

Dec. 08, 2000

FEDERAL COMMUNICATIONS COMMISSION

7435 Oakland Mills Road Columbia, MD 21046 USA

Subject: Type Acceptance Application under FCC CFR 47, Parts 2 and 22 (Subpart H) - Cellular RadioTelephone Service in the frequency bands 824-849 MHz (30kHz Channel Spacing).

Applicant:	Sur-Gard Security Systems Ltd.
Product:	SG-Skyroute Radio Transceiver Module
Model:	Skyroute, Skyroute Max or Skyroute UT
FCC ID:	PED-SKYROUTE

Dear Sir/Madam,

As appointed agent for **Sur-Gard Security Systems Ltd.**, we would like to submit the application to the Federal Communications Commission for certification of the above product. Please review all necessary files uploaded to FCC OET site for detailed information.

- Multiple Listing: The Skyroute Radio Transceiver Module consists of the following parts:
 - (1) A Radio Transceiver Module, manufactured by Standard Communications Corporation (STC), Model Number: CU81KAB, FCC ID: APV0896. This radio is used and sold as it is set by the Manufacturer, there is no tuning or modifications required for use in the SG Skyroute assembly.
 - (2) A SG Skyroute Digital Interface Board, manufactured by Digital Security Controls Ltd.
 - (3) A ¼ Wave dipole Antenna, manufactured by Valtrie, Model Number CDU019B, Frequency: 821-896 MHz, Connector: TNC.

Since the only antenna is changed in the STC Radio Module, we would like to apply for the Class II Permissive Change authorization under Sur-Gard Security Systems Ltd. Please refer to the FCC ID: APV0896 for all information about the STC radio transceiver.

Limited Modular Transmitter Approval Request- This application is subject to the FCC certification for a modular transceiver, please kindly refer to the Section 6.5 of the submitted test report for clarification of compliance for this modular transmitter with FCC Public Notice DA 00-1407.

Limited Application: This radio module is sold to OEM manufacturers and Security Service Company only for the application of Security Purpose. It is installed inside a security system at an User's place by a Security Service Company.

This radio module is only intended for use as a fixed station (Security Systems in Home, Commercial and Industrial Environments.

 \triangle

Canada

NVLAP

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone(905) 829-1570Facsimile(905) 829-8050

- Compliance with RF Exposure Requirements:
 - The transmitter complies with FCC 2.1091 with the minimum RF safety distance of 30 cm. Please refer to page 2 of the Users Manual for details of the antenna installation instruction for details.

If you have any queries, please do not hesitate to contact us by our TOLL FREE numbers:

OUR TELEPHONE NO .: 1-877-765-4173

Yours truly,

 \triangle

Tri Minh Luu, P. Eng., V.P., Engineering

Canada

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone(905) 829-1570Facsimile(905) 829-8050

TML/AK Encl.

FC

Canada

NVLAD

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone(905) 829-1570Facsimile(905) 829-8050

Dec. 08, 2000

Sur-Gard Security Systems Ltd. 3301 Langstaff Road Concord, Ontario Canada, L4K 4L2

Attn.: Mr. Dan Anita

Subject:Certification Testing in accordance with FCC CFR 47, Parts 2 and
22 (Subpart H) - Cellular RadioTelephone Service in the
frequency bands 824-849 MHz (30kHz Channel Spacing).

Product:SG-Skyroute Radio Transceiver ModuleModel:Skyroute, Skyroute Max or Skyroute UTFCC ID:PED-SKYROUTE

Dear Mr. Anita,

The product sample has been tested in accordance with FCC CFR 47, Parts 2 and 22 (Subpart H) - Cellular RadioTelephone Service in the frequency bands 824-849 MHz (30kHz Channel Spacing), and the results and observation were recorded in the engineering report, Our File No.: SSS-018FTX

Enclosed you will find copies of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P.Eng Vice President - Engineering

Encl.

ENGINEERING TEST REPORT

SG-Skyroute Radio Transceiver Module Model No.: Skyroute, Skyroute Max or Skyroute UT FCC ID: PED-SKYROUTE

Applicant:

Sur-Gard Security Systems Ltd.

