TEST REPORT

Applicant:	Circus World Displays Ltd.		
Address of Applicant:	4080 Montrose Road, Niagara Falls, Ontario Canada, L2H, 1J9		
Manufacturer:	First Audio Manufacturing (Guangzhou) Ltd.		
Address of Manufacturer:	Tanbu Fidek Industrial Zone, Huadu District, Guangzhou, China		
Product name:	High Performance Bluetooth Music System		
Model:	Fi70		
Rating(s):	120Vac, 60Hz, 280W		
Trademark:	FLUANCE		
Standards:	FCC Part 15.247 :2013 RSS-247 Issue 1		
FCC ID:	PEKFI70		
IC :	4593A-F170		
Data of Receipt:	2015-09-15		
Date of Test:	2015-09-15~2015-10-13		
Date of Issue:	2015-10-14		
Test Result	Pass*		

* In the configuration tested, the test item complied with the standards specified above.

Authorized for issue by: AB Reviewed by: Test by: S 11 Jumy 9iu Oct.14, 2015 Oct.14, 2015 Jumy Qiu Pauler Project Manager Project Engineer Name/Position Signature Name/Position Signature Date Date

Possible test case	e verdicts:	
test case does not	apply to the test object:	N/A
test object does m	eet the requirement:	P (Pass)
test object does no	ot meet the requirement:	F (Fail)
Testing Laborato	ry information:	
Testing Laboratory	v Name:	I-Test Laboratory
Address	::	1-2 floor, South Block, Building A2 , No 3 Keyan Lu, Science City, Guangzhou, Guangdong Province, P.R. China
Testing location	:	Same as above
Tel	:	0086-20-32209330
Fax	:	0086-20-62824387
E-mail	:	itl@i-testlab.com
General remarks:		

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report would be invalid test report without all the signatures of testing technician and approver. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

General product information:

1

1 Test Summary

Test	Test Requirement	Test method	Result
	FCC PART 15 C	FCC PART 15 C	
Antenna Requirement	section 15.247 (c) and Section 15.203	section 15.247 (c) and Section 15.203	PASS
Occupied Bandwidth (99% and -20dB)	FCC PART 15 C section 15.247 (a)(1); RSS 247 5.1 (1)	ANSI C63.10:2009 Clause 6.9 & DA 00-705	PASS
Carrier Frequencies Separated	FCC PART 15 C section 15.247(a)(1); RSS 247 5.1 (1)	DA 00-705	PASS
Hopping Channel Number	FCC PART 15 C section 15.247(a)(1)(iii) RSS 247 5.1 (4)	DA 00-705	PASS
Dwell Time	FCC PART 15 C section 15.247(a)(1)(iii); RSS 247 5.1 (4)	DA 00-705	PASS
Maximum Peak Output Power	FCC PART 15 C section 15.247(b)(1); RSS 247 5.4 (2)	ANSI C63.10:2009 Clause 6.10 & DA 00-705	PASS
Conducted Spurious Emission (30 MHz to 25 GHz)	FCC PART 15 C section 15.247(d); RSS 247 5.5	ANSI C63.10:2009 Clause 6.7 & DA 00-705	PASS
Radiated Spurious Emission (9 kHz to 25 GHz)	FCC PART 15 C section 15.247(d); RSS 247 5.5	ANSI C63.10:2009 Clause 6.4, 6.5 and 6.6 & DA 00-705	PASS
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205	ANSI C63.10:2009 Clause 6.9 & DA 00-705	PASS
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207; RSS GEN Table 2	ANSI C63.10:2009 Clause 6.2 & DA 00-705	PASS

N/A: not applicable. Refer to the relative section for the details.

EUT: In this whole report EUT means Equipment Under Test.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radio Frequency.

ANSI C63.10:2009 the detail version is ANSI C63.10:2009 in the whole report.

DA 00-705: "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems"

2 Contents

		Page
TEST RE	PORT	1
1 TES	T SUMMARY	
2 COM	ITENTS	4
	IERAL INFORMATION	
5 GEN		
3.1	CLIENT INFORMATION	
3.2	GENERAL DESCRIPTION OF E.U.T.	
3.3	DETAILS OF E.U.T.	
3.4	DESCRIPTION OF SUPPORT UNITS	
3.5	TEST LOCATION	
3.6	DEVIATION FROM STANDARDS	
3.7	ABNORMALITIES FROM STANDARD CONDITIONS	
3.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
3.9	TEST FACILITY	
3.10	MEASUREMENT UNCERTAINTY	6
4 INS	TRUMENTS USED DURING TEST	7
5 TES	T RESULTS	8
5.1	E.U.T. TEST CONDITIONS	
5.2	ANTENNA EQUIREMENT	
5.3	OCCUPIED BANDWIDTH	
5.4	CARRIER FREQUENCIES SEPARATED	
5.5	HOPPING CHANNEL NUMBER	
5.6	DWELL TIME	
5.7	MAXIMUM PEAK OUTPUT POWER	
5.8	CONDUCTED SPURIOUS EMISSIONS	
5.9	RADIATED SPURIOUS EMISSIONS	
5.9.	1 Harmonic and other spurious emissions	
5.10	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
5.11	BAND EDGES REQUIREMENT	
5.12	CONDUCTED EMISSIONS AT MAINS TERMINALS 150 KHZ TO 30 MHZ	
5.12	P.1 Measurement Data	

3 General Information

3.1 Client Information

Applicant:Circus World Displays Ltd.Address of Applicant:4080 Montrose Road, Niagara Falls, Ontario Canada, L2H, 1J9

3.2 General Description of E.U.T.

Name:	High Performance Bluetooth Music System
Model No.:	Fi70
Trade Mark:	FLUANCE
Operating Frequency:	2402 MHz to 2480 MHz for Bluetooth.
Channels:	79 channels with 1MHz step for Bluetooth
Type of Modulation	GFSK, ($\pi/4$) DQPSK, 8DPSK for Bluetooth
Dwell time	Per channel is less than 0.4s.
Antenna Type	PCB antenna
Antenna gain:	0 dBi
Speciality:	Bluetooth 2.1with EDR
Function:	Audio speaker system with Bluetooth function.

3.3 Details of E.U.T.

EUT Power Supply:	AC Power, Class II
Rated power:	120Vac, 60Hz, 280W
Test mode:	The program used to control the EUT for staying in continuous transmitting and
	receiving mode is programmed. Channel lowest (2402MHz), middle
	(2441MHz) and highest (2480MHz) are chosen for Bluetooth full testing.
	Normal mode: the Bluetooth has been tested on the Modulation of GFSK;
	EDR mode: the Bluetooth has been tested on the Modulation of (π /4)DQPSK
	and 8DPSK, compliance test and record the worst case on (π /4)DQPSK and
	8DPSK
Power cord:	Direct plug

3.4 Description of Support Units

The EUT has been tested as an independent unit for fixed frequency by testing lab.

3.5 Test Location

All tests were performed at:

I-Test Laboratory 1-2 floor, South Block, Building A2, No 3 Keyan Lu, Science City, Guangzhou, Guangdong Province, P.R. China 0086-20-32209330 itl@i-testlab.com No tests were sub-contracted.

3.6 Deviation from Standards

Biconical and log periodic antennas were used instead of dipole antennas.

3.7 Abnormalities from Standard Conditions

None.

3.8 Other Information Requested by the Customer

None.

3.9 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- CNAS(Lab code:L4957)
- FCC (Registration No.:935596)
- IC (Registration NO.:8368A)

3.10 Measurement Uncertainty

The below measurement uncertainties given below are based on a 95% confidence level (base on a coverage factor (k=2).)

Parameter	Uncertainty
Radio frequency	±1.06 x 10 ⁻⁷
total RF power, conducted	1.37 dB
RF power density , conducted	2.89 dB
All emissions, radiated	±3.35 dB
Temperature	±0.23 °C
Humidity	±0.3 %
DC and low frequency voltages	±0.3 %

4 Instruments Used during Test

No.	Test Equipment	Manufacturer	Model	Serial No.	Last Cal.	Cal. Due
ITL-114	Spectrum Analyzer	Agilent	N9010A	MY51250936	2015/01/19	2016/01/19
ITL-116	Pre Amplifier	HP	8447F	3113A05905	2015/01/19	2016/01/19
ITL-117	Wideband Amplifier Super Ultra	Mini-circuits	ZVA-183- S+	469101134	2015/01/19	2016/01/19
ITL-105	Biconilog Antenna	ETS•Lindgren	3142D	00108096	2015/01/24	2018/01/24
ITL-110	Horn Antenna	A-INFOMW	JXTXLB- 10180-N	J2031090612 133	2015/01/24	2018/01/24
ITL-102	EMI Test receiver	R&S	ESCI	100910	2015/06/23	2016/06/23
ITL-103	Two-line v- network	R&S	ENV216	100120	2015/06/23	2016/06/23
ITL-115	50Ω Coaxial Cable	Mini-circuits	CBL	C001	2015/09/07	2016/09/07
ITL-100	Semi-Anechoic chamber	ETS•Lindgren	FACT3 2.0	CT09015	2013/06/17	2016/06/17
ITL-145	Loop Antenna	ZHINAN	ZN30900 A	002489	2015/01/19	2016/01/19
ITL-146	Horn Antenna	Schwarzbeck	BBHA 9170	B09806543	2015/06/23	2016/06/23
ITL-101	Shielded Room	ETS•Lindgren	8*4*3	CT09010	2015/03/09	2018/03/09

5 Test Results

5.1 E.U.T. test conditions

Test Voltage:	Input: AC 120V, 60 Hz
Temperature:	20.0 -25.0 °C
Humidity:	38-50 % RH
Atmospheric Pressure:	1000 -1010 mbar
Test frequencies and frequency range:	According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

According to the 15.33 (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Frequency range in which	Number of	Location in frequency range
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1
	, , , , , , , , , , , , , , , , , , ,	near bottom

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range of radiated emission measurements

Lowest frequency generated	Upper frequency range of measurement		
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz,		
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to 100 GHz,		
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz,		

Channel	Frequency	Channel	Frequency	Channel	Frequency
	(MHz)		(MHz)		(MHz)
0	2402	11	2413	22	2424
1	2403	12	2414	23	2425
2	2404	13	2415	24	2426
3	2405	14	2416	25	2427
4	2406	15	2417	26	2428
5	2407	16	2418	27	2429
6	2408	17	2419	28	2430
7	2409	18	2420	29	2431
8	2410	19	2421	30	2432
9	2411	20	2422	31	2433
10	2412	21	2423	32	2434
33	2435	49	2451	65	2467
34	2436	50	2452	66	2468
35	2437	51	2453	67	2469
36	2438	52	2454	68	2470
37	2439	53	2455	69	2471
38	2440	54	2456	70	2472
39	2441	55	2457	71	2473
40	2442	56	2458	72	2474
41	2443	57	2459	73	2475
42	2444	58	2460	74	2476
43	2445	59	2461	75	2477
44	2446	60	2462	76	2478
45	2447	61	2463	77	2479
46	2448	62	2464	78	2480
47	2449	63	2465		
48	2450	64	2466		

EUT channels and frequencies list for Bluetooth:

Test frequencies are the lowest channel: 0 channel (2402 MHz), middle channel: 39 channel (2441 MHz) and highest channel: 78 channel (2480 MHz)

5.2 Antenna requirement

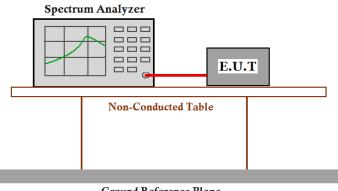
Standard requirement

15.203 requirement:

For intentional device. According to 15.203. an intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


EUT Antenna

The antenna is a PCB antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Test result: The unit does meet the FCC and RSS-247 requirements.

5 .3	CL Occupied Bandwidth	Page 11 of 90	Report No.: 15091691
	Test Requirement:	FCC Part 15 C section 15.247 and RSS-2	247
		(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.	
	Test Method:	ANSI C63.10:2009 Clause 6.9 & DA 00-7	
	Test Status:	Pre-test the EUT in continuous transmittin and highest channel with different data normal mode (DH5), EDR mode (2DH5) worst case was found.	package. Compliance test in

Test Configuration:

Ground Reference Plane

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: Span = approximately 2 to 3 times the 20dB bandwidth, centring on a hopping channel;
- 3. Set the spectrum analyzer: RBW >= 1% of the 20dB bandwidth VBW >= RBW. Sweep = auto; Detector Function = Peak. Trace = Max Hold.
- 4. Mark the peak frequency and -20dB points bandwidth.

