

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No .: KES-RF-15T0006 Page (1) of (18)

TEST REPORT

Part 15E

Equipment under test System Control Unit

Model name FXRS-03A

FCC ID PFRFXRS-03A

Trade mark

vieworks

Applicant Vieworks Co., Ltd.

Manufacturer Vieworks Co., Ltd.

Date of test(s) 2015.01.19 ~ 2015.01.23

Date of issue 2015.01.29

Issued to

Vieworks Co., Ltd.

41-3, Burim-ro 170beon-gil, Dongan-gu, Anyang-si,

Gyeonggi-do, Republic of KOREA

Tel: +82-70-4496-1860 / Fax: +82-31-386-8631

Issued by

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si,

Gyeonggi-do,431-716, Korea

473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by:	Report approval by:
when c	2 colley
Kwang-Yeol Choo / Test engineer	Jeff Do / Technical manager

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0006 Page (2) of (18)

Revision history

Revision	Date of issue	Test report No.	Description
-	2015.01.29	KES-RF-15T0006	Initial

KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0006 Page (3) of (18)

TABLE OF CONTENTS

1.	General i	nformation	4
	1.1.	EUT description	4
	1.2.	Test frequency	4
	1.3.	Information about derivative model	
	1.4.	Device modifications.	4
	1.5	Device information	4
	1.6.	Test facility	5
	1.7.	Laboratory accreditations and listings	
	1.8.	Directional antenna gain for MIMO (correlated)	5
2.1	Sun	nmary of tests	6
2.2	Wo	rst-Case and Mode	6
3.	Test resu	lts	7
	3.1	Radiated spurious emissions.	7
		Measurement equipment	
		Test setup photo	

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (4) of (18)

1. General information

1.1. EUT description

Equipment under test	System Control Unit			
Model name	FXRS-03A			
Serial number	N/A			
Frequency range 2 412 MHz ~ 2 462 MHz(802.11b/g/n_HT20), 2 422 MHz ~ 2 452 MHz(802.11n_H 5 745 MHz ~ 5 825 MHz(802.11a/n_HT20), 5 755 MHz ~ 5 795 MHz(802.11n_H 5 180 MHz ~ 5 240 MHz(802.11a/n_HT20), 5 190 MHz ~ 5 230 MHz(802.11n_H 5 180 MHz ~ 6 240 MHz(802.11a/n_HT20), 5 190 MHz ~ 5 230 MHz(802.11n_H 5 180 MHz ~ 6 240 MHz(802.11a/n_HT20), 5 190 MHz ~ 6 240 MHz(802.11n_H 5 180 MHz ~ 6 240 MHz(802.11a/n_HT20), 5 190 MHz ~ 6 240 MHz(802.11n_H 5 180 MHz ~ 6 240 MHz(802.11a/n_HT20), 5 190 MH				
Modulation technique	CCK(dBPSK, DQPSK), OFDM (BPSK, QPSK, 16QAM, 64QAM)			
Number of channels	2 412 MHz ~ 2 462 MHz(802.11b/g/n_HT20) : 11 ch 2 422 MHz ~ 2 452 MHz(802.11n_HT40) : 7 ch 5 745 MHz ~ 5 825 MHz(802.11a/n_HT20) : 5 ch 5 755 MHz ~ 5 795 MHz(802.11n_HT40) : 2 ch 5 180 MHz ~ 5 240 MHz(802.11a/n_HT20) : 4 ch 5 190 MHz ~ 5 230 MHz(802.11n_HT40) : 2 ch			
Antenna type	Dipole antenna(SMA)			
Power source	120 V ac / 60 Hz			
Note	Contains transmitter Module. (FCC ID : RYK-WPEA-121N) - Contains transmitter Module does not use DFS band. - Duty cycle is > 98%			

1.2. Test frequency

	Low channel	Middle channel	High channel	Mode	
Frequency (Mb)	5 180	5 220	5 240	802.11a/n_HT20	
	5 190	-	5 230	802.11n_HT40	

1.3. Information about derivative model

N/A

1.4. Device modifications

N/A

1.5 Device information

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (5) of (18)

1.6. Test facility

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,431-716, Korea 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

The open area test site is constructed in conformance with the requirements ANSI C63.4-2003/2009.

