

www.elliottlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 6 FCC Part 15, Subpart C Section 15.247(DTS) on the 2Wire, Inc. Transmitter Model: 2700 HGV

> UPN: 3439B-2W2700D FCC ID: PGR2W2700RD

GRANTEE: 2Wire, Inc. 1704 Automation Parkway San Jose, CA 95131

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: December 16, 2005

FINAL TEST DATE:

December 8, 2005

AUTHORIZED SIGNATORY:

man

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

Equipment Name and Model:

Transceiver, 2700 HGV

Manufacturer:

2Wire, Inc. 1704 Automation Parkway San Jose, CA 95131

Tested to applicable standard:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

Test Report Prepared For:

Jeremy Muir 2Wire, Inc. 1704 Automation Parkway San Jose, CA 95131

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 SV2 Dated August 16, 2007 Departmental Acknowledgement Number: IC2845 SV3 Dated August 16, 2007

Declaration of Compliance

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4: 2003 as referenced by FCC Part 15 and by section 1.0 of RSS-212, Issue 1, "Test Facilities and Test Methods for Radio Equipment" / RSS-Gen Issue 1); and that the equipment performed in accordance with the data submitted in this report.

Signature Name

Juan Mar

Name Juan Martinez Title Senior EMC Engineer Elliott Laboratories Inc. Address 684 W. Maude Ave Sunnyvale, CA 94086 USA Date: December 16, 2005

TABLE OF CONTENTS

COVER PAGE	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	6
MEASUREMENT UNCERTAINTIES.	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS.	
ANTENNA SYSTEM	8
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM.	
INSTRUMENT CONTROL COMPUTER	11 11
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	11
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNAS	12
INSTRUMENT CALIBRATION.	12
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL RADIATED EMISSIONS SPECIFICATION LIMITS	20
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS ENVIRES AND DISSISTEMIS	
SAMILE CALCULATIONS - CONDUCTED EMISSIONS	
SAMILE CALCULATIONS - READIATED EMISSIONS	
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Measurement Data	2
EXHIBIT 3: Photographs of Test Configurations	
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs of	
EXHIBIT 5: Derator's Manual for	
EXHIBIT 7: Block Diagram of	
EXHIBIT 7: Block Diagram of EXHIBIT 8: Schematic Diagrams for	
EXHIBIT 9: Theory of Operation for	
EXHIBIT 10: RF Exposure Information	
1 V	

SCOPE

An electromagnetic emissions test has been performed on the 2Wire, Inc. model 2700 HGV pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart C requirements for DTS devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4: 2003 RSS-212 Issue 1 Test Facilities and Test Methods for Radio Equipment

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the 2Wire, Inc. model 2700 HGV and therefore apply only to the tested sample. The sample was selected and prepared by Jeremy Muir of 2Wire, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section. Certification of these devices is required as a prerequisite to marketing in the US and Canada.

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section. Certification of these devices is required as a prerequisite to marketing in the US. Devices categorized as Class II equipment do not require certification by Industry Canada.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions, should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of 2Wire, Inc. model 2700 HGV complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart C requirements for DTS devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions, should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Part 15 Reference	RSS Reference	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11b = 12.2 MHz 802.11g = 16.5 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	802.11b = 19.1 MHz 802.11g = 26.3 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	30 dBm (1 Watts) EIRP = 1.26 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	3.02 dBm / MHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	Refer to plots	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.6dBµV/m (479.7µV/m) @ 4874.0MHz	15.207 in restricted bands, all others < -20dBc	Complies (-0.4dB)

Note 1: EIRP calculated using antenna gain of dBi (1) for the highest EIRP multi-point system.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$\pm 2.4 \\ \pm ??.? \\ \pm 3.6 \\ \pm \pm ??.?$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The 2Wire, Inc. model 2700 HGV is a The EUT is a Wireless VDSL router which is designed to route VDSL signals to various network interfaces. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 0.8 Amps.

The sample was received on November 19, 2005 and tested on December 8, 2005. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
2 wire	2700	DSL modem	N/A	
Good Power	GPUSW0513000GD0S	AC/DC PSU	GP53100002	N/A
Good Power	GPCSW0512000GD00	AC/DC PSU	GPS3U002AUS	N/A

OTHER EUT DETAILS

List any items from the test log.

ANTENNA SYSTEM

The antenna system used with the 2Wire, Inc. model 2700 HGV consists of an internal 1dBi antenna

ENCLOSURE

The EUT enclosure is primarily constructed of ABS plastic with a fabricated sheet steel outer shield. It measures approximately 29.5 cm wide by 24.5 cm deep by 5 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following e	quipment was used	as local	support equipment	for emissions testing:
The following c	quipilient mus used	us iocui	bupport equipment	for emissions testing.

Manufacturer	Model	Description	Serial Number	FCC ID
None				

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	PP01L	Laptop# 1	CN-04P240048643-35F-1683	DoC

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)			
Polt	Connected 10	Description	Shielded or Unshielded	Length (m)	
Etherne	et Laptop	Cat5	Unshielded	30	

EUT OPERATION

EUT was set to transmit at maximum power on low, middle, and high channels. Both 802.11b and 802.11g were tested for transmitter spurious emissions.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on December 8, 2005at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California or 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers or incorporated into the test software.

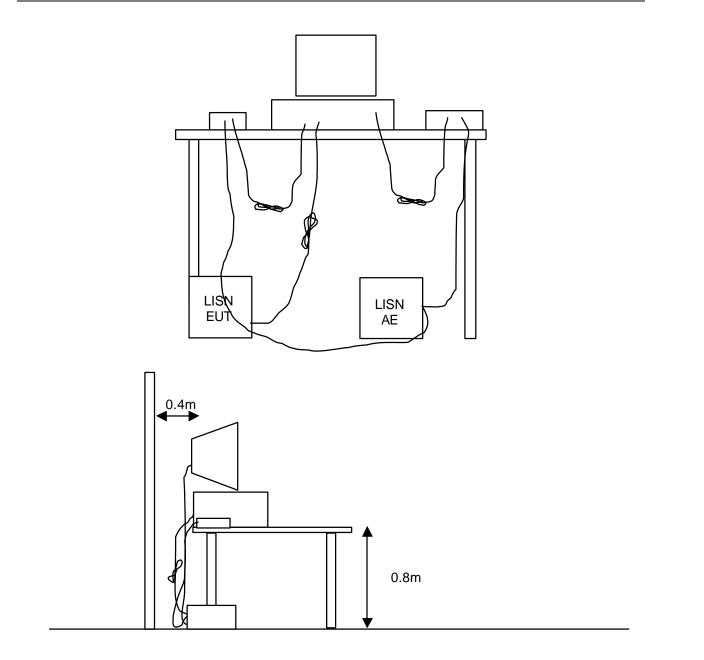
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

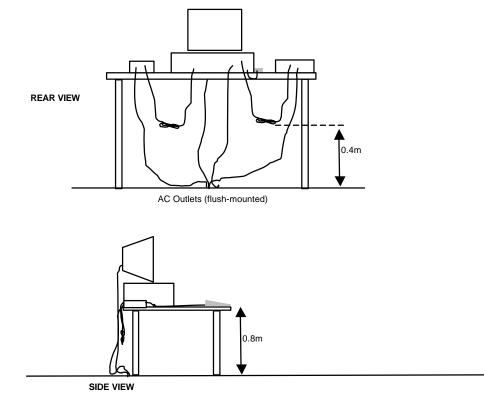

TEST PROCEDURES

EUT AND CABLE PLACEMENT

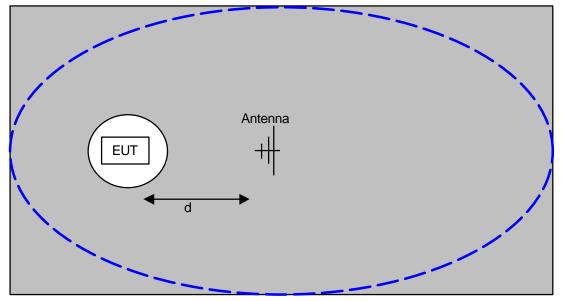
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

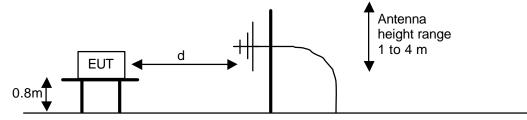
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

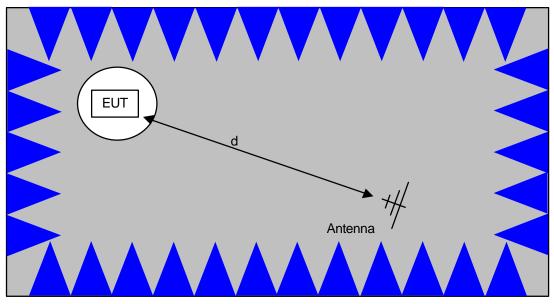


RADIATED EMISSIONS

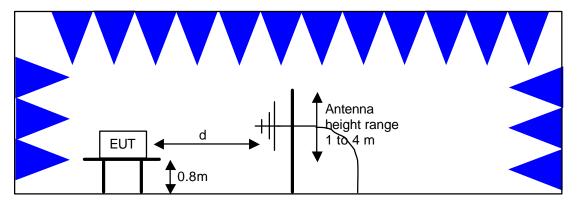

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

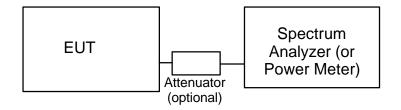

Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.



<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL RADIATED EMISSIONS SPECIFICATION LIMITS

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400-2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \underline{1000000 \text{ v } 30 \text{ P}} \text{ microvolts per meter}$

where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 1000 - 26,500 MHz, 19-Nov-05 Engineer: Juan Martinez

Engineer: Juan Martinez				
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	13-Jan-06
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz), Sunnyvale	84125C	1149	09-Jun-06
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	1242	19-Oct-06

Radiated Emissions, 30 - 2,000 MHz, 30-Nov-05 Engineer: Yu Chien Ho

Engineer. Tu Chien no				
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	13-Jan-06
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	955	31-Mar-06
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	28-Mar-06
EMCO	Biconical Antenna, 30-300 MHz	3110B	1320	05-Oct-06
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	30-Mar-07
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	23-May-06
EMCO	Horn Antenna D. Ridge 1-18 GHz (SA40 horn)	3115	1386	07-Jul-06

Conducted Emissions - AC Power Ports, 30-Nov-05 Engineer: Yu Chien Ho

Engineer. Tu chien no				
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304	08-Jul-06
Solar Electronics	LISN	8028-50-TS-24-BNC support	904	08-Jul-06
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	28-Mar-06
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	23-May-06
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398	11-Feb-06

EXHIBIT 2: Test Measurement Data

52 Pages

Elliot	t	EM	C Test Data
Client:	2Wire	Job Number:	J61687
Model:	2700 HGV - Modified	Test-Log Number:	T61804
		Project Manager:	Mark Hill
Contact:	Jeremy Muir		
Emissions Spec:	FCC 15.247, EN55022/FCC	Class:	Radio / B
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

2Wire

Model

2700 HGV - Modified

Date of Last Test: 12/13/2005

Elliott

EMC Test Data

Client:	2Wire	Job Number:	J61687
Model:	2700 HGV - Modified	Test-Log Number:	T61804
		Project Manager:	Mark Hill
Contact:	Jeremy Muir		
Emissions Spec:	FCC 15.247, EN55022/FCC	Class:	Radio / B
Immunity Spec:	-	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions(s).

General Description

The EUT is a Wireless VDSL router which is designed to route VDSL signals to various network interfaces. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 0.8 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
2Wire	2700	DSL modem	-	-
Good Power	GPUSW0513000GD0S	AC/DC PSU	GP53100002	-
Good Power	GPCSW0512000GD00	AC/DC PSU	GPS3U002AUS	-

Other EUT Details

The following EUT details should be noted: N/A

EUT Enclosure

The EUT enclosure is primarily constructed of ABS plastic with a fabricated sheet steel outer shield. It measures approximately 29.5 cm wide by 24.5 cm deep by 5 cm high.

Modification History

Mod. #	Test	Date	Modification
1			
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

|--|

EMC Test Data

Client:	2Wire	Job Number:	J61687
Model:	2700 HGV - Modified	T-Log Number:	T61804
		Project Manager:	Mark Hill
Contact:	Jeremy Muir		
Emissions Spec:	FCC 15.247, EN55022/FCC	Class:	Radio / B
Immunity Spec:	-	Environment:	-

Test Configuration #3

The following information was collected during the test sessions(s).

	L	ocal Support Equipm	lent	
Manufacturer	Model	Description	Serial Number	FCC ID
Coby	-	Phone	324001152	-
ADAPCOM	Micro-890	ADSL Mini-DSLAM	-	-
Motorola	Моса	Ethernet Bridge	520111-001-00	-
Dell	PP01L	Laptop #1	CN-04P240048643-35F-	-
Dell	-	Laptop #2	CX-04P240-38643-36P-	-
Dell	D610	Laptop #3	-	-

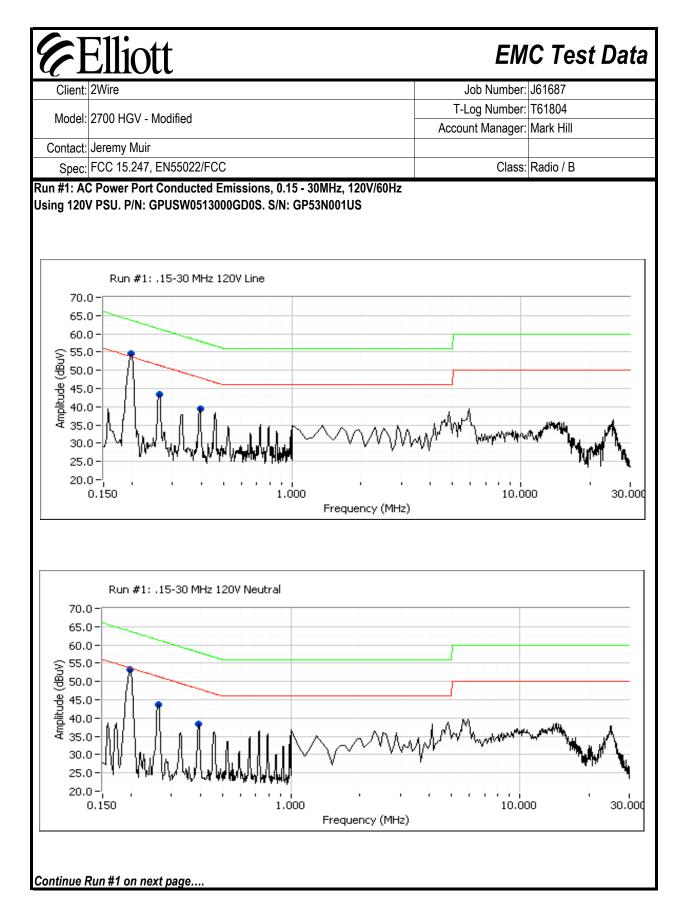
Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
-	-	-	-	-

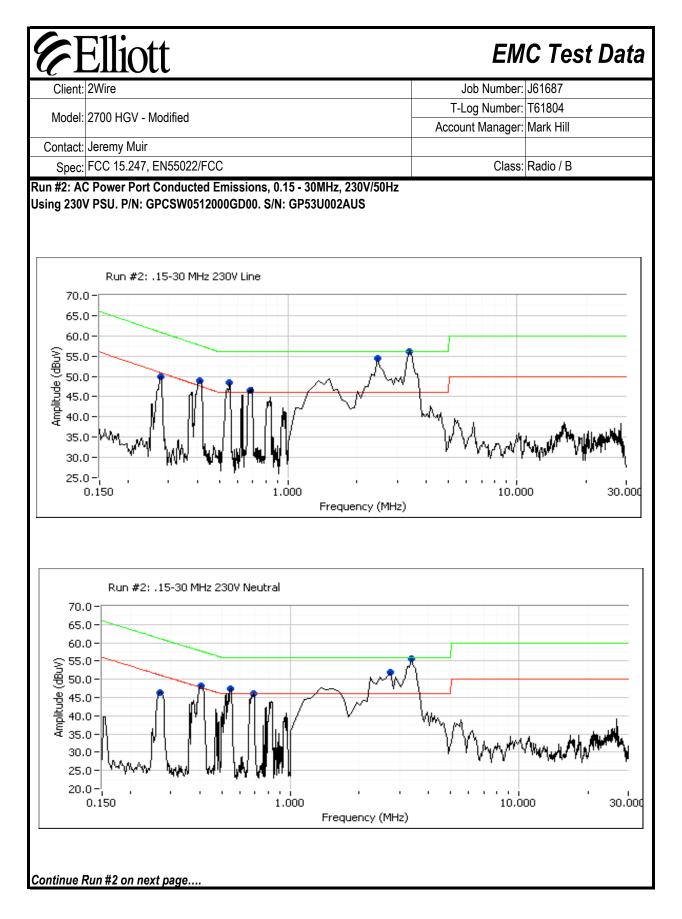
Interface Cabling and Ports

Port	Connected To		Cable(s)	
		Description	Shielded or Unshielded	Length(m)
DSL	DSLAM	RJ11	Shielded	1
Voice	Phone	RJ11	Unshielded	3
Ethernet	Laptop	Cat 5	Unshielded	1
USB	Laptop	Multiwire	Shielded	1.5
AC	Power	3 Wire	Unshielded	1.5

