin	Pol V/H V H V H V H H H H V Ssions in	Limit 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 7	Margin -5.2 -6.0 -16.9 -17.2 -17.5 -23.0 -23.4 -26.3 -26.4 -26.8 ands, the li	Pk/QP/Avg AVG AVG AVG AVG PK PK PK PK PK PK PK	degrees 295 179 197 177 180 295 179 180 197 177 29 was used.	meters 1.0 2.0 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Note 2 Note 2	the limit was set 30dB

Client: 2	Ellic 2Wire							Job Number:	J66193
Madal		01/ 00					T-L	og Number:	T67017
Model: F	RG2701H0	00-۷د			Accou	int Manager:	Susan Pelzl		
	John Reyn								
Standard: F	FCC 15.24	7 / 15.20)9				Class:	N/A	
un #1b: Co	enter Cha	nnel @ :	2437 MHz ((Software F	Power Settin	g = 19dBm)			
Fundament	tal emissic	on level @	@ 3m in 100	okHz RBW:	101.0	dBµV/m]		
Limit f	for emission	ons outsi	ide of restric	cted bands:		dBµV/m	Limit is -30	dBc (UNII p	ower measurement)
	 т		45.000	45.047					
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz 874.020	dBμV/m 53.0	V/H V	Limit 54.0	Margin -1.0	Pk/QP/Avg AVG	degrees 360	meters 1.2		
873.960	53.0 44.3	V H	54.0 54.0	-1.0 -9.7	AVG	<u> </u>	1.2	ł	
/309.470	44.3 38.3	н V	54.0 54.0	-9.7	AVG	30	1.0		
309.470	36.9	H	54.0	-15.7	AVG	194	1.0		
874.020	54.8	V	74.0	-19.2	PK	360	1.0		
873.960	47.9	H	74.0	-26.1	PK	199	1.0		
309.470	47.2	V	74.0	-26.8	PK	30	1.6		
309.270	46.8	Н	74.0	-27.2	PK	194	1.0		


Elliott

EMC Test Data


	· · · · · · · · · · · · · · · · · · ·								
Client:	2Wire	Job Number:	J66193						
Model	RG2701HGV-00	T-Log Number:	T67017						
MOUEI.	KG2701FIGV-00	Account Manager:	Susan Pelzl						
Contact:	John Reynolds								
Standard:	FCC 15.247 / 15.209	Class:	N/A						
Run #1c: H	igh Channel @ 2462 MHz (Software Power Setting = 18dBm)								

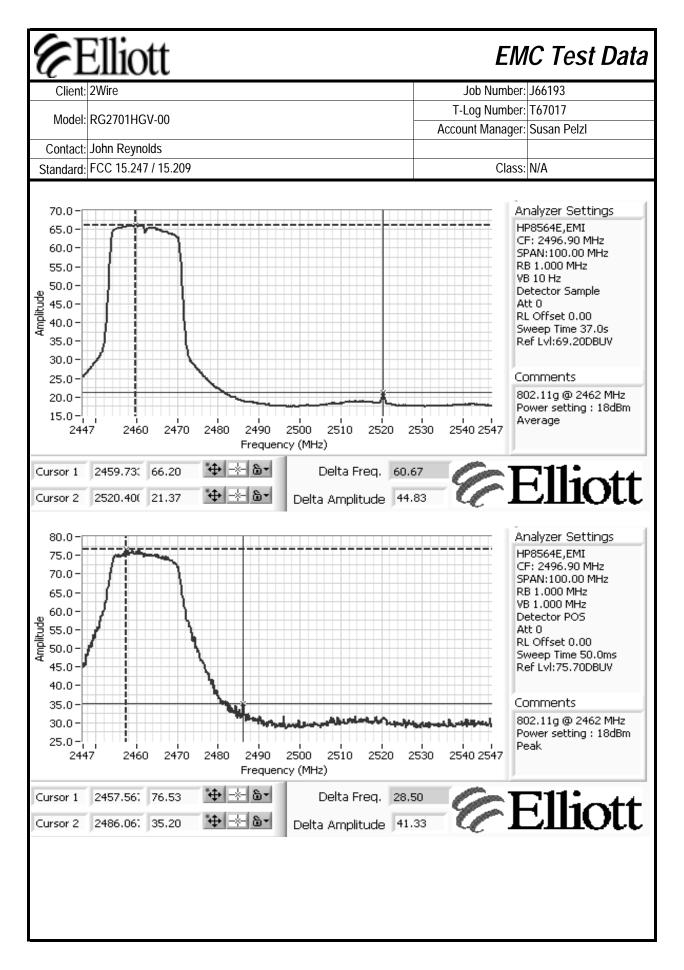
Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2461.500	101.9	Н	-	-	AVG	277	1.8	RB = 1MHz, VB = 10Hz
2461.500	104.9	Н	-	-	PK	277	1.8	RB = VB = 1MHz
2461.110	100.1	Н	-	-	PK	277	1.7	RB = VB = 100kHz
2461.400	99.6	V	-	-	AVG	179	1.1	RB = 1MHz, VB = 10Hz
2461.400	102.4	V	-	-	PK	179	1.1	RB = VB = 1MHz
Fundamer	ntal emissi	on level	@ 3m in 100)kHz RB₩·	100 1	dBµV/m	1	`
			ide of restric			dBµV/m	l imit is -30	dBc (UNII power measurement)
Linin					70.1	υσμνπι		
Band Edge	Signal Fi	eld Strei	ngth					
				rker - Peak	47.2	dB	Delta betw	een highest in-band and highest
			Delta Marke		53.2		1	5 5 5
							•	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2462.000	48.7	Н	54.0	-5.3	AVG	277	1.8	Note 1
2462.000	57.7	Н	74.0	-16.3	PK	277	1.8	Note 1
	Calaula					ene ile e fruede		•
Note 1:	Calcula	ted by su	ubtracting th	e marker de	elta values fr	om the funda		strength measurements.
		<u>,</u>	ubtracting th	e marker de	elta values fr	om the funda		•
Other Spur	ious Emis	sions					mental field	I strength measurements.
Other Spur Frequency	ious Emis Level	sions Pol	15.209	/ 15.247	Detector	Azimuth	mental field	•
Other Spur Frequency MHz	ious Emis Level dBμV/m	sions Pol V/H	15.209 / Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	mental field Height meters	I strength measurements.
Other Spur Frequency MHz 4923.980	ious Emis Level dBμV/m 51.7	sions Pol V/H V	15.209 Limit 54.0	/ 15.247 Margin -2.3	Detector Pk/QP/Avg AVG	Azimuth degrees 174	mental field Height meters 1.4	I strength measurements.
Other Spur Frequency MHz 4923.980 4923.910	ious Emis Level dBμV/m 51.7 47.5	esions Pol V/H V H	15.209 / Limit 54.0 54.0	/ 15.247 Margin -2.3 -6.5	Detector Pk/QP/Avg AVG AVG	Azimuth degrees 174 227	Height Height 1.4 2.2	I strength measurements.
Other Spur Frequency MHz 4923.980 4923.910 7387.240	ious Emis Level dBμV/m 51.7 47.5 36.7	Pol V/H V H V	15.209 / Limit 54.0 54.0 54.0	/ 15.247 Margin -2.3 -6.5 -17.3	Detector Pk/QP/Avg AVG AVG AVG	Azimuth degrees 174 227 178	Height Height Meters 1.4 2.2 1.0	I strength measurements.
Other Spur Frequency MHz 4923.980 4923.910 7387.240 7384.030	ious Emis Level dBμV/m 51.7 47.5 36.7 36.1	Pol V/H V H V H V H	15.209 Limit 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin -2.3 -6.5 -17.3 -17.9	Detector Pk/QP/Avg AVG AVG AVG AVG	Azimuth degrees 174 227 178 207	Height Height Meters 1.4 2.2 1.0 1.8	I strength measurements.
Other Spur Frequency MHz 4923.980 4923.910 7387.240 7384.030 4923.980	ious Emis Level dBμV/m 51.7 47.5 36.7 36.1 53.3	Pol V/H V H V H V H V	15.209 Limit 54.0 54.0 54.0 54.0 54.0 74.0	/ 15.247 Margin -2.3 -6.5 -17.3 -17.9 -20.7	Detector Pk/QP/Avg AVG AVG AVG AVG PK	Azimuth degrees 174 227 178 207 174	Height Meters 1.4 2.2 1.0 1.8 1.4	I strength measurements.
Other Spur Frequency MHz 4923.980 4923.910 7387.240 7384.030 4923.980 4923.910	ious Emis Level dBμV/m 51.7 47.5 36.7 36.1 53.3 49.8	Pol V/H V H V H V H V H	15.209 / Limit 54.0 54.0 54.0 54.0 74.0 74.0 74.0	/ 15.247 Margin -2.3 -6.5 -17.3 -17.9 -20.7 -24.2	Detector Pk/QP/Avg AVG AVG AVG AVG PK PK	Azimuth degrees 174 227 178 207 174 227	Height Height meters 1.4 2.2 1.0 1.8 1.4 2.2	I strength measurements.
Other Spur Frequency MHz 4923.980 4923.910 7387.240 7384.030 4923.980 4923.910 7387.240	ious Emis Level dBμV/m 51.7 47.5 36.7 36.1 53.3 49.8 46.9	sions Pol V/H V H V H V H V V	15.209 / Limit 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0	/ 15.247 Margin -2.3 -6.5 -17.3 -17.9 -20.7 -24.2 -27.1	Detector Pk/QP/Avg AVG AVG AVG AVG PK PK PK	Azimuth degrees 174 227 178 207 174 227 178	Height Meters 1.4 2.2 1.0 1.8 1.4 2.2 1.0 1.8 1.4 2.2 1.0	I strength measurements.
Other Spur Frequency MHz 4923.980 4923.910 7387.240 7384.030 4923.980 4923.910	ious Emis Level dBμV/m 51.7 47.5 36.7 36.1 53.3 49.8	Pol V/H V H V H V H V H	15.209 / Limit 54.0 54.0 54.0 54.0 74.0 74.0 74.0	/ 15.247 Margin -2.3 -6.5 -17.3 -17.9 -20.7 -24.2	Detector Pk/QP/Avg AVG AVG AVG AVG PK PK	Azimuth degrees 174 227 178 207 174 227	Height Height meters 1.4 2.2 1.0 1.8 1.4 2.2	I strength measurements.
Other Spur Frequency MHz 4923.980 4923.910 7387.240 7384.030 4923.910 7384.030 4923.910 7384.030 7387.240 7384.030	ious Emis Level dBμV/m 51.7 47.5 36.7 36.1 53.3 49.8 46.9 46.6	sions Pol V/H V H V H V H V H V H	15.209 / Limit 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0	/ 15.247 Margin -2.3 -6.5 -17.3 -17.9 -20.7 -24.2 -27.1 -27.4	Detector Pk/QP/Avg AVG AVG AVG PK PK PK PK PK	Azimuth degrees 174 227 178 207 174 227 178 207	Height Meters 1.4 2.2 1.0 1.8 1.4 2.2 1.0 1.8 1.4 2.2 1.0 1.8	Comments
Other Spur Frequency MHz 4923.980 4923.910 7387.240 7384.030 4923.980 4923.910 7387.240	ious Emis Level dBμV/m 51.7 47.5 36.7 36.1 53.3 49.8 46.9 46.6 For emi	ssions Pol V/H V H V H V H V H Ssions in	15.209 Limit 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0	/ 15.247 Margin -2.3 -6.5 -17.3 -17.9 -20.7 -24.2 -27.1 -27.4 wands, the lin	Detector Pk/QP/Avg AVG AVG AVG PK PK PK PK PK	Azimuth degrees 174 227 178 207 174 227 178 207 178 207	Height Meters 1.4 2.2 1.0 1.8 1.4 2.2 1.0 1.8 1.4 2.2 1.0 1.8	I strength measurements.
Other Spur Frequency MHz 4923.980 4923.910 7387.240 7384.030 4923.980 4923.910 7387.240 7384.030	ious Emis Level dBμV/m 51.7 47.5 36.7 36.1 53.3 49.8 46.9 46.6 For emi below th	ssions Pol V/H V H V H V H V H V H Ssions in ne level o	15.209 / Limit 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0	/ 15.247 Margin -2.3 -6.5 -17.3 -17.9 -20.7 -24.2 -27.1 -27.4 mands, the linental and	Detector Pk/QP/Avg AVG AVG AVG PK PK PK PK PK mit of 15.209 measured in	Azimuth degrees 174 227 178 207 174 227 178 207 178 207	Height meters 1.4 2.2 1.0 1.8 1.4 2.2 1.0 1.8 1.4 2.2 1.0 1.8 For all other	Comments Comments