1.7. Laboratory accreditations and listings

Country	Agency	Scope of accreditation	Certificate No.
USA	FCC	3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.	343818
KOREA	KC	EMI (10 meter Open Area Test Site and two conducted sites) Radio (3 & 10 meter Open Area Test Sites and one conducted site)	KR0100
CANADA	IC	3 & 10 meter Open Area Test Sites and one conducted site	4769B-1

1.8. Directional antenna gain for MIMO (correlated)

Model: JK-450B

ANT1 Gain (dBi)	ANT2 Gain (dBi)	Total Gain (dBi)	Note
2.6	2.6	5.61	For 5.2 GHz

⁻Ant Gain = $G_{ANT} + 10 \log(N)$

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (6) of (18)

2.1 Summary of tests

FCC Part Sections	Parameter	Test results
15.205 15.209	Radiated spurious emission	Pass
15.407(b)	Undesirable emission	Pass

Test procedures;

The measurement procedures described in the American National Standard for Methods of Measurem ent of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2003/2009), the guidance provided in KDB 558074 D01 v03r02, KDB 662911 D01 v02r01 were used in the measurement of the EUT.

2.2 Worst-Case and Mode

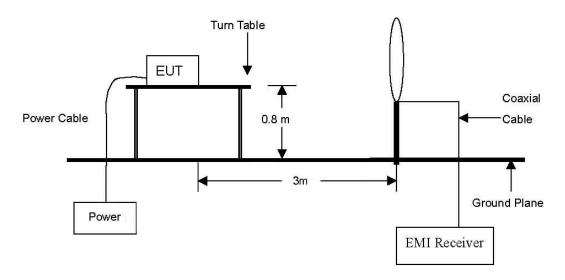
The worst-case data rates are determined to be as follows for each mode, based on the investigation s

by measuring the average power, peak power across all the data rates. all tests were made with following data rates:

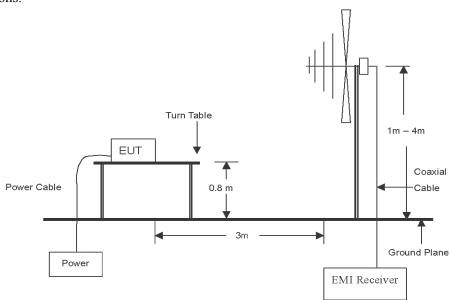
802.11a mode : 6 Mbps. 802.11n HT20 mode : MCS8. 802.11n HT40 mode : MCS8.

The EUT antenna has been tested in X, Y and Z axis.

The worst case position is Y-axis(below 1^{GHz}), Y-axis(above 1^{GHz}). Each axis were recorded in this re port.

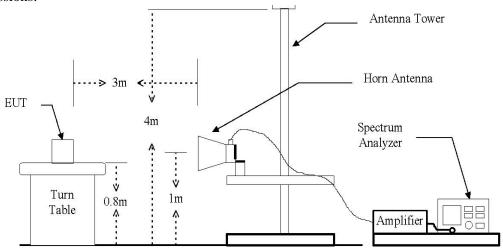

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (7) of (18)

3. Test results


3.1 Radiated spurious emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (8) of (18)

Test procedure

Radiated emissions from the EUT were measured according to the dictates in section 12.0 of KDB 558074 D01 v03r02 and ANSI C63.4-2003/2009

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site or open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 10½, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. During performing radiated emission above 1 0½, the EUT was set 3 meter away from the interference receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from 1 meter to 4 meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- 6. If the emission level of the EUT in peak mode was 10 dBlower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have10 dB margin would be retested one by one using peak,quasi-peak or average method as specified and then reported in a data sheet

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (9) of (18)

Note.