3301 Langstaff Road Concord, Ontario Canada, L4K 4L2

Tested in Accordance With

Federal Communications Commission (FCC) CELLULAR RADIOTELEPHONE SERVICE CFR 47, PARTS 2 and 22 (Subpart H)

UltraTech's File No.: SSS-018FTX

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs Date: Dec. 08, 2000		
Report Prepared by: Tri Luu, P.Eng.	Tested by: Hung Trinh, EMI/RFI Technician	
Issued Date: Dec. 08, 2000	Test Dates: Dec. 5-6, 2000	
The results in this Test Report apply only to the samp randomly selected.	le(s) tested, and the sample tested is	

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Telephone (905) 829-1570 Facsimile (905) 829-8050

Website: www.ultratech-labs.com Email: vhk.ultratech@sympatico.ca

TABLE OF CONTENTS

EXHIBIT	1.	SUBMITTAL CHECK LIST	
EXHIBIT	2.	INTRODUCTION	4
2.1.	SCOPI	3	4
2.2.	NORM	IATIVE REFERENCES	4
EXHIBIT	3.	PERFORMANCE ASSESSMENT	5
3.1.	CLIEN	T INFORMATION	5
3.2.	EQUIP	MENT UNDER TEST (EUT) INFORMATION	5
3.3.	EUT'S	TECHNICAL SPECIFICATIONS	6
3.4.	LIST O	F EUT'S PORTS	6
3.5.	MODIF	ICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	6
3.6.	ANCIL	LARY EQUIPMENT	6
EXHIBIT	4.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	7
4.1.	CLIMA	TE TEST CONDITIONS	7
4.2.	OPER A	TIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	7
EXHIBIT	5.	SUMMARY OF TEST RESULTS	8
5.1.	LOCA	TION OF TESTS	
5.2.	APPLI	CABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	
EXHIBIT	6.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	9
6.1.	TEST I	PROCEDURES	
6.2.	MEASU	JREMENT UNCERTAINTIES	9
6.3.	MEASU	JREMENT EQUIPMENT USED:	9
6.4.	ESSEN	TIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER:	9
6.5.	EFFEC	TIVE RADIATED POWER (ERP) LIMITS @ FCC 2.985 & 22.913	
6.5.1	. L	imits @ FCC 22.913	
6.5.2	2. M	lethod of Measurements	
6.5.3	P. T	est Equipment List	10
6.5.4	!. Т	est Data	11
6.6.	TRANS	SMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 22.917(E), (F) & (G)	
6.6.1	. L	imits @ $22.917(e)$, (f) & (g)	
6.6.2	R. M	lethod of Measurements	
6.6.3	2. T	est Equipment List	
6.6.4	Ч. Р · т	hotographs of Test Setup	
0.0.3	9. I	est Data	
6.6	0.5.1. 5.5.2	Lowest Frequency (824.95 MHz)	
0.0	5.3.2.	Highest Frequency (848 000 MHz)	
0.0			
EXHIBIT	7.	MEASUREMENT UNCERTAINTY	19
7.1.	LINE (CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	
7.2.	KADIA	TED EMISSION MEASUREMENT UNCERTAINTY	

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: wht.ultratech-labs.com Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

EXHIBIT	8. MEASUREMENT METHODS	21
8.1.	EFFECTIVE RADIATED POWER (ERP) MEASUREMENTS	21
8.2.	FREQUENCY STABILITY	24
8.3.	EMISSION MASK	25
8.4.	SPURIOUS EMISSIONS (CONDUCTED)	25
8.5.	SPURIOUS EMISSIONS (RADIATED)	26