Test result (-20dB bandwidth), For Bluetooth

Normal mode:

Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	1.12	0.747
Middle	1.12	0.747
Highest	1.12	0.747

EDR mode (2DH5):

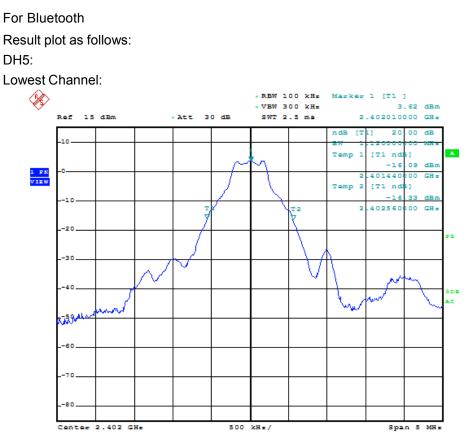
Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	1.37	0.913
Middle	1.37	0.913
Highest	1.38	0.920

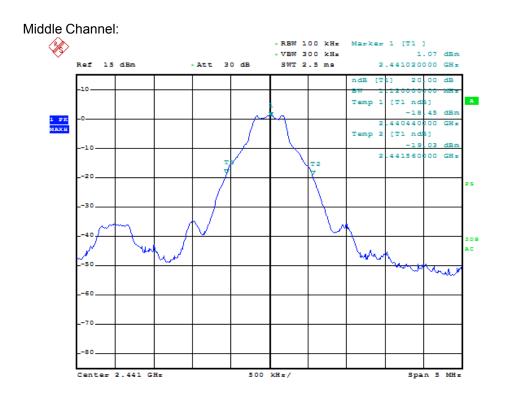
EDR mode (3DH5):

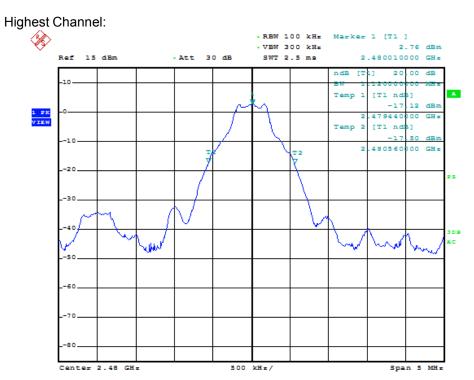
Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	1.33	0.887
Middle	1.33	0.887
Highest	1.33	0.887

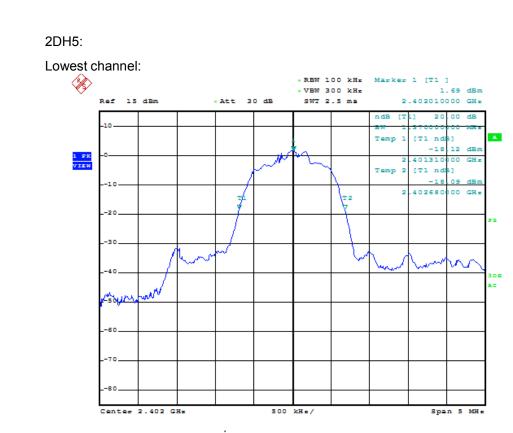
Test result (99% bandwidth)

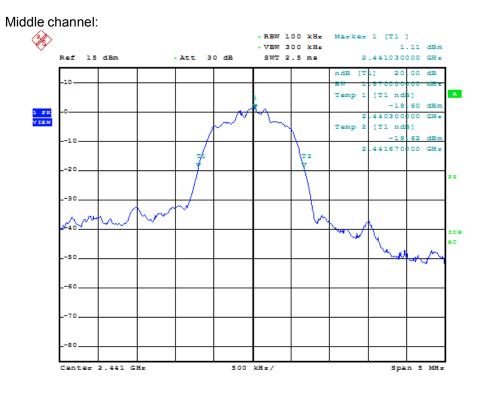
Normal mode:

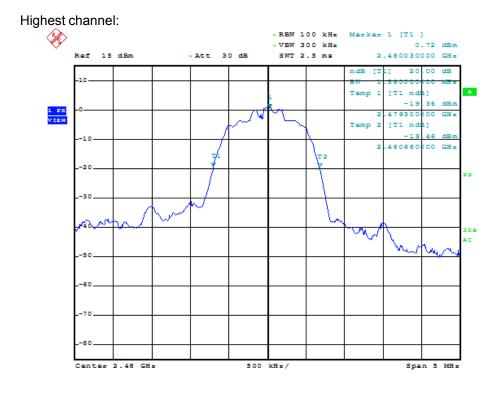

Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	0.97	0.647
Middle	0.96	0.640
Highest	0.96	0.640

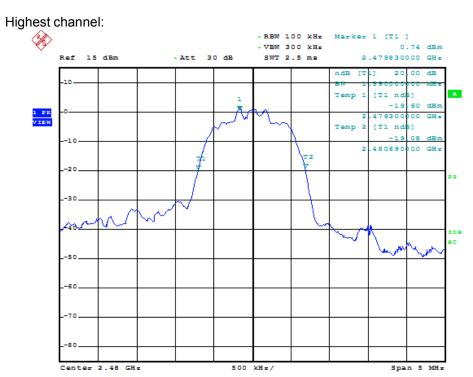

EDR mode (2DH5):

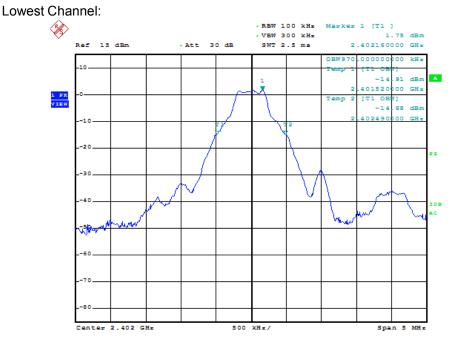

Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	1.21	0.807
Middle	1.22	0.813
Highest	1.22	0.813

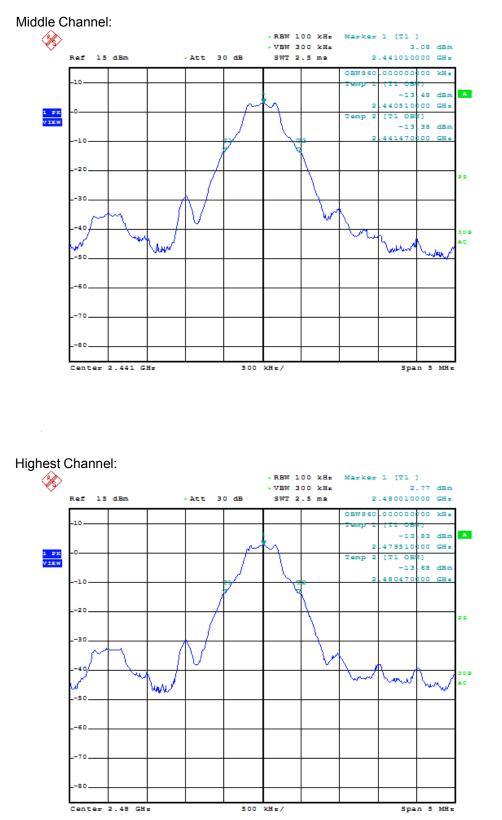

EDR mode (3DH5):

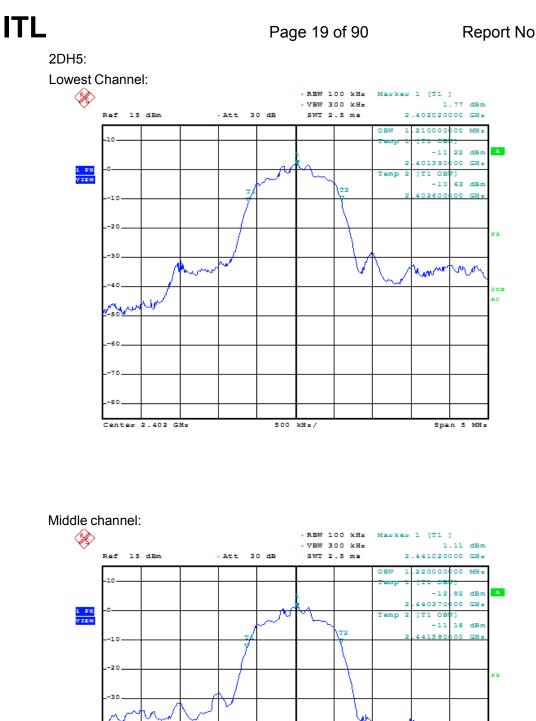

Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)
Lowest	1.22	0.813
Middle	1.22	0.813
Highest	1.22	0.813








500 kHz/

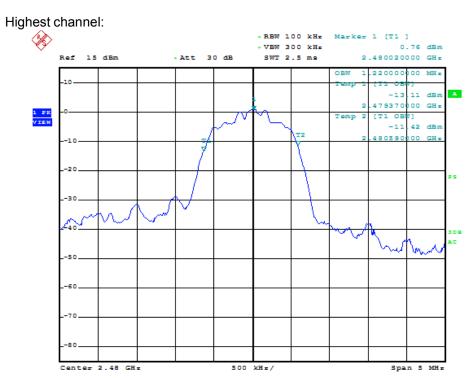

Span 5 MHz

Result plot as follows: 99% bandwidth DH5:

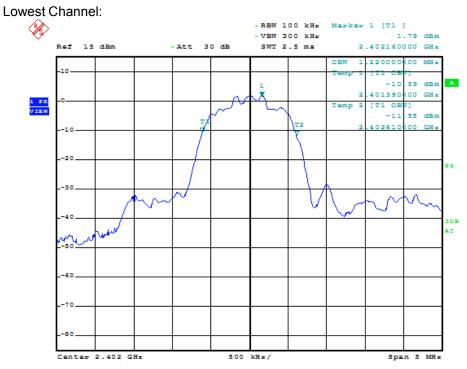
500 kHz/

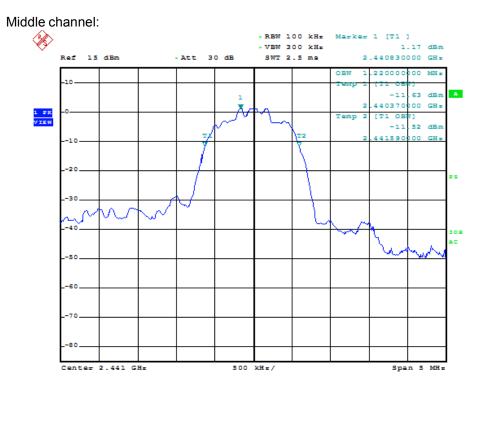
-50

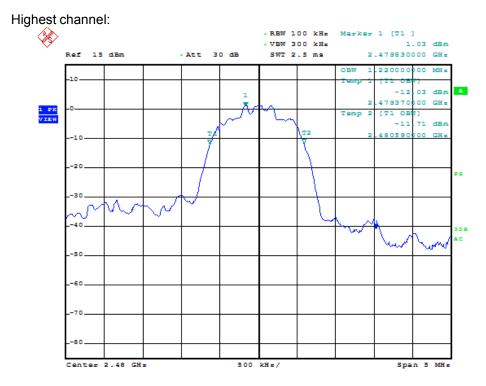
-60

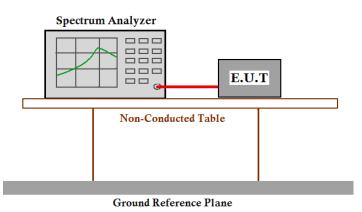

-80

Center 2.441 GHz


w


ac


Span 5 MHz


3DH5:

ITL 5.4 Carrier Frequencie	Page 22 of 90 es Separated	Report No.: 15091691
Test Requirement:	FCC Part 15 C section 15.247 and RSS-24 (a),(1) Frequency hopping systems sha frequencies separated by a minimum of 25 hopping channel, whichever is greater.	all have hopping channel carrier 5 kHz or the 20 dB bandwidth of the
	hopping channel, whichever is greater. systems operating in the 2400-2483.5 MH carrier frequencies that are separated by bandwidth of the hopping channel, wh systems operate with an output power no c	z band may have hopping channel 25 kHz or two-thirds of the 20 dB hichever is greater, provided the
Test Method:	DA 00-705	
Test Status:	Pre-test the EUT in continuous transm middle and highest channel with Compliance test in normal mode (DH5 EDR mode (3DH5) as the worst case wa	different data package. b), EDR mode (2DH5) and
Test Configuration:		

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW >= 1% of the span, VBW >= RBW,. Sweep = auto; Detector

Function = Peak. Trace = Max, hold.

 Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

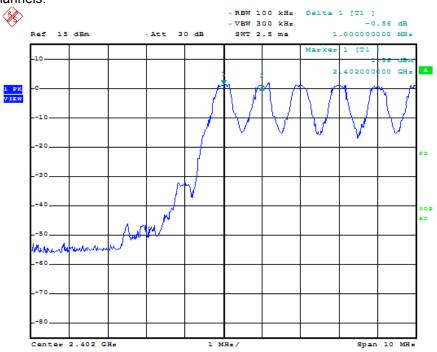
For Bluetooth

DH5

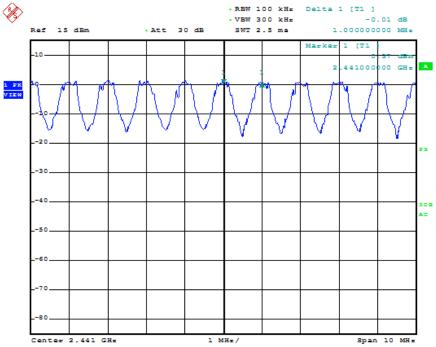
Test Channel	Carrier Frequencies Separated	Pass/Fail
Lower Channels (channel 0 and channel 1)	1.00MHz	Pass
Middle Channels (channel 39 and channel 40)	1.00MHz	Pass
Upper Channels (channel 77 and channel 78)	1.00MHz	Pass
Remark: The limit is maximum two-thirds of the 20 dB bandwidth: 0.747 MHz		

2DH5

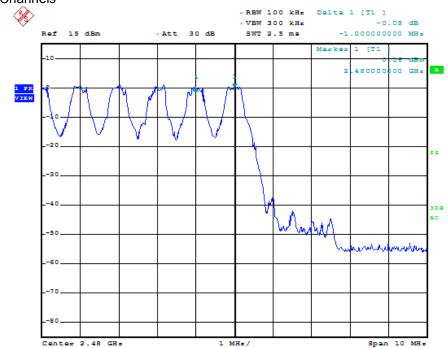
Test Channel	Carrier Frequencies Separated	Pass/Fail
Lower Channels (channel 0 and channel 1)	1.00MHz	Pass
Middle Channels (channel 39 and channel 40)	1.00MHz	Pass
Upper Channels (channel 77 and channel 78)	1.00MHz	Pass
Remark: The limit is maximum two-thirds of the 20 dB bandwidth: 0.920 MHz		


3DH5

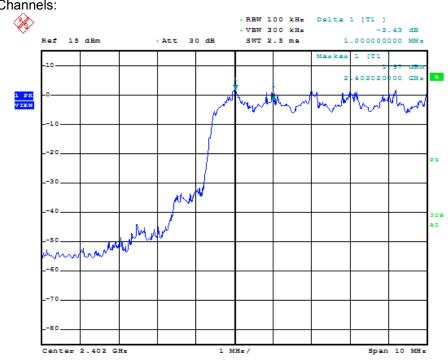
Test Channel	Carrier Frequencies Separated	Pass/Fail
Lower Channels (channel 0 and channel 1)	1.00MHz	Pass
Middle Channels (channel 39 and channel 40)	1.00MHz	Pass
Upper Channels (channel 77 and channel 78)	1.00MHz	Pass
Remark: The limit is maximum two-thirds of the 20 dB bandwidth: 0.887 MHz		


For Bluetooth Carrier Frequencies Separated plot:

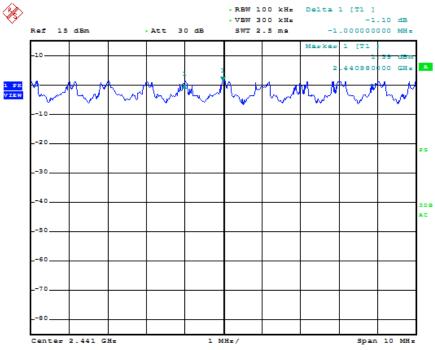
DH5

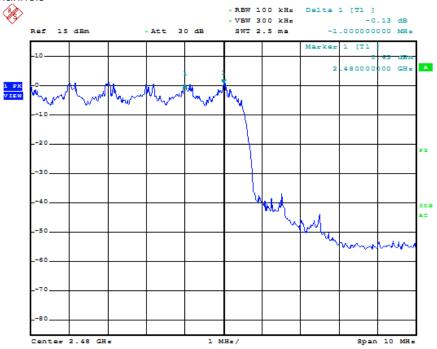

1. Lowest Channels:

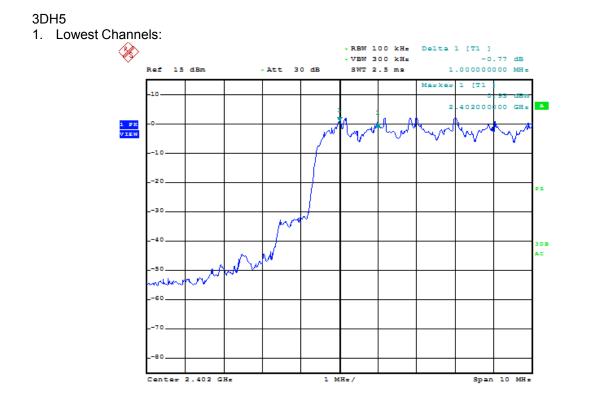
2. Middle Channels:



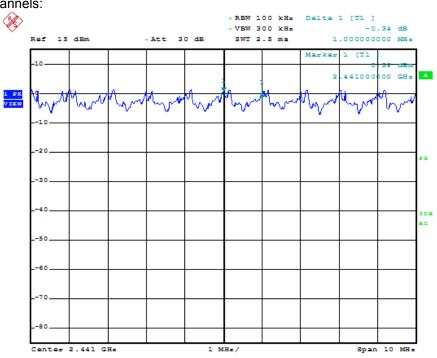
ITL 3. Highest Channels

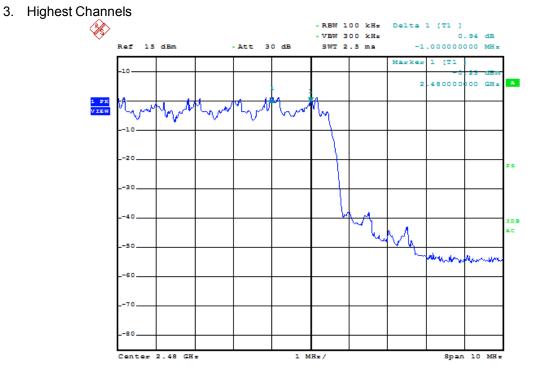




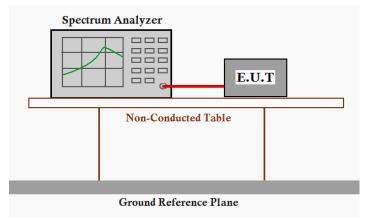


2. Middle Channels:




3. Highest Channels

2. Middle Channels:

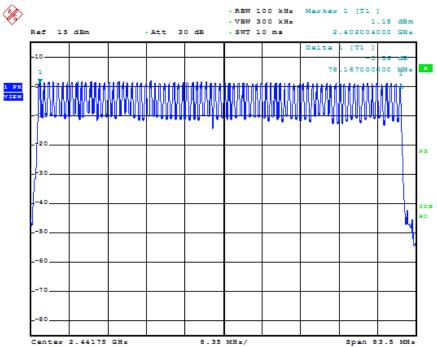


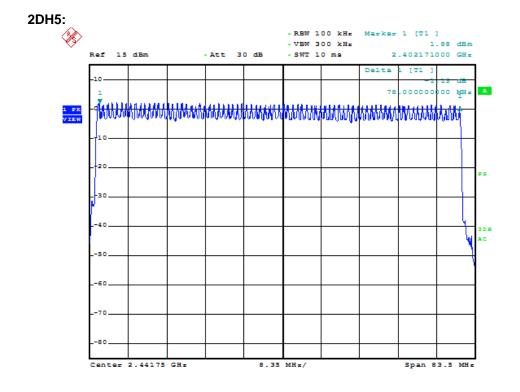
5.5 Hopping Channel Number

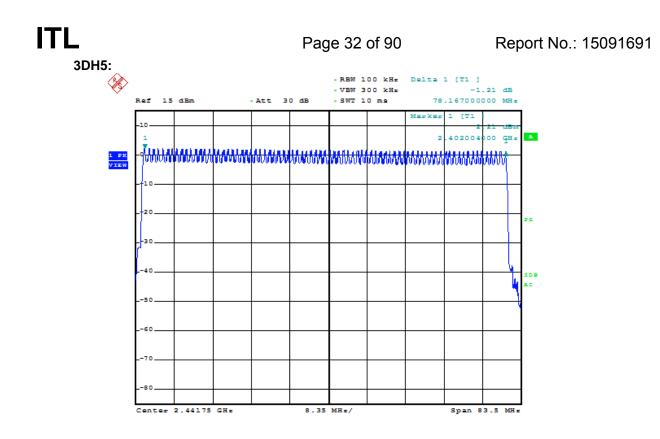
Test Requirement:	FCC Part15 C section 15.247 and RSS-247
	(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Method:	DA 00-705
Test Status:	Pre-test the EUT in hopping mode with different data packet. Compliance test
	in hopping with normal mode (DH5), EDR mode (2DH5) and EDR mode
	(3DH5) as the worst case was found.

Page 30 of 90

Test Configuration:

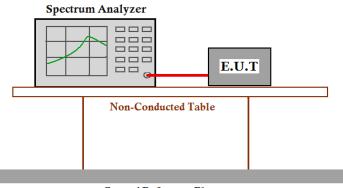



Test Procedure:


- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 300 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: start frequency = 2400 MHz. stop frequency = 2483.5 MHz. Submit the test result graph.

For Bluetooth

Test result: Total channels are 79 channels. **DH5:**


Test result: The unit does meet the FCC and RSS-247 requirements.

ITL 5.6 Dwell Time	Page 33 of 90
Test Requirement:	FCC Part 15 C section 15.247 and RSS-247

(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Method:DA 00-705Test Status:Pre-test the EUT in continuous transmitting mode at the lowest, middle and
highest channel with different data packet. Compliance test in hopping
with Normal mode (DH1, DH3 and DH5) and EDR mode (2DH1, 2DH3
and 2DH5; 3DH1, 3DH3 and 3DH5) as the worst case was found.

Test Configuration:

Ground Reference Plane

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.

2.Set spectrum analyzer span = 0. centered on a hopping channel;

3.Set RBW = 1 MHz and VBW = 3 MHz. Sweep = as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = View;

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.). Repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

Test Result:

For Bluetooth

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

1. Channel 0: 2.402GHz

DH1 time slot = 0.370(ms) * (1600/(2*79)) * 31.6 = 118.4msDH3 time slot = 1.650 (ms) * (1600/(4*79)) * 31.6 = 264.0msDH5 time slot = 2.900 (ms) * (1600/(6*79)) * 31.6 = 309.3ms

2. Channel 39: 2.441GHz

DH1 time slot = 0.370(ms) * (1600/(2*79)) * 31.6 = 118.4ms DH3 time slot = 1.660(ms) * (1600/(4*79)) * 31.6 = 265.4ms DH5 time slot = 2.900 (ms) * (1600/(6*79)) * 31.6 = 309.3ms

3. Channel 78: 2.480GHz

DH1 time slot = 0.370(ms) * (1600/(2*79)) * 31.6 = 118.4ms DH3 time slot = 1.660(ms) * (1600/(4*79)) * 31.6 = 265.4ms DH5 time slot = 2.910 (ms) * (1600/(6*79)) * 31.6 = 310.4ms

4. Channel 0: 2.402GHz

2DH1 time slot = 0.370(ms) * (1600/(2*79)) * 31.6 = 118.4ms 2DH3 time slot = 1.650 (ms) * (1600/(4*79)) * 31.6 = 264.0ms 2DH5 time slot = 1.700(ms) * (1600/(6*79)) * 31.6 = 181.3ms

5. Channel 39: 2.441GHz

2DH1 time slot = 0.410(ms) * (1600/(2*79)) * 31.6 = 131.2ms 2DH3 time slot = 1.670(ms) * (1600/(4*79)) * 31.6 = 267.0ms 2DH5 time slot = 1.710(ms) * (1600/(6*79)) * 31.6 = 182.4ms

6. Channel 78: 2.480GHz

2DH1 time slot = 0.400(ms) * (1600/(2*79)) * 31.6 = 127.9ms 2DH3 time slot = 1.660(ms) * (1600/(4*79)) * 31.6 = 265.4ms 2DH5 time slot = 1.710(ms) * (1600/(6*79)) * 31.6 = 182.4ms

7. Channel 0: 2.402GHz

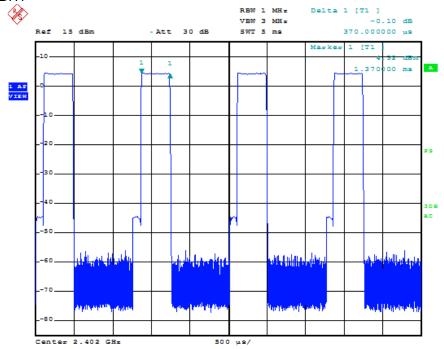
3DH1 time slot = 0.400(ms) * (1600/(2*79)) * 31.6 = 127.9ms 3DH3 time slot = 1.650 (ms) * (1600/(4*79)) * 31.6 = 264.0ms 3DH5 time slot = 2.900 (ms) * (1600/(6*79)) * 31.6 = 309.3ms

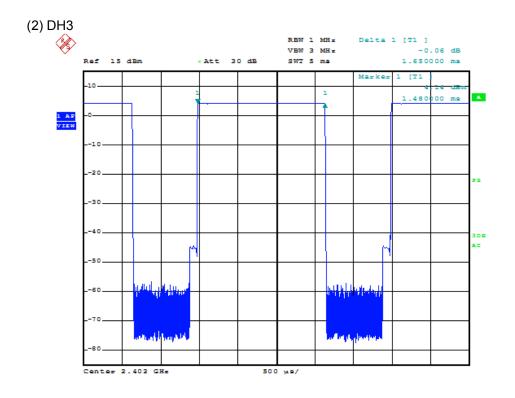
8. Channel 39: 2.441GHz

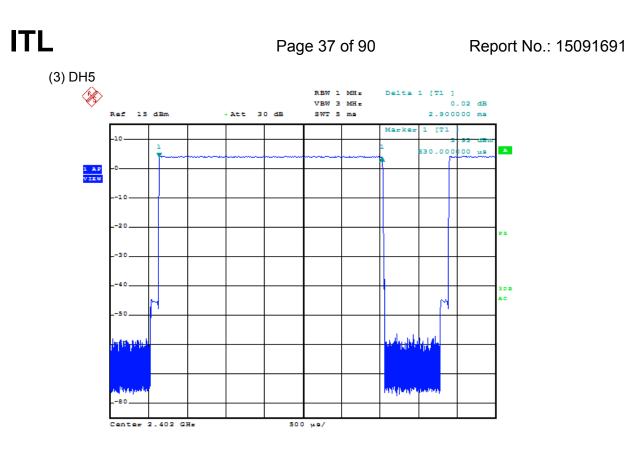
3DH1 time slot = 0.400(ms) * (1600/(2*79)) * 31.6 = 127.9ms 3DH3 time slot = 1.660(ms) * (1600/(4*79)) * 31.6 = 265.4ms 3DH5 time slot = 2.900 (ms) * (1600/(6*79)) * 31.6 = 309.3ms

9. Channel 78: 2.480GHz

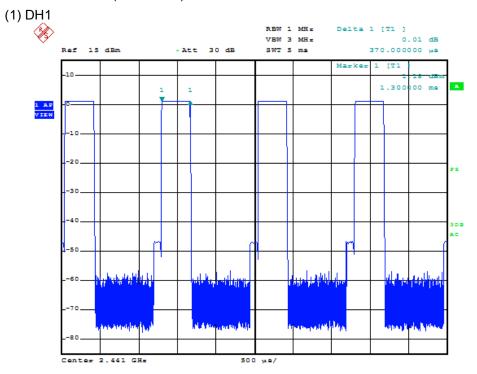
3DH1 time slot = 0.400(ms) * (1600/(2*79)) * 31.6 = 127.9ms 3DH3 time slot = 1.650 (ms) * (1600/(4*79)) * 31.6 = 264.0ms 3DH5 time slot = 2.910 (ms) * (1600/(6*79)) * 31.6 = 310.4ms

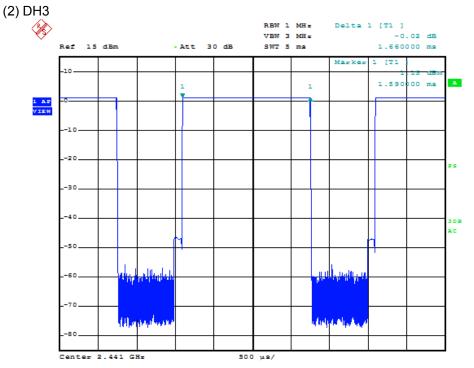

The results are not greater than 0.4 seconds

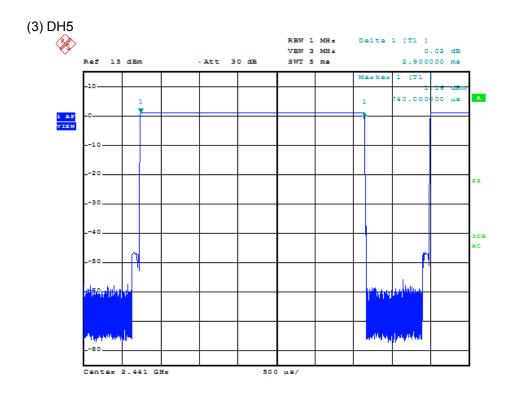

The unit does meet the FCC and RSS-247 requirements.