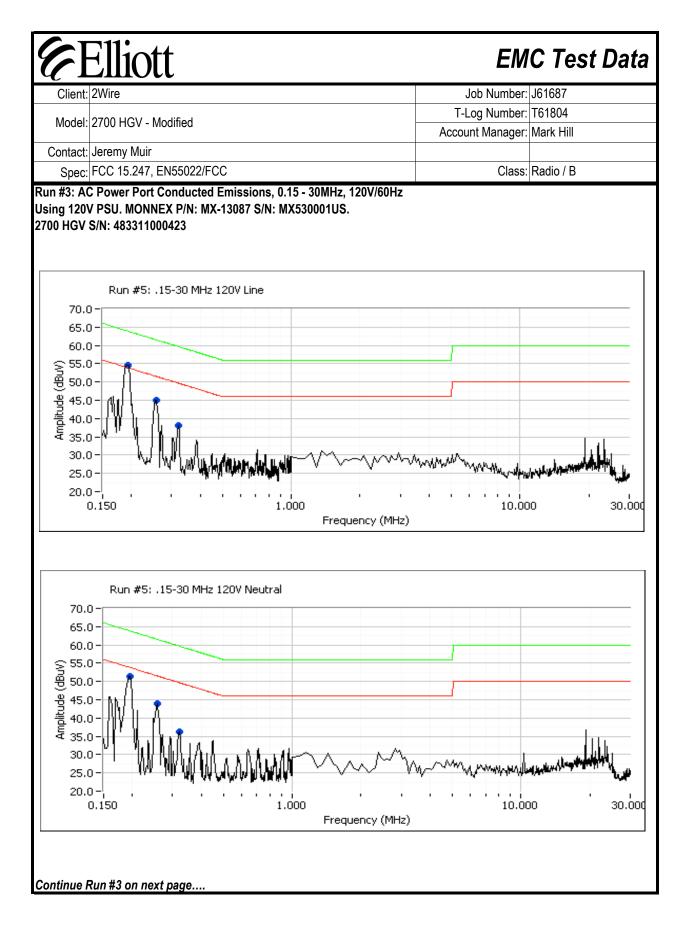
EUT Operation During Emissions Tests

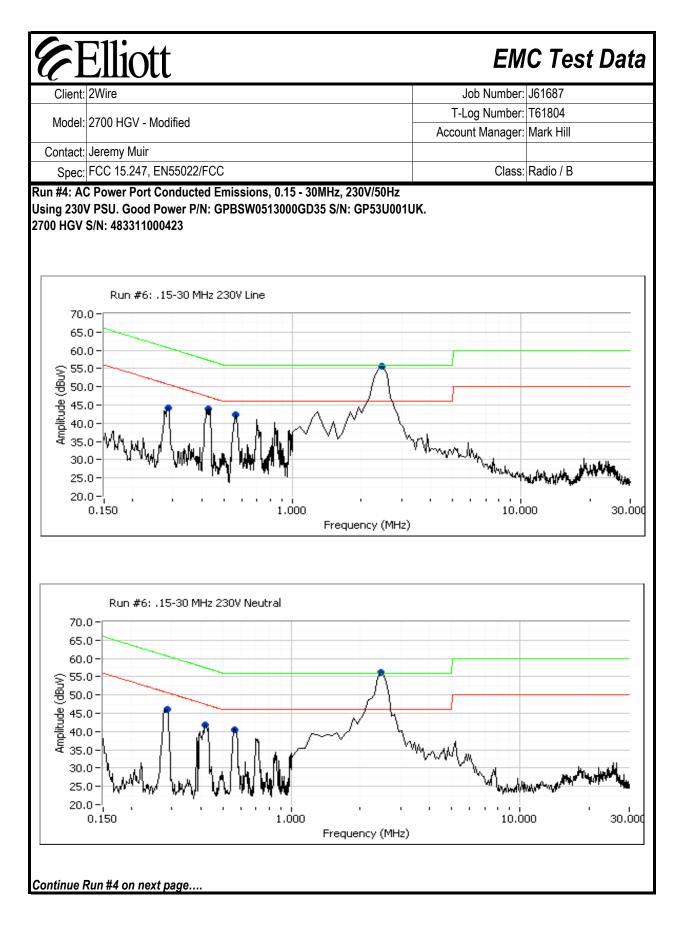

During emissions testing, the EUT was connected to three remote laptop PCs using the EUT's MoCA line, Ethernet and USB ports. The three Laptops were pinging the EUT, the DSLAM kept the VDSL port active. The phone terminated the Voice port. The remote laptop was pinging the EUT via wireless.

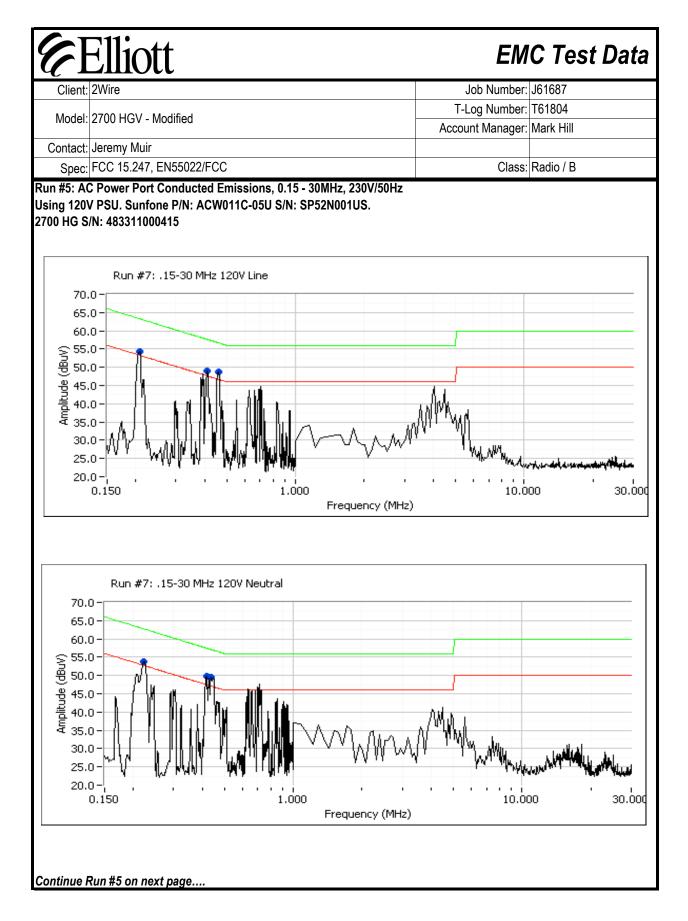
Client:	t 2Wire		Job Number:	161687
	2700 HGV - Modified		T-Log Number:	
			Project Manager:	
	Jeremy Muir			
	FCC 15.247, EN55022/F0	00	Class:	Radio / B
Immunity Spec:			Environment:	-
The	following information		uring the test sessions	s(s).
Manufacturer	LO Model	cal Support Equip	Serial Number	FCC ID
None	WOUEI	Description		FUCID
Manufacturer	Ren Model	note Support Equi Description	Serial Number	FCC ID
Dell	PP01L	Laptop #1	CN-04P240048643-35F- 1683	-
Ethernet	Laptop	Description Cat 5	Shielded or Unshield Unshielded	led Length 30
	EUT O	peration During Ra	dio Tests	
	at maximum power on lo	Deration During Ra w, middle, and high cha	dio Tests nnels. Both 802.11b and 802	2.11g were tested fo


Elli	Oll			EIVI	C Test Da
Client: 2Wire			J	lob Number:	J61687
Model: 2700 HG	SV - Modified			og Number:	
			Accou	nt Manager:	Mark Hill
Contact: Jeremy I				0	
Spec: FCC 15.	247, EN55022/FCC			Class:	Radio / B
	Conducted E	missions - F	Power P	orts	
est Specifics					
Objective	The objective of this test session specification listed above.	is to perform final qua	lification testi	ng of the EU	T with respect to the
Date of Test	: 11/30/2005	Config. Use			
	V. Ohian Ha	Config Chang	e: None		
Test Engineer		• •		dividual run	
Test Location	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a	EUT Voltag	e: Refer to in		I. A second LISN v
Test Location General Test Co he EUT was locate	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a port equipment.	EUT Voltag	e: Refer to in		I. A second LISN v
Test Location General Test Co he EUT was locate sed for all local sup Ambient Condit	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a port equipment. ions: Temperature: Rel. Humidity:	EUT Voltag vertical coupling plan 13 °C	e: Refer to in		I. A second LISN v
Test Location General Test Co he EUT was locate sed for all local sup Ambient Condit	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a port equipment. ions: Temperature: Rel. Humidity:	EUT Voltag vertical coupling plan 13 °C	e: Refer to in	rom the LISN	I. A second LISN w
Test Location General Test Co he EUT was locate sed for all local sup Ambient Condit Gummary of Res Run #	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a port equipment. ions: Temperature: Rel. Humidity: sults Test Performed	EUT Voltag vertical coupling plan 13 °C 76 % Limit	e: Refer to indexe and 80cm f	rom the LISN Ma 52.4dBµV (argin @ 0.197MHz
Test Location General Test Co he EUT was locate sed for all local sup Ambient Condit	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a port equipment. ions: Temperature: Rel. Humidity: sults Test Performed CE, AC Power, 230V/50Hz	EUT Voltag vertical coupling plan 13 °C 76 %	e: Refer to in	rom the LISN Ma 52.4dBµV ((-11	argin @ 0.197MHz .3dB)
Test Location General Test Co he EUT was locate sed for all local sup Ambient Condit Gummary of Res Run #	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a port equipment. ions: Temperature: Rel. Humidity: sults Test Performed	EUT Voltag vertical coupling plan 13 °C 76 % Limit	e: Refer to indexe and 80cm f	Ma 52.4dBµV ((-11 44.0dBµV (argin @ 0.197MHz
Test Location General Test Co he EUT was locate sed for all local sup Ambient Condit Gummary of Res Run # 1 2	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a port equipment. ions: Temperature: Rel. Humidity: sults Test Performed CE, AC Power, 230V/50Hz CE, AC Power, 120V/60Hz	EUT Voltag vertical coupling plan 13 °C 76 % Limit EN55022 B EN55022 B	e: Refer to in e and 80cm f Result Pass Pass	rom the LISN 52.4dBµV ((-11 44.0dBµV ((-3. 52.8dBµV (argin @ 0.197MHz .3dB) @ 0.406MHz 7dB) @ 0.192MHz
Test Location eneral Test Co ne EUT was locate sed for all local sup mbient Condit ummary of Res Run # 1	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a port equipment. ions: Temperature: Rel. Humidity: sults Test Performed CE, AC Power, 230V/50Hz	EUT Voltag vertical coupling plan 13 °C 76 % Limit EN55022 B	e: Refer to indexe and 80cm f	rom the LISN 52.4dBµV ((-11 44.0dBµV ((-3. 52.8dBµV ((-11	argin @ 0.197MHz .3dB) @ 0.406MHz 7dB) @ 0.192MHz .2dB)
Test Location General Test Co the EUT was locate sed for all local sup Ambient Condit ummary of Res Run # 1 2	: SVOATS #2 onfiguration d on a wooden table, 40 cm from a port equipment. ions: Temperature: Rel. Humidity: sults Test Performed CE, AC Power, 230V/50Hz CE, AC Power, 120V/60Hz	EUT Voltag vertical coupling plan 13 °C 76 % Limit EN55022 B EN55022 B	e: Refer to in e and 80cm f Result Pass Pass	Ma 52.4dBµV ((-11 44.0dBµV ((-3. 52.8dBµV ((-11 53.5dBµV (argin @ 0.197MHz .3dB) @ 0.406MHz 7dB) @ 0.192MHz

Deviations From The Standard


No deviations were made from the requirements of the standard.


E	Elli	ott					EM	C Test Dat
Client:		~ ~ ~					Job Number:	J61687
							T-Log Number:	
Model:	2700 HG	V - Modifie	d				Account Manager:	
Contact:	Jeremv N	luir						
	-	247, EN550)22/FCC				Class:	Radio / B
				ssions 01	5 - 30MHz	120V/60Hz (co		
				GDOS. S/N:		•		
requency	Level	AC	EN55	022 B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.197	52.4	Neutral	63.7	-11.3	QP			
0.197	42.3	Neutral	53.7	-11.4	Average			
0.197	52.1	Line	63.7	-11.6	QP			
0.393	36.1	Neutral	48.0	-11.9	Average			
0.197	41.6	Line	53.7	-12.1	Average			
0.393	33.8	Line	48.0	-14.2	Average			
0.262	32.8	Line	51.4	-18.6	Average QP			
0.262	42.7 32.6	Neutral Neutral	61.4 51.4	-18.7 -18.8				
0.262	32.0	Line	51.4 58.0	-18.8	Average QP			
0.393	41.0	Line	61.4	-20.2	QP QP			
0.393	37.0	Neutral	58.0	-20.4	QP			


ч	Elli	JII					EM	C Test Dat
Client:							Job Number:	J61687
Madal	2700 110	V - Modifie	.d				T-Log Number:	T61804
wodel:	2700 HG	v - ivioaitie	eu .				Account Manager:	Mark Hill
Contact:	Jeremy N	luir						
Spec:	FCC 15.2	247, EN55	022/FCC				Class:	Radio / B
Run #2: A	C Power F	Port Cond	ucted Emi	ssions, 0.1	5 - 30MHz, 1	230V/50Hz (co	ontinue)	I
Ising 230	V PSU. P/	N: GPCSV	N0512000	GD00. S/N:	GP53U002/	AUS		
roquonov		AC		022 B	Detector	Comments		
requency MHz	Level dBµV	Line	Limit	Margin	QP/Ave	Comments		
0.406	44.0	Line	47.7	-3.7	Average			
0.406	44.0	Neutral	47.7	-3.7	Average			
0.542	41.6	Line	46.0	-4.4	Average			
3.443	51.4	Line	56.0	-4.6	QP			
3.443	51.0	Neutral	56.0	-5.0	QP			
0.272	45.4	Line	51.1	-5.7	Average			
0.542	40.3	Neutral	46.0	-5.7	Average			
3.443	39.1	Line	46.0	-6.9	Average			
2.596	48.4	Line	56.0	-7.6	QP			
0.272	42.9	Neutral	51.1	-8.2	Average			
0.679	37.8	Line	46.0	-8.2	Average			
3.443	37.6	Neutral	46.0	-8.4	Average			
2.596	47.4	Neutral	56.0	-8.6	QP			
0.542	47.2	Line	56.0	-8.8	QP			
0.542	46.3	Neutral	56.0	-9.7	QP			
0.406	47.9	Line	57.7	-9.8	QP			
2.596	36.1	Line	46.0	-9.9	Average			
0.679	45.9	Line	56.0	-10.1	QP			
0.679	35.8	Neutral	46.0	-10.2	Average			
0.406	46.9	Neutral	57.7	-10.8	QP			
2.596	34.8	Neutral	46.0	-11.2	Average			
0.679	44.7	Neutral	56.0	-11.3	QP			
0.272	47.1	Line	61.1	-14.0	QP OD			
0.272	46.9	Neutral	61.1	-14.2	QP			