ΥL	Ellic	ott						EM	IC Test Da
Client:								lob Number:	J66193
Madal	0007011	<u></u>					T-L	og Number:	T67017
Model:	RG2701H	GV-00					Accou	int Manager:	Susan Pelzl
Contact:	John Rey	nolds							
	FCC 15.24		09					Class:	N/A
Standard.								010001	
Run #1a: I	.ow Chanı	nel @ 24	12 MHz (So	oftware Pov	ver Setting		Ū	peak value r	neasured in 100kHz
Frequency	Level	Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg		meters	Comments	
2417.630	99.3	H	-	-	AVG	290	1.8	RB = 1MH7	z, VB = 10Hz
2417.630	108.4	H	-	-	PK	290	1.8	RB = VB =	
2417.300	99.6	Н	-	-	PK	290	1.8	RB = VB =	
2407.330	98.7	V	-	-	AVG	138	1.0		z, VB = 10Hz
2407.330	107.4	V	-	-	РК	138	1.0	RB = VB =	
E			⊙) ! 10		00 (1		
			@ 3m in 10 side of restri			dBµV/m	Limitic 20		ower measurement)
LIIII					07.0	dBµV/m			ower medsurementy
Band Edge			ngth				-		
		eld Stre	n gth Delta Ma	nrker - Peak	40.3	dB	-		in-band and highest
		eld Stre	ngth	nrker - Peak	40.3	dB	-		
Band Edge		eld Stre	n gth Delta Ma Delta Marke	nrker - Peak	40.3	dB	-		in-band and highest
Band Edge	Signal Fi	eld Strei Pol V/H	n gth Delta Ma Delta Marke	irker - Peak r - Average	40.3 45.7	dB dB	Delta betw	een highest	in-band and highest
Sand Edge Frequency MHz 2390.000	Signal Field	Pol V/H	ngth Delta Ma Delta Marke 15.209 Limit 54.0	rker - Peak r - Average / 15.247 Margin -0.4	40.3 45.7 Detector Pk/QP/Avg AVG	dB dB Azimuth degrees 290	Delta betw Height meters 1.8	Comments	in-band and highest
Band Edge Frequency MHz	Signal Field	eld Strei Pol V/H	ngth Delta Ma Delta Marke 15.209 Limit	irker - Peak r - Average / 15.247 Margin	40.3 45.7 Detector Pk/QP/Avg	dB dB Azimuth degrees	Delta betw Height meters	een highest	in-band and highest
Frequency MHz 2390.000 2390.000	Signal Fie Level dBμV/m 53.6 68.1	Pol V/H H	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0	rker - Peak r - Average / 15.247 Margin -0.4 -5.9	40.3 45.7 Detector Pk/QP/Avg AVG PK	dB dB Azimuth degrees 290 290	Delta betw Height meters 1.8 1.8	Comments	in-band and highest
Sand Edge Frequency MHz 2390.000	Signal Fie Level dBμV/m 53.6 68.1	Pol V/H H	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0	rker - Peak r - Average / 15.247 Margin -0.4 -5.9	40.3 45.7 Detector Pk/QP/Avg AVG PK	dB dB Azimuth degrees 290 290	Delta betw Height meters 1.8 1.8	Comments	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 Note 1:	Signal Fie	Pol V/H H H	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0	rker - Peak r - Average / 15.247 Margin -0.4 -5.9	40.3 45.7 Detector Pk/QP/Avg AVG PK	dB dB Azimuth degrees 290 290	Delta betw Height meters 1.8 1.8	Comments	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 Note 1: Dther Spur	Signal Fie	Pol V/H H H	ngth Delta Marke 15.209 Limit 54.0 74.0 ubtracting th	rker - Peak r - Average / 15.247 Margin -0.4 -5.9	40.3 45.7 Detector Pk/QP/Avg AVG PK	dB dB Azimuth degrees 290 290	Delta betw Height meters 1.8 1.8 mental field	Comments	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 Note 1: Dther Spur	Signal Fid Level dBµV/m 53.6 68.1 Calcula ious Emis	Pol V/H H H ted by su	ngth Delta Marke 15.209 Limit 54.0 74.0 ubtracting th	rker - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de	40.3 45.7 Detector Pk/QP/Avg AVG PK elta values fr	dB dB Azimuth degrees 290 290 om the funda	Delta betw Height meters 1.8 1.8	een highest Comments Note 1 Note 1 Strength me	in-band and highest
Frequency MHz 2390.000 2390.000 Note 1: Dther Spur Frequency MHz	Signal Fi Level dBµV/m 53.6 68.1 Calcula ious Emis Level	Pol V/H H ted by su sions Pol V/H V	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0 ubtracting th 15.209	r - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de	40.3 45.7 Detector Pk/QP/Avg AVG PK elta values fr Detector	dB dB Azimuth degrees 290 290 om the funda Azimuth	Delta betw Height neters 1.8 1.8 mental field	een highest Comments Note 1 Note 1 Strength me	in-band and highest
Frequency MHz 2390.000 2390.000 Note 1: Dther Spur Frequency MHz 4823.970	Signal Fi Level dBµV/m 53.6 68.1 Calcula ious Emis Level dBµV/m	Pol V/H H H ted by su sisters Pol V/H V H	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0 Ubtracting th 15.209 Limit	r - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de / 15.247 Margin	40.3 45.7 Detector Pk/QP/Avg AVG PK elta values fr Detector Pk/QP/Avg AVG AVG	dB dB Azimuth degrees 290 290 om the funda Azimuth degrees	Delta betw Height neters 1.8 1.8 mental field Height meters	een highest Comments Note 1 Note 1 Strength me	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 Note 1: Other Spur Frequency MHz 4823.970 4822.430 4823.970	Signal Fie Level dBμV/m 53.6 68.1 Calcula ious Emis Level dBμV/m 44.2 34.4 54.1	Pol V/H H H H H V H V V H V V H V	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0 ubtracting th 15.209 Limit 54.0 54.0 54.0 74.0	rker - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de / 15.247 Margin -9.8 -19.6 -19.9	40.3 45.7 Detector Pk/QP/Avg AVG PK elta values fr Detector Pk/QP/Avg AVG AVG PK	dB dB Azimuth degrees 290 290 om the funda Azimuth degrees 0 205 0	Delta betw Height neters 1.8 1.8 mental field Height meters 1.2 2.1 1.2	een highest Comments Note 1 Note 1 Strength me	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 Note 1: Dther Spur Frequency MHz 4823.970 4823.970 4823.970 4822.430 4822.430	Signal Fie Level dBμV/m 53.6 68.1 Calcula ious Emis Level dBμV/m 44.2 34.4 54.1 47.2	Pol V/H H H ted by su ssions Pol V/H V H V H	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0 Ubtracting th 15.209 Limit 54.0 54.0 74.0 74.0 74.0	r - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de / 15.247 Margin -9.8 -19.6 -19.9 -26.8	40.3 45.7 Detector Pk/QP/Avg AVG PK elta values fr Detector Pk/QP/Avg AVG AVG AVG PK PK	dB dB Azimuth degrees 290 290 om the funda Azimuth degrees 0 205 0 205	Delta betw Height neters 1.8 1.8 mental field Height meters 1.2 2.1 1.2 2.1	een highest Comments Note 1 Note 1 Strength me	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 2390.000 Note 1: Dther Spur Frequency MHz 4823.970 4822.430 4822.430 4822.430 7242.600	Signal Fie	Pol V/H H ted by su soons Pol V/H V H V H V H N H H	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0 Ubtracting th 15.209 Limit 54.0 74.0 74.0 74.0 74.0 74.0 54.0	r - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de / 15.247 Margin -9.8 -19.6 -19.9 -26.8 -31.2	40.3 45.7 Detector Pk/QP/Avg AVG PK Elta values fr Detector Pk/QP/Avg AVG AVG PK PK AVG	dB dB Azimuth degrees 290 290 om the funda Azimuth degrees 0 205 0 205 0 205 0	Delta betw Height neters 1.8 1.8 1.8 mental field Height meters 1.2 2.1 1.2 2.1 1.2 2.1 1.0	een highest Comments Note 1 Note 1 Strength me	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 2390.000 Note 1: Dther Spur Frequency MHz 4823.970 4822.430 4822.430 7242.600 7230.730	Signal Fie Level dBμV/m 53.6 68.1 Calcula ious Emis Level dBμV/m 44.2 34.4 54.1 47.2 22.8 22.7	Pol V/H H H ted by su sions Pol V/H V H V H V H V V H V V	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0 Ubtracting th 15.209 Limit 54.0 54.0 74.0 74.0 74.0 54.0 54.0 54.0 54.0	r - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de / 15.247 Margin -9.8 -19.6 -19.9 -26.8 -31.2 -31.3	40.3 45.7 Detector Pk/QP/Avg AVG PK elta values fr Detector Pk/QP/Avg AVG AVG PK PK PK AVG AVG AVG	dB dB Azimuth degrees 290 290 om the funda Azimuth degrees 0 205 0 205 0 205 0 205 0 205	Delta betw Height neters 1.8 1.8 1.8 mental field Height meters 1.2 2.1 1.2 2.1 1.0 1.0	een highest Comments Note 1 Note 1 Strength me	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 2390.000 Note 1: Other Spur Frequency MHz 4823.970 4822.430 4823.970 4822.430 7242.600 7242.600	Signal Fie	Pol V/H H H ted by su sions Pol V/H V H V H V H V H H V H	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0 Ubtracting th 15.209 Limit 54.0 54.0 74.0 74.0 54.0 54.0 54.0 54.0 74.0	rker - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de / 15.247 Margin -9.8 -19.6 -19.9 -26.8 -31.2 -31.2 -31.3 -39.7	40.3 45.7 Detector Pk/QP/Avg AVG PK elta values fr Detector Pk/QP/Avg AVG AVG PK PK AVG AVG AVG AVG PK	dB dB Azimuth degrees 290 290 om the funda om the funda Azimuth degrees 0 205 0 205 0 205 0 205 0 205 0 205	Delta betw Height neters 1.8 1.8 mental field Height neters 1.2 2.1 1.2 2.1 1.0 1.0 1.0 1.0	een highest Comments Note 1 Note 1 Strength me	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 2390.000 Note 1: Dther Spur Frequency MHz 4823.970 4822.430 4822.430 7242.600 7230.730	Signal Fie Level dBμV/m 53.6 68.1 Calcula ious Emis Level dBμV/m 44.2 34.4 54.1 47.2 22.8 22.7	Pol V/H H H ted by su sions Pol V/H V H V H V H V V H V V	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0 Ubtracting th 15.209 Limit 54.0 54.0 74.0 74.0 74.0 54.0 54.0 54.0 54.0	r - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de / 15.247 Margin -9.8 -19.6 -19.9 -26.8 -31.2 -31.3	40.3 45.7 Detector Pk/QP/Avg AVG PK elta values fr Detector Pk/QP/Avg AVG AVG PK PK PK AVG AVG AVG	dB dB Azimuth degrees 290 290 om the funda Azimuth degrees 0 205 0 205 0 205 0 205 0 205	Delta betw Height neters 1.8 1.8 1.8 mental field Height meters 1.2 2.1 1.2 2.1 1.0 1.0	een highest Comments Note 1 Note 1 Strength me	in-band and highest
Band Edge Frequency MHz 2390.000 2390.000 2390.000 Note 1: Other Spur Frequency MHz 4823.970 4822.430 4823.970 4822.430 7242.600 7242.600	Signal Fie Level dBμV/m 53.6 68.1 Calcula ious Emis Level dBμV/m 44.2 34.4 54.1 47.2 22.8 22.7 34.3 33.8 For emi	Pol V/H H H ted by su ssions Pol V/H V H V H V H V H V V H V V Ssions ir	ngth Delta Ma Delta Marke 15.209 Limit 54.0 74.0 Ubtracting th 54.0 54.0 74.0 74.0 54.0 74.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0	rker - Peak r - Average / 15.247 Margin -0.4 -5.9 e marker de / 15.247 Margin -9.8 -19.6 -19.9 -26.8 -31.2 -31.3 -39.7 -40.2 bands, the lin	40.3 45.7 Detector Pk/QP/Avg AVG PK elta values fr Detector Pk/QP/Avg AVG AVG PK PK AVG AVG AVG PK PK PK	dB dB Azimuth degrees 290 290 om the funda Azimuth degrees 0 205 0 205 0 205 0 205 0 205 0 205 0 232 0 232	Delta betw Height meters 1.8 1.8 mental field Height meters 1.2 2.1 1.2 2.1 1.0 1.0 1.0 1.0	Comments Note 1 Note 1 Strength me Comments	in-band and highest

