BIOTRONIK, Inc.

Cylos DR-T

June 14, 2005

Report No. BIOT0009

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2005 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: June 14, 2005 BIOTRONIK, Inc. Model: Cylos DR-T

Emissions						
Specification	Test Method	Pass	Fail			
FCC 95.639(f)(1) Field Strength of Fundamental:2004	TIA/EIA-603:1998	\boxtimes				
FCC 95.635(d) Field Strength of Radiated Emission:2004	TIA/EIA-603:1998 & ANSI C63.4:2004	\boxtimes				
FCC 95.633(e)(1) Occupied Bandwidth:2004	95.633(e)(3) & ANSI C63.4:2004	\boxtimes				
FCC 95.635(d)(4-5) Emission Mask:2004	95.635(d)(4-5) & ANSI C63.4:2004	\boxtimes				
FCC 95.628(e)(1) & 2.1055 Frequency Stability:2004	TIA/EIA-603:1993	\boxtimes				

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.

22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066

Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

David M. Tolman, QA Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

200629-0 200630-0 200676-0

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment, Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761).*

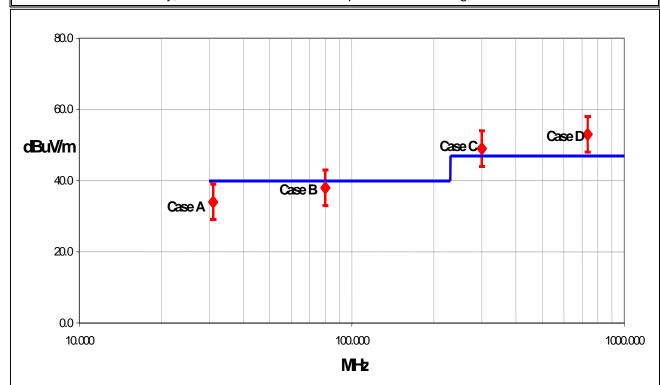
BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Measurement Uncertainty

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability Biconical		Log Pe	eriodic	D	ipole	
	Distribution	Ante	enna	Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions						
	Probability	Value				
	Distribution	(+/- dB)				
Combined standard uncertainty <i>uc(y)</i>	normal	1.48				
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97				

Radiated Immunity						
	Probability	Value				
	Distribution	(+/- dB)				
Combined standard uncertainty uc(y)	normal	1.05				
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11				

Conducted Immunity						
	Probability	Value				
	Distribution	(+/- dB)				
Combined standard uncertainty <i>uc(y</i>)	normal	1.05				
Expanded uncertainty U	normal (k = 2)	2.10				
(level of confidence ≈ 95 %)	Horriai (K = 2)	2.10				

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

Labs OC01 - OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

Labs EV01 – EV10

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

Labs TE01 - TE03

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

Labs SU01 - SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 10/3/03

Party Requesting the Test	
Company Name:	BIOTRONIK, Inc.
Address:	6024 Jean Road
City, State, Zip:	Lake Oswego, OR 97035
Test Requested By:	Brian Sutton
Model:	Cylos DR-T
First Date of Test:	6-10-2005
Last Date of Test:	6-13-2005
Receipt Date of Samples:	6-10-2005
Equipment Design Stage:	Prototype
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	403.6 MHz Transmit Frequency, Internal Clock at 32,768 KHz
I/O Ports:	Implant Leads, Qty=2

Functional Description of the EUT (Equipment Under Test):

Cardiac Pacemaker to be implanted in bradycardia patients. The EUT is designed to transmit medically relevant data.

Client Justification for EUT Selection:

Random production unit modified to support near continuous RF transmission.

Client Justification for Test Selection:

These tests satisfy the FCC requirements for the US market.

EUT Photo

Modifications

	Equipment modifications					
Item	Test	Date	Modification	Note	Disposition of EUT	
1	Field Strength of Fundamental	06/10/2005	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.	
2	Emissions Mask (< or = 250kHz)	06/10/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.	
3	Occupied Bandwidth	06/10/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.	
4	Spurious Radiated Emissions	06/10/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.	
5	Frequency Stability	06/13/2005	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT was returned to client following testing.	

Field Strength of Fundamental

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:

Single Channel: 403.62 MHz

Operating Modes Investigated:

Typical

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

Software\Firmware Applied During Test						
Exercise software	Special Test Software	Version	Unknown			
Description						
The system was tested using special software developed to test all functions of the device during the test.						

EUT and Peripherals					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT- Cylos DR-T	Biotronik, Inc.	Cylos DR-T	76020147		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected

Field Strength of Fundamental

Revision 10/1/03

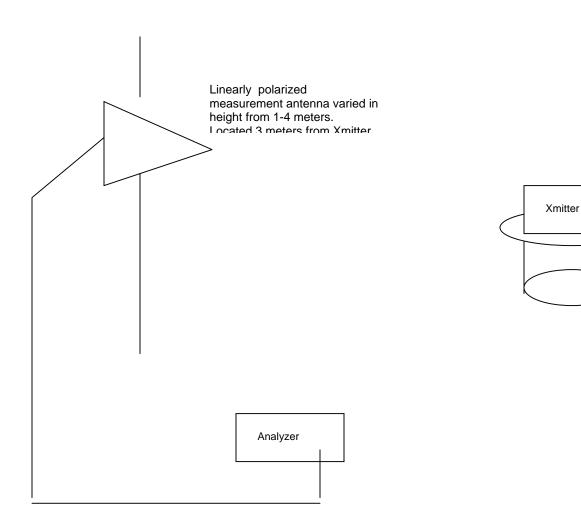
Measurement Equipment									
Description	Manufacturer	Model	Identifier	Last Cal	Interval				
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo				
Pre-Amplifier	Amplifier Research	LN1000A	APS	03/01/2005	13 mo				
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo				

Test Description

Requirement: Per 95.639(f)(1), the maximum EIRP for a MICS transmitter is 25uW. This is equivalent to a radiated field strength 85.2 dBuV/m at 3 meters when measured over a reference ground plane.

Configuration: The Field Strength of the Fundamental was measured in the far-field at an FCC Listed Semi-anechoic Chamber. Spectrum analyzer and linearly polarized antennas were used to measure the effective radiated power (EIRP) of the fundamental.

The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions.