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

EXHIBIT 1. SUBMITTAL CHECK LIST

Exhibit No.	Exhibit No. Exhibit Type Description of Contents		
1 through 8	Test Report	Exhibit 1: Submittal check lists Exhibit 2: Introduction Exhibit 3: Performance Assessment Exhibit 4: EUT Operation and Configuration during Tests Exhibit 5: Summary of test Results Exhibit 6: Measurement Data Exhibit 7: Measurement Uncertainty Exhibit 8: Measurement Methods	ОК
9	Test Report - Plots of Measurement Data	None	None
10	Test Setup Photos	Photos # 1 to 3	OK
11	External Photos of EUT	Photos # 1 to 5	OK
12	Internal Photos of EUT	Photos of 1 to 4	OK
13	Cover Letters	 Letter from Ultratech for Certification Request Letter from the Applicant to appoint Ultratech to act as an agent Letter from the Applicant to request for Confidentiality Filing 	None
14	Attestation Statements	Manufacturer's Declaration for Equipment specifications, Installation (if it is professionally installed) and Production Quality Production Assurance Manufacturer's Declaration of Conformity (FCC DoC) for compliance with FCC Part 15, Sub. B, Class B - Computing Devices – if required	None
15	Application Forms	Form 731 Form 159 Confirmation of Exhibits sent to FCC Status of Exhibits sent to FCC	ОК
16	ID Label/Location Info	ID Label Location of ID Label	OK OK
17	Block Diagrams	Please refer to FCC ID: APV0896 of Standards None Communications Corporation for details Image: Communication of the standard of	
18	Schematic Diagrams	Please refer to FCC ID: APV0896 of Standards None Communications Corporation for details	
19	Parts List/Tune Up Info	Please refer to FCC ID: APV0896 of Standards Communications Corporation for details	None
20	Operational Description	Please refer to the introduction of the user's manual	OK
21	RF Exposure Info	Refer to page 2 of the User's Manual	OK
22	Users Manual		ОК

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 2. INTRODUCTION

2.1. SCOPE

Reference:	FCC Parts 2 and 22 (Subpart H): 1999	
Title	Telecommunication - Code of Federal Regulations, CFR 47, Parts 2 & 22	
Purpose of Test:	CC Parts 2 and 22 (Subpart H): 1999 elecommunication - Code of Federal Regulations, CFR 47, Parts 2 & 22 o obtain the FCC Limited Modular Approval Certification Authorization for Radio operating the frequency bands 824-849 MHz (30kHz Channel Spacing). Limited Modular Transmitter Approval Request- This application is subject to the FCC certification for a modular transceiver, please kindly refer to the Section 6.5 of the submitted test report for clarification of compliance for this modular transmitter with FCC Public Notice DA 00-1407. Limited Application: This radio module is sold to OEM manufacturers and Security Service Company only for the application of Security Purpose. It is installed inside a security system at an User's place by a Security Service Company. The radio module is sold together with the following parts as a whole assembly: (1) SG Digital Interface Board (2) Valtrie ¼ Wave dipole Antenna, Model Number CDU019B, Frequency: 821- 896 MHz, Connector: TNC. This radio module is only for use as a fixed station (Security Systems in Home, Commercial and Industrial Environments	
Test Procedures	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	

2.2. NORMATIVE REFERENCES

Publication	YEAR	Title
FCC CFR Parts 2	1998	Code of Federal Regulations – Telecommunication
and 22		
ANSI C63.4	1992	American National Standard for Methods of Measurement of Radio-Noise
		Emissions from Low-Voltage Electrical and Electronic Equipment in the Range
		of 9 kHz to 40 GHz
CISPR 22 &	1997	Limits and Methods of Measurements of Radio Disturbance Characteristics
EN 55022	1998	of Information Technology Equipment
CISPR 16-1		Specification for Radio Disturbance and Immunity measuring apparatus and
		methods

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

EXHIBIT 3. PERFORMANCE ASSESSMENT

3.1. CLIENT INFORMATION

APPLICANT:	
Name:	Sur-Gard Security Systems Ltd.
Address:	3301 Langstaff Road
	Concord, Ontario
	Canada, L4K 4L2
Contact Person:	Mr. Dan Anita
	Phone #: 905-760-3000 (2706)
	Fax #: 905-760-3020
	Email Address: <u>nitad@sur-gard.com</u>

MANUFACTURER:	
Name:	Standard Communications Corporation
Address:	PO Box 92151
	Los Angeles, CA
	USA 90009,
Contact Person:	Mr. Ron Blanchard

3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name	Sur-Gard Security Systems Ltd.		
Product Name	SG-Skyroute Radio Transceiver Module		
Model Name or Number	Skyroute, Skyroute Max or Skyroute UT		
Serial Number	02U514126		
Type of Equipment	Radio Communication Equipment		
External Power Supply	None		
Transmitting/Receiving	Non-integral TNC connector		
Antenna Type			
Primary User Functions	The Skyroute transceiver offers a new wireless communication method for		
of EUT:	transmission of event information using Cellemetry service. Events are transmitted		
	from the Skyroute transceiver via Cellemetry network to the clearing house and		
	then to the Central Station in a fast manner; maximum 2 seconds on every		
	transmitter's activation.		