Fundamental emission level @ 3m in 100kHz RBW: 97.4 dBµV/m Limit for emissions outside of restricted bands: 67.4 dBµV/m Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4875.270 49.8 V 54.0 -4.2 AVG 200 1.7 7308.630 44.3 V 54.0 -9.7 AVG 151 1.7 4875.270 63.4 V 74.0 -10.6 PK 200 1.7 4875.800 42.4 H 54.0 -11.6 AVG 311 1.9 7314.870 38.0 H 54.0 -16.0 AVG 201 1.6	Client:	Ellic ^{2Wire}							Job Number:	J66193
Account Manager: Susan PelziContact:John ReynoldsStandard:FCC 15.247 / 15.209Class: N/ARun #2b: Center Channel @ 2437 MHz (Software Power Setting = 19dBm)Fundamental emission level @ 3m in 100kHz RBW:97.4dBµV/mLimit for emissions outside of restricted bands:67.467.4dBµV/mLevel Pol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzdBµV/mVHLimitMHzBµV/mVHLimitMHzBµV/mVHLimitMHzBµV/mVHLimitMHzBµV/mVHLimitMHzBµV/mVHLimitMHzBµV/mVHLimitMHzBµV/mVHLimitMHzB	Model·	RG2701H	GV-00						•	
Standard:FCC 15.247 / 15.209Class: N/ARun #2b: Center Channel @ 2437 MHz (Software Power Setting = 19dBm)Fundamental emission level @ 3m in 100kHz RBW:97.4 dB μ V/mLimit for emissions outside of restricted bands:67.4 dB μ V/mLimit is -30dBc (UNII power measurementFrequencyLevel Pol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdB μ V/mLimit is -30dBc (UNII power measurementFrequencyLevel Pol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdB μ V/mLimit is -30dBc (UNII power measurementTotal dB μ V/mV/HImitMargin Pk/QP/Avgdegreesmeters4875.270d3.4V74.07308.63042.4H54.071.6PK7314.87038.0H74.07314.87049.4H74.07314.87049.4H74.07314.870							Accou	int Manager:	Susan Pelzl	
Run #2b: Center Channel @ 2437 MHz (Software Power Setting = 19dBm)Fundamental emission level @ 3m in 100kHz RBW:97.4 dB μ V/mLimit for emissions outside of restricted bands:67.4 dB μ V/mLimit for emissions outside of restricted bands:67.4 dB μ V/mLimit is -30dBc (UNII power measurementFrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdB μ V/mV/HLimitMarginPk/QP/Avgdegreesmeters4875.27049.8V54.0-4.2AVG2001.77308.63044.3V54.0-9.7AVG1511.74875.27063.4V74.0-10.6PK2001.74875.80042.4H54.0-11.6AVG3111.97314.87038.0H54.0-17.2PK1511.74875.80055.1H74.0-18.9PK3111.97314.87049.4H74.0-24.6PK2011.6Note 1:For emissions in restricted bands, the limit of 15.209 was used.For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.										
Fundamental emission level @ 3m in 100kHz RBW:97.4 dBµV/mLimit for emissions outside of restricted bands:67.4 dBµV/mLimit is -30dBc (UNII power measurementFrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters4875.27049.8V54.0-4.2AVG2001.77308.63044.3V54.0-9.7AVG1511.74875.27063.4V74.0-10.6PK2001.74875.80042.4H54.0-11.6AVG3111.97314.87038.0H54.0-17.2PK1511.74875.80055.1H74.0-18.9PK3111.97314.87049.4H74.0-24.6PK2011.6Note 1:	Standard:	FCC 15.24	1//15.2	09					Class:	N/A
Fundamental emission level @ 3m in 100kHz RBW:97.4 dBµV/mLimit for emissions outside of restricted bands:67.4 dBµV/mLimit is -30dBc (UNII power measurementFrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters4875.27049.8V54.0-4.2AVG2001.77308.63044.3V54.0-9.7AVG1511.74875.27063.4V74.0-10.6PK2001.74875.80042.4H54.0-11.6AVG3111.97314.87038.0H54.0-17.2PK1511.74875.80055.1H74.0-18.9PK3111.97314.87049.4H74.0-24.6PK2011.6Note 1:For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	?un #2b: (Center Cha	annel @	2437 MHz	(Software F	Power Settin	iq = 19dBm)	1		
Limit for emissions outside of restricted bands: 67.4 dBµV/m Limit is -30dBc (UNII power measurement Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4875.270 49.8 V 54.0 -4.2 AVG 200 1.7 7308.630 44.3 V 54.0 -9.7 AVG 151 1.7 4875.270 63.4 V 74.0 -10.6 PK 200 1.7 4875.800 42.4 H 54.0 -11.6 AVG 201 1.6 7308.630 56.8 V 74.0 -16.0 AVG 201 1.6 7308.630 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6 For emissions in restricted bands, the li					-	•		7		
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4875.270 49.8 V 54.0 -4.2 AVG 200 1.7 7308.630 44.3 V 54.0 -9.7 AVG 151 1.7 4875.270 63.4 V 74.0 -10.6 PK 200 1.7 4875.800 42.4 H 54.0 -11.6 AVG 311 1.9 7314.870 38.0 H 54.0 -16.0 AVG 201 1.6 7308.630 56.8 V 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6								Limitic 20		ower magging manth
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4875.270 49.8 V 54.0 -4.2 AVG 200 1.7 7308.630 44.3 V 54.0 -9.7 AVG 151 1.7 4875.270 63.4 V 74.0 -10.6 PK 200 1.7 4875.270 63.4 V 74.0 -10.6 PK 200 1.7 4875.800 42.4 H 54.0 -11.6 AVG 311 1.9 7314.870 38.0 H 54.0 -16.0 AVG 201 1.6 7308.630 56.8 V 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6	LIMI	t for emissi	ons outs	side of restri	cled bands:	67.4	dBµV/m	Limit is -30	лавс (пип b	ower measurement)
4875.270 49.8 V 54.0 -4.2 AVG 200 1.7 7308.630 44.3 V 54.0 -9.7 AVG 151 1.7 4875.270 63.4 V 74.0 -10.6 PK 200 1.7 4875.800 42.4 H 54.0 -11.6 AVG 311 1.9 7314.870 38.0 H 54.0 -16.0 AVG 201 1.6 7308.630 56.8 V 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
7308.630 44.3 V 54.0 -9.7 AVG 151 1.7 4875.270 63.4 V 74.0 -10.6 PK 200 1.7 4875.800 42.4 H 54.0 -11.6 AVG 311 1.9 7314.870 38.0 H 54.0 -16.0 AVG 201 1.6 7308.630 56.8 V 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 H Note 1:					¥	V				
4875.270 63.4 V 74.0 -10.6 PK 200 1.7 4875.800 42.4 H 54.0 -11.6 AVG 311 1.9 7314.870 38.0 H 54.0 -16.0 AVG 201 1.6 7308.630 56.8 V 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.										
4875.800 42.4 H 54.0 -11.6 AVG 311 1.9 7314.870 38.0 H 54.0 -16.0 AVG 201 1.6 7308.630 56.8 V 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.									_	
7314.870 38.0 H 54.0 -16.0 AVG 201 1.6 7308.630 56.8 V 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.										
7308.630 56.8 V 74.0 -17.2 PK 151 1.7 4875.800 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.										
4875.800 55.1 H 74.0 -18.9 PK 311 1.9 7314.870 49.4 H 74.0 -24.6 PK 201 1.6 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.										
7314.870 49.4 H 74.0 -24.6 PK 201 1.6 Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	7200 620	E4 0		740						
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.										
	4875.800 7314.870 Note 1:	55.1 49.4 For emis	H H ssions in ne level o	74.0 74.0 n restricted k	-18.9 -24.6 bands, the li mental and	PK PK mit of 15.209 measured in	311 201 9 was used. 100kHz.	1.9 1.6 For all othe		the limit was set 30

