

ELECTRONIC TECHNOLOGY SYSTEMS
DR. GENZ GMBH

TEST - REPORT

FCC RULES PART 15 / SUBPART C

Test report no.:

G0M20012-3597-T-47

FCC

TABLE OF CONTENTS

1 General information

- 1.1 Notes
- 1.2 Testing laboratory
- 1.3 Details of approval holder
- 1.4 Application details
- 1.5 Test item
- 1.6 Test standards

2 Technical test

- 2.1 Summary of test results
- 2.2 Test environment
- 2.3 Test equipment utilized
- 2.4 Test Procedure

3 Test Results

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has Passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that its performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the ELECTRONIC TECHNOLOGY SYSTEMS DR. GENZ GMBH.

Tester:

24.01.2001

N. Kaspar

Date

ETS-Lab.

Name

Signature

Technical responsibility for area of testing:

24.01.2001

Dr. Genz

Date

ETS

Name

Signature

1.2 Testing laboratory

1.2.1 Location

ELECTRONIC TECHNOLOGY SYSTEM DR. GENZ GMBH (ETTS)
Storkower Straße 38c
D-15526 Reichenwalde b. Berlin
Germany
Telefon : +49 33631 888 00
Telefax : +49 33631 888 66

1.2.2 Details of accreditation status

ACCREDITED TESTING LABORATORY

Accredited by: Bundesamt für Post und Telekommunikation (BAPT)

DAR-REGISTRATION NUMBER: TTI-P-G 126/96-30

ACCREDITED COMPETENT BODY

Accredited by: Bundesamt für Post und Telekommunikation (BAPT)

DAR-REGISTRATION NUMBER: BPT-ZE-026/96-00

1.3 Details of approval holder

Name	: Höft & Wessel AG
Street	: Rotenburger Straße 20
Town	: D-30659 Hannover
Country	: Germany
Telephone	: 0511/6102-323
Fax	: 0511 6102-411
Contact	: Herr Buhmann
Telephone	: 0511/6102-323

1.4 Application details

Date of receipt of application : 11.12.2000
Date of receipt of test item : 11.12.2000
Date of test : 27.12.2000

1.5 Test item

Description of test item : Portable Terminal with RF-Data Module, operating in the 2,45 GHz-ISM-Band
Type identification : HW 90196
Serial number : Test model without serial number.
Photos : See annex

Technical data

Frequency range : 2,4000 – 2,4835 MHz
Frequency (ch A) : 2404,45 MHz
Frequency (ch B) : 2441,65 MHz
Frequency (ch C) : 2466,70 MHz

Transmitter

Power (ch A)	: Conducted:	Radiated:	20,64 dBm
Power (ch B)	: Conducted:	Radiated:	20,01 dBm
Power (ch C)	: Conducted:	Radiated:	2,15 dBm

Antenna transmitter : (internal antenna)
Antenna receiver : (internal antenna)
Power supply : 3,2 DC
Operating mode : GFSK
T nom : 22 °C

Manufacturer:
(if applicable)

Name :
Street :
Town :
Country :

Additional information:

1.6 Test standards

Technical standard : FCC RULES PART 15 / SUBPART C § 15.247

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

x

or

The deviations as specified in 2.5 were ascertained in the course of the tests performed.