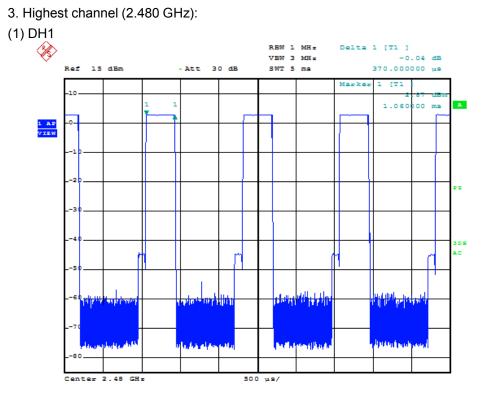

For Bluetooth

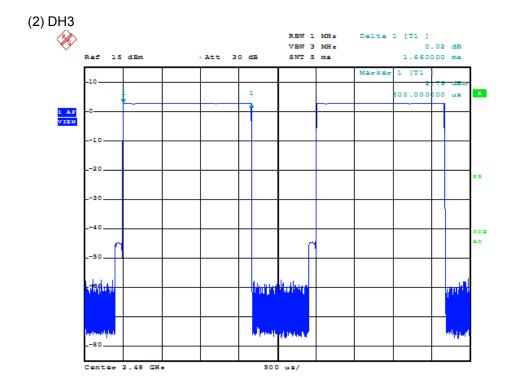
Please refer the graph as below:

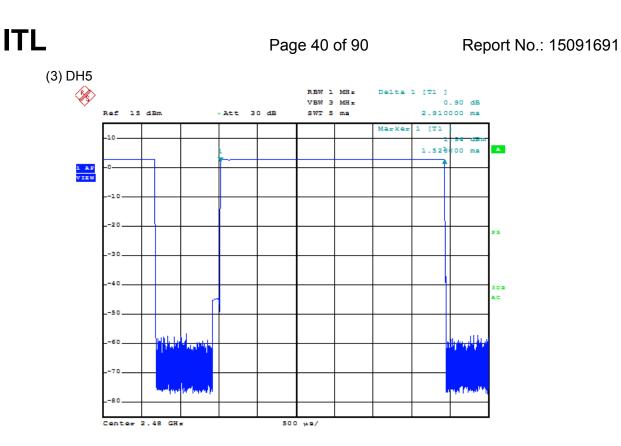

- 1. Lowest channel (2.402 GHz):
- (1) DH1

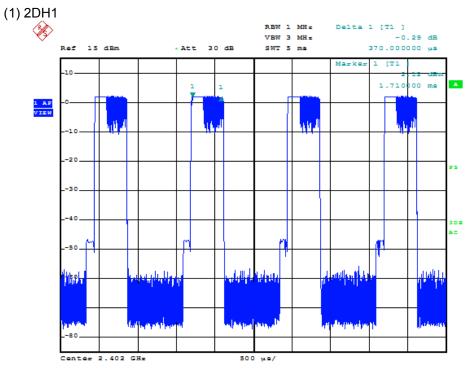


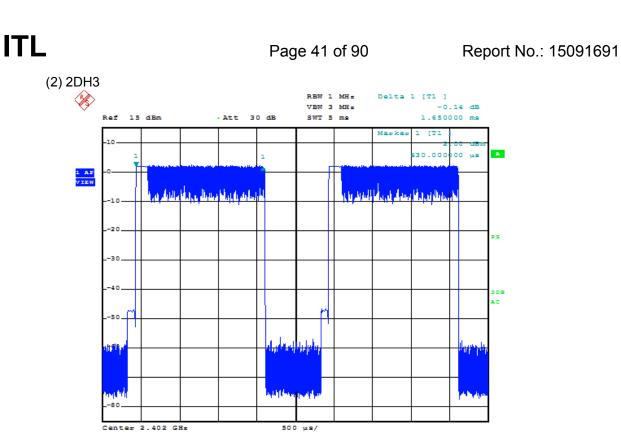


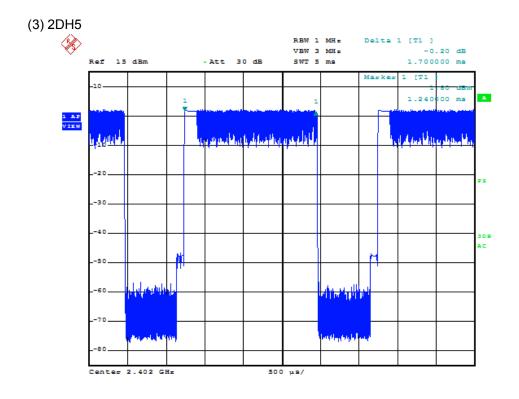

2. Middle channel (2.441 GHz):

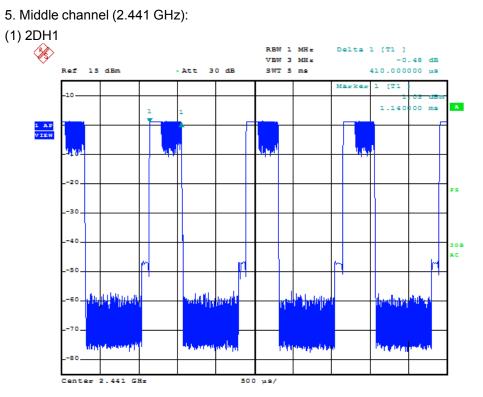


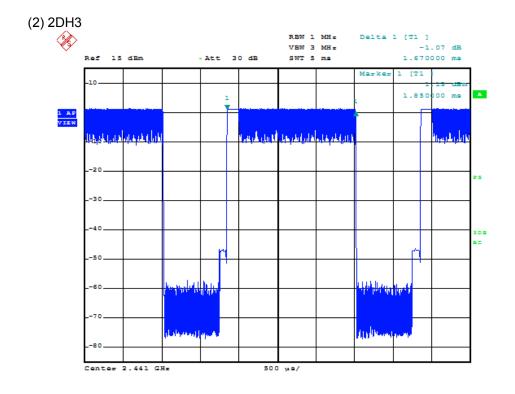


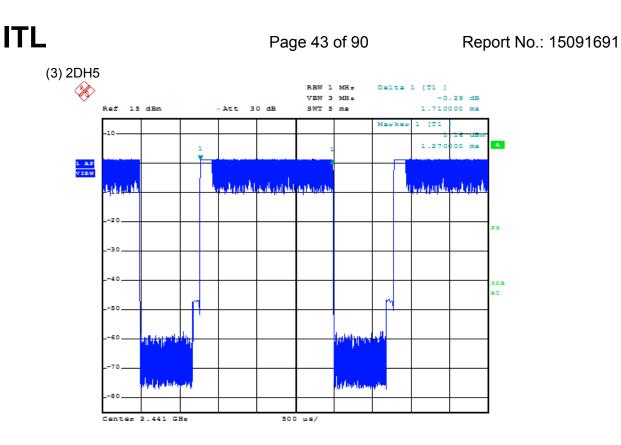


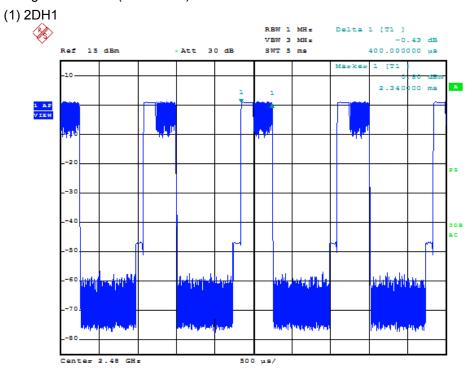


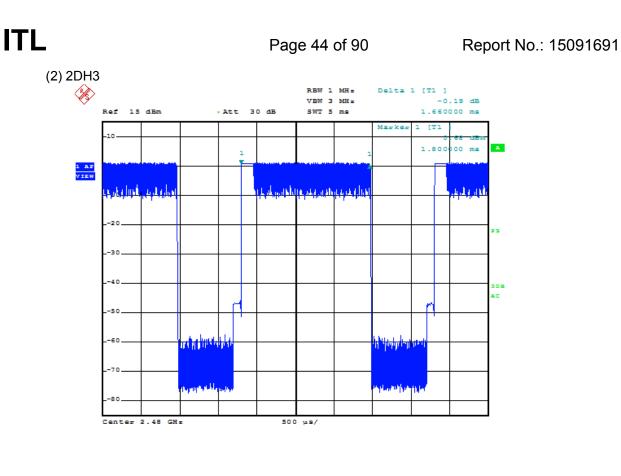


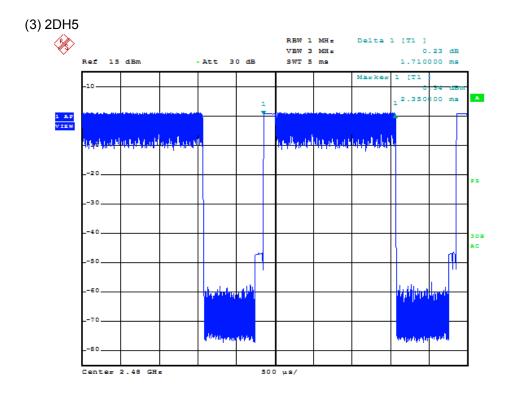


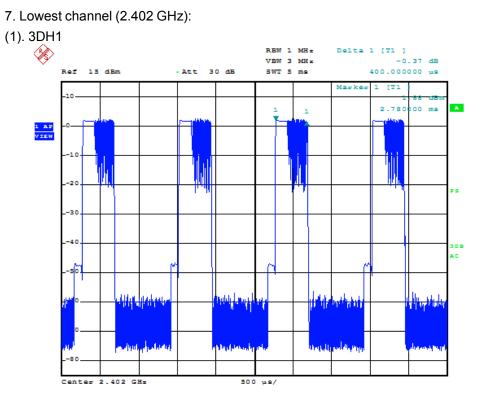

4. Lowest channel (2.402 GHz):

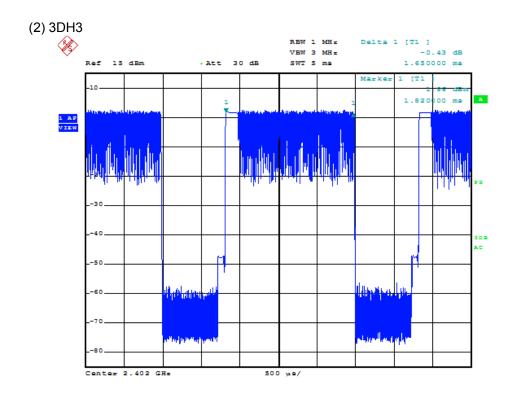


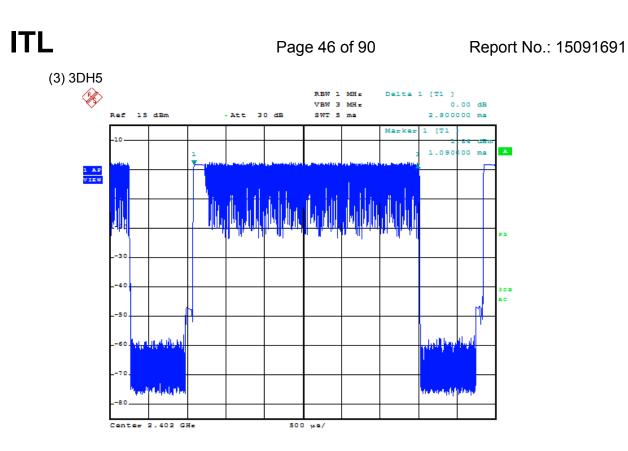


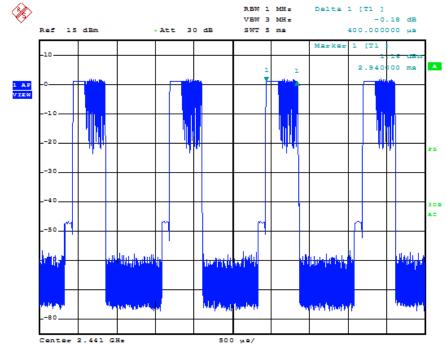


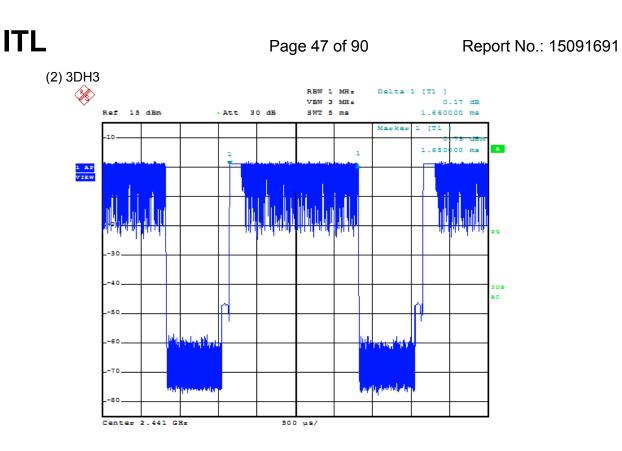


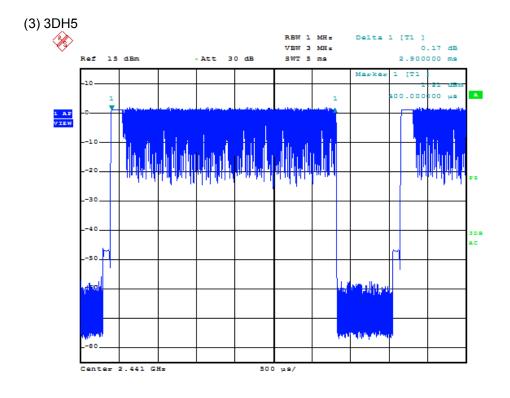


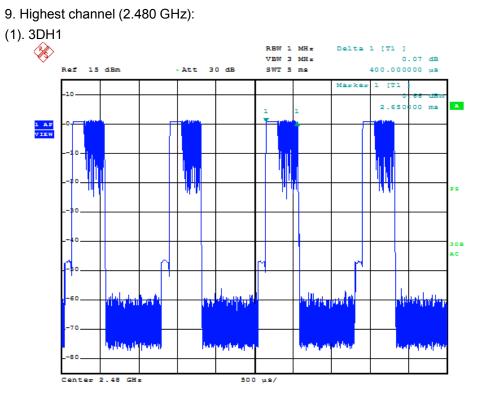

6. Highest channel (2.480 GHz):

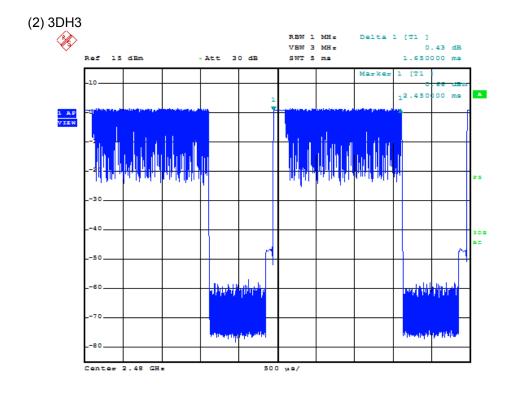


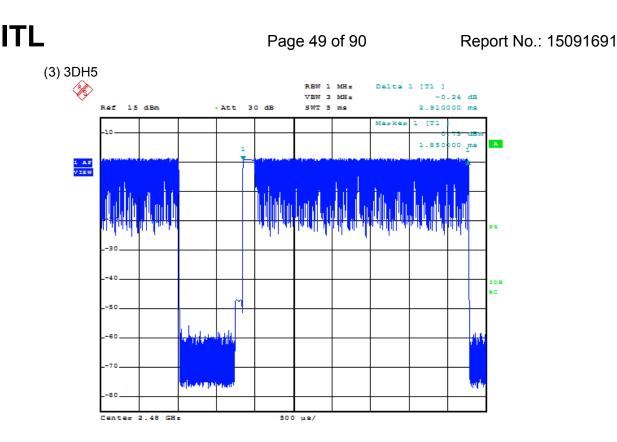







8. Middle channel (2.441 GHz):


(1). 3DH1



Remark:

In communication data link mode (expect inquiry or page mode) the hopping rate is 1600 per second, the 79 channels will be randomly selected for RF channel, and each channel have equal probability to be selected. The hop selection scheme is defined in Clause 2.6 of Part B of Volume

2 of core specification of Bluetooth.