Elliott


EMC Test Data

1			
Client:	2Wire	Job Number:	J66193
Madal	RG2701HGV-00	T-Log Number:	T67017
wouer.	KG2701HGV-00	Account Manager:	Susan Pelzl
Contact:	John Reynolds		
Standard:	FCC 15.247 / 15.209	Class:	N/A

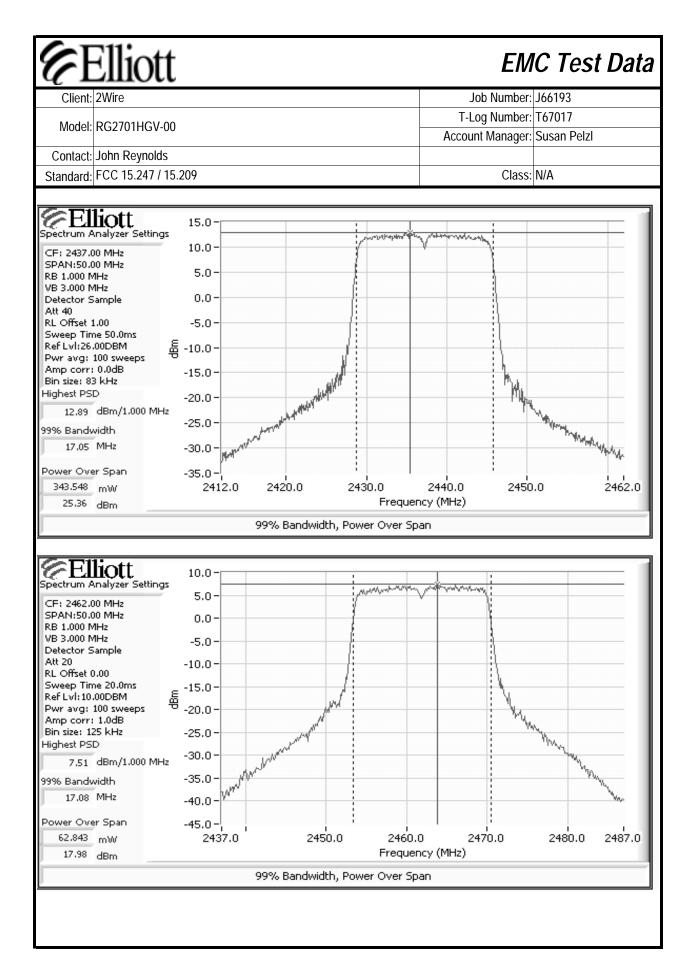
Run #2c: High Channel @ 2462 MHz (Software Power Setting = 18dBm)

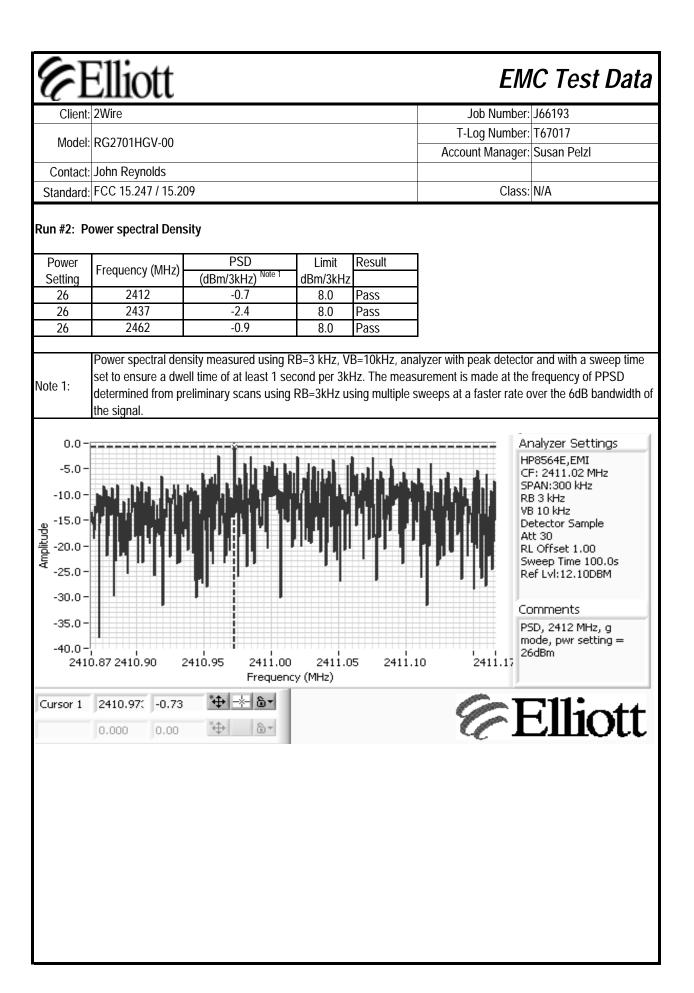
Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