1

2.2 Test environment

Temperature : 22°C

Relative humidity content : 20 ... 75 %

Air pressure : 86 ... 103 kPa

Details of power supply : 3,2V DC

Extrem conditions parameters: ; --

2.3 Test equipment utilized

No.	Measurement device:	Type:	Manufacturer:
ETS 0001	Test receiver	ESHS 10	Rohde&Schwarz
ETS 0002	Test receiver	ESVP	Rohde&Schwarz
ETS 0003	Test receiver	ESVS 10	Rohde&Schwarz
ETS 0004	Spektrum- and Network-Analyzer	FSMS 26	Rohde&Schwarz
ETS 0005	Test receiver	SMV 11	MEB
ETS 0006	Test receiver system	SME 12	MEB
ETS 0007	Spectrum analyzer	PSA-65A	Avcom
ETS 0008	Antenna	Loop antenna	Siemens
ETS 0009	Antenna	Loop antenna	MEB
ETS 0010	Antenna	Loop antenna	MEB
ETS 0011	Antenna	van Veen/ Frame	ETS
ETS 0012	Antenna	HK 116	Rohde&Schwarz
ETS 0013	Antenna	HL 223	Rohde&Schwarz
ETS 0014	Antenna	HL 025	Rohde&Schwarz
ETS 0015	Antenna	HL 025	Rohde&Schwarz
ETS 0016	Antenna	VHAP	Schwarzbeck
ETS 0017	Antenna	VHAP	Schwarzbeck
ETS 0018	Antenna	UHAP	Schwarzbeck
ETS 0019	Antenna	UHAP	Schwarzbeck
ETS 0020	Antenna	DP 21	MEB
ETS 0021	Antenna	DP 3	MEB
ETS 0022	Antenna	SAS-200/ 521	A.H. Systeme / USA
ETS 0023	Antenna	DP 1	MEB
ETS 0024	Antenna mast	AF 2	MEB
ETS 0025	Antenna mast	AF 2	MEB
ETS 0026	Tripod		Heinrich Deisel
ETS 0027	Tripod		Heinrich Deisel
ETS 0028	Tripod	STA 2	C. Lorenz AG
ETS 0029	Tripod		Berlebach
ETS 0030	Turn table	TT 1	ETS
ETS 0031	Turn table	DS 412	Heinrich Deisel
ETS 0032	Controller	HD 050	Heinrich Deisel
ETS 0033	RF generator	SMG	Rohde&Schwarz
ETS 0034	RF generator/ Amplifier	SMLR	Rohde&Schwarz
ETS 0035	RF generator/ Amplifier	SMLM	Rohde&Schwarz
ETS 0036	RF amplifier	10W 1000AM2	Amplifier Research
ETS 0037	RF amplifier	50W 1000	Amplifier Research
ETS 0038	RF amplifier	150L	Amplifier Research
ETS 0039	Absorbing clamp	MDS 21	Rohde&Schwarz
ETS 0040	Artifical mains	ESH3-Z5	Rohde&Schwarz
ETS 0041	Artifical mains	ESH3-Z4	Rohde&Schwarz
ETS 0042	Artifical mains	ESH3-Z6	Rohde&Schwarz
ETS 0043	Artifical mains	NNB 11	MEB
ETS 0044	Artifical mains	NNB 111	MEB
ETS 0045	Stripe line	IEC 801-3	ETS
ETS 0046	Power supply	LTS 006	RFT