Client: 2Wire Job Number: Job Number: Job Number: Job Number: T-Log Number: Total Account Manager: Mark H Model: 2700 HGV - Modified Account Manager: Mark H ontact: Jeremy Muir Class: Radio / Spec: FCC 15.247, EN55022/FCC Class: Radio / #3: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz (continue) mail and the state in the sta
Model: 2/100 HGV - Modified Account Manager: Mark H ontact: Jeremy Muir Class: Radio / Spec: FCC 15.247, EN55022/FCC Class: Radio / #3: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz (continue) montheration montheration montheration ng 120V PSU. MONNEX P/N: MX-13087 S/N: MX530001US. Detector Comments montheration nuercy Level AC EN55022 B Detector Comments nHz dBµV Line Line Mark H Margin QP/Ave 192 51.6 Neutral 64.0 -12.4 QP
Model: 2/100 HGV - Modified Account Manager: Mark H ontact: Jeremy Muir Class: Radio / Spec: FCC 15.247, EN55022/FCC Class: Radio / #3: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz (continue) montheration montheration montheration ng 120V PSU. MONNEX P/N: MX-13087 S/N: MX530001US. Detector Comments montheration nuercy Level AC EN55022 B Detector Comments nHz dBµV Line Line Mark H Margin QP/Ave 192 51.6 Neutral 64.0 -12.4 QP
Spec: FCC 15.247, EN55022/FCC Class: Radio / #3: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz (continue) http://doi.org/10.100423 htttp://doi.org/10.100423
Spec: FCC 15.247, EN55022/FCC Class: Radio / #3: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz (continue) http://doi.org/10.100423 htttp://doi.org/10.100423
#3: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz (continue) ng 120V PSU. MONNEX P/N: MX-13087 S/N: MX530001US. 0 HGV S/N: 483311000423 quency Level AC EN55022 B Detector Comments //Hz dBµV Line Limit Margin QP/Ave 192 52.8 Line 64.0 -11.2 QP 192 51.6 Neutral 64.0 -12.4 QP 192 40.2 Line 54.0 -13.8 Average .192 39.0 Neutral 54.0 -15.0 Average .255 43.6 Line 61.6 -18.0 QP .255 31.8 Neutral 51.6 -19.1 QP .255 31.8 Neutral 51.6 -20.0 Average .255 31.6 Line 51.6 -20.0 Average .320 27.4 Neutral 49.7 -22.3 Average .320 25.9 Line 59.7 -23.4 QP .320 25.9 Line
Hz dBμV Line Limit Margin QP/Ave 192 52.8 Line 64.0 -11.2 QP 192 51.6 Neutral 64.0 -12.4 QP 192 51.6 Neutral 64.0 -12.4 QP 192 40.2 Line 54.0 -13.8 Average 192 39.0 Neutral 54.0 -15.0 Average 255 43.6 Line 61.6 -18.0 QP 255 42.5 Neutral 61.6 -19.1 QP 255 31.8 Neutral 51.6 -19.8 Average 255 31.6 Line 51.6 -20.0 Average 255 31.6 Line 51.6 -20.0 Average 320 27.4 Neutral 49.7 -22.3 Average 320 25.9 Line 49.7 -23.8 Average
192 52.8 Line 64.0 -11.2 QP 192 51.6 Neutral 64.0 -12.4 QP 192 40.2 Line 54.0 -13.8 Average 192 39.0 Neutral 54.0 -15.0 Average 255 43.6 Line 61.6 -18.0 QP 255 42.5 Neutral 61.6 -19.1 QP 255 31.8 Neutral 51.6 -19.8 Average 255 31.6 Line 51.6 -20.0 Average 320 27.4 Neutral 49.7 -22.3 Average 320 36.3 Line 59.7 -23.4 QP 320 25.9 Line 49.7 -23.8 Average
192 51.6 Neutral 64.0 -12.4 QP 192 40.2 Line 54.0 -13.8 Average 192 39.0 Neutral 54.0 -15.0 Average 255 43.6 Line 61.6 -18.0 QP 255 42.5 Neutral 61.6 -19.1 QP 255 31.8 Neutral 51.6 -19.8 Average 255 31.6 Line 51.6 -20.0 Average 320 27.4 Neutral 49.7 -22.3 Average 320 36.3 Line 59.7 -23.4 QP 320 25.9 Line 49.7 -23.8 Average
92 40.2 Line 54.0 -13.8 Average 92 39.0 Neutral 54.0 -15.0 Average 55 43.6 Line 61.6 -18.0 QP 55 42.5 Neutral 61.6 -19.1 QP 55 31.8 Neutral 51.6 -19.8 Average 55 31.6 Line 51.6 -20.0 Average 20 27.4 Neutral 49.7 -22.3 Average 20 36.3 Line 59.7 -23.4 QP 20 25.9 Line 49.7 -23.8 Average
92 39.0 Neutral 54.0 -15.0 Average 55 43.6 Line 61.6 -18.0 QP 55 42.5 Neutral 61.6 -19.1 QP 55 31.8 Neutral 51.6 -19.8 Average 55 31.6 Line 51.6 -20.0 Average 20 27.4 Neutral 49.7 -22.3 Average 20 36.3 Line 59.7 -23.4 QP 20 25.9 Line 49.7 -23.8 Average
255 43.6 Line 61.6 -18.0 QP 255 42.5 Neutral 61.6 -19.1 QP 255 31.8 Neutral 51.6 -19.8 Average 255 31.6 Line 51.6 -20.0 Average 320 27.4 Neutral 49.7 -22.3 Average 320 36.3 Line 59.7 -23.4 QP 320 25.9 Line 49.7 -23.8 Average
55 42.5 Neutral 61.6 -19.1 QP 55 31.8 Neutral 51.6 -19.8 Average 55 31.6 Line 51.6 -20.0 Average 20 27.4 Neutral 49.7 -22.3 Average 20 36.3 Line 59.7 -23.4 QP 20 25.9 Line 49.7 -23.8 Average
31.6 Line 51.6 -20.0 Average 20 27.4 Neutral 49.7 -22.3 Average 20 36.3 Line 59.7 -23.4 QP 20 25.9 Line 49.7 -23.8 Average
320 27.4 Neutral 49.7 -22.3 Average 320 36.3 Line 59.7 -23.4 QP 320 25.9 Line 49.7 -23.8 Average
320 36.3 Line 59.7 -23.4 QP 320 25.9 Line 49.7 -23.8 Average
0 25.9 Line 49.7 -23.8 Average
20 35.7 Neutral 59.7 -24.0 QP

Client: 2Wire Job Number: J61687 Model: 2700 HGV - Modified T-Log Number: T61804 Contact: Jeremy Muir Account Manager: Mark Hill Spec: FCC 15.247, EN55022/FCC Class: Radio / B Run #4: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz (continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Z700 HGV S/N: 483311000423 Generative Margin QP/Ave P Frequency Level AC EN55022 B Detector Comments MHz dBµV Line Limit Margin QP/Ave P 2.482 53.5 Neutral 56.0 -2.5 QP P 2.482 52.5 Line 56.0 -3.5 QP P P 2.482 42.0 Neutral 46.0 -4.0 Average P P P 2.482 42.0 Neutral 46.0 -10.5 Average P P P P P P
Model: 27/00 HGV - Modified Account Manager: Mark Hill Contact: Jeremy Muir Class: Radio / B Spec: FCC 15.247, EN55022/FCC Class: Radio / B Run #4: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz (continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Radio / B Z00 HGV S/N: 483311000423 Frequency Level AC EN55022 B Detector Comments MHz dBµV Line Limit Margin QP/Ave P 2.482 53.5 Neutral 56.0 -2.5 QP P 2.482 52.5 Line 56.0 -3.5 QP P 2.482 42.0 Neutral 46.0 -4.0 Average P P 2.482 42.0 Neutral 46.0 -10.5 Average P P 2.482 42.0 Neutral 46.0 -10.5 Average P P P 2.482 40.3<
Account Manager: Mark Hill Contact: Jeremy Muir Class: Radio / B Spec: FCC 15.247, EN55022/FCC Class: Radio / B Run #4: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz (continue) June 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Generation (Continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Generation (Continue) Generation (Continue) Generation (Continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Generation (Continue) Generation (Continue) Generation (Continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Generation (Continue) Generation (Continue) Generation (Continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Generation (Continue) Generation (Continue) Generation (Continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Generation (Continue) Generation (Continue) Generation (Continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Generation (Continue) Generation (Continue) Generation (Continue) Z482 53.5 Neutral 56.0 -2.5 QP </th
Spec: FCC 15.247, EN55022/FCC Class: Radio / B Run #4: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz (continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. Speciar State Specia
Run #4: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz (continue) Jsing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. 700 HGV S/N: 483311000423 Frequency Level AC EN55022 B Detector Comments MHz dBµV Line Limit Margin QP/Ave 2.482 53.5 Neutral 56.0 -2.5 QP 2.482 42.6 Line 46.0 -3.4 Average 2.482 52.5 Line 56.0 -3.5 QP 2.482 42.0 Neutral 46.0 -4.0 Average 0.282 40.3 Line 50.8 -10.5 Average 0.564 35.5 Line 46.0 -11.5 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.430
Asing 230V PSU. Good Power P/N: GPBSW0513000GD35 S/N: GP53U001UK. 700 HGV S/N: 483311000423 Frequency Level AC EN55022 B Detector Comments MHz dBµV Line Limit Margin QP/Ave QP/Ave 2.482 53.5 Neutral 56.0 -2.5 QP QP 2.482 42.6 Line 46.0 -3.4 Average QP 2.482 52.5 Line 56.0 -3.5 QP QP 2.482 42.0 Neutral 46.0 -4.0 Average QP 2.482 42.0 Neutral 46.0 -4.0 Average QP 2.482 42.0 Neutral 46.0 -10.5 Average QP 0.282 40.3 Line 50.8 -10.5 Average QP QP QP 0.564 35.0 Neutral 46.0 -10.5 Average QP QP QP QP QP QP<
MHz dBµV Line Limit Margin QP/Ave 2.482 53.5 Neutral 56.0 -2.5 QP 2.482 42.6 Line 46.0 -3.4 Average 2.482 52.5 Line 56.0 -3.5 QP 2.482 52.5 Line 56.0 -3.5 QP 2.482 52.5 Line 56.0 -3.5 QP 2.482 42.0 Neutral 46.0 -4.0 Average 0.282 40.3 Line 50.8 -10.5 Average 0.564 35.5 Line 46.0 -10.5 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.564 35.0 Neutral 50.8 -11.6 Average 0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.43
2.482 53.5 Neutral 56.0 -2.5 QP 2.482 42.6 Line 46.0 -3.4 Average 2.482 52.5 Line 56.0 -3.5 QP 2.482 42.0 Neutral 46.0 -4.0 Average 0.282 40.3 Line 50.8 -10.5 Average 0.564 35.5 Line 46.0 -10.5 Average 0.564 35.5 Line 46.0 -11.0 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.430 34.6 Line 47.3 -12.7 Average
2.482 42.6 Line 46.0 -3.4 Average 2.482 52.5 Line 56.0 -3.5 QP 2.482 42.0 Neutral 46.0 -4.0 Average 0.282 40.3 Line 50.8 -10.5 Average 0.564 35.5 Line 46.0 -10.5 Average 0.564 35.5 Line 46.0 -11.0 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.430 34.6 Line 47.3 -12.7 Average
2.482 52.5 Line 56.0 -3.5 QP 2.482 42.0 Neutral 46.0 -4.0 Average 0.282 40.3 Line 50.8 -10.5 Average 0.564 35.5 Line 46.0 -10.5 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.430 34.6 Line 47.3 -12.7 Average
2.482 42.0 Neutral 46.0 -4.0 Average 0.282 40.3 Line 50.8 -10.5 Average 0.564 35.5 Line 46.0 -10.5 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.430 34.6 Line 47.3 -12.7 Average
0.282 40.3 Line 50.8 -10.5 Average 0.564 35.5 Line 46.0 -10.5 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.430 34.6 Line 47.3 -12.7 Average
0.564 35.5 Line 46.0 -10.5 Average 0.564 35.0 Neutral 46.0 -11.0 Average 0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.430 34.6 Line 47.3 -12.7 Average
0.564 35.0 Neutral 46.0 -11.0 Average 0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.430 34.6 Line 47.3 -12.7 Average
0.282 39.2 Neutral 50.8 -11.6 Average 0.430 34.8 Neutral 47.3 -12.5 Average 0.430 34.6 Line 47.3 -12.7 Average
0.430 34.8 Neutral 47.3 -12.5 Average 0.430 34.6 Line 47.3 -12.7 Average
0.430 34.6 Line 47.3 -12.7 Average
0.430 42.8 Line 57.3 -14.5 QP
0.564 41.2 Line 56.0 -14.8 QP
0.564 39.7 Neutral 56.0 -16.3 QP
0.282 44.3 Neutral 60.8 -16.5 QP
0.430 40.7 Neutral 57.3 -16.6 QP
0.282 43.2 Line 60.8 -17.6 QP

ontact: Je Spec: F(#5: AC F Ig 120V F HG S/N	700 HGV eremy M CC 15.24 Power P	47, EN55					Job Number: T-Log Number: Account Manager:	T61804
ontact: Je Spec: F(#5: AC F Ig 120V F HG S/N	eremy M CC 15.24 Power P	uir 47, EN55					•	
Spec: F(#5: AC F g 120V F HG S/N	CC 15.24 Power P	47, EN55)22/FCC					
#5: AC F g 120V F) HG S/N	Power P)22/FCC					
g 120V F HG S/N		aut Canal					Class:	Radio / B
				1 C-05U S/N	: SP52N001	IUS.		
	dBµV	Line	Limit	Margin	QP/Ave	Commenta		
408	и <u>ы</u> µv 47.4	Neutral	57.7	-10.3	QP/Ave			
205	52.3	Line	63.4	-10.3	QP QP			
435	45.9	Neutral	57.2	-11.1	QP QP			
408	46.4	Line	57.7	-11.3	QP			
205	51.8	Neutral	63.4	-11.6	QP			
435	44.4	Line	57.2	-12.8	QP			
205	33.6	Line	53.4	-19.8	Average			
205	33.2	Neutral	53.4	-20.2	Average			
408	26.7	Neutral	47.7	-21.0	Average			
408	25.7	Line	47.7	-22.0	Average			
435	23.0	Neutral	47.2	-24.2	Average			
435	19.4	Line	47.2	-27.8	Average			

EMC Test Data

Client: 2Wire

Model: 2700 HGV - Modified

T-Log Number: T61804 Account Manager: Mark Hill

Class: N/A

Job Number: J61687

Contact: Jeremy Muir

Elliott

Spec: FCC 15.247, EN55022/FCC

FCC 15.247 DTS - Power and Spurious Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 12/8/2005 Test Engineer: Juan Martinez Test Location: SVOATS #2 & 3 Config. Used: 4 Config Change: None EUT Voltage: 120V/60Hz

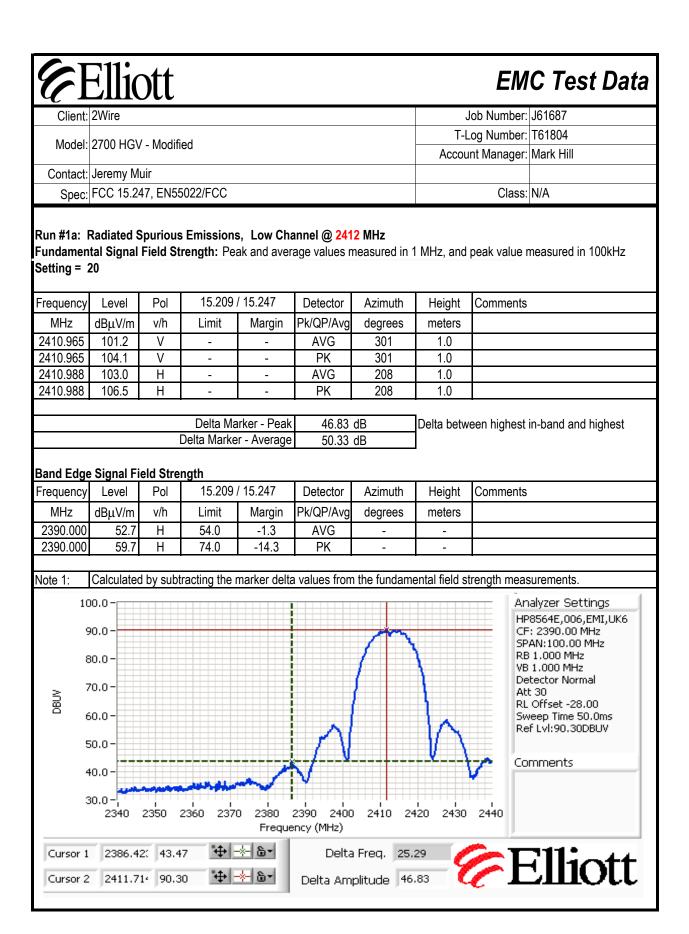
General Test Configuration

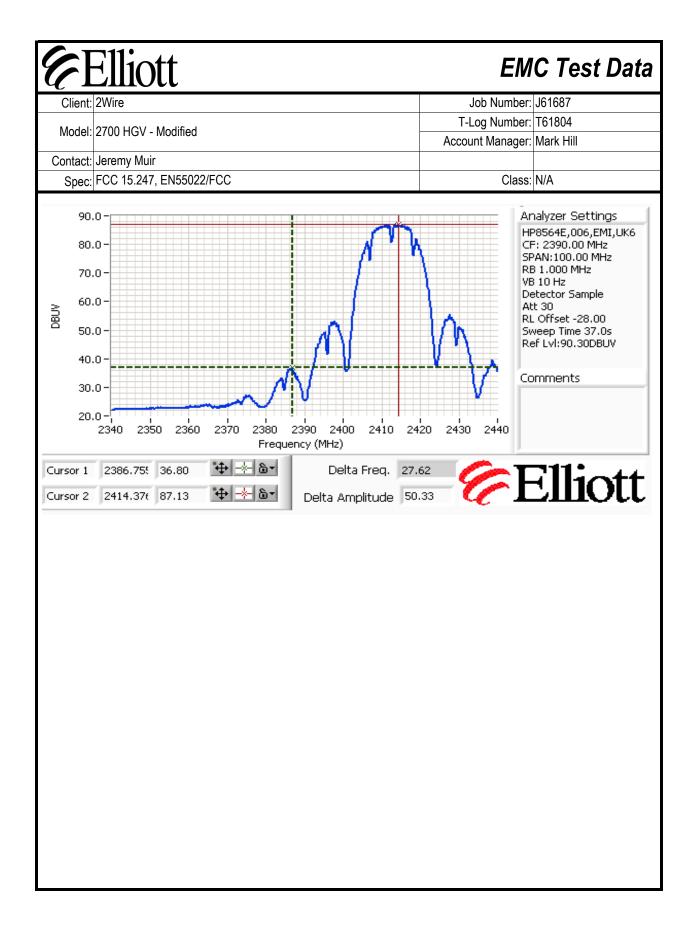
The EUT was located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O routed in overhead.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