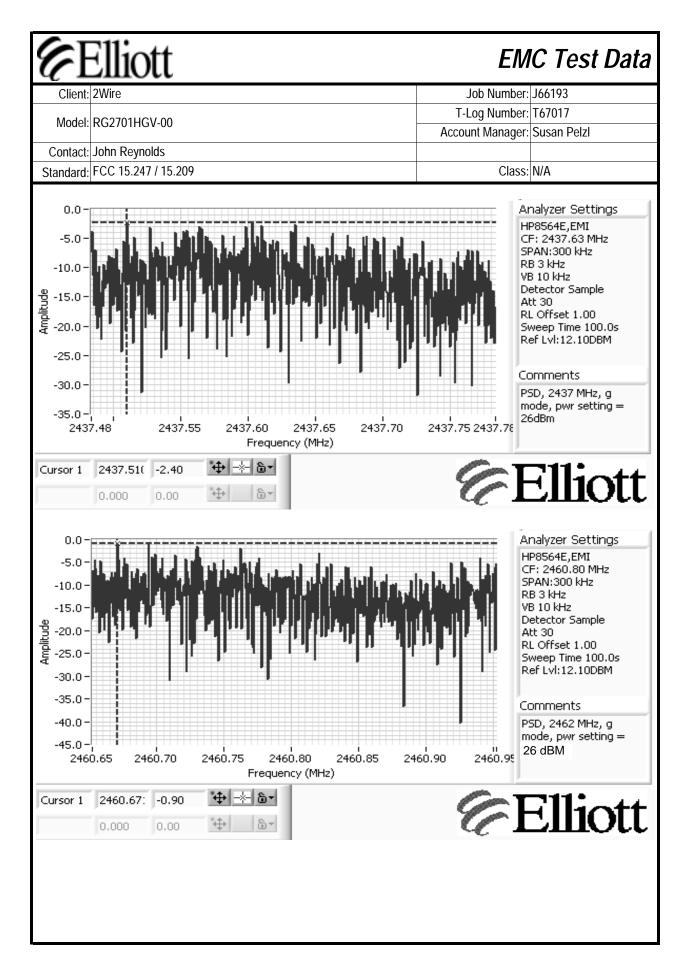
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2460.700	98.4	V	-	-	AVG	169	1.0	RB = 1MHz, VB = 10Hz
2460.700	106.4	V	-	-	PK	169	1.0	RB = VB = 1MHz
2454.570	95.9	V	-	-	PK	169	1.0	RB = VB = 100kHz
2460.400	97.5	Н	-	-	AVG	291	1.8	RB = 1MHz, VB = 10Hz
2460.400	105.2	Н	-	-	PK	291	1.8	RB = VB = 1MHz
Fundamo	ntal omissi	on loval	@ 3m in 10		05.0	dBµV/m	1	`
			ide of restri			dBμV/m dBμV/m	Limitic 20	dBc (UNII power measurement)
LIIIII				LIEU Darius.	00.9	αвμν/п	LIIIII IS -30	ubc (unit power measurement)
Band Edge	Signal Fi	eld Stre					_	
			Delta Ma	rker - Peak	41.3	dB	Delta betw	een highest in-band and highest
			Delta Marke	er - Average	44.8	dB]	
							•	•
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2520.400	53.6	٧	54.0	-0.4	AVG	169	1.0	Note 1
		V V	54.0 74.0	-0.4 -8.9	AVG PK	169 169	1.0 1.0	Note 1 Note 1
2520.400 2486.060	53.6 65.1	V	74.0	-8.9	РК	169	1.0	Note 1
2520.400	53.6 65.1	V	74.0	-8.9	РК	169	1.0	
2520.400 2486.060 Note 1:	53.6 65.1 Calcula	V ted by si	74.0	-8.9	РК	169	1.0	Note 1
2520.400 2486.060 Note 1: Other Spur	53.6 65.1 Calcula	V ted by su s sions	74.0 ubtracting th	-8.9 e marker de	PK elta values fr	169 om the funda	1.0 Imental field	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Other Spur Frequency	53.6 65.1 Calcula ious Emis Level	V ted by su s sions Pol	74.0 ubtracting th 15.209	-8.9 e marker de / 15.247	PK elta values fr Detector	169 om the funda Azimuth	1.0 mental field Height	Note 1
2520.400 2486.060 Note 1: Dther Spur Frequency MHz	53.6 65.1 Calcula ious Emis Level dBµV/m	V ted by su ssions Pol V/H	74.0 ubtracting th 15.209 Limit	-8.9 e marker de / 15.247 Margin	PK elta values fr Detector Pk/QP/Avg	169 om the funda Azimuth degrees	1.0 mental field Height meters	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Dther Spur Frequency MHz 4923.230	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2	V ted by su ssions Pol V/H V	74.0 ubtracting th 15.209 Limit 54.0	-8.9 e marker de / 15.247 Margin -8.8	PK elta values fr Detector Pk/QP/Avg AVG	169 om the funda Azimuth degrees 179	1.0 mental field Height meters 1.5	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Other Spur Frequency MHz 4923.230 4923.230	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8	V ted by su sions Pol V/H V V	74.0 ubtracting th 15.209 Limit 54.0 74.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2	PK elta values fr Detector Pk/QP/Avg AVG PK	169 om the funda Azimuth degrees 179 179	1.0 mental field Height meters 1.5 1.5	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Dther Spur Frequency MHz 4923.230 4923.200	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8 37.1	V ted by su sions Pol V/H V V H	74.0 ubtracting th 15.209 Limit 54.0 74.0 54.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2 -16.9	PK elta values fr Detector Pk/QP/Avg AVG	169 om the funda Azimuth degrees 179 179 177	1.0 mental field Height meters 1.5 1.5 1.9	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Dther Spur Frequency MHz 4923.230 4923.200 4923.200	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8 37.1 56.8	V ted by su sions Pol V/H V V	74.0 ubtracting th 15.209 Limit 54.0 74.0 54.0 74.0 74.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2 -16.9 -17.2	PK Elta values fr Detector Pk/QP/Avg AVG PK AVG PK	169 om the funda Azimuth degrees 179 179 177 177	1.0mental fieldHeightmeters1.51.51.91.9	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Dther Spur Frequency MHz 4923.230 4923.200 4923.200 7387.400	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8 37.1 56.8 36.2	V ted by su sions Pol V/H V V H H H V	74.0 ubtracting th 15.209 Limit 54.0 74.0 54.0 74.0 54.0 54.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2 -16.9 -17.2 -17.8	PK elta values fr Detector Pk/QP/Avg AVG PK AVG PK AVG	169 om the funda Azimuth degrees 179 179 177 177 180	1.0 mental field Height meters 1.5 1.5 1.9	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Other Spur Frequency MHz 4923.230 4923.200 4923.200 7387.400 7384.630	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8 37.1 56.8 36.2 35.9	V ted by su sisions Pol V/H V V V H H H V H	74.0 ubtracting th 15.209 Limit 54.0 74.0 54.0 74.0 54.0 54.0 54.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2 -16.9 -17.2 -17.8 -18.1	PK Detector Pk/QP/Avg AVG PK AVG PK AVG AVG AVG	169 om the funda Azimuth degrees 179 179 177 177 180 166	1.0 mental field Height neters 1.5 1.5 1.9 1.9 1.6 1.7	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Other Spur Frequency MHz 4923.230 4923.230 4923.200 4923.200 7387.400 7384.630 7387.400	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8 37.1 56.8 36.2 35.9 48.1	V ted by su ssions Pol V/H V V V H H V H V V	74.0 ubtracting th 15.209 Limit 54.0 74.0 54.0 54.0 54.0 54.0 74.0 74.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2 -16.9 -17.2 -17.8 -18.1 -25.9	PK Detector Pk/QP/Avg AVG PK AVG PK AVG AVG AVG PK	169 om the funda Azimuth degrees 179 179 177 177 180 166 180	1.0 mental field Height meters 1.5 1.5 1.9 1.9 1.9 1.6	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Other Spur Frequency MHz 4923.230 4923.200 4923.200 7387.400 7384.630	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8 37.1 56.8 36.2 35.9	V ted by su sisions Pol V/H V V V H H H V H	74.0 ubtracting th 15.209 Limit 54.0 74.0 54.0 74.0 54.0 54.0 54.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2 -16.9 -17.2 -17.8 -18.1	PK Detector Pk/QP/Avg AVG PK AVG PK AVG AVG AVG	169 om the funda Azimuth degrees 179 179 177 177 180 166	1.0 mental field Height meters 1.5 1.5 1.9 1.9 1.6 1.7 1.6	Note 1 I strength measurements.
2520.400 2486.060 Note 1: Dther Spur Frequency MHz 4923.230 4923.200 4923.200 4923.200 7387.400 7384.630 7384.630	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8 37.1 56.8 36.2 35.9 48.1 47.7	V ted by su Pol V/H V V H H V H V H V H	74.0 ubtracting th 15.209 Limit 54.0 74.0 54.0 74.0 54.0 54.0 74.0 74.0 74.0 74.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2 -16.9 -17.2 -17.8 -18.1 -25.9 -26.3	PK Detector Pk/QP/Avg AVG PK AVG PK AVG AVG AVG PK PK PK	169 om the funda Azimuth degrees 179 179 177 177 180 166 180 166	1.0 mental field Height meters 1.5 1.5 1.9 1.9 1.6 1.7 1.6 1.7	Note 1 I strength measurements. Comments
2520.400 2486.060 Note 1: Other Spur Frequency MHz 4923.230 4923.230 4923.200 4923.200 7387.400 7384.630 7387.400	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8 37.1 56.8 36.2 35.9 48.1 47.7 For emi	V ted by su Pol V/H V V H H V H V H V H Ssions ir	74.0 ubtracting th 15.209 Limit 54.0 74.0 54.0 74.0 54.0 54.0 74.0 74.0 74.0 74.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2 -16.9 -17.2 -17.8 -18.1 -25.9 -26.3 wands, the li	PK elta values fr Detector Pk/QP/Avg AVG PK AVG PK AVG AVG PK PK PK PK PK	169 om the funda Azimuth degrees 179 179 177 177 177 180 166 180 166	1.0 mental field Height meters 1.5 1.5 1.9 1.9 1.6 1.7 1.6 1.7	Note 1 I strength measurements. Comments
2520.400 2486.060 Note 1: Other Spur Frequency MHz 4923.230 4923.200 4923.200 4923.200 7387.400 7384.630 7384.630	53.6 65.1 Calcula ious Emis Level dBμV/m 45.2 62.8 37.1 56.8 36.2 35.9 48.1 47.7 For emi below th	V ted by su solver Pol V/H V V V H H V H V H Ssions ir ne level o	74.0 ubtracting th 15.209 Limit 54.0 74.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0	-8.9 e marker de / 15.247 Margin -8.8 -11.2 -16.9 -17.2 -17.8 -18.1 -25.9 -26.3 pands, the li mental and	PK Detector Pk/QP/Avg AVG PK AVG PK AVG AVG PK PK PK mit of 15.209 measured in	169 om the funda Azimuth degrees 179 179 177 177 177 180 166 180 166	1.0 mental field Height meters 1.5 1.9 1.6 1.7 1.6 1.7 1.6 1.7	Note 1 I strength measurements. Comments

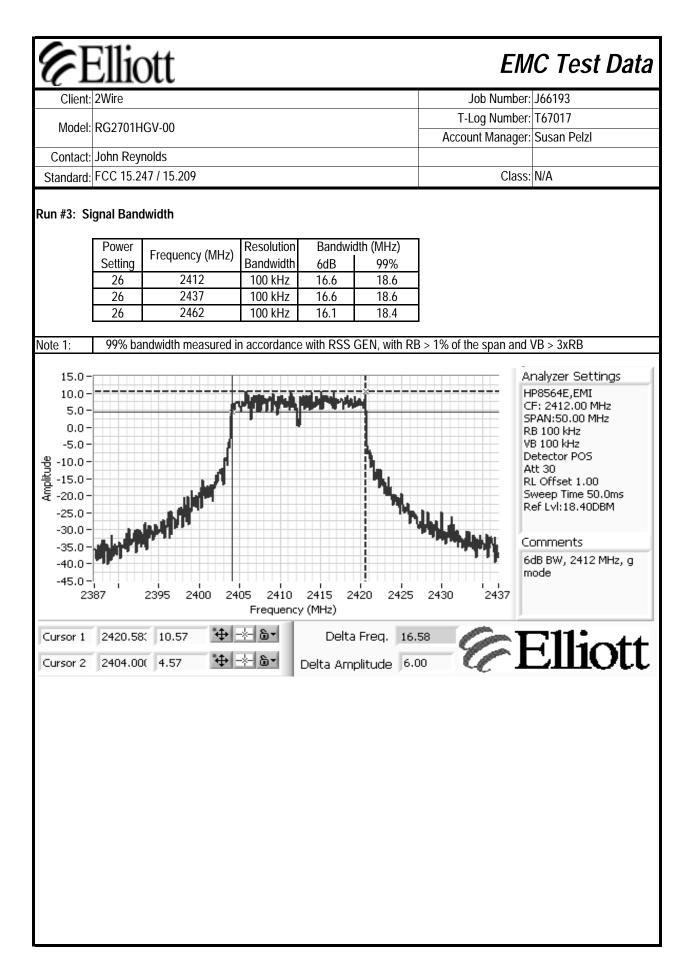
EMC Test Data Job Number: J66193 Client: 2Wire T-Log Number: T67017 Model: RG2701HGV-00 Account Manager: Susan Pelzl Contact: John Reynolds Standard: FCC 15.247 / 15.209 Class: N/A **RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements** Power, Bandwidth and Spurious Emissions Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Config. Used: 1 Date of Test: 2/23/2007 Config Change: None Test Engineer: Mark Hill Test Location: SVOATS #2 EUT Voltage: 120V/60Hz General Test Configuration The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain. All measurements have been corrected to allow for the external attenuators used. Ambient Conditions: Temperature: 11 °C Rel. Humidity: 48 % Summary of Results Deee / Ec! Toot Dorformood 1 Linalt Decult / Margin

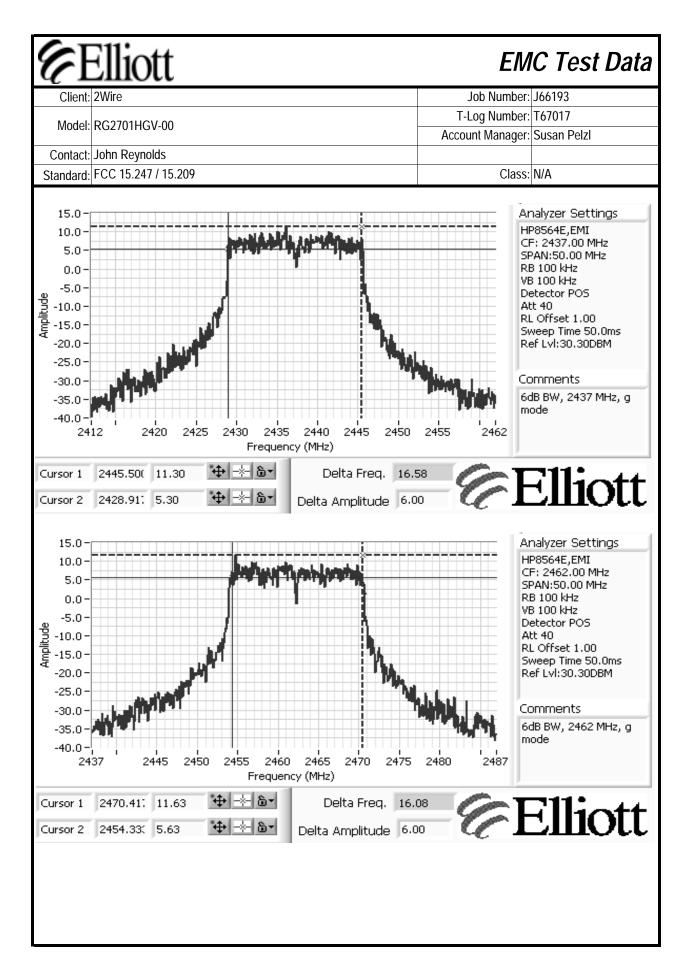
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	25.4 dBm
2	Power spectral Density (PSD)	15.247(d)	Pass	-0.7 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	16.1 MHz
3	99% Bandwidth	RSS GEN	-	18.6 MHz
4	Spurious emissions	15.247(b)	Pass	46 dBc