No.	Measurement device:	Type:	Manufacturer:
ETS 0047	Power supply	TG 20/ 1	Statron
ETS 0048	Power supply	TG 20/ 1	Statron
ETS 0049	Power supply	T 102	TPW
ETS 0050	Power supply	T 101b	TPW
ETS 0051	Oscilloscope	TDS 640A	Tektronic
ETS 0052	Audio analyzer	UPA 4	Rohde&Schwarz
ETS 0053	ECAT Controlcentre		Keytek/ EMV
ETS 0054	EFT simulator		Keytek/ EMV
ETS 0055	Modul network coupler		Keytek/ EMV
ETS 0056	Blank plug-in		Keytek/ EMV
ETS 0057	Module SURGE with DC coupler		Keytek/ EMV
ETS 0058	Capacitive coupling clamp		Keytek/ EMV
ETS 0059	Kikusui amplfier	PCR 2000L	Keytek/ EMV
ETS 0060	Xitron power analyzer		Keytek/ EMV
ETS 0061	Power/ Arb (Harm., Ramp)		Keytek/ EMV
ETS 0062	Reference impedance		Keytek/ EMV
ETS 0063	Blank plug-in		Keytek/ EMV
ETS 0064	Filter system IEC 1000-4-6		Keytek/ EMV
ETS 0065	ESD-generator minizap		Keytek/ EMV
ETS 0066	EM Injection Clamp		FCC/ EMV
ETS 0067	Calibration Fixture	IEC 801-2031 CF	FCC/ EMV
ETS 0068	Filter system IEC 1000-4-6	CDN	FCC/ EMV
ETS 0069	EM Radiation Monitor	EMR-20	Wandel&Goltermann
ETS 0070	PC Transfer set EMR-20	EMR-20	Wandel&Goltermann
ETS 0071	Videocamera system	KMB012	Kocom
ETS 0072	Interphone system	JS-1400	Jiu Sheng
ETS 0073	Audio noise meter	GSM 2	MKD/ RFT
ETS 0074	RF milivoltmeter	QRV 2	MKD/ RFT
ETS 0075	NF generator	GF 22	Präcitronic
ETS 0076	Feeding bridge A	SBA 1000	ESP
ETS 0077	Audio/ Video Filter	AV 55020	ETS
ETS 0078	LCR meter	SR 720	SRS
ETS 0079	Functional generator	MX-2020	Maxcom
ETS 0080	EMI Software	ES-K1	Rohde&Schwarz
ETS 0081	EMI Software	ES-K10	Rohde&Schwarz
ETS 0082	PC Novell network system	Novell	Esotronic
ETS 0083	Apple computer sstem	Performa 630	Macintosh
ETS 0084	Processcontroller	PSA 15	Rohde&Schwarz
ETS 0085	Shielded room	SR 1	Frankonia
ETS 0086	Anechoic chamber	AC 1	Frankonia
ETS 0087	Climatic cell	HC 4033	Heraeus
ETS 0088	Colour TV pattern generator	PM 5518-TX VPS	Philips
ETS 0089	Radiocommunication tester	CMS 54	Rohde&Schwarz
ETS 0090	DECT type approval CTR06	TS 8930	Rohde&Schwarz
ETS 0091	RF signal generator	SME 03	Rohde&Schwarz
ETS 0092	DM-Coder	SME-B11	Rohde&Schwarz
ETS 0093	Pulse Modulator	SM-B8	Rohde&Schwarz
ETS 0094	Rearpanel connectors	SME-B19	Rohde&Schwarz
ETS 0095	DECT system controller	PSMD	Rohde&Schwarz

No.	Measurement device:	Type:	Manufacturer:
ETS 0096	DECT Signalling unit	PSMD-B11	Rohde&Schwarz
ETS 0097	Rack, 19", 36 HU	TS 89RA	Rohde&Schwarz
ETS 0098	System engineering and software	CS 893BE	Rohde&Schwarz
ETS 0099	Extension unit for basic version	TS 8930B	Rohde&Schwarz
ETS 0100	RF signal generator	SME-06	Rohde&Schwarz
ETS 0101	DM-Coder	SME-B11	Rohde&Schwarz
ETS 0102	Pulse modulator	SM-B8	Rohde&Schwarz
ETS 0103	Pulse generator	SM-B4	Rohde&Schwarz
ETS 0104	Rearpanel connectors	SME-B19	Rohde&Schwarz
ETS 0105	High power synthesizer/ sweeper	SMP 22	Rohde&Schwarz
ETS 0106	Frequency extension	SMP-B11	Rohde&Schwarz
ETS 0107	RF attenuator for SMP 22	SMP-B15	Rohde&Schwarz
ETS 0108	DECT protocol tester TBR 22	TS 1220	Rohde&Schwarz
ETS 0109	Process controller	PSM 2	Rohde&Schwarz
ETS 0110	Real time signalling unit	PSMD-B2	Rohde&Schwarz
ETS 0111	PCM Realtime audio interface for PSM	PSMD-B3	Rohde&Schwarz
ETS 0112	Synthesizer Module	PSMD-B4	Rohde&Schwarz
ETS 0113	Keyboard	PSA-Z2	Rohde&Schwarz
ETS 0114	RF step attenuator	RSG	Rohde&Schwarz
ETS 0115	Glide path		ETS
ETS 0116	RF Millivoltmeter	URV 55	Rohde&Schwarz
ETS 0117	Insertion unit	URV-Z2	Rohde&Schwarz
ETS 0118	Mixer	MFC 1000	Avcom
ETS 0119	Mixer	MFC 2000	Avcom
ETS 0120	RF step attenuator	TRI-50-20	INCO
ETS 0121	Oscilloscope	EO 147A	Serute
ETS 0122	Oscilloscope	5201	Dagatron
ETS 0123	RF step attenuator	RBU	Rohde&Schwarz
ETS 0124	Tripod	STA 2	Rohde&Schwarz
ETS 0125	Small components		
ETS 0126	Uninterruptable power supply	UPS - 1500	Sendon
ETS 0127	Uninterruptable power supply	UPS - 1000 LC	Sendon
ETS 0128	Uninterruptable power supply	UPS - 1000	Sendon
ETS 0129	Uninterruptable power supply	UPS - 500	Sendon
ETS 0130	Uninterruptable power supply	Power saver	Sendon
ETS 0131	Telephone connection box		Systel
ETS 0132	Frequency doubler	TR-0616	EMG
ETS 0133	Probe body	P6015	Tektronix
ETS 0134	Mains filter	MSF	Erika Fiedler
ETS 0135	Measureing switching point	AK 11	RFT
ETS 0136	Attenuator	33-6-34	Weinschel
ETS 0137	Multimeter	YX-360TRA	Mastech
ETS 0138	Multimeter	DT-9410	Diditec
ETS 0139	Multimeter	ST-9202	Standard
ETS 0140	High voltage generator	IP 6Wa	TPW
ETS 0141	Sliding bridge	J 573	RFT
ETS 0142	Impedanz converter	TK 11	RFT
ETS 0143	Impedanz converter	TK 12	RFT
ETS 0144			