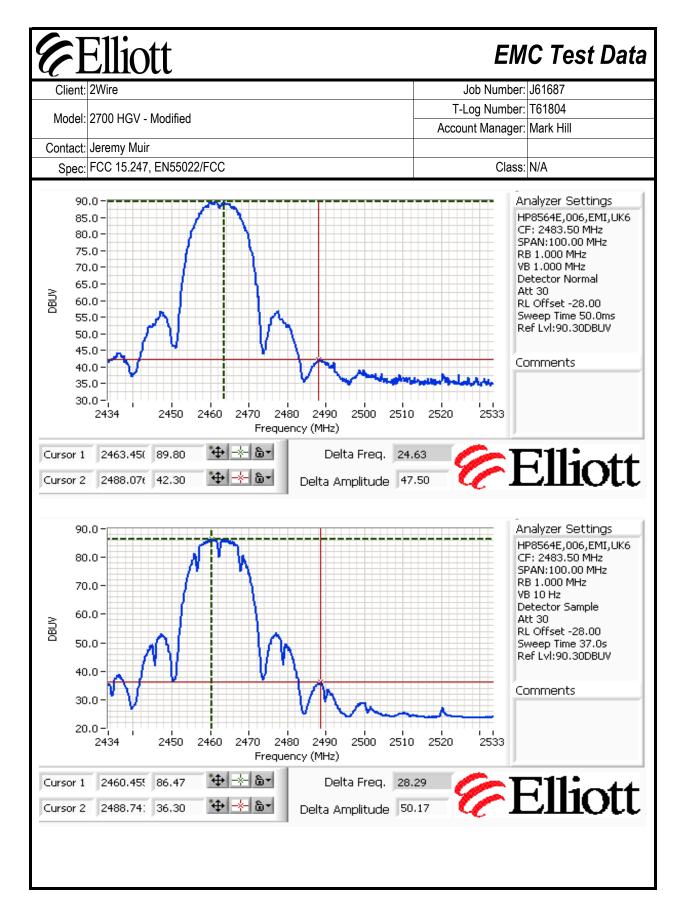
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions:	Temperature:	17 °C
	Rel. Humidity:	<mark>40</mark> %


Summary of Results


Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	802.11b Bandedges	FCC Part 15.209 / 15.247(c)	Pass	53.5dBµV/m (474.8µV/m) @ 2483.5MHz (-0.5dB)
2	802.11g Bandedges	FCC Part 15.209 / 15.247(c)	Pass	52.6dBµV/m (427.6µV/m) @ 2483.5MHz (-1.4dB)
3	Rx Emissions	RSS-210	Pass	58.4dBµV/m (827.9µV/m) @ 4875.0MHz (-1.6dB)

Client:2WireJob Number:J61687Model:2700 HGV - ModifiedT-Log Number:T61804Contact:Jeremy MuirMark HillSpec:FCC 15.247, EN55022/FCCClass:N/AModifications Made During Testing:Kark Hill


No modifications were made to the EUT during testing

Deviations From The Standard

Contact: Jeremy Spec: FCC 15 Run #1b: Radiate Fundamental Sign Setting = 20 Frequency Level MHz dBµV/n 2461.025 103.7 2461.025 106.6 2462.930 102.1 2462.930 105.3 Frequency Level MHz dBµV/n 2462.930 105.3 Hz dBµV/n 2463.500 53 2483.500 53 2483.500 59	HGV - Mod ny Muir 15.247, EN ted Spuriou gnal Field S //el Pol V/m v/h 3.7 H 5.6 H	t: 2Wire I: 2700 H							C Test Data
Model: 2700 H Contact: Jeremy Spec: FCC 15 Run #1b: Radiate Fundamental Sign Setting = 20 Frequency Level MHz dBµV/n 2461.025 103.7 2461.025 106.6 2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBµV/n 2463.500 53 2483.500 53 2483.500 59	HGV - Mod ny Muir 15.247, EN ted Spuriou gnal Field S //el Pol V/m v/h 3.7 H 5.6 H	I: 2700 H						ob Number:	161687
Contact: Jeremy Spec: FCC 15 Run #1b: Radiate Fundamental Sign Setting = 20 Frequency Level MHz dBµV/n 2461.025 103.7 2461.025 106.6 2462.930 102.1 2462.930 105.3 Prequency Level MHz dBµV/n 2462.930 105.3 Prequency Level MHz dBµV/n 2483.500 53 2483.500 53 2483.500 59	ny Muir 15.247, EN ted Spuriou gnal Field S //el Pol V/m v/h 3.7 H 5.6 H		0 HGV - Modified					og Number:	
Spec: FCC 15 Run #1b: Radiate Fundamental Sign Setting = 20 Frequency Level MHz dBµV/n 2461.025 103.7 2461.025 106.6 2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBµV/n 2463.500 53 2483.500 59	15.247, EN ted Spuriou gnal Field S //el Pol V/m v/h 3.7 H 5.6 H	: Jerem						nt Manager:	
Spec: FCC 15 Run #1b: Radiate Fundamental Sign Setting = 20 Frequency Level MHz dBµV/n 2461.025 103.7 2461.025 106.6 2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBµV/n 2463.500 53 2483.500 59	15.247, EN ted Spuriou gnal Field S //el Pol V/m v/h 3.7 H 5.6 H		emv Muir						
Run #1b: Radiate Fundamental Sign Setting = 20 Frequency Level MHz dBμV/n 2461.025 103.7 2461.025 1003.7 2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBμV/n 2463.500 53 2483.500 59	ted Spuriou gnal Field S /el Pol V/m v/h 3.7 H 5.6 H	-	C 15.247, EN55022/FCC					Class:	N/A
Fundamental Sign Setting = 20 Frequency Level MHz dBµV/n 2461.025 103.7 2461.025 106.6 2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBµV/n 2462.930 105.3 2463.500 53 2483.500 59	gnal Field S /el Pol V/m v/h 3.7 H 5.6 H			s High Ch	annel @ 24	62 MHz			
Setting = 20 Frequency Level MHz dBμV/n 2461.025 103.7 2461.025 1003.7 2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBμV/n 2462.930 105.3 2463.930 53 2483.500 59	/el Pol V/m v/h 3.7 H 5.6 H		-	-	-		1 MUz and	nook voluo r	managurad in 100kHz
MHz dBμV/n 2461.025 103.7 2461.025 106.6 2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBμV/n 2483.500 53 2483.500 59	V/m v/h 3.7 H 5.6 H	-	ignai neid Strength. Pe		age values i	neasured in	r wir iz, and	peak value i	
2461.025 103.7 2461.025 106.6 2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBµV/n 2483.500 53 2483.500 59	3.7 H б.6 H	y Leve	vel Pol 15.209	/ 15.247	Detector	Azimuth	Height	Comments	
2461.025 106.6 2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBμV/n 2483.500 53 2483.500 59	6.6 H	dBµV/	ιV/m v/h Limit	Margin	Pk/QP/Avg	degrees	meters		
2462.930 102.1 2462.930 105.3 Band Edge Signal Frequency Level MHz dBμV/n 2483.500 53 2483.500 59				-	AVG	206	1.0		
2462.930 105.3 Band Edge Signal Frequency Level MHz dBμV/n 2483.500 53 2483.500 59	.1 V			-	PK	206	1.0		
Band Edge Signal Frequency Level MHz dBμV/r 2483.500 53 2483.500 59				-	AVG	300	1.0		
Frequency Level MHz dBμV/n 2483.500 53 2483.500 59	5.3 V	105.3	13.3 V -	-	PK	300	1.0		
MHz dBμV/n 2483.500 53 2483.500 59	al Field Str	je Signa	Delta Marke	arker - Peak er - Average	-		Delta betwo	een highest	in-band and highest
MHz dBμV/n 2483.500 53 2483.500 59				/ 15.247	Detector	Azimuth	Height	Comments	
2483.500 53 2483.500 59	V/m v/h		ιV/m v/h Limit	Margin	Pk/QP/Avg	degrees	meters		
				-0.5	AVG	-	-		
Note 1: Calcula	59.1 H) 59	59.1 H 74.0	-14.9	PK	-	-		
			culated by subtracting the					<u>rengur meas</u>	burements.

Elliott

EMC Test Data

Client: 2Wire

Model: 2700 HGV - Modified

Job Number: J61687 T-Log Number: T61804 Account Manager: Mark Hill

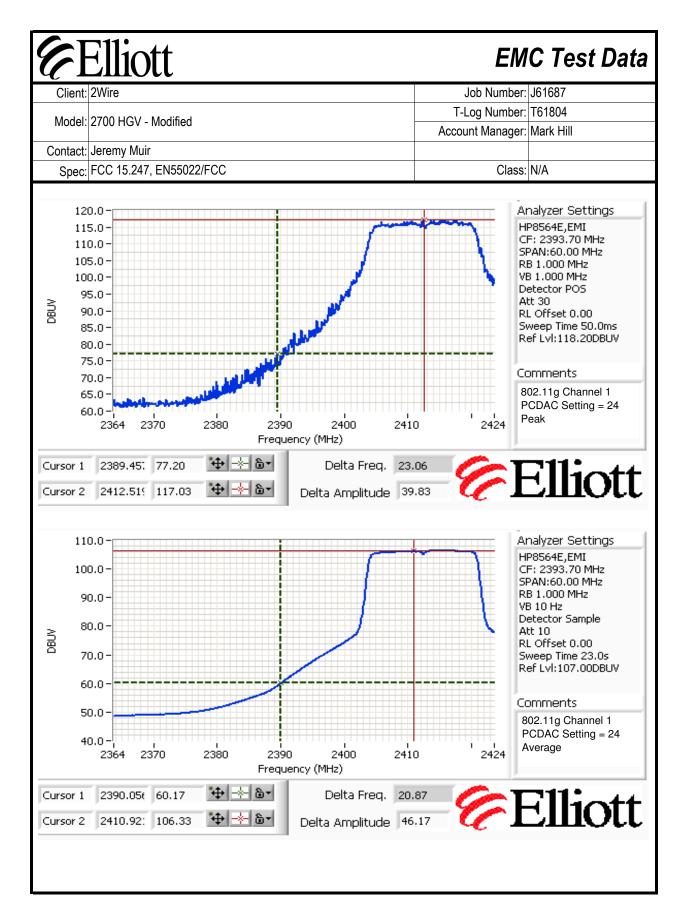
Class: N/A

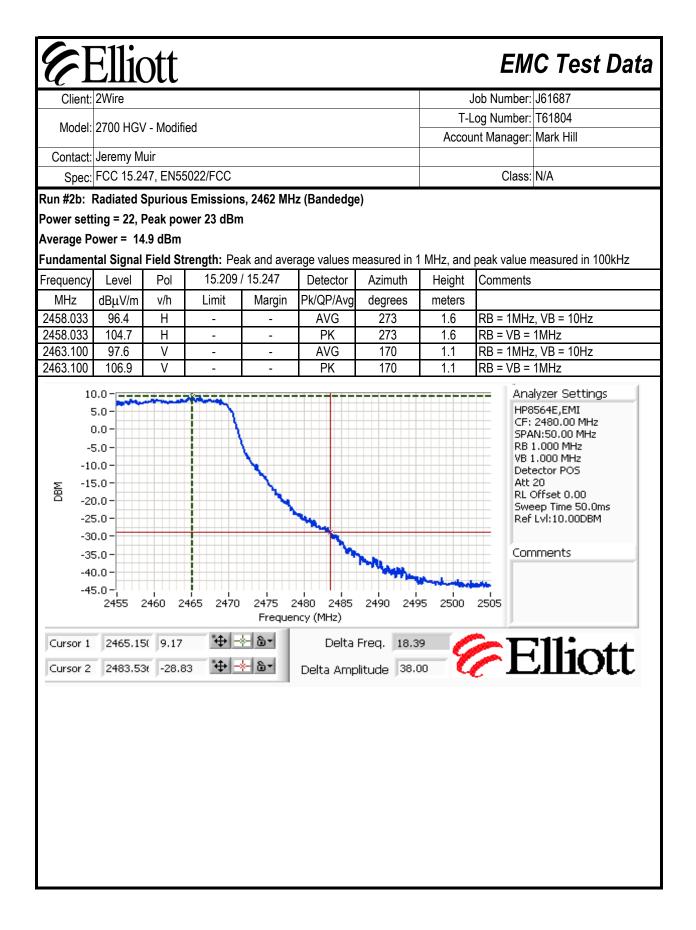
Contact: Jeremy Muir

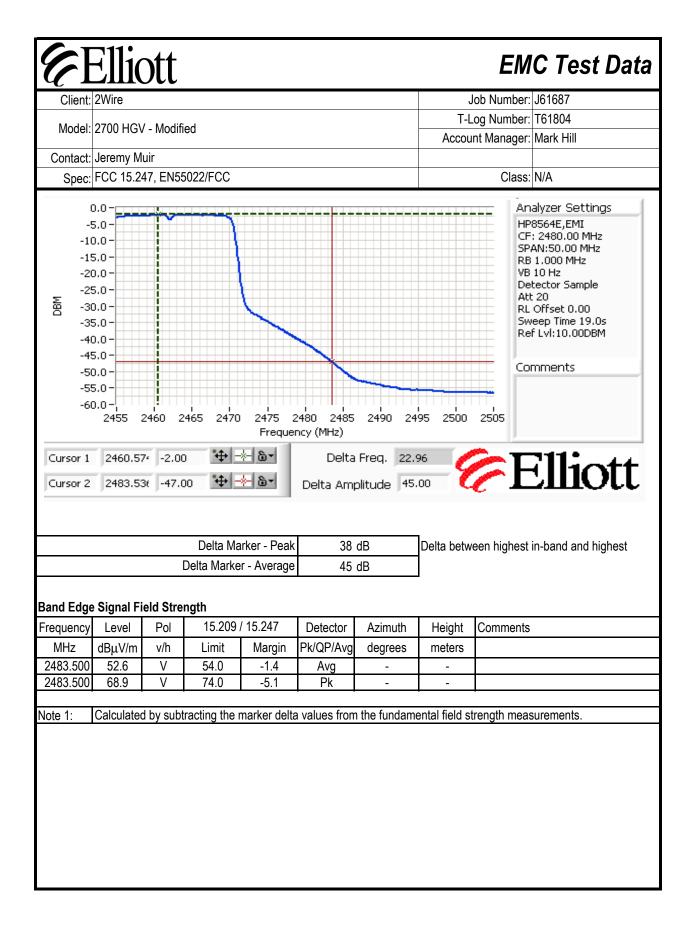
Spec: FCC 15.247, EN55022/FCC

Run #2a: Radiated Spurious Emissions, Low Channel @ 2412 MHz

Fundamental Signal Field Strength: PC DAC Setting = 24, Power = 23dBm (Using Peak Power Sensor)


Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2410.500	92.9	V	-	-	AVG	352	1.1	PCDAC Setting = 24
2410.500	101.4	V	-	-	PK	352	1.1	PCDAC Setting = 24
2414.700	90.3	Н	-	-	AVG	91	1.9	PCDAC Setting = 24
2414.700	98.7	Н	-	-	PK	91	1.9	PCDAC Setting = 24


Delta Marker - Peak	39.8 dB	Delta between highest in-band and highest
Delta Marker - Average	46.2 dB	