The Dwell time must be calculated via following formula:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

Period = 0.4 (seconds/ channel) x 79 (channel) = 31.6 seconds

So

Dwell time DH1= slot time * (1600/2/79) * 31.6

Dwell time DH3= slot time * (1600/4/79) * 31.6

Dwell time DH5= slot time * (1600/6/79) * 31.6

The RF channel will remain fixed for duration of a packet, that means for DH3 packet the RF frequency will remain unchanged during 3 slots (1slot=1/1600=625us), and for DH5 packet the RF frequency will remain unchanged during 5 slots, illustrated the principle as below:

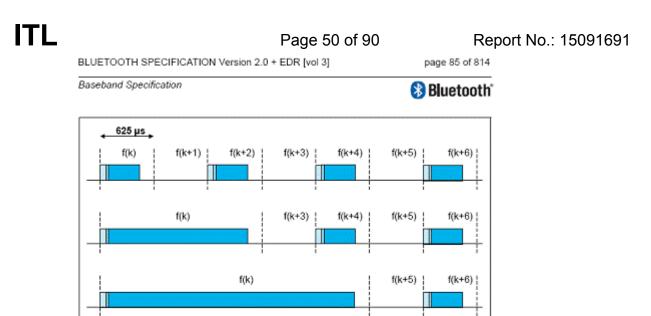


Figure 2.14: Single- and multi-slot packets.

Therefore, in a certain period for different packet types, the quantities of hops (not hopping rate 1600) are different, accurately, the quantity of hops for DH1 is double of DH3's and triple of DH5's. "for DH1 packet, 1 hop in 1 slot; for DH3 packet, ½ hop in 1 slot; for DH5 packet, 1/3 hop in 1 slot.", explained as below:

From the illustrated hopping scheme:

For DH1, in two slots, there are two hops, i.e. f(k) in Slot(k), f(k+1) in Slot(k+1), means DH1 1 hop in 1 slot;

For DH3, in four slots, there are two hops, i.e. f(k) in Slot(k) & Slot(k+1) & Slot(k+2), f(k+3) in

Slot(k+3), means DH3 2 hops in four slots -> $\frac{1}{2}$ hop in 1 slot; For DH5, in six slots, there are two hops, i.e. f(k) in Slot(k) & Slot(k+1) & Slot(k+2) & Slot(k+3) & Slot(k+4), f(k+5) in Slot(k+5), means DH3 2 hops in six slots -> 1/3 hop in 1 slot.

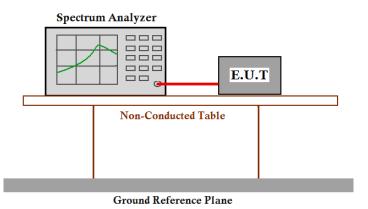
The Hopping rate in the formula should not be fixed value, for DH1, it is 1600/2; for DH3, it is

1600/4; for DH5, it is 1600/6.

To calculate Dwell time of data transmission of Bluetooth system, the worst case is for Bluetooth PICONET that contains two devices only (although Bluetooth PICONET can support up to eight devices), and for Bluetooth data transmission, after device A sending a packet to device B, device A must get response packet from device B to continue data transmission;

For DH1 packet: assume device A is EUT, the worst case is after device A sending a DH1 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 1 time slot for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is half of 1600, i.e. 800 hops per second for EUT;

For DH3 packet: assume device A is EUT, the worst case is after device A sending a DH3 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 3 time slots for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is quarter of 1600, i.e. 400 hops per second for EUT;

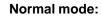

Page 51 of 90

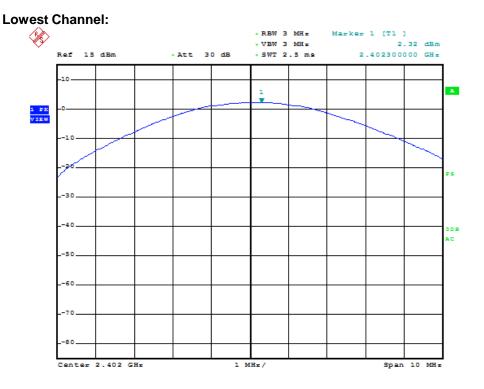
For DH5 packet: assume device A is EUT, the worst case is after device A sending a DH5 packet to device B, device A gets a DH1 response packet from device B, that means device A needs 5 time slots for transmitting and 1 time slot for receiving, therefore, the actual hopping rate of device A is sixth of 1600, i.e. 1600/6=266.7 hops per second for EUT;

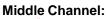
5.7 Maximum Peak Output Power

Test Requirement:	FCC Part 15 C section 15.247 and RSS-247
	(b)(1)For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:
	0.125 watts. Refer to the result "Henning channel number" of this decument. The 1
	Refer to the result "Hopping channel number" of this document. The 1 watt (30.0 dBm) limit applies.
Test Method:	ANSI C63.10:2009 Clause 6.10 & DA 00-705
Test Limit:	
Test mode:	Pre-test the EUT in continuous transmitting mode at the lowest, middle and
	highest channel with different data packet. Compliance test in continuous
	transmitting mode with normal (DH5), EDR mode (2DH5) and EDR mode
	(3DH5) as the worst case was found.

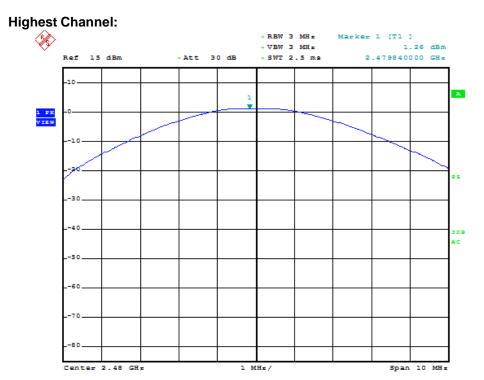
Test Configuration:

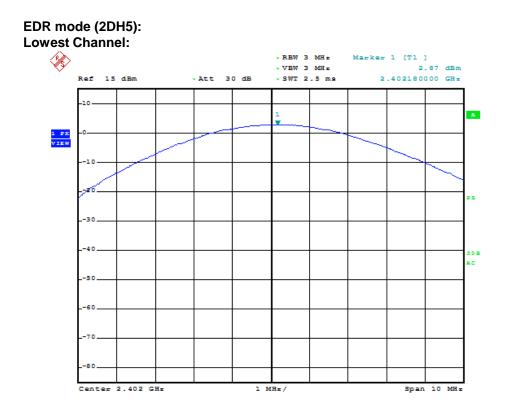


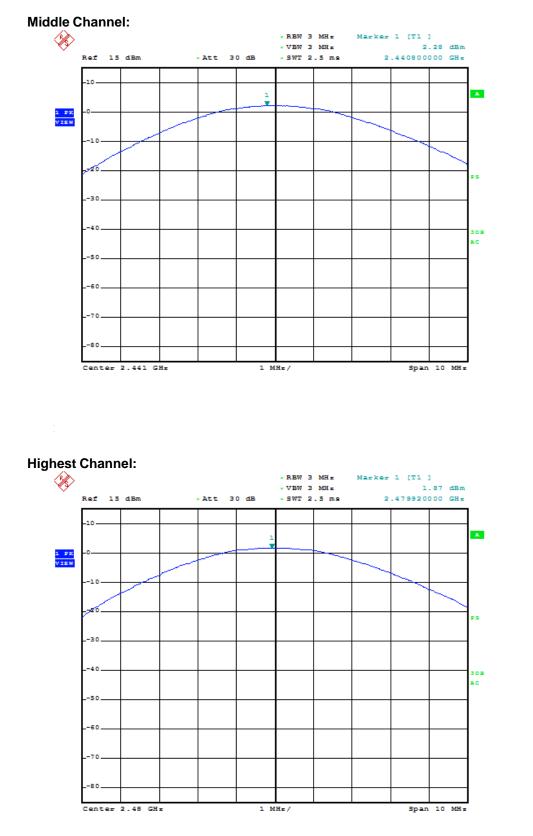

Test Procedure:

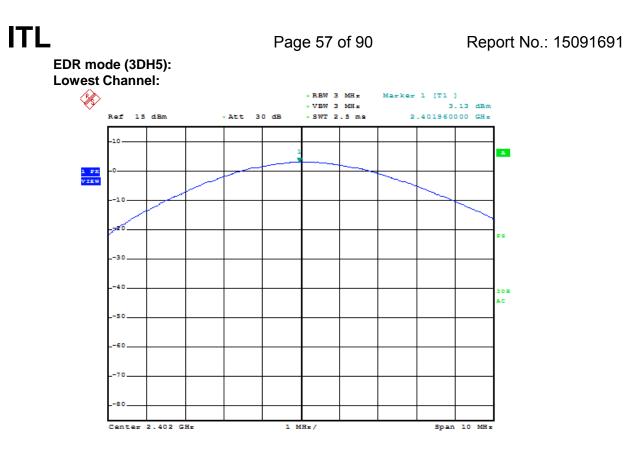

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- Set the spectrum analyzer: RBW = 3 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak.
- 3 . Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

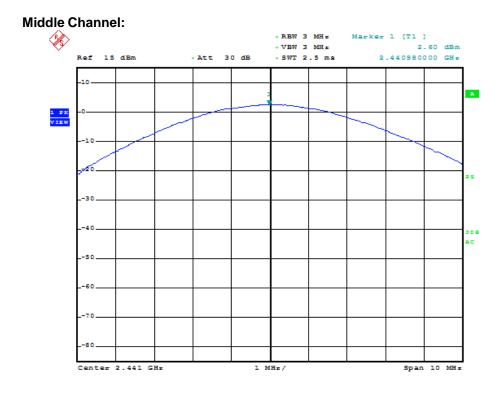
ormal mode:	I			ſ
Test Channel	Fundamental Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	2.82	21.0	Pass
Middle	2441	3.96	21.0	Pass
Highest	2480	1.76	21.0	Pass
EDR mode(2DH5):			
Test Channel	Fundamental Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	3.37	21.0	Pass
Middle	2441	2.78	21.0	Pass
Highest	2480	2.37	21.0	Pass
EDR mode(3DH5):			
Test Channel	Fundamental Frequency	Output Power (dBm)	Limit (dBm)	Result
Lowest	2402	3.63	21.0	Pass
Middle	2441	3.10	21.0	Pass
Highest	2480	2.72	21.0	Pass
Remark: cable lo	se=0.5dB			
		nd RSS-247 requirements.		

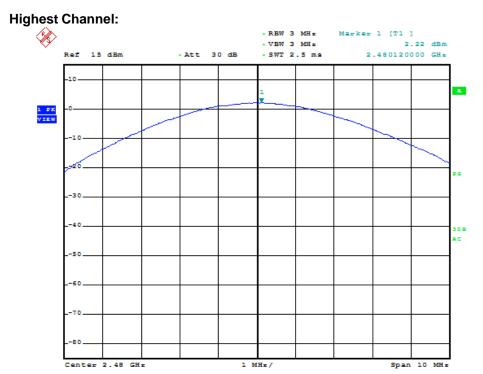

For Bluetooth

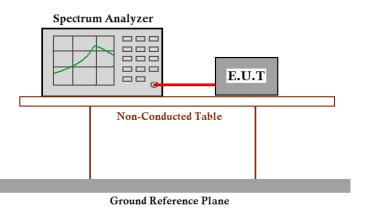












5.8 Conducted Spurious Emissions

Test Requirement:	FCC Part15 C section 15.247 and RSS-247
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.
Test Method:	ANSI C63.10:2009 Clause 6.7 & DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest, middle and
	highest channel with different data packet. Compliance test in continuous
	transmitting mode with normal (DH5), EDR mode (2DH5) and EDR mode
	(3DH5) as the worst case was found.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100 kHz. VBW >= RBW. Sweep = auto; Detector Function = Peak (Max. hold).