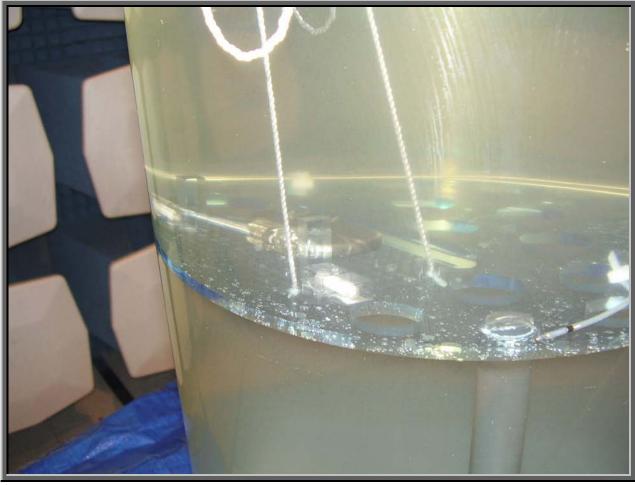

The EUT was configured to transmit in a fixture that simulates the human torso. The dimensions of the test fixture and the characteristics of the tissue substitute material met the requirements of 95.639(f)(2)(i-ii). The dielectric and conductivity properties of the tissue substitute material were verified the morning of the test (see client data for tissue substitute material), and the temperature was measured before and after the test to verify compliance with 95.639(f)(2)(i). At the start of the test, the tissue substitute material was 23.5 degrees centigrade. At the conclusion of testing, it was 23.2 degrees centigrade.

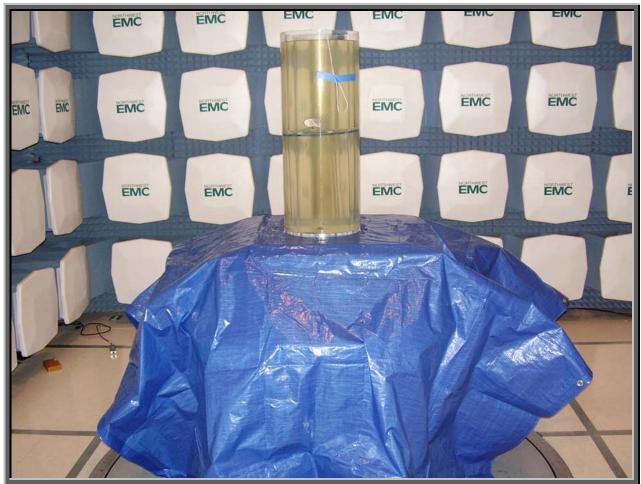
Test Methodology

At an approved test site, the transmitter was placed in the human torso test fixture located on a remotely controlled turntable, and the measurement antenna was placed 3 meters from the transmitter. The height of the transmitter was 1.5-meter above the reference ground plane. The turntable azimuth was varied to maximize the level of radiated emissions. The height of the measurement antenna was also varied from 1 to 4 meters. The amplitude and frequency of the emissions were noted.

Test Setup Diagram

Test Setup for Field Strength Measurements




Rochy be Releys

	RTHWEST MC	F	RADI	ATE	D EM	IISS	SIC	ONS	DAT	ΓA S	HEE	Γ		ACQ 2005.1.4 MI 2005.5.05
		JT: Cylos DR-1									V	Vork Order:		
Se		er: 76020147 er: BIOTRONII	K Inc								To	Date: emperature:	06/10/05	
		es: Brian Sutto									10	Humidity:		
Cı	ıst. Ref. N										Barometr	ic Pressure		
TECT C		y: Rod Peloq	uin					Power:	Battery			Job Site:	EV01	
	PECIFICA pecification	on: FCC 95.639	o(f)(1):2004	1					Method:	TIA/EIA-60	3:1998			
			-(-)(-)	-										
		LATIONS			F : 0 !			. o · -			F			
		ns: Field Strength ns: Adjusted Leve									+ External Atter	nuation		
СОММЕ	NTS	ŕ												
EUT horiz	ontal in tes	st fixture at 1.5m h	neight											
		MODES												
Transmitt	ing Single	channel												
DEVIAT	IONS ED	OM TEST STA	NDARD											
No deviati		OW TEST STA	INDARD											
RESULT	ΓS												Run #	
Pass													1	
Other								I						
										Rock	Le Res	Per		
											u su	The same of the sa		
											Teste	d Bv:		
											10010	a by.		
	100.0 —													\neg
	90.0													
	80.0													
														-
	70.0													
	00.0													
Ε	60.0													
dBuV/m	50.0													ľ
Bu	30.0													J
ъ	40.0										—			
	30.0													
	20.0													
	10.0													
	0.0 +	nn		1			1/	00.000		-			40	→ 00.000
	10.00	JU											10	00.000
							I	MHz						
	Eroa	Amalituda	Eneter	Azina	Hoicht	Dietes -		External	Polorit:	Date -t	Distance	Adiustad	Cnoo ! imit	Compared to
	Freq MHz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)		(dB)	Polarity	Detector	Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Spec. (dB)
	403.6	17 50.6	-5.1	292.0	2.0	3	3.0	0.0	V-Bilog	PK	0.0	45.5	85.2	-39.7
	403.6	17 45.5	-5.1	197.0	2.3	3	3.0	0.0	H-Bilog	PK	0.0	40.4	85.2	-44.8

	RTHWEST MC		R	ADI	ATE) EM	IS	SI	0	NS	DAT	ΓA S	HEET			CQ 2005.1.4 MI 2005.5.05
		_	ylos DR-T										V	Vork Order:		
Se	rial Numb			Inc									То		06/10/05	
			IOTRONIK rian Sutto										Te	mperature: Humidity:		
Cı	ust. Ref. N												Barometr	ic Pressure		
			od Peloqu	in						Power:	Battery			Job Site:	EV01	
	PECIFIC.			(f)(1):2004							Method:	TIA/EIA-60	3-1008			
, ,	pcomoun	011.	30.033	(1)(1).2004	,						metriou.	IIA/LIA-00	73.1330			
	E CALCI															
													+ External Atter	nuation		
COMME		ons: Ad	justed Level	= Measured L	Level + Transd	ucer Factor + 0	Jable A	Attenua	ition F	-actor + E	xternal Attenu	lator				
		fixture	at 1.5m heig	ht												
	ERATIN															
ransmitt	ing Single	channe	el													
DEVIAT No deviati		ROM T	EST STA	NDARD												
RESULT	ΓS														Run #	
Pass															4	
Other										T				_		
												Rocke	le Res	len.		
													u - u			
													Teste	d Bv:		
													10310	а Бу.		
	100.0 _T								_							\neg
	90.0								+							
	80.0								+							
																-
	70.0															
E	60.0															
dBuV/m	50.0															r
Bu	50.0															
ᅙ	40.0															
	40.0															
	30.0															
	20.0								_							
	10.0								+							
	0.0 +									+						⊣
	10.0	000							100	0.000					10	00.000
									M	Hz						
			Т	ı	1	I			E	kternal			Distance			Compared to
	Freq	A	Amplitude	Factor	Azimuth	Height	Dista		Atte	enuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(1	MHz) 403.6	317	(dBuV) 53.6	(dB) -5.1	(degrees)	(meters)	(met	ers) 3.0		(dB)	V-Bilog	PK	(dB)	dBuV/m 48.5	dBuV/m 85.2	(dB) -36.7
	403.6		49.5	-5.1 -5.1	201.0	2.0		3.0		0.0	V-Bilog H-Bilog	PK PK	0.0	48.5 44.4	85.2 85.2	-36.7 -40.8

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:

Single Channel: 403.62 MHz

Operating Modes Investigated:

Typical

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

Software\Firmware Applied During Test								
Exercise software	Special Test Software	Version	Unknown					
Description								
The system was tested using special software developed to test all functions of the device during the test.								