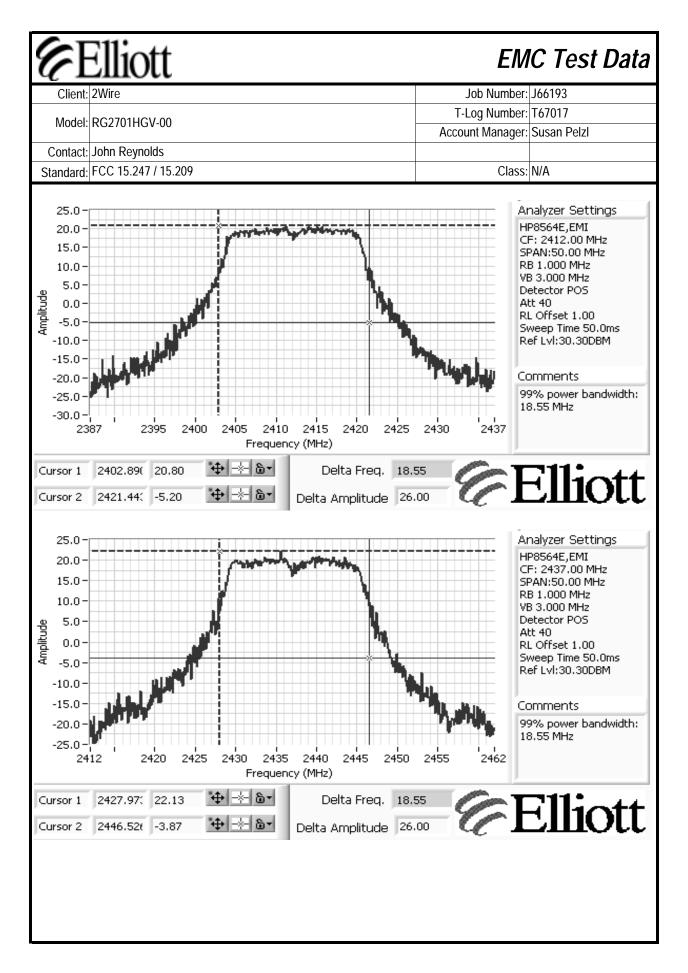

Modifications Made During Testing:

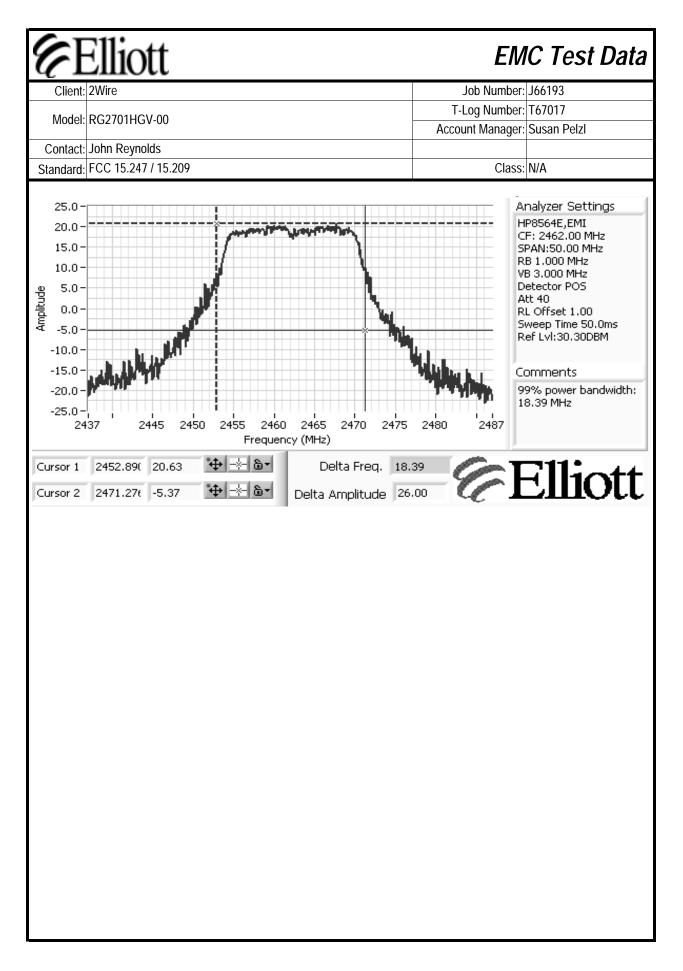

No modifications were made to the EUT during testing

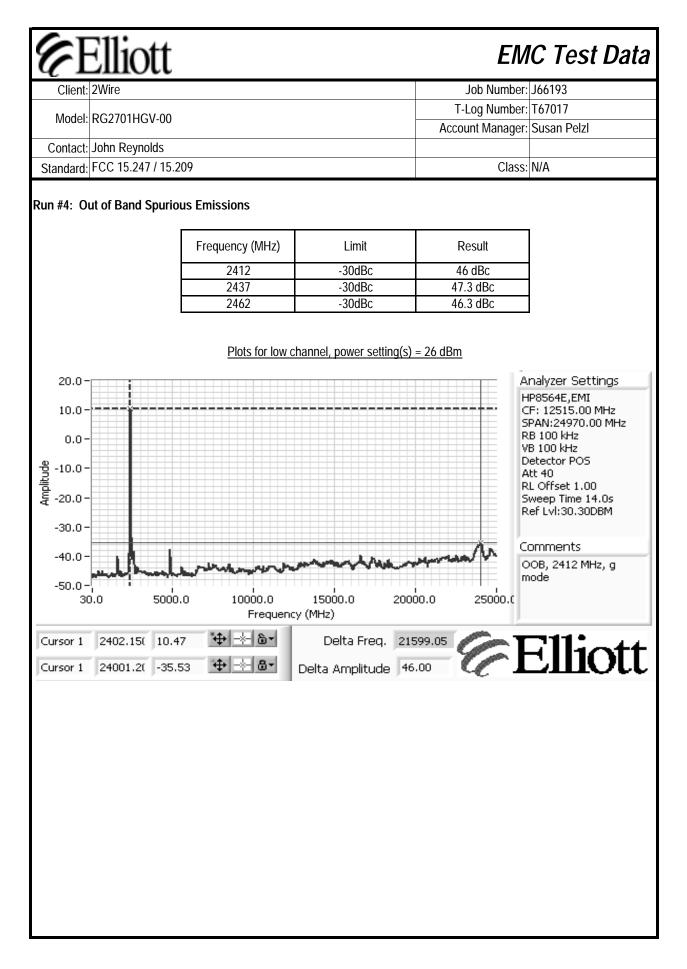

Deviations From The Standard

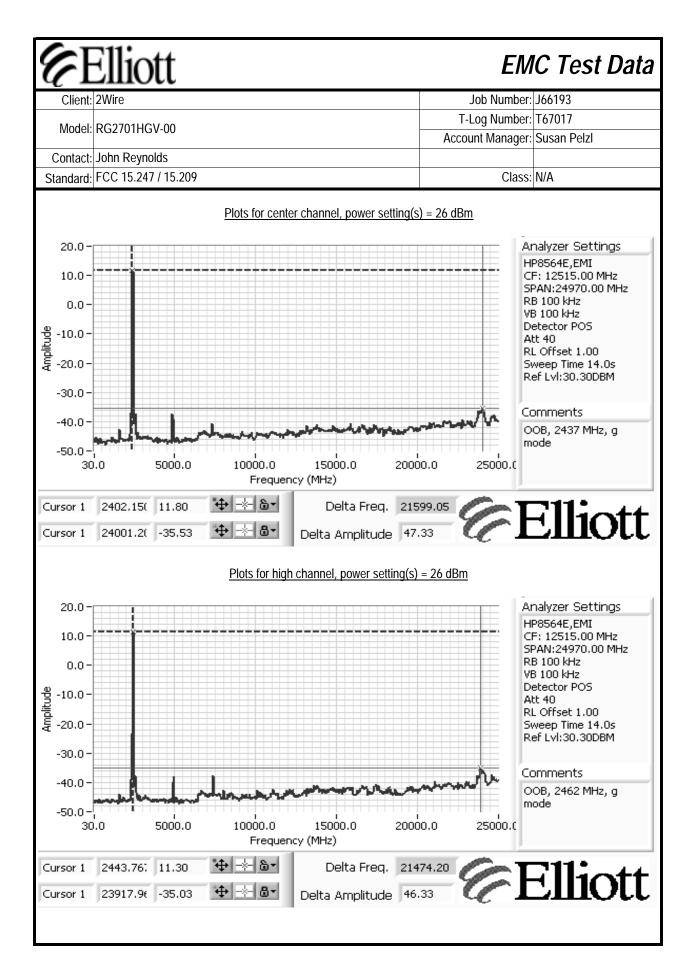

No deviations were made from the requirements of the standard.