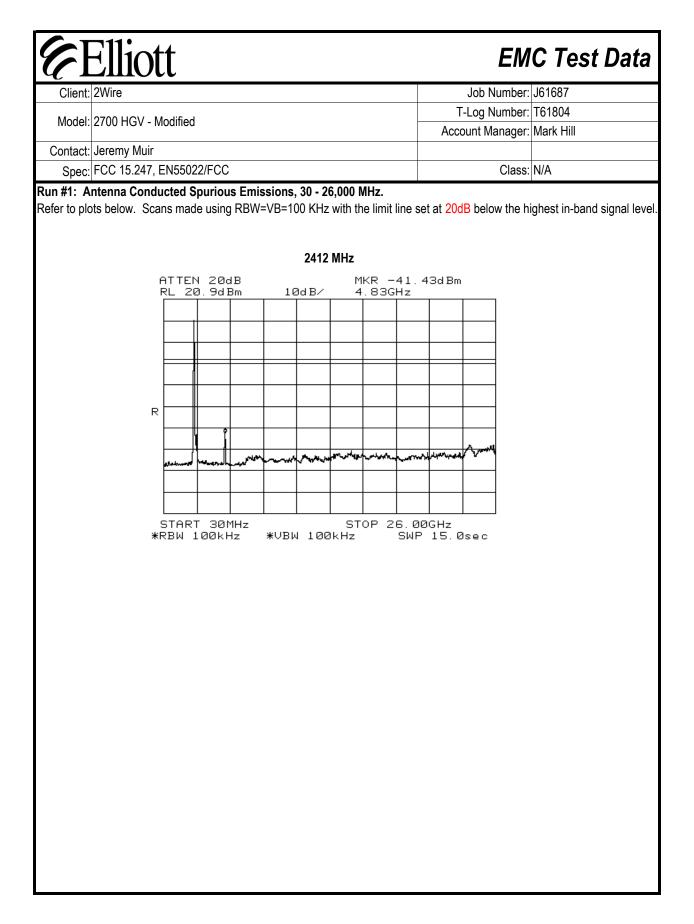

Band Edge Signal Field Strength

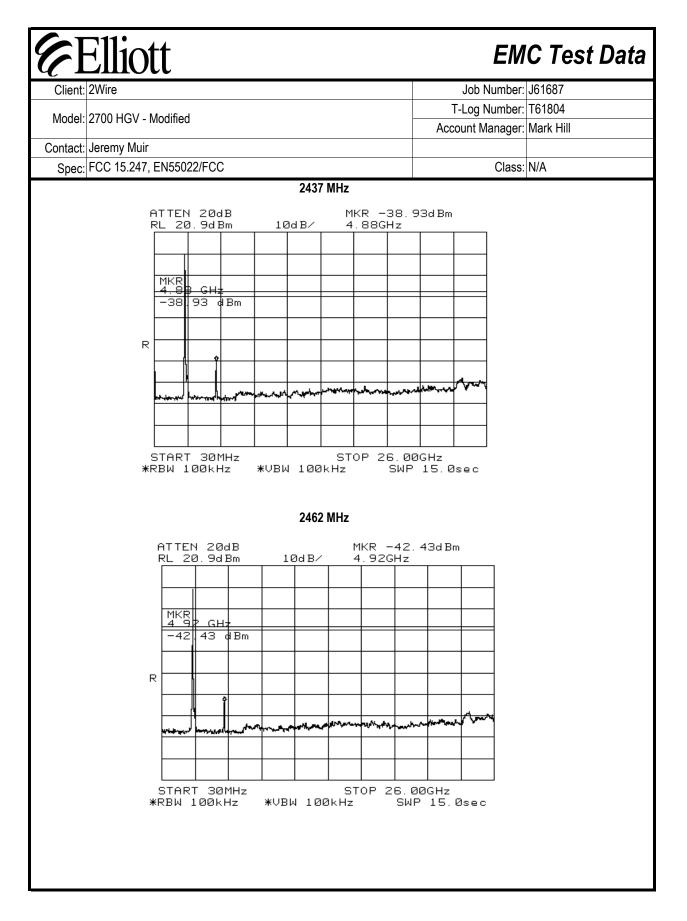
Balla Eage	eignairi							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	46.7	V	54.0	-7.3	AVG	352	1.1	
2389.450	61.6	V	74.0	-12.4	PK	352	1.1	

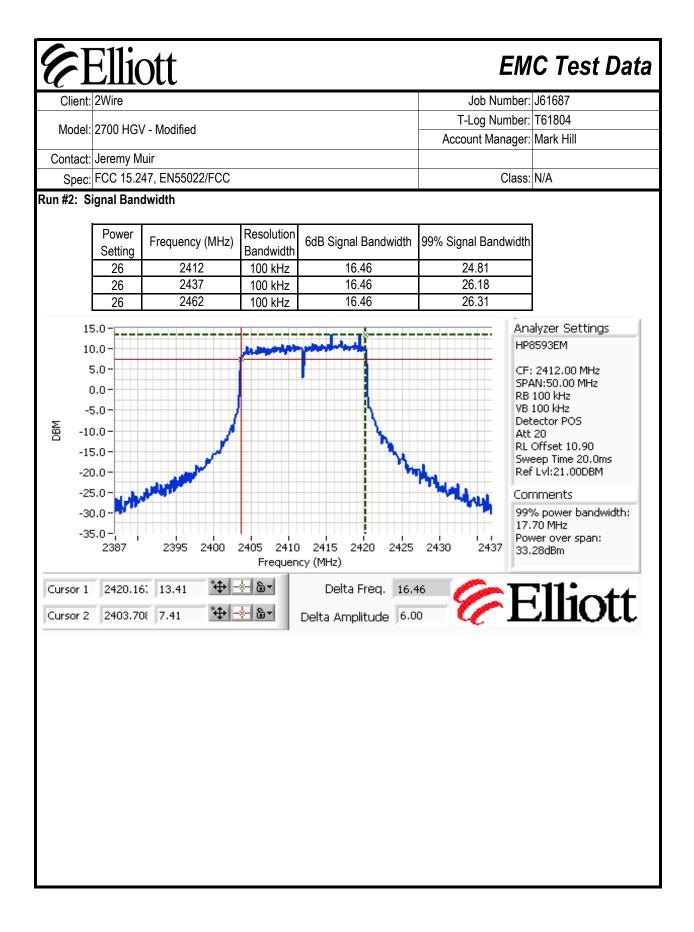
Note 1: Calculated by subtracting the marker delta values from the fundamental field strength measurements.

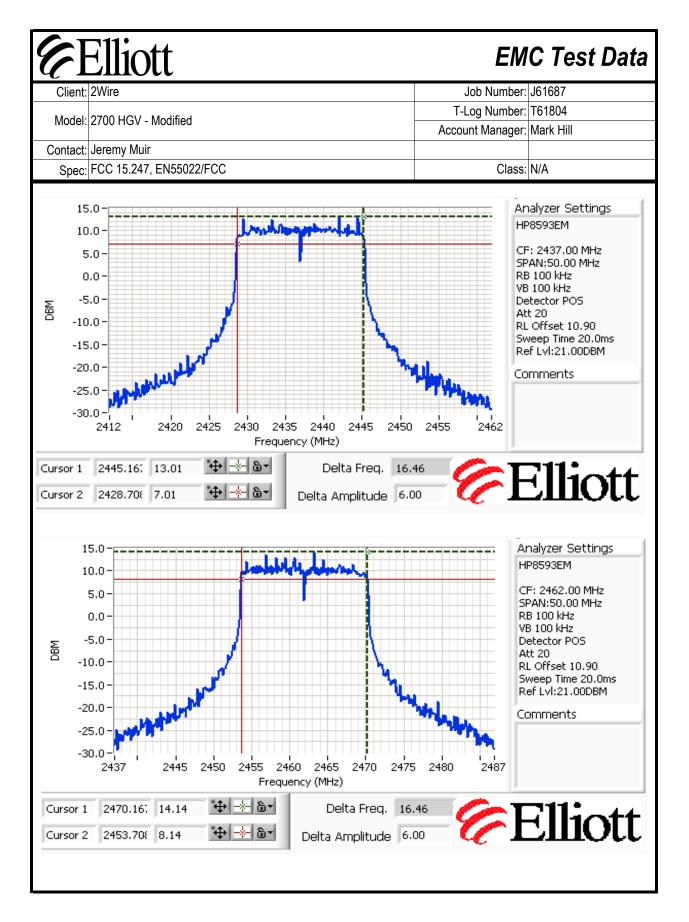
Client: 2Wire Job Number: J61687 Model: 2700 HGV - Modified T-Log Number: T61804 Account Manager: Mark Hill Account Manager: Mark Hill Contact: Jeremy Muir Class: N/A spec: FCC 15.247, EN55022/FCC Class: N/A m#3: Rx Spurious Emissions Middle Channel 2437 MHz. Comments MA aquency Level Pol RSS-210 Rx Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters Meters 874.96 58.4 V 60.0 -1.6 AVG 62 1.0 Meters 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 Meters Meters <th></th> <th>Ellic</th> <th>)tt</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>EM</th> <th>C Test Da</th>		Ellic)tt						EM	C Test Da
Model: 2700 HGV - Modified Account Manager: Mark Hill Contact: Jeremy Muir Account Manager: Mark Hill Spec: FCC 15.247, EN55022/FCC Class: N/A In #3: Rx Spurious Emissions Middle Channel 2437 MHz. Detector Azimuth Height Comments equency Level Pol RSS-210 Rx Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 874.96 58.4 V 60.0 -1.6 AVG 62 1.0 874.96 59.2 V 80.0 -20.8 PK 62 1.0 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 374.970 48.7 H 60.0 -21.5 AVG<									lob Number:	J61687
Contact: Jeremy Muir Account Manager: Mark Hill Spec: FCC 15.247, EN55022/FCC Class: N/A n#3: Rx Spurious Emissions Middle Channel 2437 MHz. Class: N/A equency Level Pol RSS-210 Rx Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 874.96 58.4 V 60.0 -1.6 AVG 62 1.0 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 374.970 59.6	Madalı	0700 1101	/ Madifi	l				T-L	og Number:	T61804
Spec: FCC 15.247, EN55022/FCC Class: N/A In #3: Rx Spurious Emissions Middle Channel 2437 MHz. Equency Level Pol RSS-210 Rx Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 874.96 58.4 V 60.0 -1.6 AVG 62 1.0 874.96 59.2 V 80.0 -20.8 PK 62 1.0 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 386.800 38.6	Model:	2700 HGV	- Ivioaiti	ea				Accou	nt Manager:	Mark Hill
m #3: Rx Spurious Emissions Middle Channel 2437 MHz. equency Level Pol RSS-210 Rx Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 874.96 58.4 V 60.0 -1.6 AVG 62 1.0 874.96 59.2 V 80.0 -20.8 PK 62 1.0 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 336.75 46.6 V 80.0 -33.4 PK 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 AVG <t< td=""><td>Contact:</td><td>Jeremy M</td><td>uir</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Contact:	Jeremy M	uir							
Equency Level Pol RSS-210 Rx Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 874.96 58.4 V 60.0 -1.6 AVG 62 1.0 874.96 59.2 V 80.0 -20.8 PK 62 1.0 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 336.75 46.6 V 80.0 -33.4 PK 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60	Spec:	FCC 15.24	47, EN58	5022/FCC					Class:	N/A
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 874.96 58.4 V 60.0 -1.6 AVG 62 1.0 874.96 59.2 V 80.0 -20.8 PK 62 1.0 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 336.75 46.6 V 80.0 -33.4 PK 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 </td <td>ın #3: R</td> <td>x Spuriou</td> <td>s Emiss</td> <td>ions Middle</td> <td>e Channel 2</td> <td>2437 MHz.</td> <td></td> <td>ł</td> <td></td> <td></td>	ın #3: R	x Spuriou	s Emiss	ions Middle	e Channel 2	2437 MHz.		ł		
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 874.96 58.4 V 60.0 -1.6 AVG 62 1.0 874.96 59.2 V 80.0 -20.8 PK 62 1.0 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 336.75 46.6 V 80.0 -33.4 PK 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 </td <td></td> <td></td> <td>Pol</td> <td>Dee</td> <td></td> <td>Dotoctor</td> <td>Azimuth</td> <td>Hoight</td> <td>Commonte</td> <td></td>			Pol	Dee		Dotoctor	Azimuth	Hoight	Commonte	
874.96 58.4 V 60.0 -1.6 AVG 62 1.0 874.96 59.2 V 80.0 -20.8 PK 62 1.0 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 336.75 46.6 V 80.0 -25.9 AVG 0 1.0 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 2260.88 45.4 V 80.0 -21.3 AVG 161 1.0 874.970 48.7 H 60.0 -21.5 AVG 161 1.0 874.970 59.6 H 80.0 -20.4 PK 161 1.0 836.800 38.6 H 60.0 -21.5 AVG 345 1.7 836.800 47.2 H 80.0 -32.8 PK 345 1.7 2260.24 40.8 H 60.0 -19.2									Comments	
874.96 59.2 V 80.0 -20.8 PK 62 1.0 336.75 37.7 V 60.0 -22.4 AVG 349 1.2 336.75 46.6 V 80.0 -33.4 PK 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 AVG 345 1.7 336.800 47.2 H 80.0 -32.8 PK 345 1.7 2260.24 40.8 H 60.0 -19.2 AVG 336 1.4						<u> </u>				
336.75 37.7 V 60.0 -22.4 AVG 349 1.2 336.75 46.6 V 80.0 -33.4 PK 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 AVG 345 1.7 336.800 47.2 H 80.0 -32.8 PK 345 1.7 2260.24 40.8 H 60.0 -19.2 AVG 336 1.4										
336.75 46.6 V 80.0 -33.4 PK 349 1.2 2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 AVG 345 1.7 336.800 47.2 H 80.0 -32.8 PK 345 1.7 2260.24 40.8 H 60.0 -19.2 AVG 336 1.4										
2260.88 34.1 V 60.0 -25.9 AVG 0 1.0 2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 AVG 345 1.7 336.800 47.2 H 80.0 -32.8 PK 345 1.7 2260.24 40.8 H 60.0 -19.2 AVG 336 1.4										
2260.88 45.4 V 80.0 -34.6 PK 0 1.0 374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 AVG 345 1.7 336.800 47.2 H 80.0 -32.8 PK 345 1.7 2260.24 40.8 H 60.0 -19.2 AVG 336 1.4										
374.970 48.7 H 60.0 -11.3 AVG 161 1.0 374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 AVG 345 1.7 336.800 47.2 H 80.0 -32.8 PK 345 1.7 2260.24 40.8 H 60.0 -19.2 AVG 336 1.4										
374.970 59.6 H 80.0 -20.4 PK 161 1.0 336.800 38.6 H 60.0 -21.5 AVG 345 1.7 336.800 47.2 H 80.0 -32.8 PK 345 1.7 2260.24 40.8 H 60.0 -19.2 AVG 336 1.4										
336.800 38.6 H 60.0 -21.5 AVG 345 1.7 336.800 47.2 H 80.0 -32.8 PK 345 1.7 2260.24 40.8 H 60.0 -19.2 AVG 336 1.4										
336.800 47.2 H 80.0 -32.8 PK 345 1.7 1260.24 40.8 H 60.0 -19.2 AVG 336 1.4										
2260.24 40.8 H 60.0 -19.2 AVG 336 1.4										
2260.24 49.5 H 80.0 -30.6 PK 336 1.4	2260.24	40.8	Н	60.0	-19.2	AVG		1.4		
	2260.24			80.0			336	1.4		

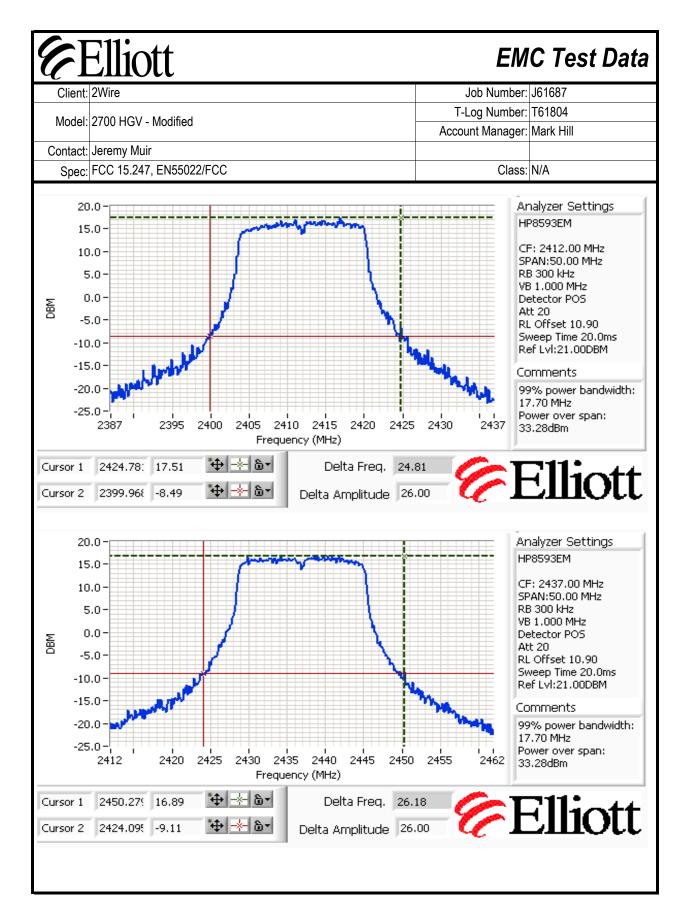
Elliott EMC Test Data Client: 2Wire Job Number: J61687 T-Log Number: T61804 Model: 2700 HGV - Modified Account Manager: Mark Hill Contact: Jeremy Muir Spec: FCC 15.247, EN55022/FCC Class: N/A FCC 15.247 DTS - Power, Bandwidth and Spurious Emissions (802.11g)Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 11/19/2005 Config. Used: 4 Test Engineer: Juan Martinez Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz General Test Configuration When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used. **Ambient Conditions:** Temperature: 17 °C Rel. Humidity: 40 %