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT- Cylos DR-T	Biotronik, Inc.	Cylos DR-T	76020147

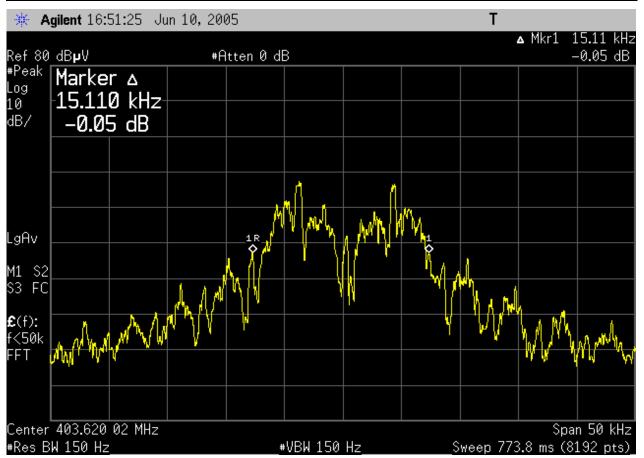
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected

Measurement Equipment								
Description	Manufacturer	Model	Identifier	Last Cal	Interval			
Spectrum Analyzer	Agilent	E4446A	AAQ	04/08/2005	13 mo			
Pre-Amplifier	Amplifier Research	LN1000A	APS	03/01/2005	13 mo			
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo			

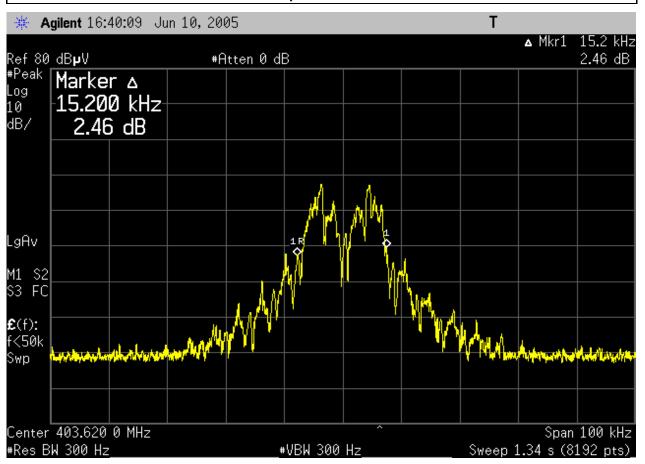
Occupied Bandwidth

Revision 10/1/03

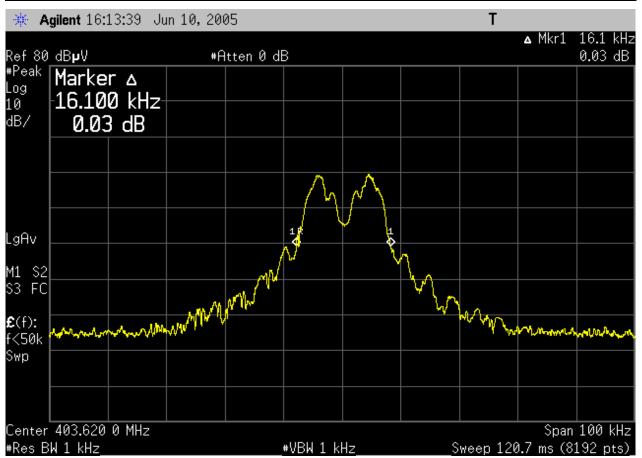
Test Description

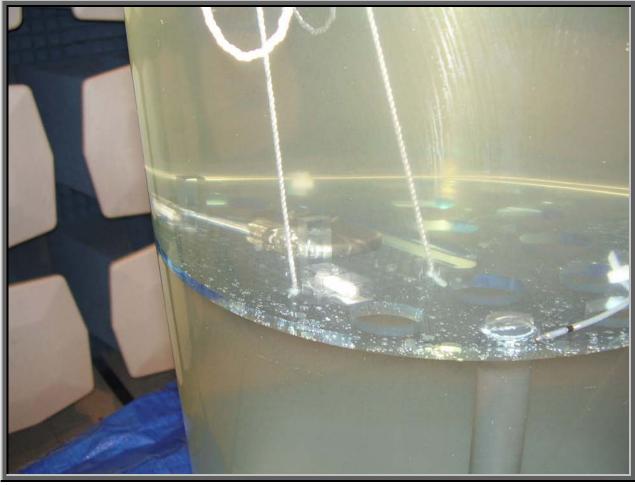

Requirement: Per 47 CFR 95.633(e)(1) and 2.1049, the Occupied Bandwidth was measured. The maximum authorized emission bandwidth is 300 kHz.

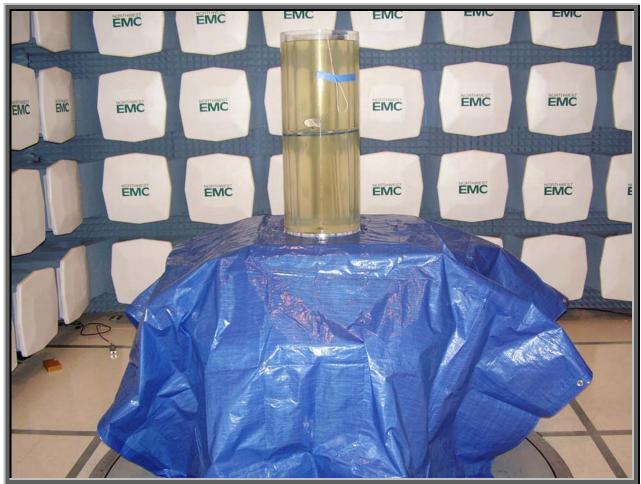
Configuration: Per 47 CFR 95.633(e)(3), the emission bandwidth was determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 20 dB down relative to the maximum level of the modulated carrier. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT.