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

The spectrum analyzer is set to:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 200 Hz for Quasi-peak detection (QP) at frequency below 9 kHz~150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 9 kHz for Quasi-peak detection (QP) at frequency below 150 kHz~30 MHz.
- 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
- 4. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb and video bandwidth is 3 Mb for Peak detection at frequency above 1 Gb.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1 GHz. (Detect mode: RMS(power), Averaging 100)

To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (10) of (18)

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2 400 / F(kHz)
0.490 ~ 1.705	30	24 000 / F(kllz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72\,$ Mb, $76 \sim 88\,$ Mb, $174 \sim 216\,$ Mb or $470 \sim 806\,$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections $15.231\,$ and $15.241.\,$

According to 15.205(a), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

According to 15.205(b), Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 Mb, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 Mb, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (11) of (18)

According to 15.407(b),

- (b) Undesirable emission limits: Except as shown in paragraph (b)(6) of this section, the peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz.
- (2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/Mtz. Devices operating in the 5.25–5.35 GHz band that generate emissions in the 5.15–5.25 GHz band must meet all applicable technical requirements for operation in the 5.15–5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of –27 dBm/Mtz in the 5.15–5.25 GHz band.
- (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dB m/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 Mb. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 Mb.

*EIRP[dBm] = E[dB μ V/m] - 95.2 EIRP of -27 dBm/M ν = 68.3 dB μ V/m (3m)

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (12) of (18)

Test results (Below 30 Mb)

The frequency spectrum from 9 kHz to 30 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB.

Radiated	emissions	nissions Ant. Correction factors		Total	Liı	nit		
Frequency (MHz)	Reading (dBµV)	Pol.	Ant. factor (dB/m)	u u			Limit (dBµV/m)	Margin (dB)
Not detected for below 30 MHz								

Note.

- 1. All spurious emission at channels are almost the same below 30 Mz, so that 802.11a 5180 Mz were chosen at representative in final test.
- 2. Actual = Reading + Ant. factor + Cable loss + F_d
- 3. $F_d = 40 \log(D_m / D_s)$

Where:

 F_d = Distance factor in dB

 D_m = Measurement distance in meters

 D_s = Specification distance in meters

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (13) of (18)

Test results (Below 1 000 Mb)

The frequency spectrum from 30 Mz to 1 000 Mz was investigated. Emission levels are not reported much lower than the limits by over 20 dB.

802.11a / 5180 Mbz

Radiated	emissions	Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dBµV)	Pol.	Ant. factor (dB/m)	Cable loss (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
51.347	21.260	V	13.570	1.640	36.470	40.000	3.530
198.915	19.020	V	9.980	3.440	32.440	43.500	11.060
247.345	19.530	Н	11.650	3.850	35.030	46.000	10.970

- 1. All spurious emission at channels are almost the same below 1 000 Mb, so that 802.11a 5180 Mb were chosen at representative in final test.
- 2. Actual = Reading + Ant. factor + Cable loss
- 3. Detector mode: Quasi peak
- 4. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (14) of (18)

Test results (Above 1 000 Mb)

The frequency spectrum from 1 GHz to 25 GHz and 40 GHz was investigated. No Emissions were found above 20 dB below the limit.