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: whk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

3.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER			
Equipment Type: Base station (fixed use)			
Intended Operating Environment:	Commercial, light industry & heavy industry		
Power Supply Requirement:	12 Vdc regulated		
RF Output Power Rating:	3.0 Watts maximum		
Duty Cycle:	The transmitter will be automatically deactivated after 2 seconds from		
	the time it is activated		
Operating Frequency Range:	824-849 MHz		
RF Output Impedance:	50 Ohms		
Channel Spacing:	30 kHz		
Necessary Occupied Bandwidth:	40 kHz max.		
Emission Designation*:	40K0F1D		
Antenna Connector Type:	TNC		
Antenna Description:	Valtrie ¼ Wave Dipole Antenna, Part No.:CDU019B, Frequency: 821-		
	896 MHz, Connector: TNC, Gain: 3 dBi		

3.4. LIST OF EUT'S PORTS

Port	EUT's Port Description	Number of	Connector	Cable Type
Number		Identical Ports	Туре	(Shielded/Non-shielded)
1	RF IN/OUT Port	1	TNC	No cable. Direct
				connection
2	I/O Communication Bus and DC	1	8 conductor	Non-shielded wireleads
	supply port		terminal block	

3.5. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

3.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1	
Description:	Sur-gard Security System was used to operate run the Radio Module in an intended application. The radio frequency was changed by using a keypad connected to the Sur-gard Security System which communicated to the Radio through the Sur-Gard Skyroute Interface Board.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: whk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 4. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

4.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	12 Vdc regulated

4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.
Special Test Software	Norge
Special Test Software:	None
Special Hardware Used:	None
Transmitter Test Antenna:	The EUT is tested with the transmitter antenna port terminated to a 50 Ohm RF
	Load.

Transmitter Test Signals:	
Frequencies:	Near lowest, near middle & near highest frequencies each frequency bands that the transmitter covers:
824 – 849 MHz	824.95, 836.188 and 848 MHz
Transmitter Wanted Output Test Signals:	
 RF Power Output (measured maximum output power): Normal Test Modulation Modulating signal source: 	3.0 Watts FM Data Internal

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 5. SUMMARY OF TEST RESULTS

5.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).

Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: Sep. 20, 1999.

5.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC PARAGRAPH.	TEST REQUIREMENTS	APPLICABILITY (YES/NO)
22.913 & 2.985	Effective Radiated Power (ERP) Limits	Yes. Note 2
22.101(a) & 2.995	Frequency Stability	Note 1
22.915(d) & 2.987(a)	Audio Filter Characteristics	N/A for Data
22.915 (a), (b) & (c) & 2.987(b)	Modulation Requirements	Note 1
22.917(a),(b),(c)&9 (d) & 2.989	Emission Limitation/Emission Masks	Note 1
22.917(e), (f) & (g), 2.997 & 2.991	Emission Limits – Spurious Emissions at Antenna Terminal	Note 1
22.917(e), (f) & (g), 2.997 & 2.993	Emission Limits - Field Strength of Spurious Emissions	Yes. Note 2

- <u>Note 1</u>: Since there is no change on this FCC certified radio supplied by Standards Communications Corporation, this test is not required to be conducted
- <u>Note 2</u>: These tests needed to be performed since the transmitter antenna is changed from its original FCC authorization under FCC ID: APV0896

SG-Skyroute Radio Transceiver Module, Model No.: Skyroute, Skyroute Max or Skyroute UT, by Sur-Gard Security Systems Ltd. has also been tested and found to comply with FCC Part 15, Subpart B - Radio Receivers and Class B Digital Devices. The engineering test report has been documented and kept in file and it is available anytime upon FCC request.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

6.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 7 of this report

6.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

6.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4:1992 and CISPR 16-1.

6.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER:

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

6.5. EFFECTIVE RADIATED POWER (ERP) LIMITS @ FCC 2.985 & 22.913

6.5.1. Limits @ FCC 22.913

The effective radiated power (EIRP) of transmitters in the Cellular Radiotelephone Service must not exceed the limits in this section:

	Maximum ERP (Watts)
Mobile Transmitters &	7 Watts
Auxiliary Test Transmitters	
(824-849 MHz)	

6.5.2. Method of Measurements

Please refer to Exhibit 8, Sec. 8.1 for test procedures and test setup.