An emission bandwidth measurement was made using a 150 Hz resolution bandwidth (no video filtering) and a peak detector. With these instrument settings, an emission bandwidth of 15.1 kHz was measured. This most closely satisfied the specified measurement criteria. It is important to use a RBW that is sufficiently narrow to plot the actual bandwidth of the signal and not the filter response curve of the spectrum analyzer. However, various plots were made using different frequency spans and resolution bandwidths in an attempt to not only satisfy the measurement criteria, but to also show that all emissions outside of the occupied band are greatly attenuated.

Completed by:


EMC OCCUPIED BANDWIDTH DATA SHEET Rev BETA 01/5001									
EUT:	Cylos DR-T				Work Order:	BIOT0009			
Serial Number:	76020147				Date:	06/10/05			
Customer:	Biotronik, Inc.				Temperature:	23°C			
	Brian Sutton		Tested by:	Rod Peloquin	Humidity:				
Customer Ref. No.:			Power:	Battery	Job Site:	EV01			
TEST SPECIFICATION									
	47 CFR 95.633(e)(1)	Year: 2004	Method:	95.633(e)(3) & ANSI C6	3.4 Year:	2004			
SAMPLE CALCULATION	DNS								
COMMENTS									
EUT Vertical in Test fix	cture at 1.5m height								
	EUT OPERATING MODES								
Transmitting single ch	annel								
DEVIATIONS FROM TE	EST STANDARD								
None									
REQUIREMENTS									
The maximum authorize	zed emission bandwidth is 300 kH	lz							
RESULTS			BANDWIDTH						
Pass			15.1 kHz						
SIGNATURE									
Roden la Roleng									
DESCRIPTION OF TES	DESCRIPTION OF TEST								
	_	Occupied	Bandwidth						


EMC EMISSIONS DATA SHEET								
EUT: Cylos DR-T				Work Order:	BIOT0009			
Serial Number: 76020147				Date:	06/10/05			
Customer: Biotronik, Inc.				Temperature:	23°C			
Attendees: Brian Sutton		Tested by:	Rod Peloquin	Humidity:	41% RH			
Customer Ref. No.:		Power:	Battery	Job Site:	EV01			
TEST SPECIFICATIONS								
Specification: 47 CFR 95.633(e)(1)	Year: 2004	Method:	95.633(e)(3) & ANSI C6	3.4 Year:	2004			
SAMPLE CALCULATIONS								
EUT Vertical in Test fixture at 1.5m height EUT OPERATING MODES Transmitting single channel DEVIATIONS FROM TEST STANDARD None REQUIREMENTS The maximum authorized emission bandwidth is 300 kHz								
RESULTS		BANDWIDTH						
Pass		15.2 kHz						
Rocky Le Relenger								
DESCRIPTION OF TEST								
	Occupied	Bandwidth						



NORTHWEST EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01			
	Cylos DR-T				Work Order				
Serial Number:						06/10/05			
Customer:	Biotronik, Inc.				Temperature:				
	Brian Sutton		Tested by:	Rod Peloquin	Humidity				
Customer Ref. No.:			Power:	Battery	Job Site:	EV01			
TEST SPECIFICATION									
Specification:	47 CFR 95.633(e)(1)	Year: 2004	Method:	95.633(e)(3) & ANSI C6	3.4 Year:	2004			
SAMPLE CALCULATION	ONS								
	COMMENTS								
	EUT Vertical in Test fixture at 1.5m height								
	EUT OPERATING MODES								
Transmitting single ch									
DEVIATIONS FROM TO	EST STANDARD								
None									
REQUIREMENTS									
	zed emission bandwidth is 300 kH	2							
RESULTS			BANDWIDTH						
Pass SIGNATURE			16.1 kHz						
Rochy Le Rolings Tested By:									
DESCRIPTION OF TES	DESCRIPTION OF TEST								
		Occupied	Bandwidth						

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:

Single Channel: 403.62 MHz

Operating Modes Investigated:

Typical

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

Software\Firmware Applied During Test								
Exercise software	Special Test Software	Version	Unknown					
Description	Description							
The system was tested using special software developed to test all functions of the device during the test.								

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT- Cylos DR-T	Biotronik, Inc.	Cylos DR-T	76020147

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected

Frequency Stability

Revision 10/1/03

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	01/02/2005	12 mo
Chamber, Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	09/07/2004	12 mo
Chamber Temp. & Humidity Controller	ESZ / Eurotherm	Dimension II	TBC	09/07/2004	12 mo
Near Field Probe	EMCO	7405	IPD	NCR	NA

Test Description

Requirement: Per 47 CFR 95.628(e)(1) and 2.1055, the Frequency Stability was measured. The transmitter must maintain a frequency stability of +/- 100 parts per million (ppm), or better, for variations of temperature over the range of 25 to 45 degrees centigrade.

Configuration: The Frequency Stability was measured using a near-field probe and a spectrum analyzer. The spectrum analyzer is configured with a precision frequency reference that exceeds the stability requirement of the transmitter.

The EUT was placed inside a temperature / humidity chamber. The near-field probe was placed near the transmitter. A low-loss coaxial cable connected the near-field probe to the spectrum analyzer outside of the chamber.

The transmit frequency was recorded at the extremes of the specified temperature range (+25° to +45° C) and at 10°C intervals.

Rocky by Relenge

EMC FREQUENCY STABILITY DATA SHEET REV BETA 01/30/01						
	Cylos DR-T			Work Order: BIOT0009		
Serial Number:	•			Date: 06/13/05		
Customer:	Biotronik, Inc.			Temperature: See Below		
Attendees:	Brian Sutton		Tested by: Rod Peloquin	Humidity: 35% RH		
Customer Ref. No.:			Power: Battery	Job Site: EV09		
TEST SPECIFICATION	NS					
Specification:	95.628(e)(1) & 2.1055	Year: Most Current	Method: TIA/EIA - 603	Year: 1993		
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MO	DES					
Transmitting single c	hannel					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	ency stability of +/- 100 parts pe	r million (ppm) or better for variat	tions of temperature over the range of 25 to 4	5 degrees centigrade		
RESULTS			WORST CASE FREQUENCY STABILITY			
Pass			9.04 ppm			
SIGNATURE						
Rocky la Felings Tested By:						
DESCRIPTION OF TE	ST					
		Frequenc	cy Stability			

Temp (°C)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
25	403.626290	403.626370	0.20	100
35	403.626290	403.626290	0.00	100
45	403.626290	403.622640	9.04	100

Emission Mask

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:

Single Channel: 403.62 MHz

Operating Modes Investigated:

Typical

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

Software\Firmware Applied During Test					
Exercise software	Special Test Software	Version	Unknown		
Description					
The system was tested using special software developed to test all functions of the device during the test.					

