

Korea Technology Institute Co., Ltd.

Page 1 of 22

Test Report

field strengthTest Report No.:	KTI06EF07002				
Registration No.:	99058				
Applicant:	NITGEN Co.,Ltd.				
Applicant Address:	#Sam-Oh Bldg, 3 rd Floor, 905-4 HoGye-dong DongAn-Gu, AnYang				
Product:	Access Controller				
FCC ID:	- Model No. NAC-2500R				
Receipt No.:	06-0603 Date of receipt: June 05, 2006				
Date of Issue:	July 07, 2006				
Testing location	Korea Technology Institute Co., Ltd. 51-19, Sanglim3-Ri, Docheok-Myeun, Gwangju-Shi, Gyeungki-Do, Korea				
Test Standards:	FCC/ANSI. C63.4: 2003				
Rule Parts: FCC	Part 15, Class B				
Equipment Class:	Digital device				
Test Result:	The above-mentioned product has been tested with compliance.				
Tested by: T.W. Lee Approved by: G. C. Min /President / Engineer					

of the

G Min

Signature Date Signature Date

Other Aspects:

Abbreviations: * OK, Pass=passed * Fail=failed * N/A=not applicable - This test report is not permitted to copy partly without our permission.

- This test result is dependent on only equipment to be used.
 - This test result is based on a single evaluation of one sample of the above mentioned.
 - This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S Government.
 - We certify this test report has been based on the measurement standards that is traceable to the national or international standards.

	Korea Technology Institute Co., Ltd.	Page 2 of 22
	≫≫ Contents ≪≪	
	Contents	2
	List of Tables	2
	List of Figures	2
	List of Photographs	2
1.	General	3
2.	Test Site	3
	2.1 Location	3
	2.2 List of Test and Measurement Instruments	4
	2.3 Test Data	4
	2.4 Test Environment	4
3.	Description of the tested samples	5
	3.1 Rating and Physical characteristics	5
	3.2 Submitted documents	5
4.	Measurement conditions	6
	4.1 Modes of operation	6
	4.2 List of peripherals	6
	4.3 Uncertainty	6
	4.4 Test Setup	7
5.	Conducted Emission Test	8
6.	Radiated Emission Test	12
	6.1 Antenna Requirement	12
	6.2 Test and Measurements	13
≫ List	of Tables	
Table	e 1 List of test and measurement equipment 4	
Table	e 2 Rating and Physical Characteristic 5	
Table	e 3 Test Data, Conducted Emissions 1	1
Table	e 4 Test Data, Radiated Emissions 1	2
Table	e 5 Measured values of the Field strength 1	5
≫ List	of Figures	
Figu	re 1 Test Setup 7	
Figu	re 2 Spectral Diagram, LINE-PE 9	
Figu	re 3 Spectral Diagram, Neutral-PE 1	0

Korea Technology Institute Co., Ltd.

Page 3 of 22

1. General

This equipment has been shown to be capable of compliance with the applicable technical standards and was tested in accordance with the measurement procedures as indicated in this report.

We attest to the accuracy of data. Korea Technology Institute Co., Ltd. performed all measurements reported herein. And were made under Chief Engineer's supervisor.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. Test Site

Korea Technology Institute Co., Ltd.

2.1 Location

51-19, Sanglim3-Ri, Docheok-Myeun, Gwangju-Shi, Gyeungki-Do, Korea

The Test Site is in compliance with ANSI C63.4/2001 for measurement of radio Interference.

Korea Technology Institute Co., Ltd.

Page 4 of 22

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

- Conducted Emissions

Kind of Equipment	Туре	S/N	Calibrated until
Spectrum Analyzer	R3261C	61720417	02.2007
Field Strength Meter	ESIB40	100093	05.2007
LISN	KNW407	8-1157-2	01.2007
LISN	EM-7823	115019	05.2007
Conducted Cable	N/A	N/A	11.2006

- Radiated Emissions

Kind of Equipment	Туре	S/N	Calibrated until
Field Strength Meter	ESIB40	100093	05.2007
Spectrum Analyzer	R3261C	61720417	02.2007
Pre Amplifier	8447D	2944A06874	11.2006
Loop Antenna	6502	3434	04.2007
Biconical Antenna	VHA9103	1111	01.2007
LogPeriodic Antenna	UHALP9107	1568	01.2007
Horn Antenna	3115	6443	07.2006
Open Site Cable	N/A	N/A	11.2006
Antenna Mast	DETT-03	N/A	N/A
Antenna & Turntable controller	DETT-04	91X519	N/A

2.3 Test Date

Date of Application: June 23, 2006

Date of Test: June 27, 2006

2.4 Test Environment

25℃/43%/1003mbar

Korea Technology Institute Co., Ltd.