6.5.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range		
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz		
EMI Receiver	Packard					
Attenuator(s)	Bird			DC – 22 GHz		
Dipole Antenna	EMCO	3121C	8907-434	20-1000 MHz		
Dipole Antenna	EMCO	3121C	8907-440	20-1000 MHz		
Average Power Meter	Hewlett	HP436A		DC to 22 GHz		
-	Packard					

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

6.5.4. Test Data

	Measured Average Conducted Power (P) – dBm		
FUNDAMENTAL FREQUENCY (MHz)	Digital	LIMIT (dBm)	
824.950	35.0	38.5	
836.188	34.4	38.5	
848.000	32.7	38.5	

	Average Transmitter's An (Substitu		
FUNDAMENTAL FREQUENCY (MHz)	Vertical	LIMIT (dBm)	
824.950	35.5	35.9	38.5
836.188	33.5	33.2	38.5
848.000	36.2	31.3	38.5

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.6. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 22.917(E), (F) & (G)

6.6.1. Limits @ 22.917(e), (f) & (g)

Emissions shall be attenuated below the mean output power of the transmitter as follows:

FCC RULES	ATTENUATION LIMIT
FCC 22.917(e)	43+10*log(P) dBc, P is power in
	watts
FCC 22.917(f) for Mobile	Mean power in 869-894 MHz band
emissions	shall be less than -80 dBm
FCC 22.917(g)	If any emission from a transmitter
	operating in this service results in
	interference to users of another radio
	service, the FCC may require a
	greater attenuation of that emission
	than specified in this section.

6.6.2. Method of Measurements

Please refer to the Exhibit 8, Sec. 8. 5 of this test report and ANSI C63-4:1992 for radiated emissions test method.

6.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range		
Spectrum Analyzer/	Advantest	R3271	15050203	100 Hz to 32 GHz with		
EMI Receiver				external mixer for		
				frequency above 32 GHz		
Microwave Amplifier	Hewlett	HP 83017A		1 GHz to 26.5 GHz		
	Packard					
Active Loop Antenna	EMCO	6507	8906-1167	1 kHz – 30 MHz		
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz		
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz		
Horn Antenna	EMCO	3160-09		18 GHz – 26.5 GHz		
Horn Antenna	EMCO	3160-10		26.5 GHz - 40 GHz		
Mixer	Tektronix	118-0098-00		18 GHz – 26.5 GHz		
Mixer	Tektronix	119-0098-00		26.5 GHz - 40 GHz		

6.6.4. Photographs of Test Setup

Please refer to Photos # 1 to 3 in Exhibit 10 for detailed information of the test setup

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.6.5. Test Data

	RF Field	ERP RF	DETECTOR	ANTENNA	LIMIT		
FREQUENCY	Level @3m	Power Level	USED	PLANE	@3m	MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(PEAK/QP)	(H/V)	(dBm)	(dB)	FAIL
824.95	138.5	35.5 (ERP)	PEAK	V	38.5	-3.0	PASS
824.95	137.4	35.9 (ERP)	PEAK	Н	38.5	-2.6	PASS
1649.90	81.8	-15.7	PEAK	V	-13.0	-2.7	PASS
1649.90	81.0	-16.5	PEAK	Н	-13.0	-3.5	PASS
2474.85	73.0	-24.5	PEAK	V	-13.0	-11.5	PASS
2474.85	70.4	-27.1	PEAK	Н	-13.0	-14.1	PASS
3299.80	83.4	-14.1	PEAK	V	-13.0	-1.1	PASS
3299.80	72.0	-25.5	PEAK	Н	-13.0	-12.5	PASS
4124.75	74.6	-22.9	PEAK	V	-13.0	-9.9	PASS
4124.75	75.4	-22.1	PEAK	Н	-13.0	-9.1	PASS
4949.70	68.9	-28.6	PEAK	V	-13.0	-15.6	PASS
4949.70	74.9	-22.6	PEAK	Н	-13.0	-9.6	PASS
5774.65	67.7	-29.8	PEAK	V	-13.0	-16.8	PASS
5774.65	71.7	-25.8	PEAK	Н	-13.0	-12.8	PASS
6599.60	67.1	-30.4	PEAK	V	-13.0	-17.4	PASS
6599.60	66.9	-30.6	PEAK	Н	-13.0	-17.6	PASS
7424.55	63.3	-34.2	PEAK	V	-13.0	-21.2	PASS
7424.55	64.9	-32.6	PEAK	Н	-13.0	-19.6	PASS
8249.50	65.6	-31.9	PEAK	V	-13.0	-18.9	PASS
8249.50	65.5	-32.0	PEAK	Н	-13.0	-19.0	PASS

6.6.5.1. Lowest Frequency (824.95 MHz)

- The emissions were scanned from 10 MHz to 9 GHz and all emissions less than 20 dB below the limits were recorded.