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT- Cylos DR-T	Biotronik, Inc.	Cylos DR-T	76020147

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected

Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
Spectrum Analyzer	Agilent	E4446A	AAQ	04/08/2005	13 mo		
Pre-Amplifier	Amplifier Research	LN1000A	APS	03/01/2005	13 mo		
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo		

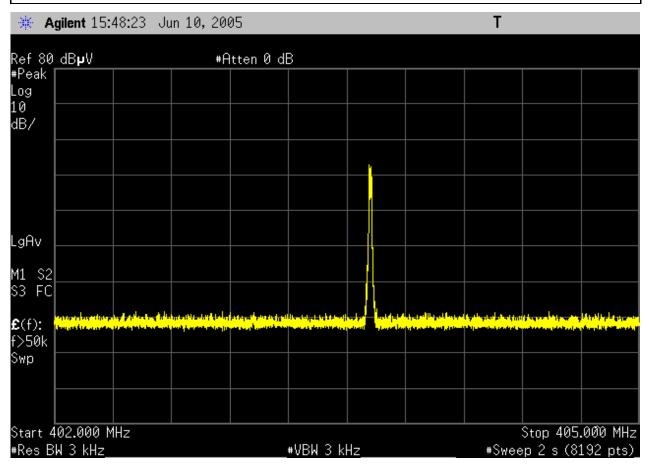
Emission Mask

Revision 10/1/03

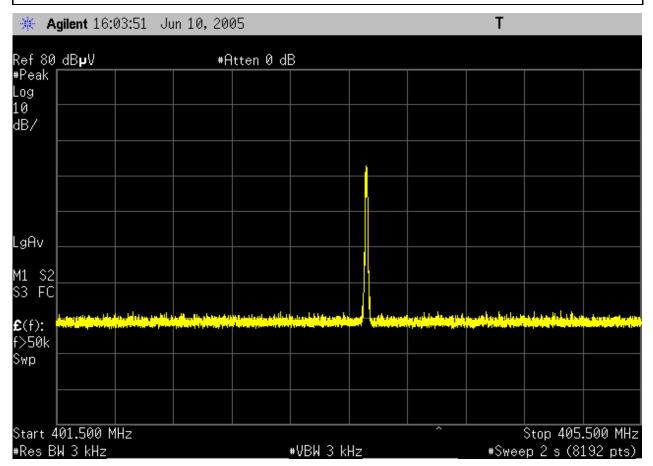
Bandwidths Used for Me	asurements					
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)			
0.01 – 0.15	1.0	0.2	0.2			
0.15 - 30.0	10.0	9.0	9.0			
30.0 – 1000	100.0	120.0	120.0			
Above 1000	1000.0	N/A	1000.0			
Measurements were made using the bandwidths and detectors specified. No video filter was used.						

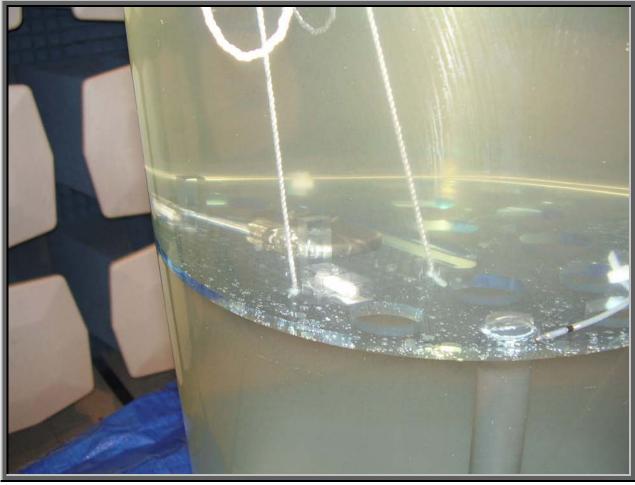
Requirement: Per 47 CFR 95.635(d)(4-5) the emission mask was measured. Emissions more than 150 kHz away from the center frequency must be attenuated below the transmitter output power by at least 20 dB. In addition, emissions 250 kHz or less above and below the MICS band (402-405 MHz) must be attenuated below the maximum permitted output power by at least 20 dB.

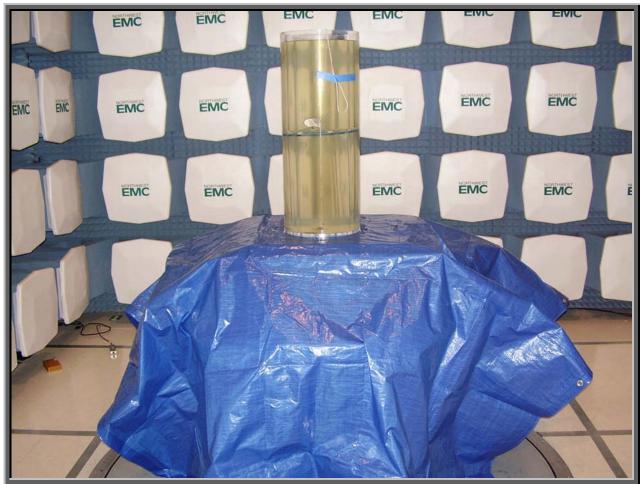
Configuration: The emission mask was measured in the same configuration as radiated spurious emissions. All emissions measurements were made with the EUT placed in the tissue substitute material. First, the EUT orientation (horizontal or vertical), the turntable azimuth and measurement antenna height, were maximized to achieve the maximum field strength of the fundamental transmit frequency.


Then, a spectrum analyzer was used to measure the emission mask. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT. However, various plots were made using different frequency spans and resolution bandwidths in an attempt to not only satisfy the measurement criteria, but to also show that all emissions outside of the occupied band are greatly attenuated.