No.	Measurement device:	Type:	Manufacturer:
ETS 0145			
ETS 0146	Probe	TK 103	MEB
ETS 0147	Active probe	ESH2-Z2	Rohde&Schwarz
ETS 0148	Test TV	21PT4301/00	Philips
ETS 0149	Power divider	ZAPD-21	MCL
ETS 0150	Switcher	HR07-720	Wisi
ETS 0151	Interference pulse generator	NSG 500C	Schaffner
ETS 0152	Simulator for Load-Dump-Impulse	NSG 506C (I)	Schaffner
ETS 0153	Simulator for Load-Dump-Impulse	NSG 506C (II)	Schaffner
ETS 0154	Signalgenerator	SMG	Rohde&Schwarz
ETS 0155	Signalgenerator	SMG	Rohde&Schwarz
ETS 0156	Adjacent channel power meter	NKS	Rohde&Schwarz
ETS 0157	TV and Sat-Signalgenerator	VTG 700	Grundig
ETS 0158	TV and Sat Signalgenerator	VTG 700	Grundig
ETS 0159	Programmable power supply	TOE 8815	Toellner
ETS 0160	Protective wire and isolation tester	PI 6001 D	SPS electronic
ETS 0161	Filter system / consumer electronic		Fiedler
ETS 0162	Acoustic chamber	403-A	IAC
ETS 0163	Test head	BK 4602	Brüel & Kjær
ETS 0164	Simulator ear	BK 4185	Brüel & Kjær
ETS 0165	Simulator mouth	BK 4227	Brüel & Kjær
ETS 0166	Acoustic calibrator	BK 4231	Brüel & Kjær
ETS 0167	Communication Analysis System	CAS TE I	HEAD acoustics
ETS 0168	Acoustical test for DECT	CTR 10	HEAD acoustics
ETS 0169	Measurement - Frontend (analog)	MFE III	HEAD acoustics
ETS 0170	Measurement - Frontend (digital)	MFE IV	HEAD acoustics
ETS 0171	Electronic test cradle	TEH	HEAD acoustics
ETS 0172	Noise generator	HNG III.1	HEAD acoustics
ETS 0173	Speaker	Canton S Pluss	HEAD acoustics
ETS 0174	Measurement - Frontend line interface	MFE V	HEAD acoustics
ETS 0175	Software Line interface (analog)	COPTZV5	HEAD acoustics
ETS 0176	Acoustic volt meter	COP 4	HEAD acoustics
ETS 0177	Feeding bridge B	SBA 1000	ESP
ETS 0178	Open area test side	30m	ETS
ETS 0179	Open area test side	30m	ETS
ETS 0180	Artifical mains	NNB01/RFZ	ETS
ETS 0181	Test pin for protective wire	PE 156-i	SPS electronic
ETS 0182	Power supply	MX-9300	Maxcom
ETS 0183	Frequency counter	MX-9300	Maxcom
ETS 0184	Function generator	MX-9300	Maxcom
ETS 0185	Digital multimeter	MX-9300	Maxcom
ETS 0186	Power supply	DF 1730	WJG
ETS 0187	Power suppy		TPW/RFT
ETS 0188	High voltage generator		
ETS 0189	Spectrum Analyzer	FSEB	Rohde&Schwarz
ETS 0190	Function generator	MX 2020	Maxcom
ETS 0191	Sweep function generator	7202	Dagatron
ETS 0192	Audio generator	7101	Dagatron
ETS 0193	Vibration table	N1-201-M	Sandox