- No rf emissions were observed in the base cellular band of 869-894 MHz with the EMI receiver noise floor set at least 90dBc.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: wheta: wheta: wheta

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

	RF Field	ERP RF	DETECTOR	ANTENNA	LIMIT		
FREQUENCY	Level @3m	Power Level	USED	PLANE	@3m	MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(PEAK/QP)	(H/V)	(dBm)	(dB)	FAIL
836.19	137.4	33.5 (ERP)	PEAK	V	38.5	-5.0	PASS
836.19	136.6	33.2 (ERP)	PEAK	Н	38.5	-5.3	PASS
1672.38	81.1	-16.4	PEAK	V	-13.0	-3.4	PASS
1672.38	76.0	-21.5	PEAK	Н	-13.0	-8.5	PASS
2508.56	73.8	-23.7	PEAK	V	-13.0	-10.7	PASS
2508.56	69.1	-28.4	PEAK	Н	-13.0	-15.4	PASS
3344.75	81.2	-16.3	PEAK	V	-13.0	-3.3	PASS
3344.75	78.3	-19.2	PEAK	Н	-13.0	-6.2	PASS
4180.94	70.9	-26.6	PEAK	V	-13.0	-13.6	PASS
4180.94	72.3	-25.3	PEAK	Н	-13.0	-12.3	PASS
5017.13	63.3	-34.2	PEAK	V	-13.0	-21.2	PASS
5017.13	61.1	-36.4	PEAK	Н	-13.0	-23.4	PASS
5853.32	64.2	-33.3	PEAK	V	-13.0	-20.3	PASS
5853.32	63.7	-33.8	PEAK	Н	-13.0	-20.8	PASS
6689.50	68.6	-28.9	PEAK	V	-13.0	-15.9	PASS
6689.50	59.9	-37.6	PEAK	Н	-13.0	-24.6	PASS
7525.69	68.5	-29.0	PEAK	V	-13.0	-16.0	PASS
7525.69	64.7	-32.8	PEAK	Н	-13.0	-19.8	PASS
8361.88	70.3	-27.2	PEAK	V	-13.0	-14.2	PASS
8361.88	72.6	-24.9	PEAK	Н	-13.0	-11.9	PASS
- The emissions were scanned from 10 MHz to 9 GHz and all emissions less than 20 dB below the limits were							

6.6.5.2. Middle Frequency (836.188 MHz)

recorded.

Norf emissions were observed in the base cellular band of 869-894 MHz with the EMI receiver noise floor set at least 90dBc.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: wheta: wheta: wheta

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

	RF Field	ERP RF	DETECTOR	ANTENNA	LIMIT		
FREQUENCY	Level @3m	Power Level	USED	PLANE	@3m	MARGIN	PASS/
(MHz)	(dBuV/m)	(dBm)	(PEAK/QP)	(H/V)	(dBm)	(dB)	FAIL
848.00	136.8	33.4	PEAK	V	38.5	-5.1	PASS
848.00	135.9	31.3	PEAK	Н	38.5	-7.2	PASS
1696.00	82.3	-15.2	PEAK	V	-13.0	-2.2	PASS
1696.00	76.3	-21.2	PEAK	Н	-13.0	-8.2	PASS
2544.00	67.4	-30.1	PEAK	V	-13.0	-17.1	PASS
2544.00	68.4	-29.1	PEAK	Н	-13.0	-16.1	PASS
3392.00	81.7	-15.8	PEAK	V	-13.0	-2.8	PASS
3392.00	74.0	-23.5	PEAK	Н	-13.0	-10.5	PASS
4240.00	65.7	-31.8	PEAK	V	-13.0	-18.8	PASS
4240.00	61.8	-35.7	PEAK	Н	-13.0	-22.7	PASS
5088.00	63.1	-34.4	PEAK	V	-13.0	-21.4	PASS
5088.00	59.6	-37.9	PEAK	Н	-13.0	-24.9	PASS
5936.00	62.3	-35.2	PEAK	V	-13.0	-22.2	PASS
5936.00	61.8	-35.7	PEAK	Н	-13.0	-22.7	PASS
6784.00	64.8	-32.7	PEAK	V	-13.0	-19.7	PASS
6784.00	61.4	-36.1	PEAK	Н	-13.0	-23.1	PASS
7632.00	65.3	-32.2	PEAK	V	-13.0	-19.2	PASS
7632.00	63.9	-33.6	PEAK	Н	-13.0	-20.6	PASS
8480.00	66.5	-31.0	PEAK	V	-13.0	-18.0	PASS
8480.00	64.4	-33.1	PEAK	Н	-13.0	-20.1	PASS
- The emissions were scanned from 10 MHz to 9 GHz and all emissions less than 20 dB below the limits were recorded.							