Completed by:


EMISSIONS							
EUT:	Cylos DR-T				Work O	rder: BIOT0009	
Serial Number:	76020147					Date: 06/10/05	
Customer:	Biotronik, Inc.				Tempera	ture: 23°C	
Attendees:	Brian Sutton		Tested by:	Rod Peloquin	Humi	dity: 41% RH	
Customer Ref. No.:			Power:	Battery	Job	Site: EV01	
TEST SPECIFICATION	S						
Specification:	47 CFR 95.635(d)(4)	Year: 2004	Method:	95.635(d)(4) & ANSI C6	3.4	/ear: 2004	
COMMENTS	COMMENTS						
EUT Vertical in Test fix							
EUT OPERATING MODE Transmitting single ch							
DEVIATIONS FROM T							
None	EST STANDARD						
REQUIREMENTS							
	150 kHz away from the center free	quency must be attenuated below	the transmitter ouput p	ower by at least 20 dB			
RESULTS			<u> </u>				
Pass							
SIGNATURE							
Rolly le Reling							
DESCRIPTION OF TES	ST						
		Emissi	on Mask				


EMISSIONS							
EUT:	Cylos DR-T				Work Order:	BIOT0009	
Serial Number:	76020147				Date:	06/10/05	
Customer:	Biotronik, Inc.				Temperature:	23°C	
Attendees:	Brian Sutton		Tested by:	Rod Peloquin	Humidity:	41% RH	
Customer Ref. No.:			Power:	Battery	Job Site:	EV01	
TEST SPECIFICATION	S						
Specification:	47 CFR 95.635(d)(4)	Year: 2004	Method:	95.635(d)(4) & ANSI C6	3.4 Year:	2004	
SAMPLE CALCULATION	DNS						
EUT OPERATING MOD Transmitting single ch DEVIATIONS FROM TI None REQUIREMENTS	EUT Vertical in Test fixture at 1.5m height EUT OPERATING MODES Transmitting single channel DEVIATIONS FROM TEST STANDARD None						
RESULTS	150 kHz away from the center free	quency must be attenuated below t	the transmitter ouput p	ower by at least 20 dB			
Pass				<u> </u>			
SIGNATURE							
Rocky be Reling							
DESCRIPTION OF TES	T						
	Emission Mask						



EMISSION MASK DATA SHEET												
	Cylos DR-T				Wo	ork Order:	BIOT0009					
Serial Number:	76020147					Date: 0	06/10/05					
Customer:	Biotronik, Inc.					perature: 2						
	Brian Sutton		Tested by:	Rod Peloquin		Humidity: 4						
Customer Ref. No.:			Power:	Battery		Job Site:	EV01					
TEST SPECIFICATION	S											
Specification:	47 CFR 95.635(d)(5)	Year: 2004	Method:	95.635(d)(5) & ANSI C6	63.4	Year: 2	2004					
COMMENTS												
COMMENTS												
EUT Vertical in Test fix												
EUT OPERATING MOD												
Transmitting single ch DEVIATIONS FROM TE												
None	EST STANDARD											
REQUIREMENTS												
	less above and below the MICS b	pand (402-405 MHz) must be attenua	ated below the maximu	ım permitted ouput pov	wer by at leas	st 20 dB						
RESULTS												
Pass												
SIGNATURE												
Pooling la Fielings Tested By:												
DESCRIPTION OF TES	T											
		Emissio	n Mask									

Spurious Radiated Emissions

Revision 10/1/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:

Single Channel: 403.62 MHz

Operating Modes Investigated:

Typical

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated:

Maximum

Power Input Settings Investigated:

Software\Firmware Applied During Test												
Exercise software Special Test Software Version Unknown												
Description	Description											
The system was tested us	The system was tested using special software developed to test all functions of the device during the test.											

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
EUT- Cylos DR-T	Biotronik, Inc.	Cylos DR-T	76020147

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected
Implant Lead	Yes	approx. 0.	No	EUT- Cylos DR-T	Not connected

Spurious Radiated Emissions

Revision 10/1/03

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	03/01/2005	13 mo
Pre-Amplifier	Miteq	AMF-4D- 005180-24-10P	APJ	05/05/2005	3 mo
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/02/2004	13 mo

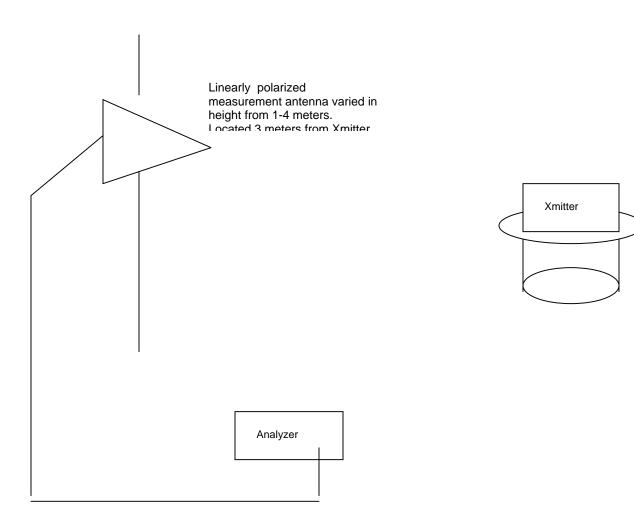
Test Description

Requirement: Per 95.635(d) and 2.1053, the Field Strength of Radiated Emissions more than 250 kHz outside the MICS band (402-405 MHz) shall be attenuated to a level no greater than that shown in 90.635(d)(1). The emission limits shown in 95.635(d)(1) are based upon measurements employing a CISPR quasi-peak detector except that above 1 GHz, the limit is based on measurements employing an average detector. Measurements above 1 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

Configuration: The Field Strength of Radiated Emissions were measured in the far-field at an FCC Listed Semi-anechoic Chamber. Spectrum analyzer and linearly polarized antennas were used to measure the unwanted radiated harmonics and spurious emissions.

The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions.

The EUT was configured to transmit in a fixture that simulates the human torso. The dimensions of the test fixture and the characteristics of the tissue substitute material met the requirements of 95.639(f)(2)(i-ii). The dielectric and conductivity properties of the tissue substitute material were verified the morning of the test (see client data for tissue substitute material), and the temperature was measured before and after the test to verify compliance with 95.639(f)(2)(i). At the start of the test, the tissue substitute material was 23.5 degrees centigrade. At the conclusion of testing, it was 23.2 degrees centigrade.


Test Methodology

At an approved test site, the transmitter was placed in the human torso test fixture located on a remotely controlled turntable, and the measurement antenna was placed 3 meters from the transmitter. The height of the transmitter was 1.5-meter above the reference ground plane. The turntable azimuth was varied to maximize the level of radiated emissions. The height of the measurement antenna was also varied from 1 to 4 meters. The amplitude and frequency of the emissions were noted.