	2Wire					J	ob Number:	J66193	
						T-Log Number:			
Model:	RG2701HGV-00							Susan Pelzl	
Contact:	John Reynolds								
Standard: FCC 15.247 / 15.209					Class:		N/A		
Run #1: O	utput Power								
Power	Frequency (MHz)	Outpu	t Power	Antenna	Docult	EIRP Note 2		Output Power	
Setting ²	Frequency (MHZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
20	2412	17.8	60.8	1.0	Pass	18.8	0.077		
25	2437	25.4	346.7	1.0	Pass	26.4	0.437		
20	2462	18.0	62.8	1.0	Pass	19.0	0.079		
Note 1: Note 2: Note 3:	RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz The output power limit is 30dBm Power setting - the software power setting used during testing, included for reference only. PSD and conducted spurious measurements were all made with a power setting of 26, which would produce result higher than those for the actual power settings to be used in normal operation.								
E Spectrum /	liott Analyzer Settings	10.0-							= 1
CF: 2412.	00 MHz	5.0-			Marin Brinning	Auran			-
SPAN:50.		0.0-		1			ł		
RB 1.000 M	TIME						1		
VB 3.000 M	ИHz	-5.0-					3		
VB 3.000 M Detector S Att 20	MHz Sample	-5.0-							
VB 3.000 M Detector S Att 20 RL Offset I Sweep Tin	vIHz Sample 0.00 ne 20.0ms	-10.0-							
VB 3.000 M Detector S Att 20 RL Offset I Sweep Tir Ref Lvl: 10	vIHz Sample 0.00 ne 20.0ms								
VB 3.000 M Detector 9 Att 20 RL Offset 1 Sweep Tir Ref LvI: 10 Pwr avg: Amp corr	MHz 5ample 0.00 ne 20.0ms .00DBM 등 100 sweeps 등 : 1.0dB	-10.0-					1		
VB 3,000 M Detector 9 Att 20 RL Offset 1 Sweep Tir Ref LvI:10 Pwr avg:	에Hz 5ample 0.00 ne 20.0ms .00DBM 등 100 sweeps : 1.0dB 25 kHz	-10.0 - -15.0 - -20.0 -		walk walk			Joseph Contraction		
VB 3.000 M Detector S Att 20 RL Offset I Sweep Tin Ref Lvl:10 Pwr avg: Amp corr Bin size: 1 Highest PS	MHz 5ample 0.00 ne 20.0ms .00DBM 100 sweeps : 1.0dB 25 kHz D dBm/1.000 MHz	-10.0 - -15.0 - -20.0 - -25.0 -		where the second second			J. J	Mary Ver	
VB 3.000 M Detector S Att 20 RL Offset I Sweep Tin Ref Lvl:10 Pwr avg: Amp corr Bin size: 1 Highest PS	MHz 5ample 0.00 ne 20.0ms .00DBM & 100 sweeps 11.0dB 25 kHz 25 kHz D dBm/1.000 MHz	-10.0 - -15.0 - -20.0 -		where the second s			J. J	Mary Maryma	
VB 3.000 M Detector S Att 20 RL Offset I Sweep Tir Ref Lvl:10 Pwr avg: Amp corr Bin size: 1 Highest PS 7.21	MHz Sample 0.00 ne 20.0ms .00DBM 100 sweeps : 1.0dB 25 kHz 25 kHz D dBm/1.000 MHz width	-10.0 - -15.0 - -20.0 - -25.0 -	worked grader	where the second s				Whore Were my	×44
VB 3.000 M Detector S Att 20 RL Offset I Sweep Tin Ref Lvl:10 Pwr avg: Amp corr Bin size: 1 Highest PS 7.21 99% Bandy	MHz Sample 0.00 ne 20.0ms .00DBM 100 sweeps : 1.0dB 25 kHz 25 kHz D dBm/1.000 MHz width MHz	-10.0 - -15.0 - -20.0 - -25.0 - -30.0 - -35.0 -	wandruck gradinan	where the second s				Mary Westerna	WAY LOOK
VB 3.000 M Detector S Att 20 RL Offset I Sweep Tin Ref Lvl:10 Pwr avg: Amp corr Bin size: 1 Highest PS 7.21 39% Bandy 17.08 Power Ovi 60.880	MHz Sample 0.00 ne 20.0ms .00DBM 100 sweeps : 1.0dB 25 kHz 25 kHz D dBm/1.000 MHz width MHz er Span mW	-10.0 - -15.0 - -20.0 - -25.0 - -30.0 -	worketpalen	2400.0	2410.0		¥20.0	Miny Mark	^W WWW 2437.0
VB 3.000 M Detector S Att 20 RL Offset I Sweep Tir Ref Lvl:10 Pwr avg: Amp corr Bin size: 1 Highest PS 7.21 39% Bandu 17.08 Power Ove	MHz Sample 0.00 ne 20.0ms .00DBM 100 sweeps : 1.0dB 25 kHz 25 kHz D dBm/1.000 MHz width MHz er Span mW	-10.0 - -15.0 - -20.0 - -25.0 - -30.0 - -35.0 -	wandruch generation	2400.0		0 24 псу (МН2)	+20.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WY WAL