6.6.5.3. Highest Frequency (848.000 MHz)

- No rf emissions were observed in the base cellular band of 869-894 MHz with the EMI receiver noise floor set at least 90dBc.

ULTRATECH GROUP OF LABS

File #: SSS-018FTX Dec. 08, 2000

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)	
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$ Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05
Repeatability of EUT			
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60

Sample Calculation for Measurement Accuracy in 150 kHz to 30 MHz Band:

$$u_{c}(y) = \sqrt{m_{\sum_{i=1}}^{m} u_{i}^{2}(y)} = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$$
$$U = 2u_{c}(y) = \pm 2.6 \text{ dB}$$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (<u>+</u> dB)	
(Radiated Emissions)	DISTRIBUTION	3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivit	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67(Bi) 0.3 (Lp)$ Uncertainty limits $20Log(1\pm\Gamma_1\Gamma_R)$	U-Shaped	+1.1 -1.25	<u>+</u> 0.5
System repeatability	Std. Deviation <u>+</u> 0.5		<u>+</u> 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$ And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

EXHIBIT 8. MEASUREMENT METHODS

8.1. EFFECTIVE RADIATED POWER (ERP) MEASUREMENTS

The following shall be applied to the combination(s) of the radio device and its intended antenna(e):

- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

Step 1: Duty Cycle measurements

- Using a spectrum analyzer with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- The duty cycle of the transmitter, x = Tx on / (Tx on + Tx off) with 0 < x < 1, is measure and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.

Step 2: Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

EIRP = A + G + 10log(1/x)

Figure 1.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

Step 3: Substitution Method. See Figure 2

- The measurements was performed in the absence of modulation (un-modulated)
- Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- The dipole test antenna was used and tuned to the transmitter carrier frequency.
- The spectrum analyzer was tuned to transmitter carrier frequency. The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- The substitution dipole antenna and the signal generator replaced the transmitter and antenna under test in the same position, and the substitution dipole antenna was placed in vertical polarization. The test dipole antenna was lowered or raised as necessary to ensure that the maximum signal is stilled received.
- The input signal to the substitution antenna was adjusted in level until an equal or a known related level to that detected from the transmitter was obtained in the test receiver. The maximum carrier radiated power is equal to the power supply by the generator.
- The substitution antenna gain and cable loss were added to the signal generator level for the corrected ERP level.
- Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- Actual gain of the EUT's antenna is the difference of the measured ERP and measured RF power at the RF port. Correct the antenna gain if necessary.

Figure 2

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Figure 3

P3 = P2 + Insertion Loss (P1-P3)EIRP = P3 + G2

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA) All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

8.2. **FREQUENCY STABILITY**

Refer to FCC @ 2.995.