Bandwidths Used for Mea	surements		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 – 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were ma	de using the bandwidths	and detectors specified. No	video filter was used

Test Setup Diagram

Test Setup for Field Strength Measurements

Holy Arling

	RTHWEST MC	F	RADI	ATE	D EM	IISS	IO	NS	DAT	ΓA S	HEE"			ACQ 2005.1.4 EMI 2005.5.05
		Cylos DR-1	Т								V		BIOT0009	
Se	rial Number												06/10/05	
		BIOTRONI									Те	mperature:		
C	ust. Ref. No.:	Brian Sutto	on								Baromotr	Humidity: ic Pressure		
		Rod Pelog	uin					Power:	Battery		Daronieu	Job Site:		
TEST S	PECIFICAT		uiii					i ower:	Duttory			oob oite.		
s	pecification	FCC 95.63	5:2004						Method:	TIA/EIA-60	3:1998			
Radia Conduc	eted Emissions ENTS	Field Strength Adjusted Leve	el = Measured								+ External Atter	nuation		
EUT OP	PERATING I		height											
	ing Single ch		NDARR											
DEVIA I No deviat		M TEST STA	MDARD											
RESUL													Run#	
ass														2
Other										Rocky	Le Ren Teste			-
	100.0													
	90.0													
	80.0													
	70.0													
Æ	60.0													
dBuV/m	50.0						_							_
	40.0													
	30.0												•	
	10.0										•			
	0.0													
	10.000						100	0.000					10	000.000
								1Hz						
	Freq	Amplitude	Factor	Azimuth	Height	Distance		xternal enuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)		(dB)	\/ D''		(dB)	dBuV/m	dBuV/m	(dB)
	806.933		-0.3	23.0	1.2	3.0		0.0	V-Bilog	QP OB	0.0	22.9	46.0	-23.1
	807.099 401.750		-0.3 -5.1	168.0 333.0	1.9 1.6	3.0 3.0		0.0	H-Bilog V-Bilog	QP QP	0.0 0.0	22.9 17.5	46.0 46.0	
	405.250		-5.1 -5.1	306.0	1.7	3.0		0.0	H-Bilog	QP QP	0.0	17.5	46.0	
	401.750		-5.1	248.0	1.6	3.0		0.0	V-Bilog	QP	0.0	17.5	46.0	
	405.250		-5.1	328.0	1.0	3.0		0.0	H-Bilog	QP	0.0	17.5	46.0	-28.5

RADIATED EMISSIONS DATA SHEET **EMC** EUT: Cylos DR-T Work Order: BIOT0009 Serial Number: 76020147 Date: 06/10/05 Customer: BIOTRONIK, Inc. Temperature: 23 Attendees: Brian Sutton Humidity: 42% Barometric Pressure 29.95 Cust. Ref. No. Tested by: Rod Peloquin Power: Battery Job Site: EV01 SPECIFICATIONS Specification: FCC 95.635:2004 Method: TIA/EIA-603:1998 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation EUT horizontal in test fixture at 1.5m height **EUT OPERATING MODES** Fransmitting Single channel **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS Run# Pass 3 Other Rolly be Reley Tested By: 100.0 90.0 80.0 70.0 60.0 dBuV/m 50.0 40.0 30.0 20.0 10.0 0.0 1100.000 1600.000 2100.000 2600.000 3100.000 3600.000 4100.000 4600.000 MHz External Distance Compared to Amplitude Height Distance Spec, Limit Frea Factor Azimuth Attenuation Polarity Detector Adjustment Adjusted (dBuV) (dB) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) (degrees) 3228.936 26.5 0.8 23.0 3.0 0.0 H-Horn ΑV 0.0 27.3 54.0 -26.7 3228.936 26.5 8.0 260.0 1.3 3.0 0.0 H-Horn ΑV 0.0 27.3 54.0 -26.7 2825.319 26.9 -0.8 10.0 3.0 H-Horn ΑV 0.0 26.1 -27.9 1.3 0.0 347.0 2825.319 26.9 -0.8 1.2 3.0 0.0 V-Horn ΑV 0.0 26.1 54.0 -27.9 2421.704 27.0 -2.3 156.0 0.0 V-Horn ΑV 1.2 3.0 0.0 24.7 54.0 -29.3 2421.704 26.9 -2.3 152.0 3.0 0.0 H-Horn 24.6 -29.4 1.3 ΑV 0.0 54.0 2018.085 27.3 -3.760.0 1.2 3.0 0.0 H-Horn ΑV 0.0 23.6 54.0 -30.42018.085 27.3 -3.7 46.0 3.0 3.0 0.0 V-Horn ΑV 0.0 23.6 54.0 -30.4 3228.936 40.4 0.8 260.0 1.3 3.0 0.0 H-Horn PΚ 0.0 41.2 74.0 -32.8 1614.468 27.0 -5.9 243.0 3.0 0.0 H-Horn ΑV 0.0 21.1 54.0 -32.9 1.3 1614.468 27.0 -5.9 196.0 1.2 3.0 0.0 V-Horn ΑV 0.0 21.1 54.0 -32.9 3228.936 1.3 H-Horn PΚ -33.2 40.0 0.8 23.0 3.0 0.0 0.0 40.8 74.0 2825.319 40.9 -0.8 10.0 1.3 3.0 0.0 H-Horn PΚ 0.0 40.1 74.0 -33.9 2825 319 40.7 1.2 V-Horn PK 39 9 -0.8 347 0 3.0 0.0 0.0 74 0 -34 1 1210.851 26.8 -8.0 195.0 3.4 3.0 0.0 H-Horn ΑV 0.0 18.8 54.0 -35.21210.851 26.8 -8.0 192.0 1.2 3.0 0.0 V-Horn ΑV 0.0 18.8 54.0 -35.2 2018.085 42.2 -3.7 46.0 3.0 3.0 0.0 V-Horn PΚ 0.0 38.5 74.0 -35.5

V-Horn

H-Horn

H-Horn

V-Horn

PΚ

PK

PK

0.0

0.0

0.0

0.0

38.0

37.9

35.5

74.0

74.0

74.0

74.0

-35.7

-36.0

-36.1

-38.5

0.0

0.0

0.0

0.0

2421.704

2421.704

2018.085

1614.468

40.6

40.3

41.6

41.4

-2.3

-2.3

-3.7

-5.9

156.0

152.0

60.0

196.0

1.2

1.3

1.2

1.2

3.0

3.0

3.0

3.0

							External			Distance			Compared to
F	req	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(M	IHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	1614.468	41.1	-5.9	243.0	1.3	3.0	0.0	H-Horn	PK	0.0	35.2	74.0	-38.8
	1210.851	40.7	-8.0	192.0	1.2	3.0	0.0	V-Horn	PK	0.0	32.7	74.0	-41.3
	1210.851	40.6	-8.0	195.0	3.4	3.0	0.0	H-Horn	PK	0.0	32.6	74.0	-41.4

