Calibration Laboratory of Schmid & Partner Engineering AG Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Nemko (Dymstec) Accreditation No.: SCS 108 C Certificate No: D2450V2-774_Apr12 #### **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 774 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: Drimany Standarda April 25, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) 10 4 | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|--|---| | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | ID# | Check Date (in house) | Scheduled Check | | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | Name | Function | Signature | | Jeton Kastrati | Laboratory Technician | felle | | Katja Pokovic | Technical Manager | W QC 11st | | | US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati | GB37480704 05-Oct-11 (No. 217-01451) US37292783 05-Oct-11 (No. 217-01451) SN: 5058 (20k) 27-Mar-12 (No. 217-01530) SN: 5047.2 / 06327 27-Mar-12 (No. 217-01533) SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) SN: 601 04-Jul-11 (No. DAE4-601_Jul11) ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-11) 100005 04-Aug-99 (in house check Oct-11) US37390585 S4206 18-Oct-01 (in house check Oct-11) Name Function Jeton Kastrati Laboratory Technician | Cal Data (Cautificate Na) Issued: April 25, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-774_Apr12 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.6 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | none; | (ERHH) | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.7 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 50.8 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.89 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 mW /g ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 1.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | Service . | 1222 | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 12.8 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.8 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | Ч | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.95 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 mW / g ± 16.5 % (k=2) | #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.0 Ω + 3.7 j Ω | |--------------------------------------|--------------------------------| | Return Loss | - 25.6 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | $51.2 \Omega + 4.3 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 27.0 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.152 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length
is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | January 20, 2005 | #### **DASY5 Validation Report for Head TSL** Date: 25.04.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 774 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.361 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 26.115 mW/g SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.89 mW/g Maximum value of SAR (measured) = 16.4 mW/g 0 dB = 16.4 mW/g = 24.30 dB mW/g Certificate No: D2450V2-774_Apr12 #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 25.04.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 774 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.224 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 26.051 mW/g SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.95 mW/g Maximum value of SAR (measured) = 16.8 mW/g 0 dB = 16.8 mW/g = 24.51 dB mW/g #### Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS (Dymstec) Accreditation No.: SCS 108 Certificate No: D5GHzV2-1130 Jul12 #### CALIBRATION CERTIFICATE Object D5GHzV2 - SN: 1130 Calibration procedure(s) QA CAL-22.v1 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: July 02, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|--| | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | US37292783 | | Oct-12 | | SN: 5058 (20k) | | Apr-13 | | SN: 5047.2 / 06327 | 수선생님이 가입하는 이렇게 되었다면 하는 사람들이 되었다면 하는 사람이 하는데 | Apr-13 | | SN: 3503 | 강하다가 하시다는 이렇게 가게 가는 그렇게 살아가는 아들이 가지 않는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하 | Dec-12 | | SN: 901 | 05-Jun-12 (No. DAE4-901_Jun12) | Jun-13 | | ID# | Check Date (in house) | Scheduled Check | | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | 100005 | | In house check: Oct-13 | | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check; Oct-12 | | Name | Function | Cimpatura | | Israe El-Naouq | Laboratory Technician | Signature | | | | Isrew El-Daoug | | Katja Pokovic | Technical Manager | 00 m | | | GB37480704
US37292783
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 901
ID #
MY41092317
100005
US37390585 S4206
Name
Israe El-Naouq | GB37480704 05-Oct-11 (No. 217-01451) US37292783 05-Oct-11 (No. 217-01451) SN: 5058 (20k) 27-Mar-12 (No. 217-01530) SN: 5047.2 / 06327 27-Mar-12 (No. 217-01533) SN: 3503 30-Dec-11 (No. EX3-3503_Dec11) SN: 901 05-Jun-12 (No. DAE4-901_Jun12) ID # Check Date (In house) MY41092317 18-Oct-02 (in house check Oct-11) 100005 04-Aug-99 (in house check Oct-11) US37390585 S4206 18-Oct-01 (in house check Oct-11) Name Function Israe El-Naouq Laboratory Technician | Issued: July 3, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5500 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.6 ± 6 % | 4.53 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.25 mW / g | |