- The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 centigrade (a) except that specified in subparagraph (2) & (3) of this paragraph.
- (b) Frequency measurements shall be made at extremes of the specified temperature range and at intervals of not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation test.
- The frequency stability supply shall be measured with variation of primary supply voltage as follows: (d)
 - Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery (1)equipment.
 - For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point (2)which shall be specified by the manufacturer.
 - The supply voltage shall be measured at the input to the cable normally provide with the equipment, or at the (3) power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

8.3. EMISSION MASK

<u>Voice or Digital Modulation Through a Voice Input Port @ 2.989(c)(i)</u>:- The transmitter was modulated by a 2.5 KHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: ±2.5 KHz peak deviation at 1 KHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

Digital Modulation Through a Data Input Port @ **2.989(h)**:- Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

The following spectrum analyzer bandwidth shall be used for measurement of spurious emissions:

When operating in the radio telephony mode or the supervisory audio Tone mode:

- Any emis sion not more than 45 kHz removed from the carrier frequency: 300 Hz
- Any emission more than 45 kHz removed from the carrier frequency: 30 kHz

When operating in the wideband data mode or the signaling tone mode:

- Any emission not more than 60 kHz removed from the carrier frequency: 300 Hz
- Any emission more than 60 kHz removed from the carrier frequency: 30 kHz

The all cases the Video Bandwidth shall be equal or greater than the measuring bandwidth.

8.4. SPURIOUS EMISSIONS (CONDUCTED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.989, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the Spectrum Analyzer controls set as RBW = 30 kHz minimum, $VBW \ge RBW$ and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC CFR 47, Para. 2.997 - Frequency spectrum to be investigated:- The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC CFR 47, Para. 2.991 - Spurious Emissions at Antenna Terminal:- The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.989 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

8.5. SPURIOUS EMISSIONS (RADIATED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.989, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the Spectrum Analyzer controls set as RBW = 100 kHz minimum, $VBW \ge RBW$ and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC CFR 47, Para. 2.997 - Frequency spectrum to be investigated:- The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC CFR 47, Para. 2.993 - Field Strength Spurious Emissions

- (a) Measurements was made to detect spurious emissions radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data were supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph 2.989(c) as appropriate. For equipment operating on frequencies below 1 GHz, an Open Field Test is normally required, with the measuring instrument antenna located in the far field at all test frequencies. In event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurement will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with the reference to the rated power output of the transmitter, assuming all emissions are radiated from half-wave dipole antennas.
- (b) Measurements specified in paragraph (a) of this section shall be made for the following equipment:
 - (1) Those in which the spurious emission are required to be 60 dB or more below the mean power of the transmitter.
 - (2) All equipment operating on frequencies higher than 25 MHz
 - (3) All equipment where the antenna is an integral part of, and attached directly to the transmitter.
 - (4) Other types of equipment as required, when deemed necessary by the Commission.

Maximizing RF Emission Level:

- The measurements was performed with standard modulation
- Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- The biconilog Antenna (20 MHz to 1 GHz) or Horn Antenna (1 GHz to 18 GHz) was used for measuring.
- The spectrum analyzer was tuned to transmitter carrier frequency. The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

The field strength level measured at 3m is converted to the power in dBm by subtracting a constant factor of 97.5 dB

METHOD OF CALCULATION FOR TRANSMITTED POWER (P) FROM THE MEASURED FIELD STRENGTH LEVEL (E):

According to IEC 801-3, the power density can be calculated as follows:

 $S = P / (4xPIxD^2)$ Where: S: Power density in watts per square feet

- P: Transmitted power in watts
- PI: 13.1415
- D: Distance in meters

The power density S (W/m^2) and electric field E (V/m) is related by:

 $S = E^2/(120xPI)$

=>

Accordingly, the field intensity of isotropic radiator in free space can be expressed as follows:

 $E = (30xP)^{1/2}/D = 5.5x(P)^{1/2}/D$

For Halfwave dipole antenna or other antennas correlated to dipole in direction of maximum radiation:

$$\begin{split} S &= (1.64 x P) / (4 x P I x D^2) \\ E &= (49.2 x P)^{1/2} x D = 7.01 x (P)^{1/2} / D \end{split}$$

 $P = (ExD/7.01)^2$

Calculation of transmitted power P (dBM) given a measured field intensity E (dBuV/m):

$$\begin{split} P(W) &= [E(V/m)xD/7.01]^2 \\ P(mW) &= P(W)x1000 \\ P(dBm) &= 10logP(mW) \\ &= 20logE(V/m) + 20log(D) - 20log(7.01) + 10log1000 \\ &= E(dBV/m) + 20logD + 13 \\ &= E(dBuV/m) - 120 + 20log(D) + 13 \\ &= E(dBuV/m) + 20log(D) - 107 \end{split}$$

The Transmitted Power $@$ D = 3 Meters
P(dBm) = E(dBuV/m) - 97.5

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)