For Bluetooth

Test result plot as follows (Normal mode): Lowest Channel:

					zer - Swept SA		Agilent Spec
Trace/Det	10:27:35 AM Oct 13, 2015 TRACE 1 2 3 4 5 6	ALIGNAUTO		SENSE:II	50 Ω AC 270000000 GHz	RF 2 4.7992	4 Marker
Select Trace	TYPE MWWWWW DET PNNNNN			#Atten: 30 dB	PNO: Fast IFGain:Lov		
1	kr2 4.799 GHz -30.010 dBm	M			0.00 dBm	Ref 20	10 dB/div
Clear Writ						1	10.0 0.00 -10.0
Trace Averag	about the first second second second second	ورسمان مراكب الرسان الم	ېرلىپومە ^ر ىر		2		-20.0
Max Hol				weles and a second s	And the second s	and man and the states of	-60.0
Min Hol	Stop 25.00 GHz 2.39 s (1001 pts) FUNCTION VALUE	Sweep	FUNCTION	BW 300 kHz	X	/ 100 kH	MKR MODE
View/Blank View				3.193 dBm -30.010 dBm	2.402 GHz 4.799 GHz	1 f 1 f	1 N 2 N 3 4 5 6 7
Mo 1 of							8 9 10 11 12
		STATUS					SG

Middle Channel

arker 24	RF 50 Ω AC .8741800000	00 GHz PNO: Fast	SENSE:I	Avg	ALIGN AUTO Type: Log-Pwr	10:31:55 AM Oct 13, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Trace/Det
	Ref 20.00 dBm	IFGain:Low	#Atten: 30 dB		N	lkr2 4.874 GHz -30.958 dBm	Select Trace
	1						Clear Wri
0.0 0.0 0.0	2-					and the second and the	Trace Avera
0.0 0.0 0.0	and war and a start of the star	when we have a second	gernen ander generaliseter der sone	and the state of t	N ^a -C ¹ ² N ₂ ¹ -e-d-x ⁴ N ² N ² -as-1		Max Ho
							81 C
tart 30 MH Res BW 1	SCL :	x I	3W 300 kHz Y	FUNCTION	Sweep	Stop 25.00 GHz 2.39 s (1001 pts) FUNCTION VALUE	Min Ho
Res BW 1	00 kHz			FUNCTION		2.39 s (1001 pts)	View/Blank
Res BW 1 IR MODE TRC IN 1 1 IN 1 1	00 kHz scl :	× 2.441 GHz	Y 2.396 dBm	FUNCTION		2.39 s (1001 pts)	Min Ho View/Blank Viev Mo 1 o

Page 61 of 90

ITL **Highest channel**

Agilent Spectrum Analyzer - Swept SA				
RF 50 Ω AC Marker 1 2.480000000000 Δ	SENSE:II	ALIGNAUTO	10:33:22 AM Oct 13, 2015 TRACE 1 2 3 4 5 6	Trace/Det
	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB		TYPE M WWWWW DET P N N N N N	Select Trace
10 dB/div Ref 20.00 dBm		Ν	/kr1 2.480 GHz 2.379 dBm	1
10.0 1				Clear Write
-20.0 -30.0 -40.0		, Janlas Mandal Latarahana	and the second and th	Trace Average
-50.0 -60.0 -70.0	May a far an			Max Hold
Start 30 MHz #Res BW 100 kHz MKR MODE TRC SCL 1 N 1	#VBW 300 kHz	Sweep	Stop 25.00 GHz 2.39 s (1001 pts) FUNCTION VALUE	Min Hold
2 N 1 f	4.949 GHz -32.046 dBm			View/Blank View
8 9 10 11 12 MSG		STATUS		More 1 of 3

Test result plot as follows (EDR mode-2DH5): Lowest Channel:

ent Spectrum Analyzer - Swept SA RF 50 \Qaa AC Irker 1 2.4020000000	00 GHz	SENSE:IN	Avg Typ	ALIGNAUTO e: Log-Pwr	TRACE	Oct 13, 2015	Trace/Det
dB/div Ref 20.00 dBm	PNO: Fast G IFGain:Low	#Atten: 30 dB		N	DET	PNNNN	Select Trace 1
							Clear Writ
					uis A	and the second	Trace Averaç
	Manuel was haden alward on her	เครยกระจะสมรัฐสูง/ค.ศ.กุษณะสมุกระบ	An here and the second s	ngasheloon kaan	John Charles and		Max Ho
	<	W 300 kHz	FUNCTION FL	Sweep	Stop 25 2.39 s (1 FUNCTION		Min Ho
	2.402 GHz 4.799 GHz	-2.009 dBm -34.722 dBm					View/Blanl Viev
							Мо 1 о
				STATUS			

Middle Channel

gilent Spectrum Analyzer - Swept SA				
RF 50 Ω AC arker 2 4.874180000000) GHz	Avg Type: Log-Pwr	10:39:13 AM Oct 13, 2015 TRACE 1 2 3 4 5 6	Trace/Det
	PNO: Fast Trig: Free Ru IFGain:Low #Atten: 30 dE		TYPE M WAAWAAAA DET P N N N N N	Select Trace
) dB/div Ref 20.00 dBm		Ν	/kr2 4.874 GHz -37.484 dBm	1
				Clear Write
2				Trace Average
) Neer-warden and the state of	and the second	hand and a set of the		Max Hold
rt 30 MHz es BW 100 kHz	#VBW 300 kHz		Stop 25.00 GHz 2.39 s (1001 pts)	Min Hold
	2.441 GHz 0.289 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
	4.874 GHz -37.484 dBm			View/Blank View
				More 1 of 3
2		STATUS	3	

Highest channel

Agilent Spectrum Analyzer - Swept SA						
XI RF 50 Ω AC		SENSE:IN		ALIGNAUTO	10:36:05 AM Oct 13, 2015 TRACE 1 2 3 4 5 6	Trace/Det
Marker 1 2.480000000000	PNO: Fast	Trig: Free Run	Avg	Type. Log-Fwi	TYPE MUALAUALAUA	
	IFGain:Low	#Atten: 30 dB			DET PNNNN	Select Trace
				IV	1kr1 2.480 GHz	
10 dB/div Ref 20.00 dBm					-0.384 dBm	
Log						
10.0						Clear Write
0.00						Clear Write
-10.0						
-20.0						
-30.0 2						Trace Average
-40.0						Trace Average
				Marth and Martin	and the man and and and and and and and and and a	
-50.0	Washing how washingthe	surger manufand	hand and the addition of the	1		
-60.0						Max Hold
-70.0					e	
Start 30 MHz #Res BW 100 kHz	#\/B\M	300 kHz		Swoon	Stop 25.00 GHz 2.39 s (1001 pts)	
	#VDVV	JUO KHZ		aweep		Min Hold
MKR MODE TRC SCL X		Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
	2.480 GHz 4.949 GHz	-0.384 dBm -38.342 dBm				
3						View/Blank
4				-		View
6						Tiow
8						
9						More
10						1 of 3
12						
MSG				STATUS		

Test result plot as follows (EDR mode-3DH5): Lowest Channel:

Trace/Det	MOct 13, 2015 E 1 2 3 4 5 6 E MWWWWW	TRAC	ALIGN AUTO E: Log-Pwr : 20/100	Avg Typ Avg Hol		SENSE	GHz PNO: Fast 🔾	er - Swept SA 50 Ω AC 2700000000	ctrum Analyze RF 2 4.7992	u .
Select Trace	99 GHz 5 dBm	kr2 4.7				#Atten: 30 dE	IFGain:Low	0.00 dBm	Ref 20	0 dB/div
Clear Write										- og 10.0 0.00
Trace Average	المريسيين	worthethethe						2		20.0
Max Hold		All Control of the Co	- 44	,	1989 and Andrew State	apelina page and particular and pa	Awardin and a start of the star	- warden and a start warden	had have a fill that is	50.0 60.0 70.0
Min Hold	5.00 GHz 1001 pts) N VALUE	2.39 s (Sweep	CTION F	m	300 kHz -0.535 dBm	402 GHz	× 2.	N 100 kH	Start 30 Res Bl MKR MODE
View/Blank View					m	-38.375 dBm	799 GHz	4.	1 f	2 N 3 4 5 5 6 7
More 1 of 3										8 9 10 11

Middle Channel

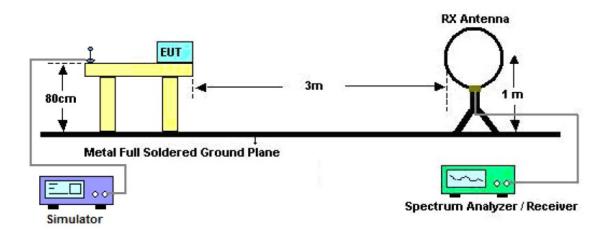
Agilent Spectrum Analyzer - Swept SA				
RF 50 Ω AC Marker 2 4.874180000000	GHz PNO: East C Trig: Free Ru	Avg Type: Log-Pwr	10:45:39 AM Oct 13, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWW	Trace/Det
10 dB/div Ref 20.00 dBm	PNO: Fast Trig: Free Ru IFGain:Low #Atten: 30 dE	3	Ikr2 4.874 GHz -41.199 dBm	Select Trace
				Clear Write
-20.0 -30.0 -40.0 -50.0		Johnson Markey	about the property of the prop	Trace Average
-50.0	man hallen te belan men par berarde and	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Max Hold
Start 30 MHz #Res BW 100 kHz MKR MODE TRC SCL 1 N 1	#VBW 300 kHz	FUNCTION FUNCTION WIDTH	Stop 25.00 GHz 2.39 s (1001 pts) FUNCTION VALUE	Min Hold
	4.874 GHz -41.199 dBm			View/Blank View
8 9 10 11 12				More 1 of 3
MSG		STATUS		

Highest channel

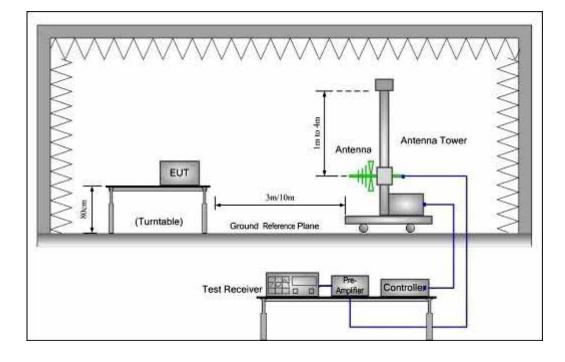
RF 50 Q AC arker 1 2.48000000000	00 GHz	SENSE:	Avg	ALIGN AUTO Type: Log-Pwr	10:46:31 AMOct 13, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Trace/Det
	PNO: Fast C IFGain:Low	#Atten: 30 dE		R	Ikr1 2.480 GHz	Select Trace
dB/div Ref 20.00 dBm					-3.529 dBm	
						Clear Wri
1.0						Trace Avera
0.0	when the .	and the planet she flood and the state	- Paul - Balland - Paul - Balland	and the state of the state of the	a shall a log the start and th	
).0 Merenseloundersteler	and the stand and the second	and the second s	ALARY			
.0						Max He
art 30 MHz	#VB	W 300 kHz		Sweep	Stop 25.00 GHz 2.39 s (1001 pts)	
art 30 MHz Res BW 100 kHz	<	Y	FUNCTION	Sweep FUNCTION WIDTH	Stop 25.00 GHz 2.39 s (1001 pts) FUNCTION VALUE	Max Ho Min Ho
art 30 MHz Res BW 100 kHz					2.39 s (1001 pts)	
art 30 MHz Res BW 100 KHz R MODE TRC SCL × N 1 f	< 2.480 GHz	۲ -3.529 dBm			2.39 s (1001 pts)	Min Ho View/Blan
art 30 MHz tes BW 100 KHz R MODE TRC SCL × N 1 f	< 2.480 GHz	۲ -3.529 dBm			2.39 s (1001 pts)	Min Ho View/Blan

Page 65 of 90

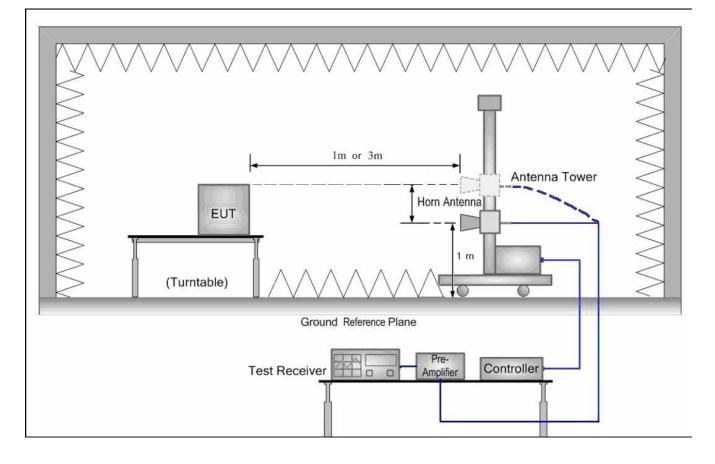
5.9 Radiated Spurious Emissions


Test Requirement:	FCC Part15 C section 15.247 and RSS-247
	 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that Contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, and provided the transmitter demonstrates compliance with the peak conducted power limits.
Test Method:	ANSI C63.10:2009 Clause 6.4, 6.5 and 6.6 & DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest, middle and highest channel with different data packet. Compliance test in continuous transmitting mode with normal mode (DH5) as the worst case was found.
Detector:	For PK value:
	RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz, 9kHz for <30MHz VBW ≥ RBW Sweep = auto
	Detector function = peak
	Trace = max hold
	For AV value:
	RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 9kHz for <30MHz
	VBW =10 Hz
	Sweep = auto
	Detector function = peak
	Trace = max hold
15.209 Limit:	

15.209 Limit:


Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Test Configuration:


1) 9kHz to 30MHz emissions:

2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 40 GHz emissions:

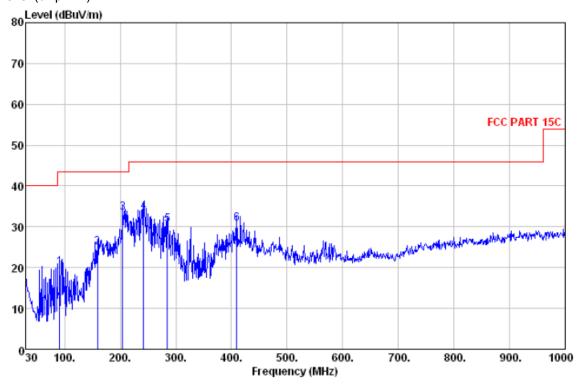
Test Procedure: The procedure used was ANSI Standard C63.4:2003. The receiver was scanned from 30MHz to 25GHz.When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. After pre-test, it was found that the worse radiation emission was get at the X position. So the data shown was the X position only. The worst case emissions were reported.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

5.9.1 Harmonic and other spurious emissions

Test at low Channel in transmitting status

9kHz~30MHz Test result

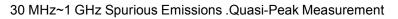

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Horizontal:

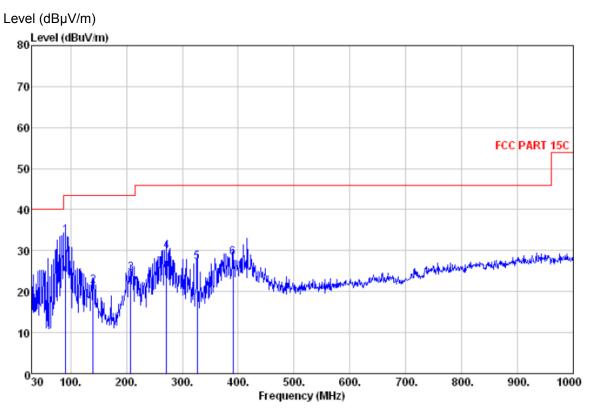
Peak scan

Level (dBµV/m)



Quasi-peak measurement

No.	Freq	Level	Remark	Antenna Factor	Cable Loss	Limit Line	Margin	A/pos	T/pos
	MHz	dBuV/m		dB/m	dB	dBuV/m	dB	CM	deg
1	91.110	20.08	QP	8.25	1.11	43.50	-23.42	100	125
2	159.010	24.86	QP	7.76	1.51	43.50	-18.64	100	177
3	204.600	33.37	QP	9.08	1.73	43.50	-10.13	100	153
4	242.430	33.71	QP	11.05	1.90	46.00	-12.29	200	226
5	285.110	30.56	QP	13.59	2.06	46.00	-15.44	200	166
6	409.270	30.80	QP	16.09	2.48	46.00	-15.20	200	176


Level=Read Level + Antenna Factor + Cable Loss

Test at low Channel in transmitting status

Vertical:

Peak scan

Quasi-peak measurement

No.	Freq MHz	Level dBuV/m	Remark	Antenna Factor dB/m	Cable Loss dB	Limit Line dBuV/m	Margin dB	A/pos cm	T/pos deg
1	91.110	33.58	QP	8.25	1.11	43.50	-9.92	100	124
2	140.580	21.36	QP	7.40	1.41	43.50	-22.14	100	147
3	207.510	24.47	QP	9.15	1.74	43.50	-19.03	100	255
4	271.530	29.91	QP	12.88	2.01	46.00	-16.09	200	133
5	326.820	27.18	QP	14.00	2.21	46.00	-18.82	200	186
6	390.840	28.21	QP	15.63	2.42	46.00	-17.79	200	176

Level=Read Level + Antenna Factor + Cable Loss

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

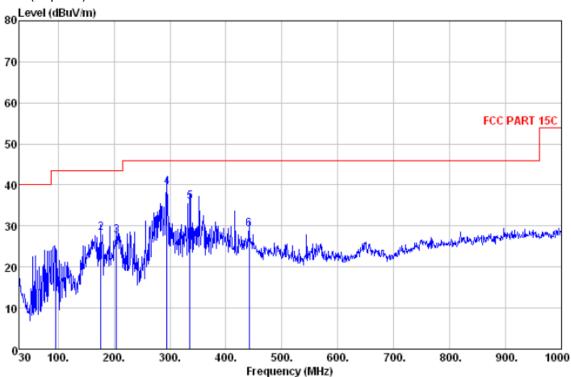
Peak Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4804.000	34.32	9.59	27.62	35.64	51.93	74.00	V
7206.000	34.88	12.15	27.33	35.32	55.02	74.00	V
9608.000	37.72	14.41	27.14	36.65	61.64	74.00	V
4804.000	34.32	9.59	27.62	37.56	53.85	74.00	Н
7206.000	34.88	12.15	27.33	37.84	57.54	74.00	Н
9608.000	37.72	14.41	27.14	38.44	63.43	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4804.000	34.32	9.59	27.62	24.85	41.14	54.00	V
7206.000	34.88	12.15	27.33	24.12	43.82	54.00	V
9608.000	37.72	14.41	27.14	25.97	50.96	54.00	V
4804.000	34.32	9.59	27.62	24.86	41.15	54.00	Н
7206.000	34.88	12.15	27.33	26.86	46.56	54.00	Н
9608.000	37.72	14.41	27.14	25.08	50.07	54.00	Н

Test at Middle Channel in transmitting status


9kHz~30MHz Test result

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

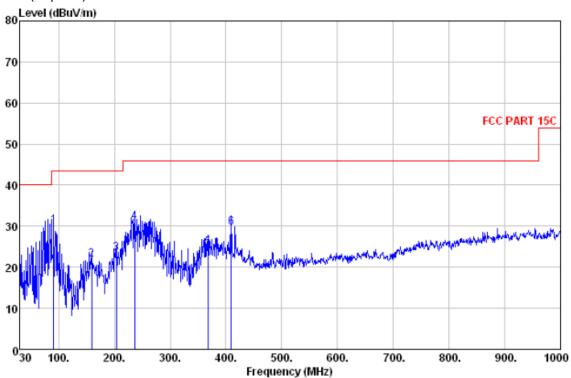
Horizontal:

Peak scan Level (dBµV/m)

Quasi-peak measurement

No.	Freq	Level	Remark	Antenna Factor	a Cable Loss	: Limit Line	Margin	A/pos	T/pos
	MHz	dBu∛/m		dB/m	dB	dBu∛/m	dB	CM	deg
1	94.990	22.61	QP	8.40	1.14	43.50	-20.89	100	124
2	176.470	28.28	QP	8.23	1.59	43.50	-15.22	100	133
3	204.600	27.59	QP	9.08	1.73	43.50	-15.91	100	166
4	294.810	39.50	QP	13.68	2.10	46.00	-6.50	200	255
5	335.550	35.95	QP	13.83	2.24	46.00	-10.05	200	135
6	441.280	29.19	QP	16.63	2.60	46.00	-16.81	200	174

Level=Read Level + Antenna Factor + Cable Loss


Test at Middle Channel in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Vertical:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No.	Freq	Level	Remark	Antenna Factor	Cable Loss	Limit Line	Margin	A/pos	T/pos
	MHz	dBuV/m		dB/m	dB	dBu∛/m	dB	сm	deg
1	91.110	30.00	QP	8.25	1.11	43.50	-13.50	100	156
2	159.010	21.88	QP	7.76	1.51	43.50	-21.62	100	178
3	203.630	23.33	QP	9.05	1.72	43.50	-20.17	100	111
4	236.610	31.05	QP	10.90	1.87	46.00	-14.95	200	132
5	367.560	24.81	QP	14.78	2.33	46.00	-21.19	200	145
6	409.270	29.63	QP	16.09	2.48	46.00	-16.37	200	345

Level=Read Level + Antenna Factor + Cable Loss

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

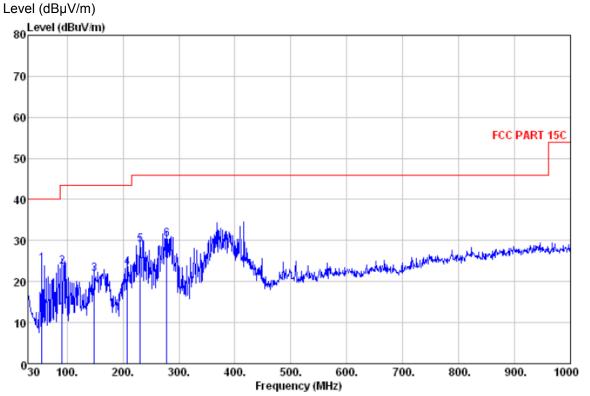
Peak Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4882.000	34.33	9.59	27.60	33.58	49.90	74.00	V
7323.000	34.92	12.17	27.31	32.16	51.94	74.00	V
9764.000	37.91	14.49	27.13	33.95	59.22	74.00	V
4882.000	34.33	9.59	27.60	33.07	49.39	74.00	Н
7323.000	34.92	12.17	27.31	32.64	52.42	74.00	Н
9764.000	37.91	14.49	27.13	32.97	58.24	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4882.000	34.33	9.59	27.60	22.67	38.99	54.00	V
7323.000	34.92	12.17	27.31	23.61	43.39	54.00	V
9764.000	37.91	14.49	27.13	23.94	49.21	54.00	V
4882.000	34.33	9.59	27.60	22.64	38.96	54.00	Н
7323.000	34.92	12.17	27.31	24.64	44.42	54.00	Н
9764.000	37.91	14.49	27.13	22.75	48.02	54.00	Н

Test at high Channel in transmitting status


9kHz~30MHz Test result

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

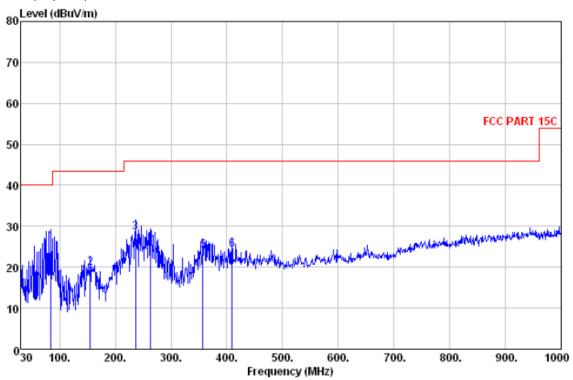
Horizontal:

Peak scan

Quasi-peak measurement

No.	Freq	Level	Remark	Antenna Factor	a Cable Loss	Limit Line	Margin	A/pos	T/pos
	MHz	dBuV/m		dB/m	dB	dBu∛/m	dB	сm	deg
1	55.220	24.19	QP	7.42	0.85	40.00	-15.81	100	123
2	91.110	23.65	QP	8.25	1.11	43.50	-19.85	100	144
3	148.340	21.82	QP	7.20	1.45	43.50	-21.68	100	235
4	207.510	23.31	QP	9.15	1.74	43.50	-20.19	200	186
5	230.790	28.94	QP	11.15	1.84	46.00	-17.06	200	256
6	278.320	30.37	QP	12.87	2.04	46.00	-15.63	200	126

Level=Read Level + Antenna Factor + Cable Loss


Test at High Channel in transmitting status

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

Vertical:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

No.	Freq MHz	Level dBuV/m	Remark	Antenna Factor dB/m	Loss dB	Limit Line dBuV/m	Margin dB	A/pos cm	T/pos deg
1	84.320	26.12	QP	7.66	1.07	40.00	-13.88	100	125
2	155.130	19.76	QP	7.61	1.49	43.50	-23.74	100	233
3	236.610	28.59	QP	10.90	1.87	46.00	-17.41	100	123
4	263.770	26.38	QP	12.42	1.98	46.00	-19.62	200	336
5	356.890	24.01	QP	14.25	2.30	46.00	-21.99	200	256
6	409.270	24.25	QP	16.09	2.48	46.00	-21.75	200	177

Level=Read Level + Antenna Factor + Cable Loss

1~25 GHz Harmonics & Spurious Emissions. Peak & Average Measurement

Peak	Measurement:
i oun	mououromont

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4960.000	34.36	9.60	27.61	33.86	50.21	74.00	V
7440.000	34.98	12.19	27.30	32.08	51.95	74.00	V
9920.000	37.96	14.52	27.11	32.47	57.84	74.00	V
4960.000	34.36	9.60	27.61	33.72	50.07	74.00	Н
7440.000	34.98	12.19	27.30	34.06	53.93	74.00	Н
9920.000	37.96	14.52	27.11	33.41	58.78	74.00	Н

Average Measurement:

Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Antenna polarization
4960.000	34.36	9.60	27.61	23.09	39.44	54.00	V
7440.000	34.98	12.19	27.30	23.16	43.03	54.00	V
9920.000	37.96	14.52	27.11	22.87	48.24	54.00	V
4960.000	34.36	9.60	27.61	22.64	38.99	54.00	Н
7440.000	34.98	12.19	27.30	24.19	44.06	54.00	Н
9920.000	37.96	14.52	27.11	24.75	50.12	54.00	Н

Remark:

1). The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Loss –Preamplifier Factor.

- 2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

Test result: The unit does meet the FCC and RSS-247 requirements.

5.10 Radiated Emissions which fall in the restricted bands

Test Requirement:	FCC Part15 C Section 15.247 and RSS-247 (d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method:	ANSI C63.10:2009 Clause 6.4, 6.5 and 6.6 & DA 00-705
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal mode (DH5) as the worst case was found.

Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit:

Section 15.209(a)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Detector:

For PK value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto

Detector function = peak

Trace = max hold

For AV value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW =10 Hz

Sweep = auto

Detector function = peak

Trace = max hold

For Bluetooth

1. Low Channel (2402MHz)

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	34.57	23.54	39.89	28.86
2390.000	26.56	6.46	27.79	34.91	24.65	40.14	29.88
2500.000	25.70	6.62	27.80	33.45	24.09	37.97	28.61
2483.500	25.79	6.61	27.80	35.21	22.47	39.81	27.07

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	33.98	24.09	39.30	29.41
2390.000	26.56	6.46	27.79	34.11	23.98	39.34	29.21
2500.000	25.70	6.62	27.80	34.09	24.56	38.61	29.08
2483.500	25.79	6.61	27.80	35.35	24.63	39.95	27.07

2. Middle Channel (2441MHz)

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	33.86	23.45	39.18	28.77
2390.000	26.56	6.46	27.79	34.08	22.06	39.31	27.29
2500.000	25.70	6.62	27.80	34.15	23.11	38.67	27.63
2483.500	25.79	6.61	27.80	35.75	22.96	40.35	27.56

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	32.52	22.07	37.84	27.39
2390.000	26.56	6.46	27.79	32.61	23.24	37.84	28.47
2500.000	25.70	6.62	27.80	33.08	23.84	37.60	28.36
2483.500	25.79	6.61	27.80	34.69	24.06	39.29	28.66

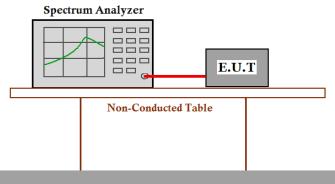
3. High Channel (2480MHz)

Antenna polarization: Vertical

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	32.75	23.96	38.07	29.28
2390.000	26.56	6.46	27.79	33.08	23.11	38.31	28.34
2500.000	25.70	6.62	27.80	32.71	24.97	37.23	29.49
2483.500	25.79	6.61	27.80	34.85	24.34	39.45	28.94

Antenna polarization: Horizontal

Frequency (MHz)	Antenna factors (dB/m)	Cable loss(dB)	Preamp factor(dB)	Peak Reading Level (dBµV)	Average Reading Level (dBµV)	Peak Emission Level (dBµV/m)	Average Emission Level (dBµV/m)
2310.000	26.65	6.45	27.78	34.98	24.11	40.30	29.43
2390.000	26.56	6.46	27.79	34.14	23.67	39.37	28.90
2500.000	25.70	6.62	27.80	33.87	24.15	38.39	28.67
2483.500	25.79	6.61	27.80	32.49	23.85	37.09	28.45


Remark: No any other emission which falls in restricted bands can be detected and be reported.