SAR for nominal Head TSL parameters | normalized to 1W | 82.3 mW/g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 2.37 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 mW /g ± 19.5 % (k=2) | #### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.2 ± 6 % | 4.82 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.68 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 86.5 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.48 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 mW / g ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 5.14 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.17 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 81.4 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.33 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 mW / g ± 19.5 % (k=2) | # Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.0 ± 6 % | 5.37 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.57 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 75.1 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.11 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 mW / g ± 19.5 % (k=2) | # Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.5 ± 6 % | 5.76 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | ### SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.94 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 78.7 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.20 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.8 mW / g ± 19.5 % (k=2) | # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.0 ± 6 % | 6.16 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.53 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 74.7 mW / g ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.08 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 mW / g ± 19.5 % (k=2) | #### Appendix #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 51.3 Ω - 8.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.3 dB | | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 52.5 Ω - 3.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.0 dB | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 56.2 Ω - 2.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.9 dB | | #### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 51.3 Ω - 6.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.0 dB | | #### Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 53.5 Ω - 1.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.5 dB | | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 57.8 Ω - 0.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.8 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.204 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 08, 2011 | #### DASY5 Validation Report for Head TSL Date: 02.07.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1130 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.53$ mho/m; $\epsilon_r = 35.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.82$ mho/m; $\epsilon_r = 35.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.14$ mho/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 30.12.2011, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2011, ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn901; Calibrated: 05.06.2012 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.320 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 30.540 mW/g SAR(1 g) = 8.25 mW/g; SAR(10 g) = 2.37 mW/g Maximum value of SAR (measured) = 18.4 mW/g Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.390 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 34.226 mW/g SAR(1 g) = 8.68 mW/g; SAR(10 g) = 2.48 mW/g Maximum value of SAR (measured) = 19.9 mW/g Dipole Calibration for Head Tissue/Pin=100mW,
dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.462 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 33.777 mW/g SAR(1 g) = 8.17 mW/g; SAR(10 g) = 2.33 mW/g Maximum value of SAR (measured) = 19.1 mW/g 0 dB = 19.1 mW/g = 25.62 dB mW/g # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 29.06.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1130 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=5.37$ mho/m; $\epsilon_r=47$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=5.76$ mho/m; $\epsilon_r=46.5$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=6.16$ mho/m; $\epsilon_r=46$; $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2011, ConvF(4.43, 4.43, 4.43); Calibrated: 30.12.2011, ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn901; Calibrated: 05.06.2012 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.928 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 30.342 mW/g SAR(1 g) = 7.57 mW/g; SAR(10 g) = 2.11 mW/g Maximum value of SAR (measured) = 18.1 mW/g Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.679 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 34.309 mW/g SAR(1 g) = 7.94 mW/g; SAR(10 g) = 2.2 mW/g Maximum value of SAR (measured) = 19.5 mW/g Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.550 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 35.601 mW/g SAR(1 g) = 7.53 mW/g; SAR(10 g) = 2.08 mW/g Maximum value of SAR (measured) = 19.1 mW/g # Impedance Measurement Plot for Body TSL #### **Extended Dipole Calibrations** Referring to KDB 450824, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance(within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. <Justification of the extended calibration> | D2450V2 – Serial No. 774 | | | | | | | | | | | | | |--------------------------|------------------------|--------------|----------------------------|----------------|---------------------------------|----------------|------------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | 2450 Head | | | | | | 2450 | Body | | | | | | Date of
Measurement | Return
Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | Return
Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 04/25/2012 | -25.637 | | 54.021 | | 3.6660 | | -27.033 | | 51.178 | | 4.3457 | | | 04/25/2013 | -25.924 | -1.12 | 53.856 | 0.165 | 3.1250 | 0.541 | -27.340 | -1.14 | 50.941 | 0.237 | 3.8216 | 0.5241 | | | D5GHzV2 – Serial No. 1130 | | | | | | | | | | | | |------------------------|---------------------------|--------------|----------------------------|----------------|---------------------------------|----------------|------------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | | 5200 Head | | | | | | 5200 | Body | | | | | | Date of
Measurement | Return
Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | Return
Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 07/02/2012 | -21.294 | | 51.279 | | -8.6602 | | -24.029 | | 51.291 | | -6.2500 | | | 07/02/2013 | -21.579 | -1.34 | 50.941 | 0.338 | -8.9024 | 0.2422 | -24.417 | -1.61 | 50.942 | 0.349 | -6.5108 | 0.2608 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Calibration date: KES (Dymstec) Accreditation No.: SCS 108 S C S Certificate No: DAE4-1344 Nov13 # Object DAE4 - SD 000 D04 BM - SN: 1344 Calibration procedure(s) QA CAL-06.v26 Calibration procedure for the data acquisition electronics (DAE) This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. November 21, 2013 Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 01-Oct-13 (No:13976) | Oct-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 07-Jan-13 (in house check) | In house check: Jan-14 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 07-Jan-13 (in house check) | In house check: Jan-14 | Calibrated by: Name Function Signature Fine Hainfeld Technician Approved by: Fin Bomholt Deputy Technical Manager Issued: November 21, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1344_Nov13 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. #### **DC Voltage Measurement** A/D - Converter Resolution nominal | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.586 ± 0.02% (k=2) | 404.936 ± 0.02% (k=2) | 405.129 ± 0.02% (k=2) | | Low Range | 3.98839 ± 1.50% (k=2) | 3.97329 ± 1.50% (k=2) | 3.99355 ± 1.50% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 134.5°±1° | |---|-----------| |---|-----------| Certificate No: DAE4-1344_Nov13 Page 3 of 5 #### **Appendix** 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------------|-----|--------------|-----------------|-----------| | Channel X + In | put | 199993.74 | -2.06 | -0.00 | | Channel X + In | put | 19997.67 | -2.07 | -0.01 | | Channel X - Inp | out | -20000.36 | 1.26 | -0.01 | | Channel Y
+ In | put | 199994.17 | -1.39 | -0.00 | | Channel Y + In | put | 19998.67 | -1.19 | -0.01 | | Channel Y - Inp | out | -19999.65 | 1.80 | -0.01 | | Channel Z + In | put | 199995.85 | 0.19 | 0.00 | | Channel Z + In | put | 19997.84 | -1.92 | -0.01 | | Channel Z - Inp | out | -20003.94 | -2.41 | 0.01 | | Reading (µV) | Difference (μV) | Error (%) | | |--------------|--|---|--| | 1999.82 | -0.21 | -0.01 | | | 201.08 | 0.54 | 0.27 | | | -199.03 | 0.26 | -0.13 | | | 1999.94 | -0.21 | -0.01 | | | 200.84 | 0.19 | 0.09 | | | -200.20 | -0.89 | 0.45 | | | 1999.80 | -0.36 | -0.02 | | | 198.84 | -1.84 | -0.92 | | | -200.09 | -0.78 | 0.39 | | | | 201.08
-199.03
1999.94
200.84
-200.20
1999.80
198.84 | 201.08 0.54 -199.03 0.26 1999.94 -0.21 200.84 0.19 -200.20 -0.89 1999.80 -0.36 198.84 -1.84 | | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -1.00 | -2.96 | | | - 200 | 4.67 | 2.83 | | Channel Y | 200 | -6.87 | -6.95 | | | - 200 | 6.00 | 5.66 | | Channel Z | 200 | -25.69 | -25.77 | | | - 200 | 24.03 | 23.86 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | -0.00 | -4.31 | | Channel Y | 200 | 7.08 | N#1 | 0.25 | | Channel Z | 200 | 9.42 | 4.77 | - | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16356 | 16440 | | Channel Y | 15507 | 15751 | | Channel Z | 15637 | 16536 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.24 | -1.28 | 1.81 | 0.61 | | Channel Y | -0.38 | -1.67 | 0.79 | 0.41 | | Channel Z | -1.30 | -2.73 | -0.05 | 0.51 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S Client Nemko (Dymstec) Certificate No: EX3-3947 Oct13 # CALIBRATION CERTIFICATE Object EX3DV4 - SN:3947 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: October 9, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 28-Dec-12 (No. ES3-3013_Dec12) | Dec-13 | | DAE4 | SN: 660 | 4-Sep-13 (No. DAE4-660_Sep13) | Sep-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-15 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 9, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossarv: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,v,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization o o rotation around probe axis Polarization 8 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3947_Oct13 Page 2 of 11 EX3DV4 - SN:3947 October 9, 2013 # Probe EX3DV4 SN:3947 Manufactured: July 24, 2013 Calibrated: October 9, 2013 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3947_Oct13 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu
V/(V/m)^2)^A$ | 0.48 | 0.34 | 0.52 | ± 10.1 % | | DCP (mV) ^B | 95.0 | 103.3 | 100.2 | 2 10.1 70 | Modulation Calibration Parameters | DID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 162.5 | ±3.0 % | | | | Y | 0.0 | 0.0 | 1.0 | | 133.0 | | | | | Z | 0.0 | 0.0 | 1.0 | | 167.9 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 2450 | 39.2 | 1.80 | 7.63 | 7.63 | 7.63 | 0.53 | 0.70 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.49 | 5.49 | 5.49 | 0.30 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.26 | 5.26 | 5.26 | 0.30 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 5.11 | 5.11 | 5.11 | 0.30 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.92 | 4.92 | 4.92 | 0.30 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.82 | 4.82 | 4.82 | 0.35 | 1.80 | ± 13.1 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 2450 | 52.7 | 1.95 | 7.59 | 7.59 | 7.59 | 0.59 | 0.67 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.88 | 4.88 | 4.88 | 0.35 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.70 | 4.70 | 4.70 | 0.35 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.27 | 4.27 | 4.27 | 0.40 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.92 | 3.92 | 3.92 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.40 | 4.40 | 4.40 | 0.40 | 1.90 | ± 13.1 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3947 October 9, 2013 # **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | | | Mechanical Surface Detection Mode | -39.4 | | Optical Surface Detection Mode | enabled | | | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | | 1 mm | | Recommended Measurement Distance from Surface | 2 mm |