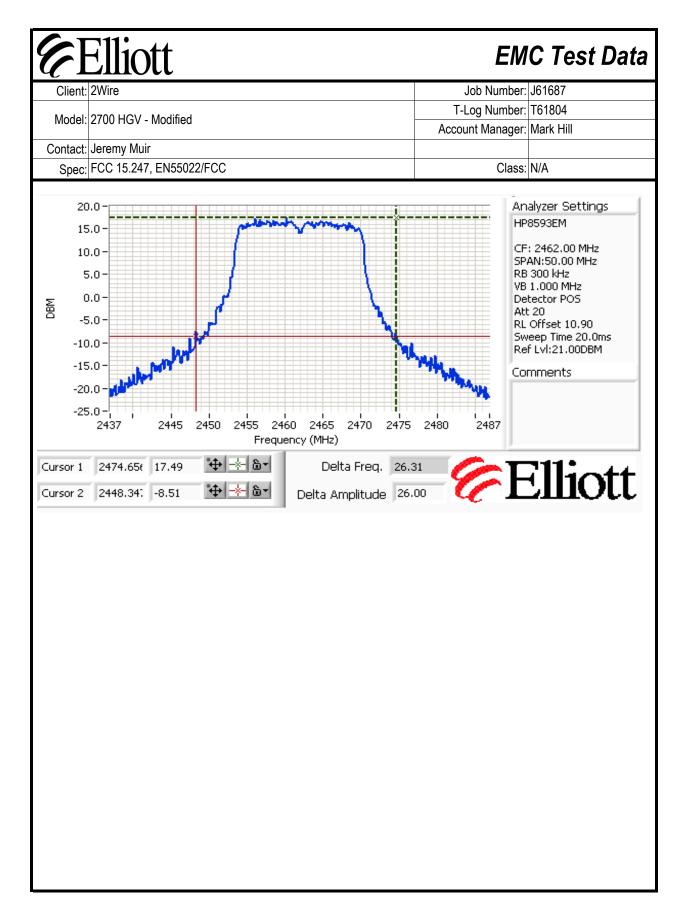

Summary of Results

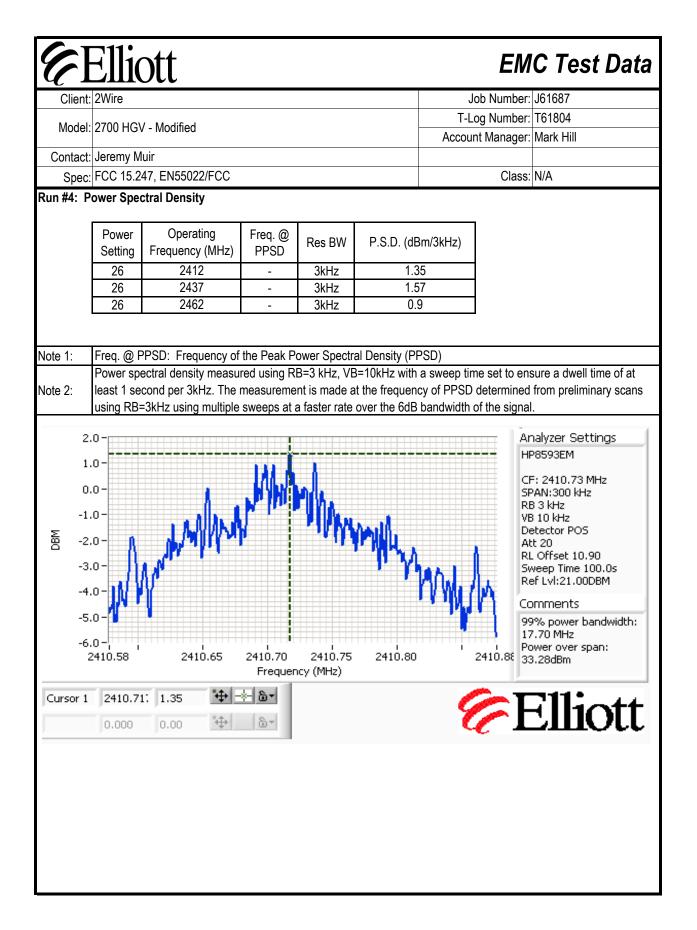

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Out of band, 30 - 26,000 MHz Spurious Emissions	15.247(c)	Pass	Refer to run
2	6dB Bandwidth	15.247(a)	Pass	Refer to run
3	Output Power	15.247(b)	Pass	30 dBm
4	Power Spectral Density (PSD)	15.247(d)	Pass	Refer to run

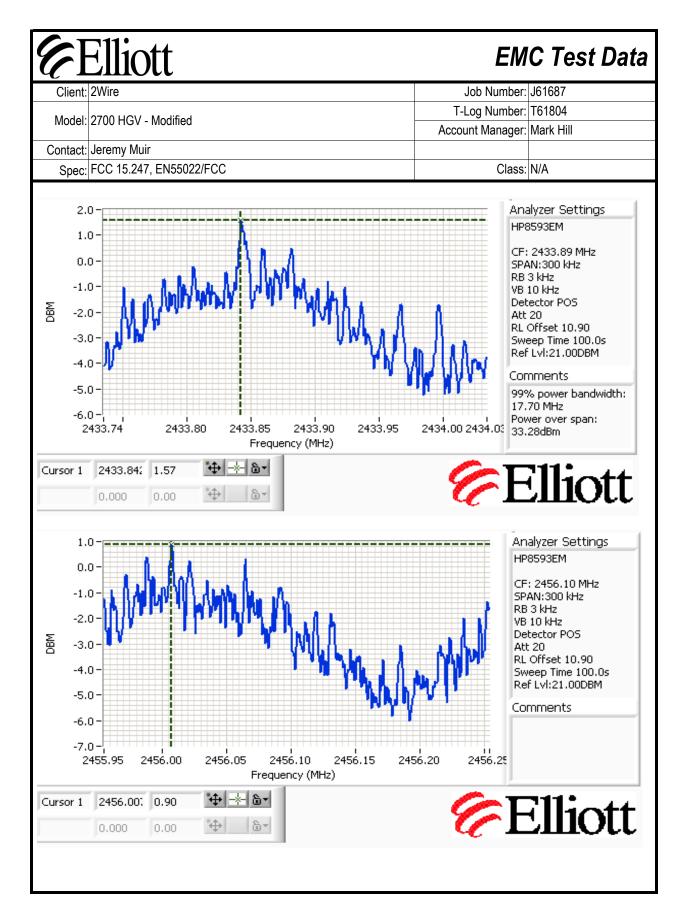

Modifications Made During Testing:


No modifications were made to the EUT during testing


Deviations From The Standard



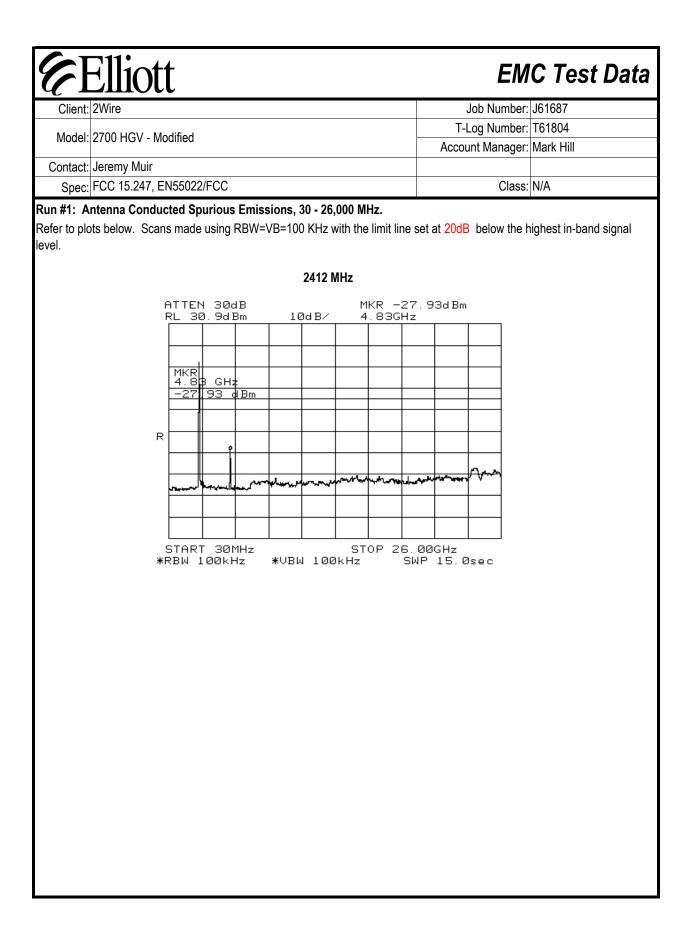


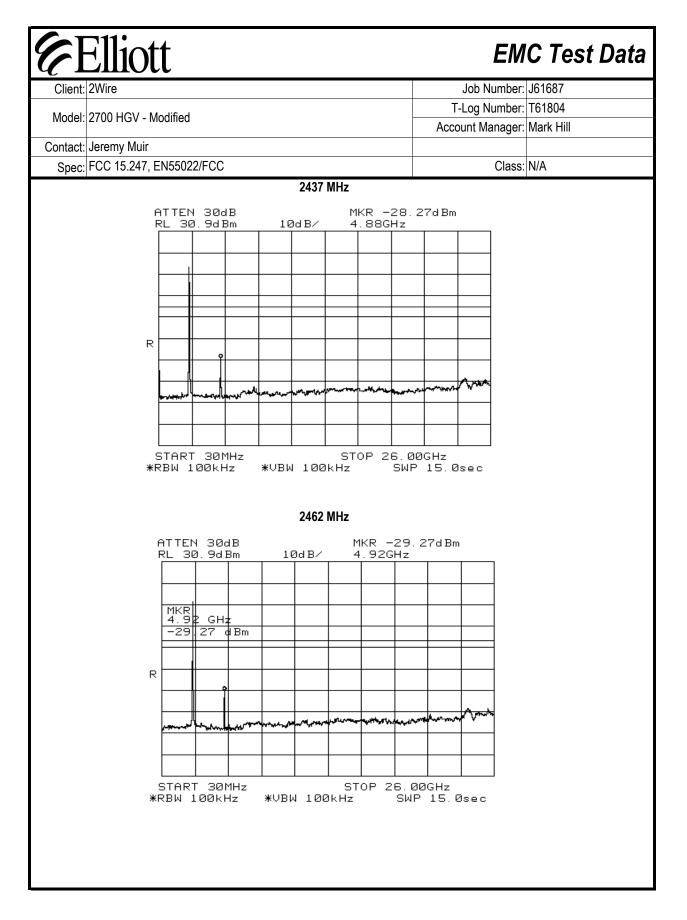


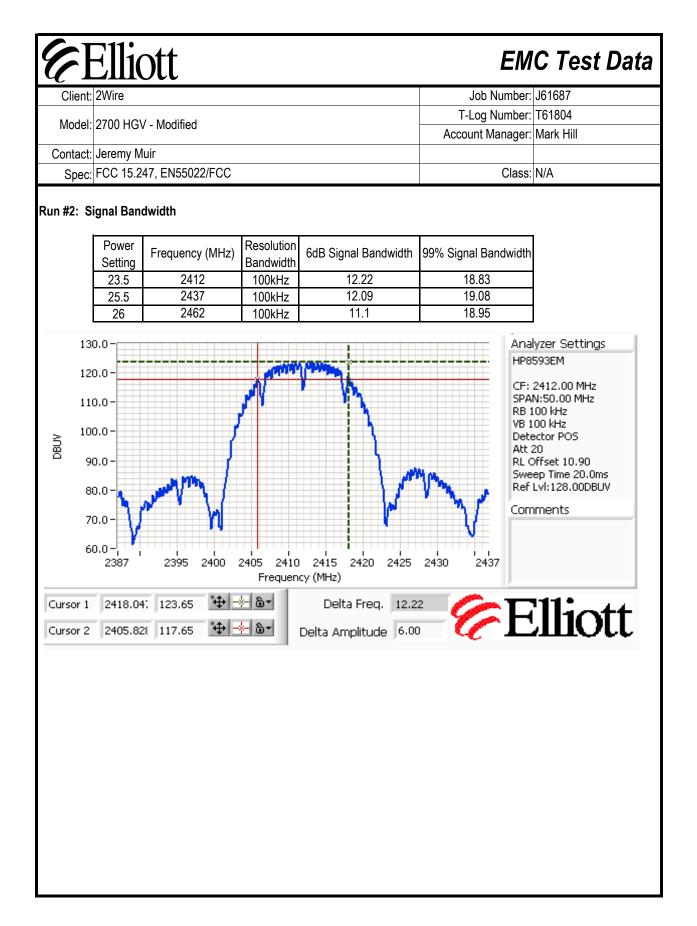
Model: 2700 HGV - Modified T-Log Number: T61804 Account Manager: Mark Hill Intact: Jeremy Muir Mark Hill Spec: FCC 15.247, EN55022/FCC Class: N/A #3: Output Power Class: N/A #3: Output Power 1 dBi Maximum antenna gain: 1 dBi Frequency (MHz) Res BW MHz Output Power ^{Note 1} MHz EIRP W Average Power ^{Note 2} dBm MW 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Model: 2700 HGV - Modified T-Log Number: T61804 Account Manager: Mark Hill Contact: Jeremy Muir Mark Hill Spec: FCC 15.247, EN55022/FCC Class: N/A #3: Output Power Maximum antenna gain: 1 dBi Maximum antenna gain: 1 dBi 1 dBi W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Model: 2700 HGV - Modified T-Log Number: T61804 Account Manager: Mark Hill Contact: Jeremy Muir Mark Hill Spec: FCC 15.247, EN55022/FCC Class: N/A n#3: Output Power Mark Hill Mark Hill Maximum antenna gain: 1 dBi 1 dBi V Average Power Note 2 W MHz Power Frequency (MHz) Res BW Output Power Note 1 MHz EIRP Average Power Note 2 W MBm 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031		2Wire					J	ob Number:	J61687
Account Manager: Mark Hill ontact: Jeremy Muir Image: Mark Hill Spec: FCC 15.247, EN55022/FCC Class: N/A #3: Output Power Maximum antenna gain: 1 dBi Image: Power Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Account Manager: Mark Hill Spec: FCC 15.247, EN55022/FCC Class: N/A o#3: Output Power Maximum antenna gain: 1 dBi Power Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Account Manager: Mark Hill Spec: FCC 15.247, EN55022/FCC Class: N/A o#3: Output Power Maximum antenna gain: 1 dBi Power Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Model	2700 HGV	/ - Modified					0	
Spec: FCC 15.247, EN55022/FCC Class: N/A #3: Output Power Maximum antenna gain: 1 dBi Class: N/A Power Frequency (MHz) Res BW Output Power EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Spec: FCC 15.247, EN55022/FCC Class: N/A #3: Output Power Maximum antenna gain: 1 dBi Class: N/A Power Frequency (MHz) Res BW Output Power EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Spec: FCC 15.247, EN55022/FCC Class: N/A #3: Output Power Maximum antenna gain: 1 dBi Class: N/A Power Frequency (MHz) Res BW Output Power EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031							Accou	nt Manager:	Mark Hill
#3: Output Power Maximum antenna gain: 1 dBi Power Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 Q4 Q412 - Q3 0.200 0.251 14.8 0.030 26 Q437 - 30 1.000 1.259 25.6 0.363 22 Q462 - 23 0.200 0.251 14.9 0.031 e 1: Output power measured using a peak power meter Description Description Description Description	#3: Output Power Maximum antenna gain: 1 dBi Power Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	#3: Output Power Maximum antenna gain: 1 dBi Power Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031		-							
Maximum antenna gain: 1 dBi Power Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031 te 1: Output power measured using a peak power meter	Maximum antenna gain: 1 dBi Power Frequency (MHz) Res BW MHz Output Power Note 1 W EIRP W Average Power Note 2 dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Maximum antenna gain: 1 dBi Power Frequency (MHz) Res BW Output Power Note 1 EIRP Average Power Note 2 Setting Frequency (MHz) Res BW Output Power W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031								Class:	N/A
Setting Holdshof (ML2) MHz dBm W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Setting Housing (H12) MHz dBm W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Setting Housing (H12) MHz dBm W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031				dBi					
Setting Holdshof (ML2) MHz dBm W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Setting Housing (ML2) MHz dBm W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031	Setting Housing (m.2) MHz dBm W W dBm W 24 2412 - 23 0.200 0.251 14.8 0.030 26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031			Frequency (MHz)					Average	Power Note 2
26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031 te 1: Output power measured using a peak power meter	26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031 ote 1: Output power measured using a peak power meter	26 2437 - 30 1.000 1.259 25.6 0.363 22 2462 - 23 0.200 0.251 14.9 0.031 ote 1: Output power measured using a peak power meter								dBm	W
22 2462 - 23 0.200 0.251 14.9 0.031 te 1: Output power measured using a peak power meter	22 2462 - 23 0.200 0.251 14.9 0.031 ote 1: Output power measured using a peak power meter	22 2462 - 23 0.200 0.251 14.9 0.031 ote 1: Output power measured using a peak power meter									
te 1: Output power measured using a peak power meter	ote 1: Output power measured using a peak power meter	ote 1: Output power measured using a peak power meter									
				22	2402	-	23	0.200	0.201	14.5	0.031
			te 1:	Output po	wer measured using	a peak pow	ver meter				
								sor - this valu	e is for refer	ence purpos	ses only.