No.	Measurement device:	Type:	Manufacturer:
ETS 0194	Digital multimeter	PMM 208	Dagatron
ETS 0195	Thermo hygro recorder		Amarell
ETS 0196	Digital thermometer	AK-688	KD
ETS 0197	Digital thermometer		Prima
ETS 0198	Digital thermometer	ad 170th	ama-digit
ETS 0199	Digital thermometer	ad 31th	ama-digit
ETS 0200	Digital thermometer / hygro meter	ad 90h	ama-digit
ETS 0201	Digital thermometer / hygro meter	37950-10	Cole Parmer
ETS 0202	Digital thermometer	ad 15th	ama-digit
ETS 0203	Digital thermometer	Type K	Amarell
ETS 0204	Digital thermometer	ad 20th	ama-digit
ETS 0205	High voltage test generator	HA 3300 D	SPS electronic
ETS 0206	High voltage test accessoires	HVGZ 312	SPS electronic
ETS 0207	Socket-Outlet torque balance	F 37.13	PTL
ETS 0208	Unjointed Finger probe	P 10.05	PTL
ETS 0209	Flixible Finger probe	P 10.01	PTL
ETS 0210	Spring operated impact hammer	P 22.50	PTL
ETS 0211	Metallic ball	F 53.32	PTL
ETS 0212	Hazardous live probe	P 10.06	PTL
ETS 0213	Hazardous live probe	P 10.11	PTL
ETS 0214	Ball pressure test apparatus	T 10.02	PTL
ETS 0215	Glow Wire tester	T 03.14	PTL
ETS 0216	Force indicator 50N	P 10.31	PTL
ETS 0217	Millivolt meter	URV 55	Rohde&Schwarz
ETS 0218	RF probe	URV5-Z7	Rohde&Schwarz
ETS 0219	Power sensor	NRV-Z2	Rohde&Schwarz
ETS 0220	Insertion unit	URV5-Z4	Rohde&Schwarz
ETS 0221	EN 61000-4-8 Test System	F-1000-4-8/9/10-L	Fisher Custom

2.4 Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-1992 using a 50 μ H LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a spectrum analyzer. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was the 100 kHz and the video bandwidth was 300 kHz. The ambient temperature of the UUT was 23°C with a humidity of 40 %.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dB μ V) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz)	METER READING + ACF + CABLE LOSS (to the receiver) = FS
33	20 dB μ V + 10.36 dB + 6 dB = 36.36 dB μ V/m @3m

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table). The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings.

Measurements were made by ETS Dr. Genz GmbH at the registered open field test site located at Storkower Str. 38c, 15526 Reichenwalde, Germany.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

ANTENNA & GROUND:

This unit uses internal antenna. There is no provision for an external antenna (see photo).

3 Test results (enclosure)

TEST CASE	Required	Test passed	Test failed
Peak Output Power	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Equivalent radiated power	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Spurious Emissions radiated - Transmitter operating	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Spurious Emissions conducted - Transmitter operating	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Carrier Frequency Separation	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Number of Hopping Frequencies	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Time of Occupancy (Dwell Time)	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
20dB Bandwidth	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Band-edge Compliance of RF Conducted Emissions	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
Conducted Measurement at (AC) Power Line	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

3.1 Peak Output Power (transmitter)

This measurement applies to equipment with an integral antenna and to equipment with an antenna connector and equipped with an antenna as declared by the applicant.

The power was measured with modulation (declared by the applicant).