802.11a / 5180 Mbz

Ra	Radiated emissions		Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4807.76	34.59	PK	Н	13.57	-	48.16	74.00	25.84
5000.04	38.76	PK	V	14.84	-	53.60	74.00	20.40
10359.00	30.79	PK	Н	31.08	-	61.87	74.00	12.13
10359.00	19.24	AV	V	31.08	-	50.32	54.00	3.68
10359.00	29.90	PK	Н	31.08	-	60.98	74.00	13.02
10359.00	19.08	AV	V	31.08	-	50.16	54.00	3.84

802.11a / 5220 Mb

Radiated emissions		Ant.	Correction factors		Total	Limit		
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10440.00	29.75	PK	Н	31.40	-	61.15	74.00	12.85
10440.00	18.85	AV	V	31.40	-	50.25	54.00	3.75
10440.00	30.42	PK	Н	31.40	-	61.82	74.00	12.18
10440.00	18.93	AV	V	31.40	-	50.33	54.00	3.67

802.11a / 5240 Mb

Ra	diated emission	ons	Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10480.00	30.90	PK	Н	31.56	-	62.46	74.00	11.54
10480.00	19.06	AV	V	31.56	-	50.62	54.00	3.38
10480.00	30.28	PK	Н	31.56	-	61.84	74.00	12.16
10480.00	19.32	AV	V	31.56	-	50.88	54.00	3.12

- 2. Radiated emissions measured in frequency above 1 000 Mz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + AFCL(Ant. factor Amp. gain + Cable loss) + DCF(Duty cycle Correction Factor)+Distance
- 5. DCF(Duty cycle Correction Factor) = $10\log(1/\text{Duty cycle})$

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (15) of (18)

802.11n_HT20 / 5180 Mb

Ra	diated emission	ons	Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4809.26	35.20	PK	Н	13.58	-	48.78	74.00	25.22
4883.33	36.49	PK	V	14.07	-	50.56	74.00	23.44
10360.00	30.91	PK	Н	31.09	-	62.00	74.00	12.00
10360.00	19.12	AV	V	31.09	-	50.21	54.00	3.79
10360.00	29.57	PK	Н	31.09	-	60.66	74.00	13.34
10360.00	19.45	AV	V	31.09	-	50.54	54.00	3.46

802.11n HT20 / 5220 Mbz

Radiated emissions		Ant.	Correction factors		Total	Limit		
Frequency (Mtz)	Reading (dBµV)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10440.00	30.87	PK	Н	31.40	-	62.27	74.00	11.73
10440.00	19.19	AV	V	31.40	-	50.59	54.00	3.41
10440.00	29.65	PK	Н	31.40	-	61.05	74.00	12.95
10440.00	18.64	AV	V	31.40	-	50.04	54.00	3.96

802.11n_HT20 / 5240 Mb

Radiated emissions An		Ant.	Correction factors		Total	Limit		
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10480.00	29.25	PK	Н	31.56	-	60.81	74.00	13.19
10480.00	18.93	AV	V	31.56	-	50.49	54.00	3.51
10480.00	30.54	PK	Н	31.56	-	62.10	74.00	11.90
10480.00	19.37	AV	V	31.56	-	50.93	54.00	3.07

- 2. Radiated emissions measured in frequency above 1 000 Mz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + AFCL(Ant. factor Amp. gain + Cable loss) + DCF(Duty cycle Correction Factor)+Distance
- 5. DCF(Duty cycle Correction Factor) = $10\log(1/\text{Duty cycle})$

C-3701, Simin-daero 365-40l, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (16) of (18)

802.11n_HT40 / 5190 Mb

Ra	Radiated emissions Ant. Correction factors		Total	Liı	nit			
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4892.06	36.54	PK	Н	14.13	-	50.67	74.00	23.33
4909.34	35.20	PK	V	14.24	-	49.44	74.00	24.56
10380.00	29.95	PK	Н	31.17	-	61.12	74.00	12.88
10380.00	18.81	AV	V	31.17	-	49.98	54.00	4.02
10380.00	30.09	PK	Н	31.17	-	61.26	74.00	12.74
10380.00	18.88	AV	V	31.17	-	50.05	54.00	3.95