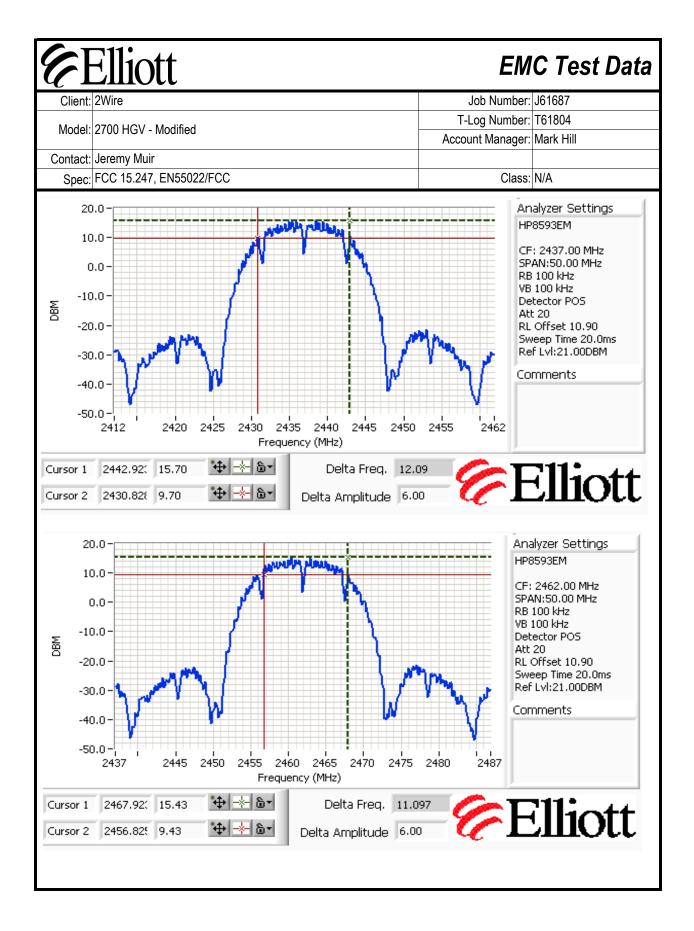
Elliott EMC Test Data Client: 2Wire Job Number: J61687 T-Log Number: T61804 Model: 2700 HGV - Modified Account Manager: Mark Hill Contact: Jeremy Muir Spec: FCC 15.247, EN55022/FCC Class: N/A FCC 15.247 DTS - Power, Bandwidth and Spurious Emissions (802.11b) Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 11/19/2005 Config. Used: 4 Test Engineer: Juan Martinez Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz General Test Configuration When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

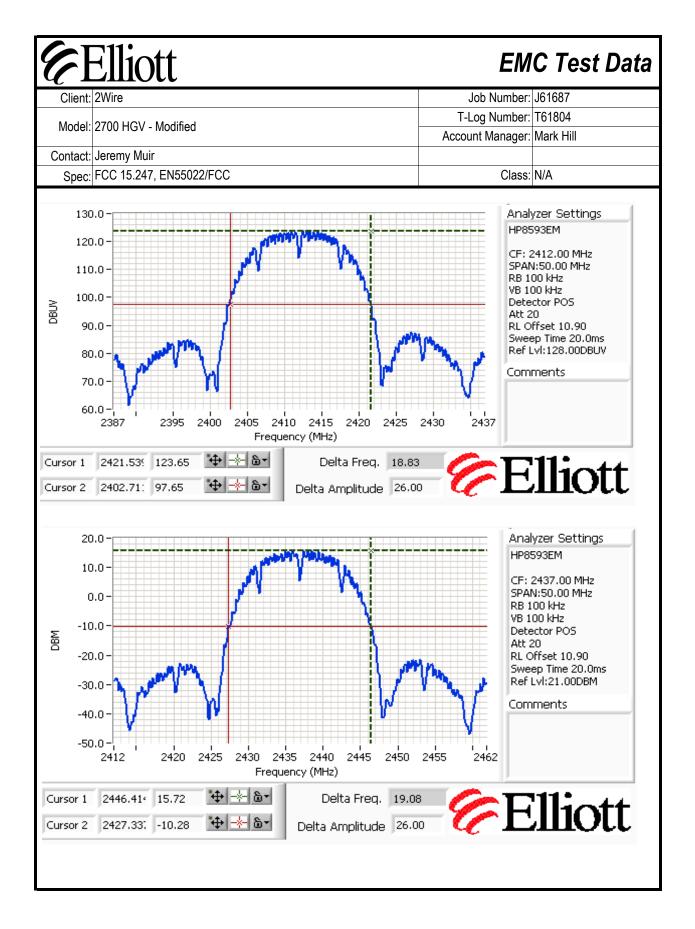
Ambient Conditions:	Temperature:	17 °C
	Rel. Humidity:	<mark>40</mark> %

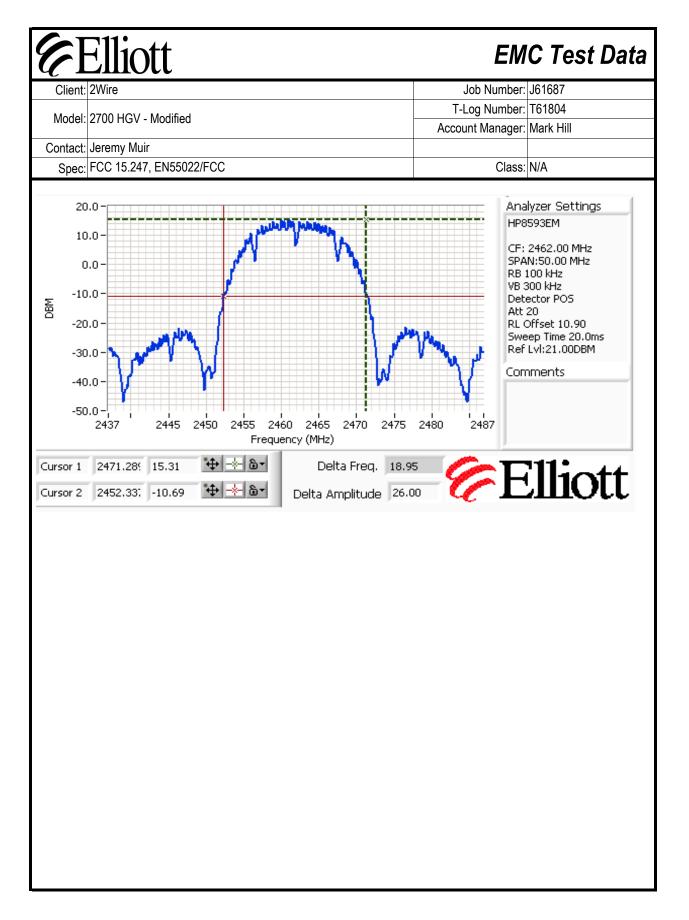

Summary of Results

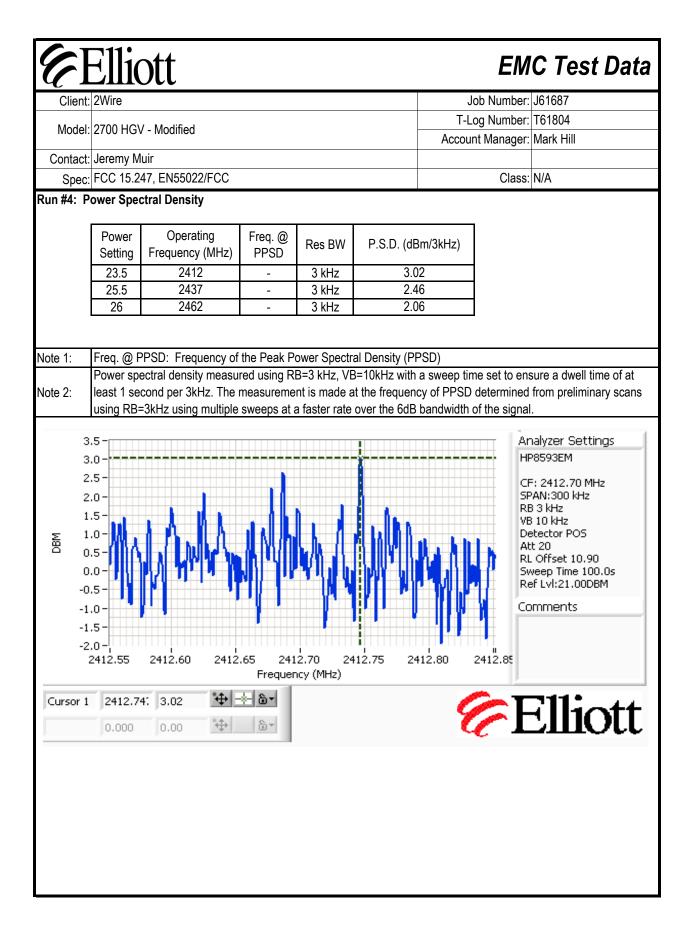

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Out of band, 30 - 26,000 MHz Spurious Emissions	15.247(c)	Pass	Refer to run
2	6dB Bandwidth	15.247(a)	Pass	Refer to run
3	Output Power	15.247(b)	Pass	27 dBm
4	Power Spectral Density (PSD)	15.247(d)	Pass	Refer to run

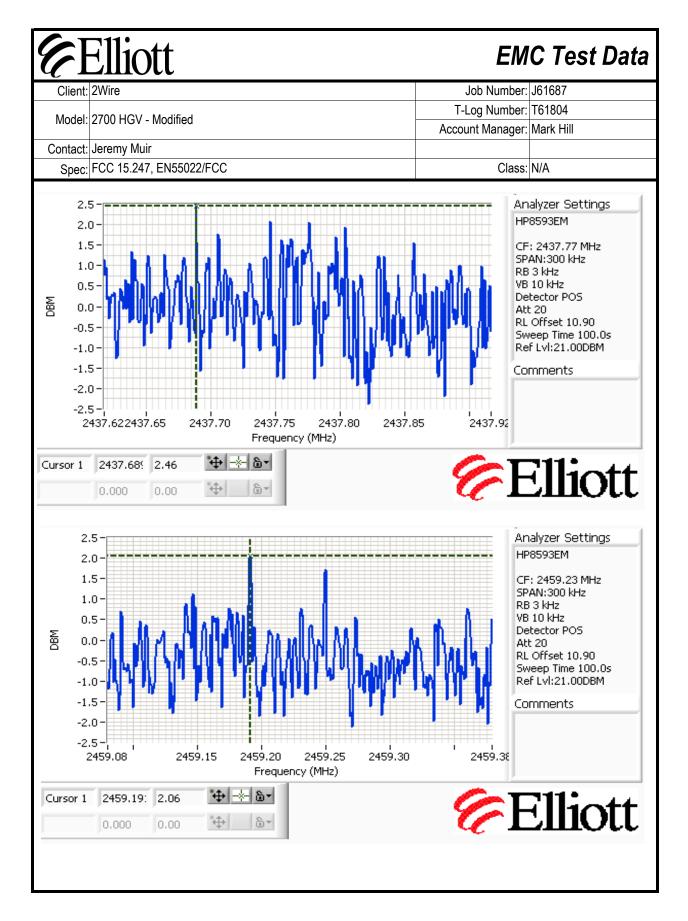

Modifications Made During Testing:


No modifications were made to the EUT during testing


Deviations From The Standard







	/ - Modified luir					ob Number:	J61687	
Contact: Jeremy M Spec: FCC 15.2	luir							
Contact: Jeremy M Spec: FCC 15.2	luir					og Number:		
Spec: FCC 15.2			2700 HGV - Modified			nt Manager:	Mark Hill	
	Spec: FCC 15.247, EN55022/FCC				Class:	N/A		
tun #3: Output Pov Maximum anten		dBi						
Power	Frequency (MHz)	Res BW	Output F	ower Note 1	EIRP	Average	Power Note 2	
Setting 20	2412	MHz	dBm 21.6	W 0.145	W 0.182	dBm 20	W 0.100	
20	2412	-	21.6	0.145	0.182	20	0.100	
20.3	2462	-	21.6	0.145	0.031	20	0.100	
	wer measured using							
Note 2: Output po	wer measured using	an average	power sens	sor - this valu	e is for refer	ence purpos	ses only.	

EMC Test Data

Client: 2Wire

Elliott

Model: 2700 HGV - Modified

T-Log Number: T61804 Account Manager: Mark Hill

Class: N/A

Job Number: J61687

Contact: Jeremy Muir

Spec: FCC 15.247, EN55022/FCC

FCC 15.247 DTS - Spurious Emissions (802.11g)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 11/19/2005 Test Engineer: Juan Martinez Test Location: SVOATS# 2 Config. Used: 4 Config Change: None

EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections routed in overhead

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	17 °C	
	Rel. Humidity:	<mark>40</mark> %	

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	RE, .3 - 26 GHz - Spurious Emissions In Restricted Bands	FCC Part 15.209 / 15.247(c)	Pass	43.2dBµV/m (144.2µV/m) @ 4825.1MHz (-10.8dB)
1	RE, .3 - 26 GHz - Spurious Emissions In Restricted Bands	FCC Part 15.209 / 15.247(c)	Pass	39.1dBµV/m (89.6µV/m) @ 4872.9MHz (-15.0dB)
1	RE, .3 - 26 GHz - Spurious Emissions In Restricted Bands	FCC Part 15.209 / 15.247(c)	Pass	39.9dBµV/m (98.5µV/m) @ 4923.3MHz (-14.1dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