Test conditions		Radiated Power			
		Channel A		Channel B	
[dBm]	[mW]	[dBm]	[mW]		
T _{nom} =22 °C	V _{nom} = 3,2 V	20,64	--	20,01	--
Measurement uncertainty		< 3 dB			

Test conditions		Radiated Power	
		Channel C	
[dBm]	[mW]		
T _{nom} =22 °C	V _{nom} =3,2 V	2,15	--
Measurement uncertainty		< 3 dB	

		Radiated Power			
Test conditions		Channel A		Channel B	
		[dBm]	[mW]	[dBm]	[mW]
$T_{\text{nom}} = 22^\circ\text{C}$	$V_{\text{min}} =$ V		--		--
Measurement uncertainty			< 3 dB		

		Radiated Power	
Test conditions		Channel C	
		[dBm]	[mW]
$T_{\text{nom}} = 22^\circ\text{C}$	$V_{\text{min}} =$ V		--
Measurement uncertainty		< 3 dB	

		Radiated Power			
Test conditions		Channel A		Channel B	
		[dBm]	[mW]	[dBm]	[mW]
$T_{\text{nom}} = 22^\circ\text{C}$	$V_{\text{max}} =$ V		--		--
Measurement uncertainty			< 3 dB		

		Radiated Power			
Test conditions		Channel C			
		[dBm]	[mW]		
$T_{\text{nom}} = 22^\circ\text{C}$	$V_{\text{max}} =$ V			--	
Measurement uncertainty			< 3 dB		

3.2 De facto Equivalent isotropic radiated power

3.2.1 Transmitter

External Antenna:

At the transmitter the measurement was transact with the modulation declared by the manufacturer and the maximum available output power of the EUT.

In this arrangement the EUT fulfils the requirements of the FCC rules § 15.247, subpart c, section b.

On account of the used low transmitting power the use of a general antenna connection seems to be possible. Even by using an extrem bunched antenna the upper limit value won't be exceeded. In addition, the sample will be operated by authorized staff (test engineers).

3.3 RF Exposure Compliance Requirements

Because of the verry low transmitted power of ca 20 dBm this device complies with the MPE requirements not possible

3.4 Spurious emissions (tx)

Spurious emission was measured with modulation (declared by manufacturer).

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance to point 2.3.

TEST RESULT (Transmitter): The unit DOES meet the FCC requirements.

Comment: see attached diagrams

Test equipment used: ETS 0004, ETS 0109, ETS 0125, ETS 0012, ETS 0013, ETS 0014

3.5 Carrier Frequency Separation

Carrier Frequency Separation was measured with modulation (declared by manufacturer).

According to FCC rules part 15 subpart C §15.247 frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or 20 dB bandwidth of the hopping channel, whichever is greater.

Test conditions		Channel Separation	
		Channel B	Channel B+1
$T_{\text{nom}} = 22 \text{ }^{\circ}\text{C}$		$V_{\text{nom}} = 3,2 \text{ V}$	
Measurement uncertainty		< 10 Hz	

Limits:

Frequency Range	Limits	
	20 dB bandwidth < 25 kHz	20 dB bandwidth > 25 kHz
2400-2483.5 MHz 5725-5850.0 MHz	25 kHz	20 dB bandwidth
902-928 MHz	25 kHz	20 dB bandwidth

Test equipment used: ETS 0004, ETS 0109, ETS 0125

Comment: see attached diagram

3.6 Number of Hopping Frequencies

According to FCC rules part 15 subpart C §15.247 frequency hopping systems operating in the 2400-2483.5 MHz and 5725-5850 MHz bands shall use at least 75 hopping frequencies.

According FCC 00-312 appendix B systems in the 2400 – 2483,5 MHz band may utilize hopping channels whose 20 dB bandwidth is greater than 1 MHz provide the systems use at least 15 non-overlapping channels.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the System shall use at least 50 hopping frequencies; if the 20dB bandwidth of the hopping channel 250 kHz or greater, the System shall use at least 25 hopping frequencies.