802.11n HT40 / 5230 Mbz

Radiated emissions		Ant.	Correction factors		Total	Limit		
Frequency (Mb)	Reading (dBµN)	Detector mode	Pol.	AFCL (dB)	DCF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
10460.00	29.82	PK	Н	31.48	-	61.30	74.00	12.70
10460.00	19.07	AV	V	31.48	-	50.55	54.00	3.45
10460.00	30.62	PK	Н	31.48	-	62.10	74.00	11.90
10460.00	18.53	AV	V	31.48	-	50.01	54.00	3.99

- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + AFCL(Ant. factor Amp. gain + Cable loss) + DCF(Duty cycle Correction Factor)+Distance
- 5. DCF(Duty cycle Correction Factor) = 10log(1/Duty cycle)

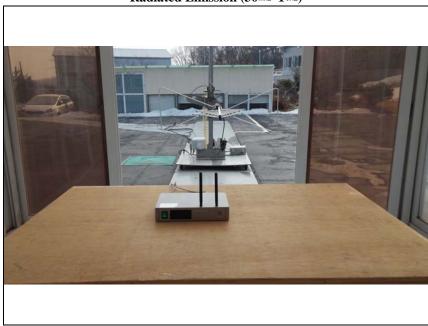
KES Co., Ltd.C-3701, Simin-daero 365-401,
Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-15T0006 Page (17) of (18)

Appendix A Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum analyzer	R&S	FSV30	101389	1 year	2015.04.30
Spectrum analyzer	Agilent	N9010A	MY51440103	1 year	2016.01.26
Power Meter	Anritsu	ML2495A	1438001	1 year	2015.09.24
Pulse Power Sensor	Anritsu	MA2411B	1339205	1 year	2015.10.03
Vector signal generator	R&S	SMBV100A	1407.6004K02	1 year	2015.07.24
8360B Series Swept Signal Generator	НР	83630B	3844A00786	1 year	2015.04.30
Loop antenna	R&S	HFH2- Z2.335.4711.52	826532	2 years	2015.04.25
Trilog-broa ^{dB} and antenna	Schwarzbeck	VULB 9168	9168-385	2 years	2015.05.09
Horn antenna	A.H.	SAS-571	414	2 years	2015.02.28
Horn antenna	Schwarzbeck	BBHA 9170	BBHA9170551	2 years	2015.09.04
Preamplifier	HP	8447F	2805A02570	1 year	2015.04.30
Preamplifier	HP	8449B	3008A00538	1 years	2015.07.23
Preamplifier	Schwarzbeck	BBV 9721	9721-003	1 years	2015.09.04
Attenuator	HP	8494B	2630A12857	1 year	2015.04.30
EMI Test Receiver	R & S	ESVS10	826008/014	1 year	2015.04.04
EMI Receiver/Signal Analyzer	Narda S.T.S / PMM	PMM 9010F	020WW31006	1 year	2015.04.04
LISN	R & S	ENV216	101137	1 year	2015.02.21
HIGH PASS FILTER	WAINWRIGHT INSTRUMENT	WHNX6.0/26.5G- 6SS	1	1 year	2015.07.23
HIGH PASS FILTER	WAINWRIGHT INSTRUMENT	WHJS3000-10TT	1	1 year	2015.07.23
LOW PASS FILTER	WEINSCHEL	WLK1.0/18G-10TT	1	1 year	2015.07.23

Peripheral devices


Device	Manufacturer	Model No.	Serial No.
Desktop	DELL	DELL OPTIPLEX990	
Monitor	SAMSUNG	LS23C340	ZXPCHTMFB01032M
Adapter	11ssan Elecom(shen yang) Co., Ltd.	A2514_DPN	CN07BN4400591 BSK28F6NF841
Mouse	Logitech	M-U0026	1248HS021ZRS
Keyboard	Logitech	Y-S0002	-

C-3701, Simin-daero 365-401, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-15T0006 Page (18) of (18)

Appendix B. Test setup photo

Radiated Emission (30MHz~1GHz)

Radiated Emission (Above 1942)

