Prediction of MPE Limit 47 CFR § 2.1091/ § 2.1093

$$S_{20} = \frac{P_A G_N}{4\pi R_{20}^2}$$

$$S_C = \frac{P_A G_N}{4\pi R_C^2}$$

$$R_{\rm C} = \sqrt{\frac{P_{\rm A}G_{\rm N}}{4\pi\,S_{\rm L}}}$$

$$S_L = \frac{f}{1500} (mW/cm^2)$$

 S_{20} = Power Density of the Device at 20cm

 S_L = Power Density Limit

 $\mathbf{S}_{\mathbf{C}}$ = Power Density of the Device at the Compliance Distance $\mathbf{R}_{\mathbf{C}}$

 $R_{20} = 20 \text{cm}$

 R_c = Minimum Distance to the Radiating Element to Meet Compliance

 P_T = Power Input to Antenna

P_A = Adjust Power

 G_N = Numeric Gain of the Antenna

f = Transmit Frequency

Transmit Duty Cycle = 100%

Use Group = General Popuation

Transmit Duty Cycle:	100.00	(%)
Tx Frequency (f):	450.00	(MHz)
RF Power at Antenna Input Port (P _T):	10000.00	(mW)
Antenna Gain:	11.20	(dBi)
Numeric Antenna Gain (G _N):	13.18	(numeric)
Cable or Other Loss:	0.00	(dB)
Duty Cycle/Loss Adjusted Power (P _A):	10000.00	(mW)

S _L =	0.300	(mW/cm²)
S ₂₀ at 20cm =	26.226	(mW/cm²)
R _c =	187.0	(cm)
S _c =	0.30	(mW/cm²)

User's Manual must indicate a minimum separation distance of:

187cm