Test conditions		Number of Channels
$T_{\text{nom}}=22\text{ }^{\circ}\text{C}$	$V_{\text{nom}} = 3,2\text{ V}$	47

Limits:

Frequency Range	Limit		
	max 20dB		20dB Bandwidth < 250 kHz 20 s periode
	30 s periode	20dB Bandwidth ≥ 250 kHz 10 s periode	
2400-2483.5 MHz 5725-5850.0 MHz	Bandwidth ≤ MHz: ≥ 75	Bandwidth >1MHz ≥ 15	-
902-928 MHz	-	50	≥ 25

Test equipment used: ETS 0004, ETS 0109, ETS 0125

Comment: see attached diagrams

3.7 Time of Occupancy (Dwell Time)

According to FCC rules part 15 subpart C §15.247 frequency hopping systems operating in the 2400-2483.5 MHz and 5725-5850 MHz bands shall use an average time of occupancy on any frequency not greater than 0.4 seconds within a 30 second periode.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not greater than 0.4 seconds within a 20 second periode; if the 20dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not greater than 0.4 seconds within a 10 second periode.

Test conditions			Time of Occupancy
$T_{\text{nom}}=22\text{ }^{\circ}\text{C}$	$V_{\text{nom}} = 3,2\text{ V}$	Channel B	355,556 μs
Measurement uncertainty			< 1 μs

Limits:

Frequency Range	Limit		
	max 20dB Bandwidth 1000 kHz 30 s periode	20dB Bandwidth < 250 kHz 20 s periode	20dB Bandwidth ≥ 250 kHz 10 s periode
2400-2483.5 MHz 5725-5850.0 MHz	400 ms	-	-
902-928 MHz	-	400 ms	400 ms

Test equipment used: ETS 0004, ETS 0109, ETS 0125

Comment: see attached diagram

3.8 20dB Bandwidth

According to FCC rules part 15 subpart C §15.247 frequency hopping systems operating in the 2400-2483.5 MHz and 5725-5850 MHz bands shall use a maximum 20dB bandwidth of 1 MHz. According FCC 00-312 frequency hopping systems operating in the 2400-2483.5 MHz shall use a maximum 20dB bandwidth of 1 MHz or more.

The 20dB bandwidth was measured on the lowest, middle and highest hopping channel.

For frequency hopping systems operating in the 902-928 MHz band the maximum 20dB bandwidth of the hopping channel is 500 kHz.

Test conditions	20 dB Bandwidth		
	Channel A	Channel B	Channel C
$T_{nom}=22\text{ }^{\circ}\text{C}$ $V_{nom} = 3,2\text{ V}$	1,326667 MHz	1,350000 MHz	1,346667 MHz
Measurement uncertainty	< 10 Hz		

Limits:

Frequency Range	Limit
2400-2483.5 MHz and 5725-5850 MHz	1 MHz or more
902-928 MHz	0.5 MHz

Test equipment used: ETS 0004, ETS 0109, ETS 0125

Comment: see attached diagram

3.9 Band-edge Compliance of RF Conducted Emissions

According to FCC rules part 15 subpart C §15.247(c) in any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required.

Test conditions	Frequency at band edges -20 dB	
	Channel A	Channel C
$T_{\text{nom}}=22\text{ }^{\circ}\text{C}$	$V_{\text{nom}} = 3,2\text{ V}$	2,4030669 GHz
Measurement uncertainty	< 100 Hz	

Limits:

Frequency Range	Limit
2400-2483.5 MHz and 5725-5850 MHz	20 dB
902-928 MHz	20 dB

Test equipment used: ETS 0004, ETS 0109, ETS 0125

Comment: see attached diagrams

4 Conducted Measurement at (AC) Power Line

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 450 kHz to 30 MHz shall not exceed 250 microvolts. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

If the level of the emission measured using the quasi-peak instrumentation is 6dB, or more higher than the level of the same emission measured with instrumentation having an average detector and a 9 kHz minimum bandwidth, that emission is considered broadband and the level obtained with the quasi-peak detector may be reduced by 13dB for comparison to the limits.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector. The level of the quasi-peak measurement will be decreased by 13dB if the difference between average and quasi-peak is 6dB or greater.

Frequency	Level		
	quasi-peak	average	quasi-peak -13dB
450 kHz	-- dB μ V	-- dB μ V	-- dB μ V

Limits:

Frequency Range	Quasi-Peak Limit
450 kHz – 30 MHz	48 dB μ V

Test is not required the sample is battery used

Test equipment used: ETS 0003, ETS 0040, ETS 0109, ETS 0125

Comment: see attached diagram