Test result: The unit does meet the FCC and RSS-247 requirements.

5.11 Band Edges Requirement

Test Requirement:	FCC Part15 C section 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section		
Francisco Decid	15.205(c)).		
Frequency Band:	2400 MHz to 2483.5 MHz		
Test Method:	ANSI C63.10:2009 Clause 6.9 & DA 00-705		
Test Status:	Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), and highest (2480 MHz) channel and hopping mode with different data packet. Compliance test in continuous transmitting mode with normal (DH5) EDR mode (2DH5) and EDR mode (3DH5) as the worst case was found.		

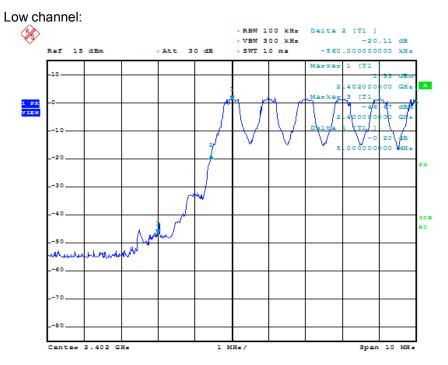
Test Configuration:

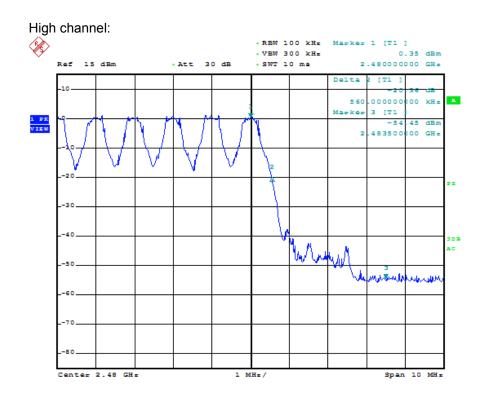
Ground Reference Plane

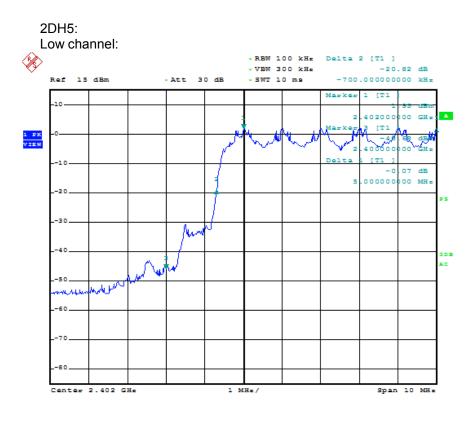
Test Procedure:

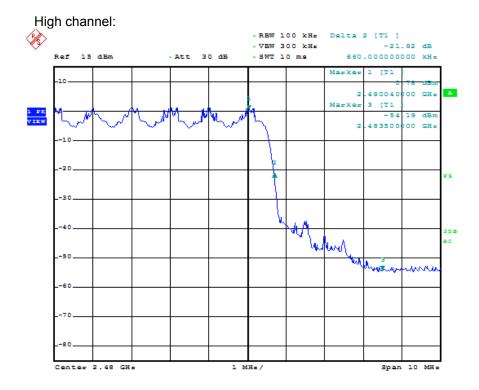
Set RBW of spectrum analyzer to 100 kHz and VBW of spectrum analyzer to 300 kHz with suitable frequency span including 10MHz bandwidth from band edge.

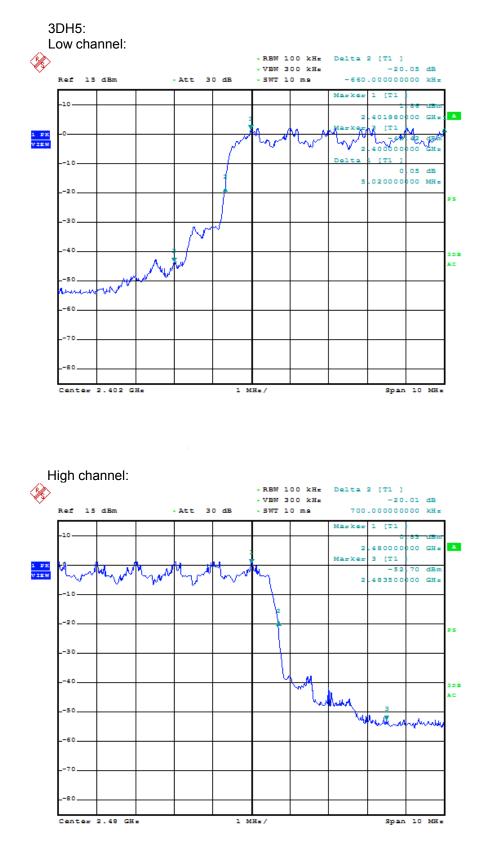
The band edges was measured and recorded Result:

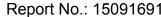

The Lower Edges attenuated more than 20dB.

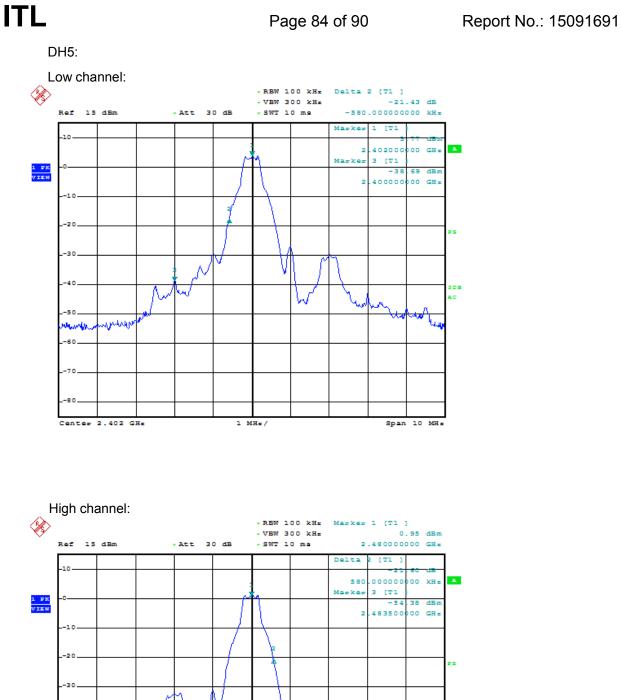

The Upper Edges attenuated more than 20dB.

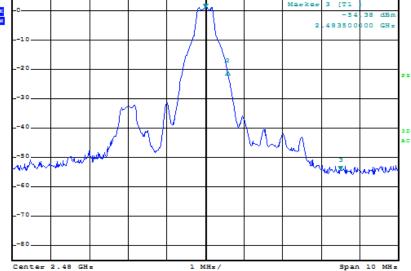

The graph as below. Represents the emissions take for this device.

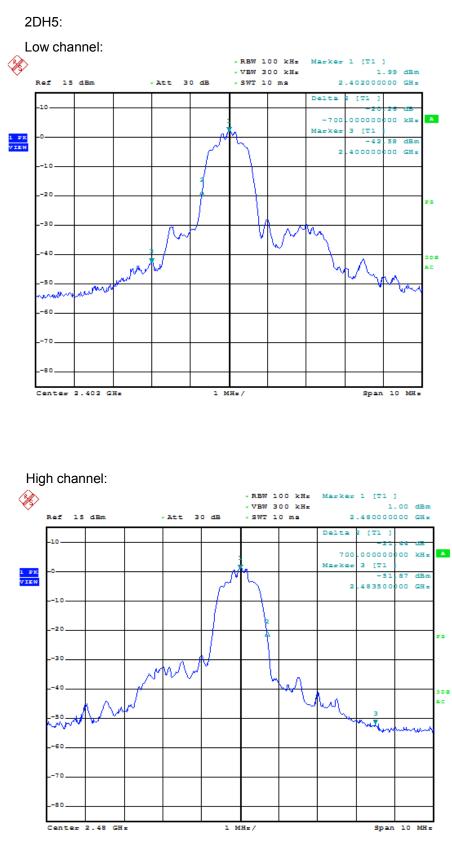

For Bluetooth

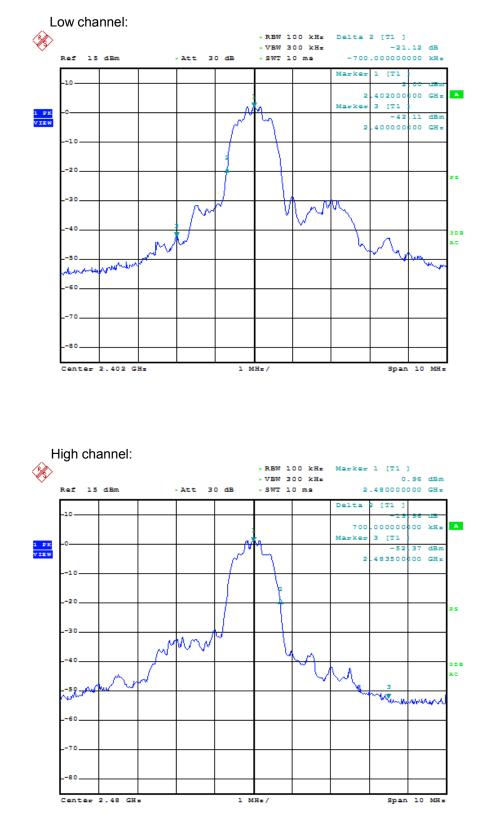











-

3DH5:

ITL

Test result: The unit does meet the FCC and RSS-247 requirements.

Page 87 of 90

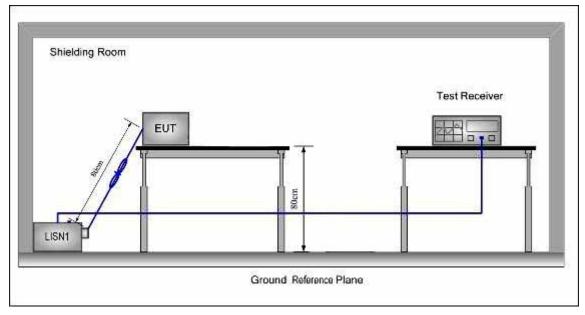
5.12 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

Test Requirement:	FCC Part 15 C section 15.207 and RSS-GEN
Test Method:	ANSI C63.10:2009 Clause 6.2 & DA 00-705
Frequency Range:	150 kHz to 30 MHz

Detector: Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

Limits for conducted disturbance at the mains ports of class B


Frequency Range	Class B Limit dB(µV)					
Frequency Kange	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				
NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.						

EUT Operation:

Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Pre-Scan has been conducted to determine the worstcase mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Test Configuration:

Test procedure:

1. The mains terminal disturbance voltage test was conducted in a shielded room.

2. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

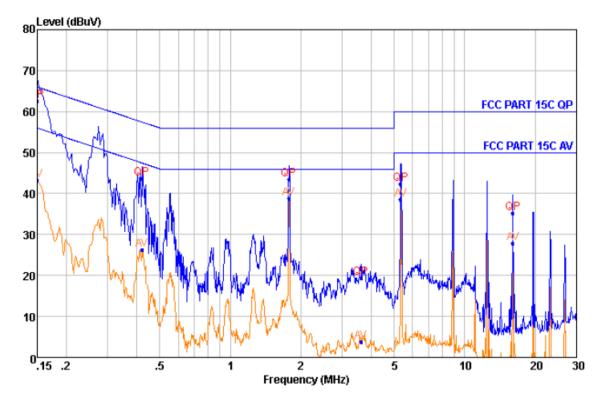
5.12.1 Measurement Data

Peak Scan:

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode.

The following Quasi-Peak and Average measurements were performed on the EUT Live line

Level (dBµV) 80 Level (dBuV) 70 FCC PART 15C QP 60 FCC PART 15C AV 50 40 30 20 10 0<mark>.15 .2</mark> .5 1 2 5 10 20 30 Frequency (MHz)


Quasi-peak and Average measurement

NO.	Freq MHz	Level dBuV	Remark	LISN Factor dB	Cable Loss dB	Limit Line dBuV	Over Limit dB
1	0.150	62.26	QP	9.36	0.39	66.00	-3.74
2	0.150	42.36	Average	9.36	0.39	56.00	-13.64
3	0.409	41.21	QP	9.38	0.43	57.66	-16.45
4	0.409	25.74	Average	9.38	0.43	47.66	-21.92
5	1.777	42.44	QP	9.31	0.49	56.00	-13.56
6	1.777	39.58	Average	9.31	0.49	46.00	-6.42
7	4.516	20.34	QP	9.29	0.53	56.00	-35.66
8	4.516	6.06	Average	9.29	0.53	46.00	-39.94
9	8.901	39.94	QP	9.35	0.55	60.00	-20.06
10	8.901	34.10	Average	9.35	0.55	50.00	-15.90
11	16.021	34.62	QP	9.45	0.58	60.00	-25.38
12	16.021	27.55	Average	9.45	0.58	50.00	-22.45

Neutral Line

Peak Scan:

Level (dBµV)

Quasi-peak and Average measurement

NO.	Freq MHz	Level dBuV	Remark	LISN Factor dB	Cable Loss dB	Limit Line dBuV	Over Limit dB
1	0.150	62.60	QP	9.38	0.39	66.00	-3.40
2	0.150	43.23	Average	9.38	0.39	56.00	-12.77
3	0.420	43.59	QP	9.36	0.43	57.44	-13.85
4	0.420	26.25	Average	9.36	0.43	47.44	-21.19
5	1.777	43.38	QP	9.39	0.49	56.00	-12.62
6	1.777	38.85	Average	9.39	0.49	46.00	-7.15
7	3.615	19.43	QP	9.42	0.52	56.00	-36.57
8	3.615	3.71	Average	9.42	0.52	46.00	-42.29
9	5.323	42.40	QP -	9.44	0.53	60.00	-17.60
10	5.323	38.66	Average	9.44	0.53	50.00	-11.34
11	16.021	35.26	QP -	9.72	0.58	60.00	-24.74
12	16.021	27.92	Average	9.72	0.58	50.00	-22.08

--End of Report--