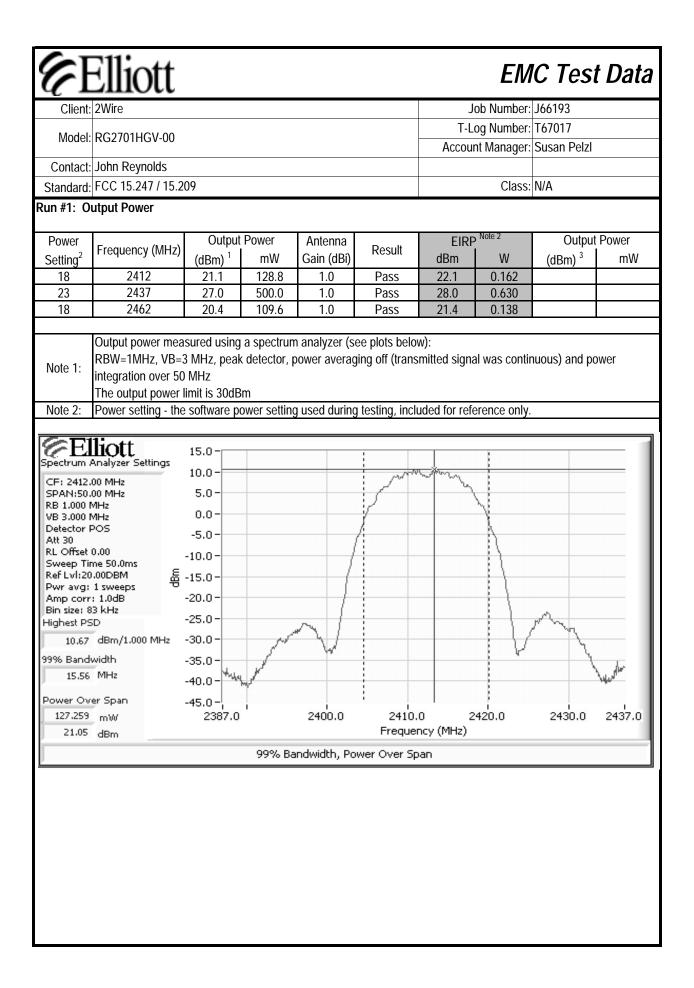


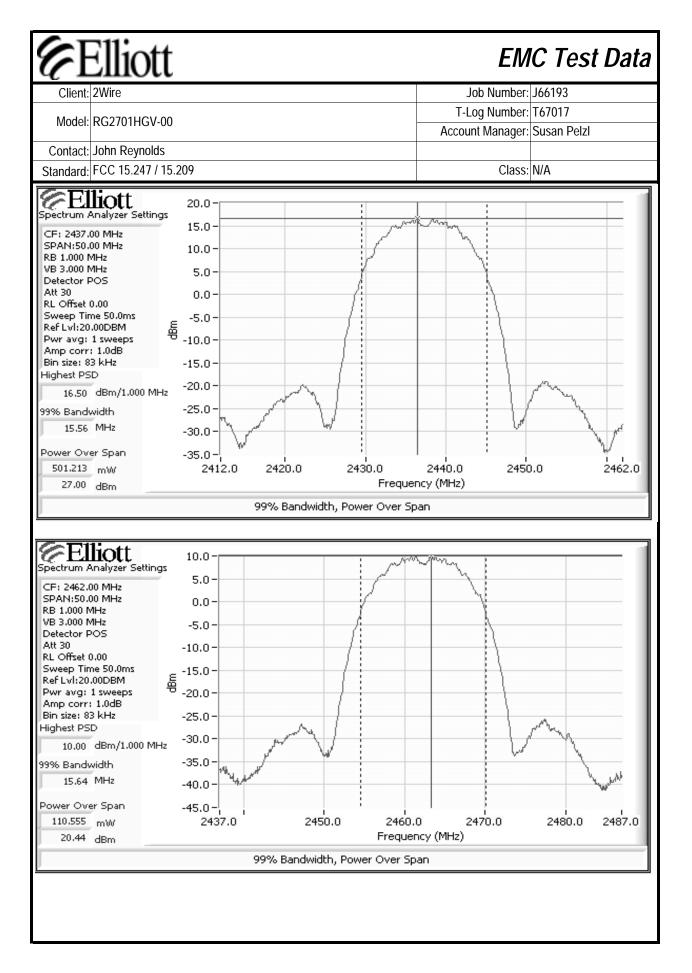


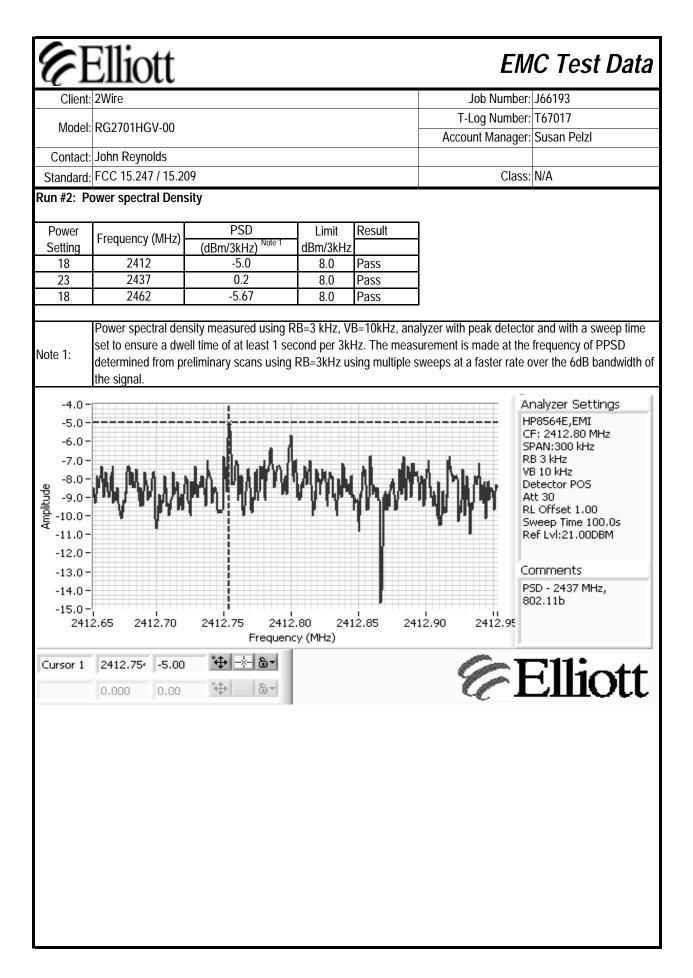


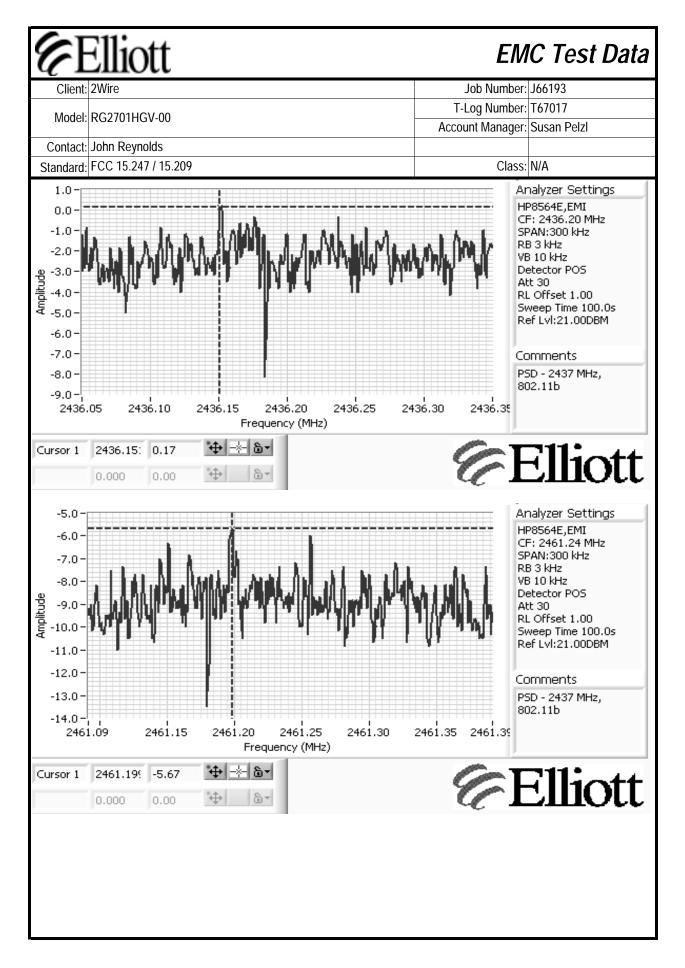


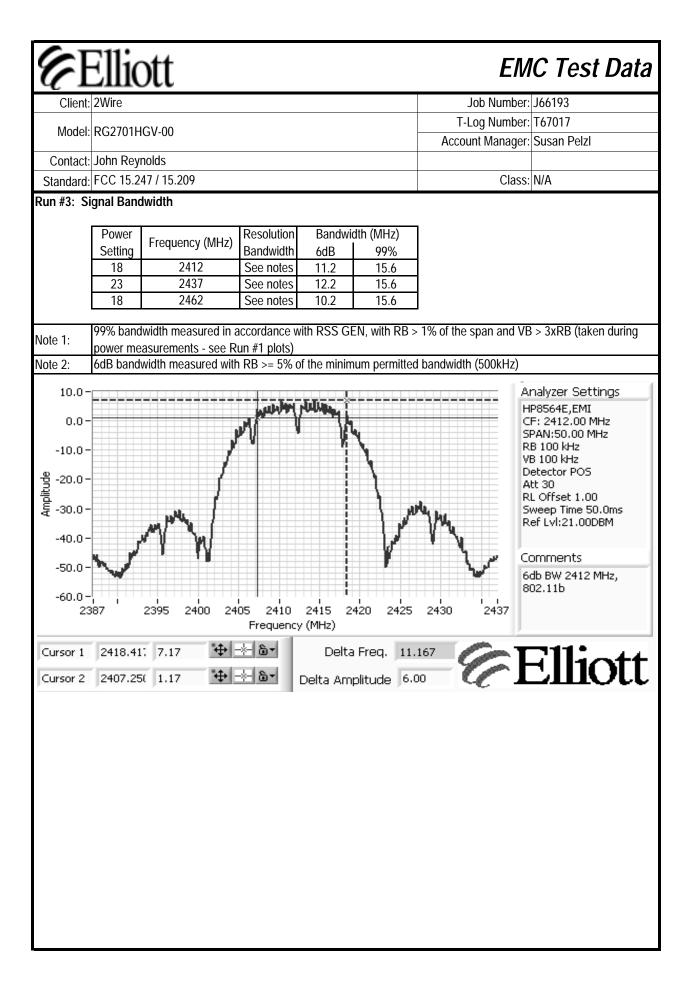
EMC Test Data Job Number: J66193 Client: 2Wire T-Log Number: T67017 Model: RG2701HGV-00 Account Manager: Susan Pelzl Contact: John Reynolds Standard: FCC 15.247 / 15.209 Class: N/A **RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements** Power, Bandwidth and Spurious Emissions Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Config. Used: 1 Date of Test: 2/23/2007 Config Change: None Test Engineer: Mark Hill Test Location: SVOATS #2 EUT Voltage: 120V/60Hz General Test Configuration The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain. All measurements have been corrected to allow for the external attenuators used. Ambient Conditions: Temperature: 11 °C Rel. Humidity: 48 % Summary of Results Test Derfermend Linalt Pass / Fail Result / Margin

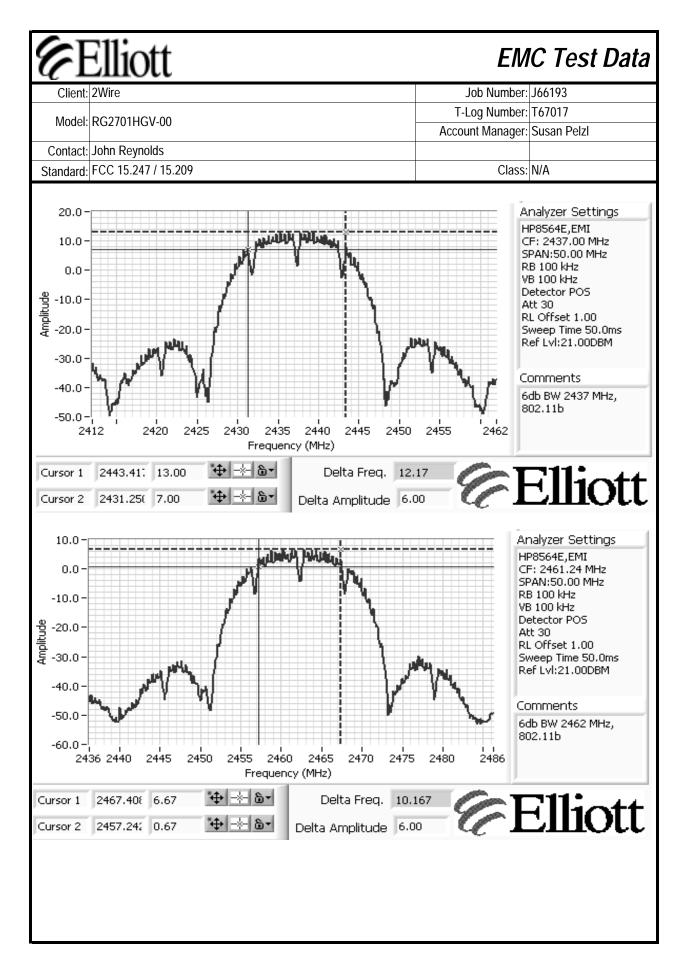

Rull #	Test Perionneu	LIIIII	Pass / Fall	Result / Maryin
1	Output Power	15.247(b)	Pass	27.0 dBm
2	Power spectral Density (PSD)	15.247(d)	Pass	0.2 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	10.2 MHz
3	99% Bandwidth	RSS GEN	-	15.6 MHz
4	Spurious emissions	15.247(b)	Pass	42 dBc

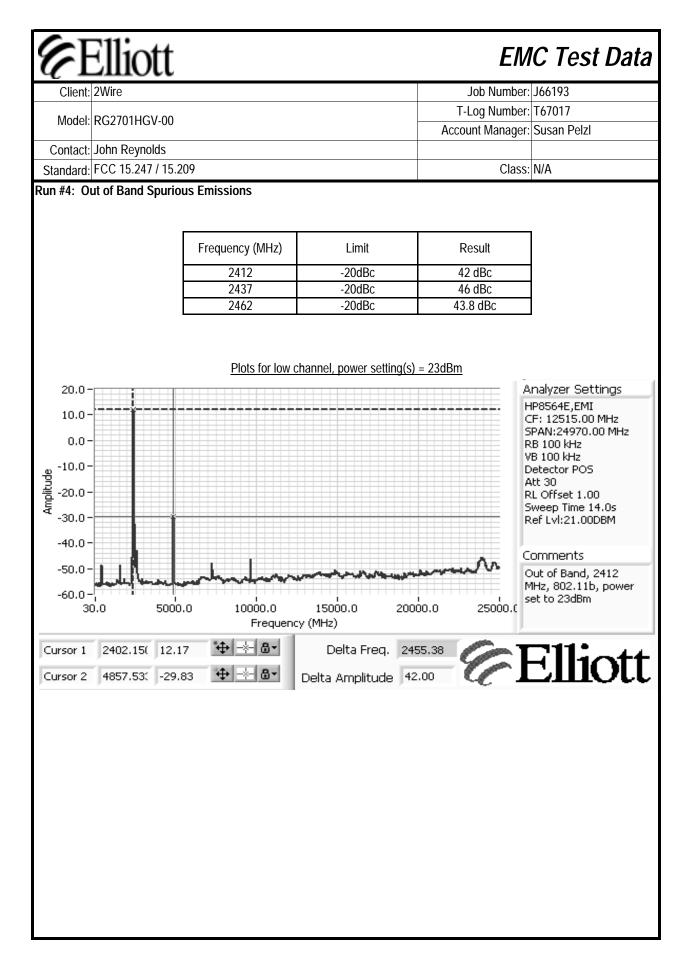

Modifications Made During Testing:


No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.





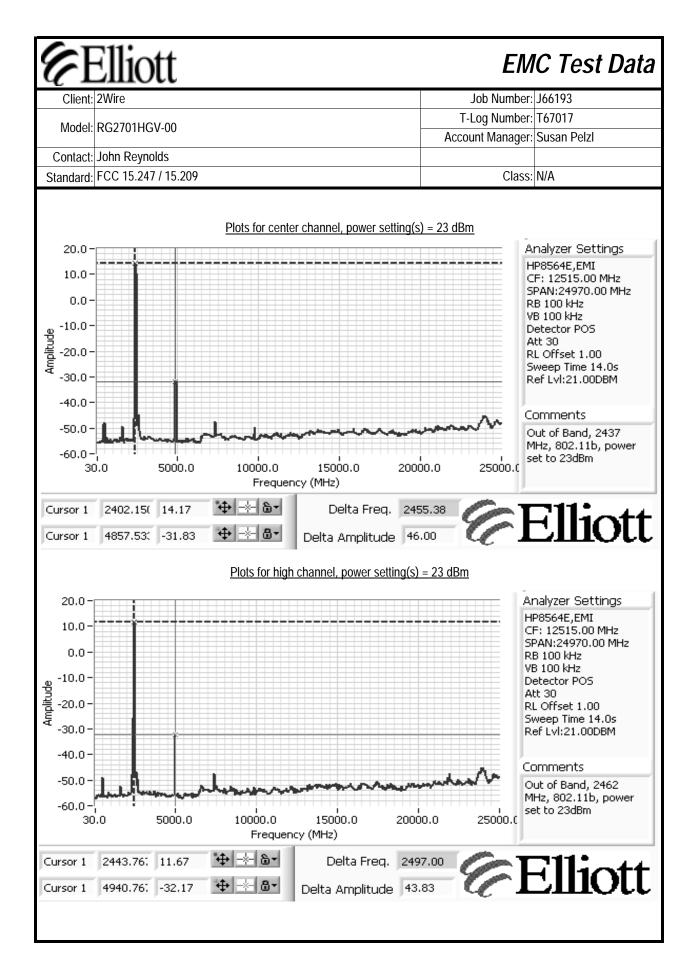


EXHIBIT 3: Photographs of Test Configurations

2 Pages