Client:	2Wire							Job Number: J61687	
Model:	2700 HGV	/ - Modifi	od				T-l	₋og Number: T61804	
			eu				Accou	int Manager: Mark Hill	
Contact:	Jeremy M	uir							
Spec:	FCC 15.24	47, EN55	5022/FCC					Class: N/A	
Run #1a: I	Radiated S	Spurious	Emission	s, 30 - 26,0	00 MHz. Lov	v Channel @) 2412 MHz	2	
Other Spu	rious Emis	sions							
Output = 2	6								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4825.100	43.2	Н	54.0	-10.8	AVG	118	1.9		
4825.100	56.1	Η	74.0	-18.0	PK	118	1.9		
7231.785	36.8	Н	54.0	-17.2	AVG	157	1.8		
7231.785	49.5	Н	74.0	-24.5	PK	157	1.8		
4824.383	40.0	V	54.0	-14.1	AVG	198	1.0		
4824.383	52.2	V	74.0	-21.8	PK	198	1.0		
7235.135 7235.135	37.3 50.3	V V	54.0 74.0	-16.7 -23.7	AVG PK	266 266	1.1 1.1		
Note 1:	For emissi the level o			nds, the limi	t of 15.209 w	vas used. Fo	r all other e	missions, the limit was set 20	dB belo
Run #1b:	the level o	f the fun	damental.		t of 15.209 w 00 MHz. Cer				dB belo
Run #1b: │ Output = 2	the level o	f the fun	damental. S Emissions						dB belo
Run #1b: │ Output = 2	the level o Radiated \$ 6	f the fun Spurious	damental. S Emissions	s, 30 - 26,0	00 MHz. Cer	nter Channe Azimuth	I @ 2437 M	IHz	dB belo
Run #1b: Output = 2 Frequency MHz	the level o Radiated \$ 6 Level	f the fun Spurious Pol	damental. s Emissions 15.209	s, 30 - 26,0 / 15.247	00 MHz. Cer	n ter Channe Azimuth	I @ 2437 M Height	IHz	dB belo
Run #1b: Output = 2 Frequency MHz 4872.925	the level o Radiated S 6 Level dBµV/m	f the fun Spurious Pol v/h	damental. 5 Emission 15.209 Limit	s, 30 - 26,0 / 15.247 Margin	00 MHz. Cer Detector Pk/QP/Avg	n ter Channe Azimuth degrees	I @ 2437 M Height meters	IHz	dB belo
Run #1b: Output = 2 Frequency MHz 4872.925 4872.925	the level o Radiated S 6 Level dBµV/m 39.1	f the fun Spurious Pol V/h V	damental. Emission: 15.209 Limit 54.0	s, 30 - 26,0 / 15.247 Margin -15.0	00 MHz. Cer Detector Pk/QP/Avg AVG	nter Channe Azimuth degrees 204	I @ 2437 N Height meters 1.0	IHz	dB belo
Run #1b: Output = 2 Frequency MHz 4872.925 4872.925 7309.540	the level o Radiated S 6 Level dBμV/m 39.1 51.2	f the fun Spurious Pol V/h V V	damental. Emission 15.209 Limit 54.0 74.0	s, 30 - 26,0 / 15.247 Margin -15.0 -22.8	00 MHz. Cer Detector Pk/QP/Avg AVG PK	Azimuth degrees 204 204	I @ 2437 N Height meters 1.0 1.0	IHz	dB belo
Run #1b: Output = 2 Frequency MHz 4872.925 4872.925 7309.540 7309.540 4873.100	the level o Radiated S 6 Level dBμV/m 39.1 51.2 39.0 51.9 37.2	f the fun Spurious Pol V/h V V V V V V H	damental. Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0	s, 30 - 26,0 / 15.247 Margin -15.0 -22.8 -15.0 -22.1 -16.8	00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK AVG	Azimuth degrees 204 204 29 29 287	I @ 2437 N Height meters 1.0 1.0 1.8 1.8 1.5	IHz	dB belo
Output = 2 Frequency MHz 4872.925 4872.925 7309.540 7309.540 4873.100 4873.100	the level o Radiated S 6 Level dBµV/m 39.1 51.2 39.0 51.9 37.2 49.3	f the fun Spurious Pol V/h V V V V V H H	damental. Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	s, 30 - 26,0 / 15.247 Margin -15.0 -22.8 -15.0 -22.1 -16.8 -24.7	00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 204 204 29 29 29 287 287	I @ 2437 N Height meters 1.0 1.0 1.8 1.8 1.5 1.5	IHz	dB belo
Run #1b: Output = 2 Frequency MHz 4872.925 4872.925 4872.925 7309.540 7309.540 4873.100 4873.100 7310.315	the level of Radiated S 6 Level dBµV/m 39.1 51.2 39.0 51.9 37.2 49.3 35.6	f the fun Spurious Pol V/h V V V V V H H H	damental. Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	s, 30 - 26,0 / 15.247 Margin -15.0 -22.8 -15.0 -22.1 -16.8 -24.7 -18.4	00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	Azimuth degrees 204 204 29 29 29 287 287 14	Height meters 1.0 1.0 1.8 1.8 1.5 1.5 1.5	IHz	dB belo
Run #1b: Dutput = 2 Frequency MHz 4872.925 4872.925 7309.540 7309.540 4873.100 4873.100	the level o Radiated S 6 Level dBµV/m 39.1 51.2 39.0 51.9 37.2 49.3	f the fun Spurious Pol V/h V V V V V H H	damental. Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	s, 30 - 26,0 / 15.247 Margin -15.0 -22.8 -15.0 -22.1 -16.8 -24.7	00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	Azimuth degrees 204 204 29 29 29 287 287	I @ 2437 N Height meters 1.0 1.0 1.8 1.8 1.5 1.5	IHz	dB belo

Client:		ott						Job Number:	C Test Data
Olient.								og Number:	
Model:	2700 HGV	- Modifi	ed					int Manager:	
Contact:	Jeremy Mu	Jir			7,0000	int manager.			
	FCC 15.24		022/FCC			Class:	N/A		
-			Emissions	30 - 26 0	ଇ 2462 M⊔				
	rious Emis	-		, 30 - 20,00	o winz. nig		<i>y</i> 2402 Win	2	
Output = 2		510115							
Frequency	Level	Pol	15.209	15 2/17	Detector	Azimuth	Height	Comments	
								Commenta	
MHz 1923.284	dBµV/m 39.9	v/h H	Limit 54.0	Margin -14.1	Pk/QP/Avg AVG	degrees 136	meters 1.8		
923.284	59.9 51.9	H	54.0 74.0	-14.1	PK	136	1.0		
7387.235	36.3	H	54.0	-17.7	AVG	130	1.5		
7387.235	49.3	H	74.0	-24.7	PK	14	1.5		
1922.840	39.4	V	54.0	-14.7	AVG	205	1.2		
1922.840	51.7	V	74.0	-22.3	PK	205	1.2		
7385.840	36.9	V	54.0	-17.1	AVG	162	1.2		
'385.840	49.1	V	74.0	-24.9	PK	162	1.2		

EMC Test Data

Client: 2Wire

Elliott

Model: 2700 HGV - Modified

T-Log Number: T61804 Account Manager: Mark Hill

Class: N/A

Job Number: J61687

Contact: Jeremy Muir

Spec: FCC 15.247, EN55022/FCC

FCC 15.247 DTS - Spurious Emissions (802.11b)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 11/19/2005 Test Engineer: Juan Martinez Test Location: SVOATS# 2 Config. Used: 4 Config Change: None

EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections routed in overhead

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	17 °C
	Rel. Humidity:	<mark>40</mark> %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	RE, .3 - 26 GHz - Spurious Emissions In Restricted Bands	FCC Part 15.209 / 15.247(c)	Pass	53.1dBµV/m (451.3µV/m) @ 4823.8MHz (-0.9dB)
1	RE, .3 - 26 GHz - Spurious Emissions In Restricted Bands	FCC Part 15.209 / 15.247(c)	Pass	53.6dBµV/m (479.7µV/m) @ 4874.0MHz (-0.4dB)
1	RE, .3 - 26 GHz - Spurious Emissions In Restricted Bands	FCC Part 15.209 / 15.247(c)	Pass	52.7dBµV/m (432.5µV/m) @ 4924.0MHz (-1.3dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Martal	2Wire	ott						Job Number:	J61687
	2700 HGV - Modified							_og Number:	T61804
Wodel:	2700 HGV	' - Moditi	ed					int Manager:	
Contact:	Jeremy M	uir							
Spec:	FCC 15.24	47, EN55	5022/FCC					Class:	N/A
Run #1a:	Radiated S	Spurious	Emission	s. 30 - 26.0	00 MHz. Lov	v Channel @	2412 MHz	2	I
Other Spu		•		,,.			•		
Output = 2									
- Frequency		Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4823.785	53.1	Н	54.0	-0.9	AVG	119	1.9		
4823.785	53.8	Н	74.0	-20.2	PK	119	1.9		
7237.050	35.9	Н	54.0	-18.1	AVG	156	1.0		
7237.050	45.8	Η	74.0	-28.3	PK	156	1.0		
4823.985	52.3	V	54.0	-1.7	AVG	181	1.1		
4823.985	53.4	V	74.0	-20.6	PK	181	1.1		
7236.545	40.2	V	54.0	-13.8	AVG	267	1.3		
7000 545						007	1 2		
7236.545 Note 1:	47.7	V ions in re	74.0 estricted bar	-26.3	PK it of 15.209 w	267 as used. Fo	1.3 r all other e	emissions, the	e limit was set 20dB b
Note 1: Run #1b:	47.7 For emissi the level o Radiated S	V ions in re f the fun	74.0 estricted bar damental.	-26.3 nds, the lim		as used. Fo	r all other e		e limit was set 20dB b
Note 1: Run #1b: ∣ Output = 2	47.7 For emissi the level o Radiated \$ 5.5	V ions in re f the fun	74.0 estricted bar damental. s Emissions	-26.3 nds, the lim	it of 15.209 w	as used. Fo	r all other e		e limit was set 20dB b
Note 1: Run #1b: ∣ Output = 2	47.7 For emissi the level o Radiated \$ 5.5	V ions in re f the fun Spurious	74.0 estricted bar damental. s Emissions	-26.3 nds, the lim s, 30 - 26,0	it of 15.209 w 00 MHz. Cer	as used. Fo nter Channe	r all other e I @ 2437 N	1Hz	e limit was set 20dB b
Note 1: Run #1b: Output = 2 Frequency	47.7 For emissi the level o Radiated S 5.5 Level	V fons in re f the fun Spurious Pol	74.0 estricted bar damental. s Emissions	-26.3 nds, the lim s, 30 - 26,0 / 15.247	it of 15.209 w 00 MHz. Cer	as used. Fo nter Channe Azimuth	r all other e I @ 2437 N Height	1Hz	e limit was set 20dB b
Note 1: Run #1b: Output = 2 Frequency MHz	47.7 For emissi the level o Radiated S 5.5 Level dBμV/m	V ions in re f the fun Spurious Pol v/h	74.0 estricted bar damental. s Emissions 15.209 / Limit	-26.3 nds, the lim s, 30 - 26,0 / 15.247 Margin	it of 15.209 w 00 MHz. Cer Detector Pk/QP/Avg	as used. Fo nter Channe Azimuth degrees	r all other e I @ 2437 N Height meters	1Hz	e limit was set 20dB b
Note 1: Run #1b: Output = 2 Frequency MHz 4873.980	47.7 For emissi the level o Radiated S 5.5 Level dBμV/m 53.6	V fons in re f the fun Spurious Pol V/h H	74.0 estricted bar damental. s Emissions 15.209 / Limit 54.0	-26.3 nds, the lim s, 30 - 26,0 / 15.247 Margin -0.4	it of 15.209 w 00 MHz. Cer Detector Pk/QP/Avg AVG	as used. Fo nter Channe Azimuth degrees 128	r all other e I @ 2437 N Height meters 2.0	1Hz	e limit was set 20dB b
Note 1: Run #1b: Dutput = 2 Frequency MHz 4873.980 4873.980 7310.200 7310.200	47.7 For emissi the level o Radiated S 5.5 Level dBμV/m 53.6 54.7 41.4 47.8	V fons in re f the fun Spurious Pol V/h H H H H	74.0 estricted bar damental. s Emissions 15.209 / Limit 54.0 74.0 54.0 74.0	-26.3 nds, the lim s, 30 - 26,0 / 15.247 Margin -0.4 -19.3 -12.6 -26.2	it of 15.209 w 00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK	as used. Fo nter Channe Azimuth degrees 128 128 181 181	r all other e I @ 2437 N Height meters 2.0 2.0 1.7 1.7	1Hz	e limit was set 20dB b
Note 1: Run #1b: Dutput = 2 Frequency MHz 4873.980 4873.980 7310.200 7310.200 4873.970	47.7 For emissi the level o Radiated S 5.5 Level dBμV/m 53.6 54.7 41.4 47.8 50.4	V fons in ref f the fun Spurious Pol V/h H H H H V	74.0 estricted bar damental. s Emissions 15.209 / Limit 54.0 74.0 54.0 74.0 54.0	-26.3 nds, the lim s, 30 - 26,0 / 15.247 Margin -0.4 -19.3 -12.6 -26.2 -3.6	it of 15.209 w 00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK AVG	as used. Fo nter Channe Azimuth degrees 128 128 128 181 181 62	r all other e I @ 2437 N Height meters 2.0 2.0 1.7 1.7 1.8	1Hz	e limit was set 20dB b
Note 1: Run #1b: Output = 2 Frequency MHz 4873.980 4873.980 7310.200 4873.970 4873.970	47.7 For emissi the level o Radiated S 5.5 Level dBμV/m 53.6 54.7 41.4 47.8 50.4 51.6	V fons in ref f the fun Spurious Pol V/h H H H H H V V V	74.0 estricted bar damental. s Emissions 15.209 / Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-26.3 nds, the lim s, 30 - 26,0 / 15.247 Margin -0.4 -19.3 -12.6 -26.2 -3.6 -22.4	it of 15.209 w 00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	as used. Fo nter Channe Azimuth degrees 128 128 128 181 62 62 62	r all other e I @ 2437 N Height meters 2.0 2.0 1.7 1.7 1.8 1.8	1Hz	e limit was set 20dB b
Note 1: Run #1b: Output = 2 Frequency MHz 4873.980 7310.200 7310.200 4873.970 4873.970 7310.125	47.7 For emissi the level o Radiated S 5.5 Level dBμV/m 53.6 54.7 41.4 47.8 50.4 51.6 41.6	V fons in ref f the fun Spurious Pol V/h H H H H V V V V	74.0 estricted bar damental. s Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	-26.3 nds, the lim s, 30 - 26,0 / 15.247 Margin -0.4 -19.3 -12.6 -26.2 -3.6 -22.4 -12.4	it of 15.209 w 00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG	as used. Fo hter Channe Azimuth degrees 128 128 128 181 181 62 62 183	r all other e I @ 2437 N Height meters 2.0 2.0 1.7 1.7 1.8 1.8 1.8 1.2	1Hz	e limit was set 20dB b
Note 1: Run #1b: Output = 2 Frequency MHz 4873.980 4873.980 7310.200 4873.970 4873.970	47.7 For emissi the level o Radiated S 5.5 Level dBμV/m 53.6 54.7 41.4 47.8 50.4 51.6	V fons in ref f the fun Spurious Pol V/h H H H H H V V V	74.0 estricted bar damental. s Emissions 15.209 / Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-26.3 nds, the lim s, 30 - 26,0 / 15.247 Margin -0.4 -19.3 -12.6 -26.2 -3.6 -22.4	it of 15.209 w 00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	as used. Fo nter Channe Azimuth degrees 128 128 128 181 62 62 62	r all other e I @ 2437 N Height meters 2.0 2.0 1.7 1.7 1.8 1.8	1Hz	e limit was set 20dB b
Note 1: Run #1b: Output = 2 Frequency MHz 4873.980 7310.200 7310.200 7310.200 4873.970 7310.125	47.7 For emissi the level o Radiated S 5.5 Level dBμV/m 53.6 54.7 41.4 47.8 50.4 51.6 41.6 48.6	V fons in ref f the fun Spurious Pol V/h H H H H H V V V V V	74.0 estricted bar damental. s Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-26.3 ads, the lim s, 30 - 26,0 / 15.247 Margin -0.4 -19.3 -12.6 -26.2 -3.6 -22.4 -12.4 -25.4	it of 15.209 w 00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK	as used. Fo nter Channe Azimuth degrees 128 128 181 181 62 62 183 183	r all other e I @ 2437 N Height meters 2.0 2.0 1.7 1.7 1.7 1.8 1.8 1.2 1.2	IHz Comments	
Note 1: Run #1b: Output = 2 Frequency MHz 4873.980 7310.200 7310.200 7310.200 4873.970 7310.125	47.7 For emissi the level o Radiated S 5.5 Level dBμV/m 53.6 54.7 41.4 47.8 50.4 51.6 41.6 48.6	V fons in ref f the fun Spurious Pol V/h H H H H V V V V V V V	74.0 estricted bar damental. s Emissions 15.209 / Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	-26.3 ads, the lim s, 30 - 26,0 / 15.247 Margin -0.4 -19.3 -12.6 -26.2 -3.6 -22.4 -12.4 -25.4	it of 15.209 w 00 MHz. Cer Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK	as used. Fo nter Channe Azimuth degrees 128 128 181 181 62 62 183 183	r all other e I @ 2437 N Height meters 2.0 2.0 1.7 1.7 1.7 1.8 1.8 1.2 1.2	IHz Comments	e limit was set 20dB b

E		\tt						FM	C Test Data
Client:		π						Job Number:	
						og Number:			
Model:	2700 HGV	- Modifi	ed		Accou	int Manager:	Mark Hill		
Contact:	Jeremy Mu	uir							
Spec:	FCC 15.24	17, EN5	5022/FCC			Class:	N/A		
Run #1c: F	Radiated S	purious	Emissions	. 30 - 26.0	00 MHz. Hig	h Channel (D 2462 MH	z	
Other Spur		-		,,.	·····j		<i>y</i>		
Output = 2		•••••							
Frequency	Level	Pol	15.209/	15,247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commonto	
4923.950	52.7	H	54.0	-1.3	AVG	138	1.9		
4923.950	53.9	H	74.0	-20.1	PK	138	1.9		
7387.085	36.1	H	54.0	-17.9	AVG	13	1.7		
7387.085	45.4	Н	74.0	-28.6	PK	13	1.7		
4923.945	48.3	V	54.0	-5.7	AVG	180	1.6		
4923.945	49.8	V	74.0	-24.2	PK	180	1.6		
7384.750 7384.750	38.2 46.7	V V	54.0 74.0	-15.8 -27.3	AVG PK	27 27	1.4 1.4		
	<u>the level o</u>								

EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of 2Wire, Inc. Model 2700 HGVConstruction

EXHIBIT 6: Operator's Manual for 2Wire, Inc. Model 2700 HGV

EXHIBIT 7: Block Diagram of 2Wire, Inc. Model 2700 HGV

EXHIBIT 8: Schematic Diagrams for 2Wire, Inc. Model 2700 HGV

EXHIBIT 9: Theory of Operation for 2Wire, Inc. Model 2700 HGV

EXHIBIT 10: RF Exposure Information