NORTHWEST RADIATED EMISSIONS DATA SHEET **EMC** EUT: Cylos DR-T Work Order: BIOT0009 Date: 06/10/05 Serial Number: 76020147 Customer: BIOTRONIK, Inc. Temperature: 23 Attendees: Brian Sutton Humidity: 42% Cust. Ref. No. Barometric Pressure 29.95 Tested by: Holly Ashkannejhad Power: Battery Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 95.635:2004 Method: TIA/EIA-603:1998 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation COMMENTS EUT vertical in test fixture at 1.5m height **EUT OPERATING MODES** Fransmitting Single channel DEVIATIONS FROM TEST STANDARD No deviations RESULTS Pass Other Holy Saligh Tested By: 120.0 100.0 80.0 dBuV/m 60.0 40.0 20.0 0.0 10.000 100.000 1000.000 MHz External Distance Compared to Spec. Limit Amplitude Factor Azimuth Height Distance Polarity Freq Attenuation Detector Adjustment Adjusted dBuV/m (dB) (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m (MHz) H-Bilog QP 807.555 23.2 -0.2 213.0 2.0 3.0 0.0 0.0 23.0 46.0 -23.0 806.904 23.2 -0.3 311.0 1.2 3.0 0.0 V-Bilog QΡ 0.0 22.9 46.0 -23.1 401.750 22.6 -5.1 278.0 2.6 3.0 0.0 H-Bilog QP 0.0 17.5 46.0 -28.5 V-Bilog 401.750 22.6 32.0 QΡ 17.5 46.0 -28.5 -5.1 3.0 3.0 0.0 0.0 405.250 22.6 -5.1 106.0 1.6 3.0 0.0 V-Bilog QΡ 0.0 17.5 46.0 -28.5

H-Bilog

0.0

3.0

3.5

QΡ

0.0

17.5

46.0

-28.5

405.250

22.6

-5.1

179.0

RADIATED EMISSIONS DATA SHEET **EMC** EUT: Cylos DR-T Work Order: BIOT0009 Serial Number: 76020147 Date: 06/10/05 Customer: BIOTRONIK, Inc. Temperature: 23 Attendees: None Humidity: 42% Barometric Pressure 29.95 Cust. Ref. No. Tested by: Holly Ashkannejhad Power: Battery Job Site: EV01 Specification: FCC 15.247(d) Spurious Radiated Emissions:2005-04 Method: ANSI C63.4:2003 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation COMMENTS EUT vertical in test fixture at 1.5m height **EUT OPERATING MODES** Fransmitting Single channel **DEVIATIONS FROM TEST STANDARD** No deviations RESULTS Pass Other Holy Soling Tested By: 0.08 70.0 60.0 50.0 dBuV/m 40.0 30.0 20.0 10.0 0.0 1000.000 1500.000 2000.000 2500.000 3000.000 3500.000 4000.000 4500.000 5000.000 MHz External Distance Compared to Amplitude Height Distance Spec, Limit Frea Factor Azimuth Attenuation Polarity Detector Adjustment Adjusted (dBuV) (dB) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) (degrees) 3228.936 26.5 0.8 20.0 3.0 0.0 H-Horn ΑV 0.0 27.3 54.0 -26.7 3228.936 26.5 8.0 201.0 1.3 0.0 H-Horn ΑV 0.0 27.3 -26.7 2825.319 26.8 -0.8 114.0 3.0 H-Horn ΑV 26.0 -28.0 1.5 0.0 0.0 2825.319 26.8 -0.8 288.0 1.7 3.0 0.0 V-Horn ΑV 0.0 26.0 54.0 -28.0 2421.704 26.8 -2.3 30.0 0.0 H-Horn ΑV 24.5 -29.5 3.5 3.0 0.0 54.0 2421.704 26.8 -2.3 284.0 3.0 0.0 V-Horn 24.5 -29.5 1.2 ΑV 0.0 54.0 2018.085 27.3 -3.7246.0 1.3 3.0 0.0 H-Horn ΑV 0.0 23.6 54.0 -30.42018.085 27.3 -3.7 315.0 1.2 3.0 0.0 V-Horn ΑV 0.0 23.6 54.0 -30.4 1614.468 27.1 -5.9 155.0 1.9 3.0 0.0 H-Horn ΑV 0.0 21.2 54.0 -32.8 1614.468 27.0 -5.9 229.0 3.0 0.0 V-Horn 0.0 21.1 54.0 -32.9 1.6 ΑV 3228.936 40.2 0.8 201.0 1.3 3.0 0.0 H-Horn 0.0 41.0 74.0 -33.0 3228.936 PΚ 40.9 40.1 0.8 20.0 1.3 3.0 0.0 H-Horn 0.0 74.0 -33.1 2825.319 40.4 -0.8 114.0 1.5 3.0 0.0 H-Horn PΚ 0.0 39.6 74.0 -34.42825 319 40.0 288.0 1.7 V-Horn PK 39 2 -34 8 -0.8 3.0 0.0 0.0 74 0 1210.851 26.9 -8.0 101.0 1.5 3.0 0.0 H-Horn ΑV 0.0 18.9 54.0 -35.11210.851 26.9 -8.0 167.0 1.1 3.0 0.0 V-Horn ΑV 0.0 18.9 54.0 -35.1 2421.704 40.6 -2.3 284.0 1.2 3.0 0.0 V-Horn PΚ 0.0 38.3 74.0 -35.7 2421.704 40.2 3.5 H-Horn 37.9 -2.3 30.0 3.0 0.0 0.0 74.0 -36.1

1614.468

2018.085

2018.085

43.1

40.6

40.2

-5.9

-3.7

-3.7

229.0

246.0

315.0

1.6

1.3

1.2

3.0

3.0

3.0

0.0

0.0

0.0

V-Horn

H-Horn

V-Horn

PΚ

PK

PK

0.0

0.0

0.0

37.2

36.9

36.5

74.0

74.0

74.0

-36.8

-37.1

-37.5

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
1614.468	40.6	-5.9	155.0	1.9	3.0	0.0	H-Horn	PK	0.0	34.7	74.0	-39.3
1210.851	40.3	-8.0	101.0	1.5	3.0	0.0	H-Horn	PK	0.0	32.3	74.0	-41.7
1210.851	40.3	-8.0	167.0	1.1	3.0	0.0	V-Horn	PK	0.0	32.3	74.0	-41.7