Page 5 of 22

3. Description of the tested samples

The EUT is a Access Controller.

3.1. Rating and Physical Characteristics

Table 2: Rating and Physical Characteristics

Function		Spec.		
Display	Туре	128 * 32 Dots LCD		
	Language	Default: Korean, English		
Sensor	Model / Type	OPP03 / Optical		
	Resolution	500 DPI		
Authentication	Speed	1:1 mode: less than 1 sec / 1:N mode: Application Note		
	Algorithm	FRR: less than 0.1%, FAR: less than 0.001%		
#of registered users	Terminal	780(1 finger prints per user) 400(2 finger prints per user)		
Communication	TCP/IP	10 base-T Ethernet (optional)		
	RS-485	Max. 115200bps (custom requirement)		
Size	Case	90(W) * 200(L) * 48(H) mm		
Power Adapter 1		In: AC100V ~ 240V, 50/60Hz / Out: DC12V, 3A(24V OK)		
	Adapter 2	In: AC100V ~ 240V, 50/60Hz / Out: DC 5V, 3A(24V OK)		
Additional function	Guidelines recorded in voice			
	Downloadable logo	o / firmware		
	IP length (4~15 dig	gits)		
	Authentication resu	ults to be displayed in LED		
Optional	Network Board			
	Door Control Board	1		
	RF Module(125KF	e(125KHz HID)		
Temperature	Storage	-25℃ ~65℃		
	Operation	-20 $^{\circ}$ ~ 60 $^{\circ}$ (with no dew condensation)		
Humidity	Storage	15% ~ 90% RH		
	Operation	25% ~ 85% RH		

3.2 Submitted Documents

- User's Guide
- Block Diagram

Korea Technology Institute Co., Ltd.

Page 6 of 22

4. Measurement Conditions

Testing Input Voltage: AC 220V

4.1 Modes of Operation

The EUT was in the following operation mode during all testing;

1) EUT operates a finger print job with connection to the Note Pc

4.2 Additional Equipment

DEVICE TYPE	Manufacturer	M/N	S/N	FCC ID
Note PC	Samsung	SFM-3200LW	N/A	DOC
Mouse	EUNXING ELECTRONICS	M2000	N/A	DOC
Adapter	DongKwan samsung	AD-9019	N/A	DOC

4.3 Uncertainty

1) Radiated disturbance

Uc (Combined standard Uncertainty) = \pm 1.8dB

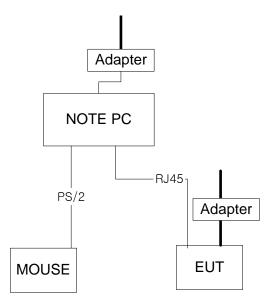
Expanded uncertainty U=KUc

K = 2

 \therefore U = \pm 3.6dB

2) Conducted disturbance

 $Uc = \pm 0.88dB$


 $U = KUc = 2 \times Uc = \pm 1.8dB$

Korea Technology Institute Co., Ltd. Page 7 of 22

4.4 Test Setup

Figure 1: Test Setup

--- SIGNAL

Korea Technology Institute Co., Ltd. Page 8 of 22

5. Conducted EMISSION Test

Result: Pass

The line-conducted facility is located inside a 2.3M x 3.5M x 5.5M shielded closure.

The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 605-05. A 1m x 1.5m wooden table 80cm high is placed 80cm away from the conducting ground plane and 40cm away from the sidewall of the shielded room. Electro-Metroics Model EM-7823 (9kHz-30MHz)50ohm/50 uH Line-Impedance Stabilization Networks (LISN) are bonded to the shielded room.

The EUT is powered from the Electro-Metroics LISN and the support equipment is powered from the Kyoritsu LISN. Power to the LISN are filtered by a high-current high-insertion loss shield enclosures power line filters (100dB 14kHz-1GHz).

The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure.

All electrical cables are shielded by copper pipe with inner diameter of 1".

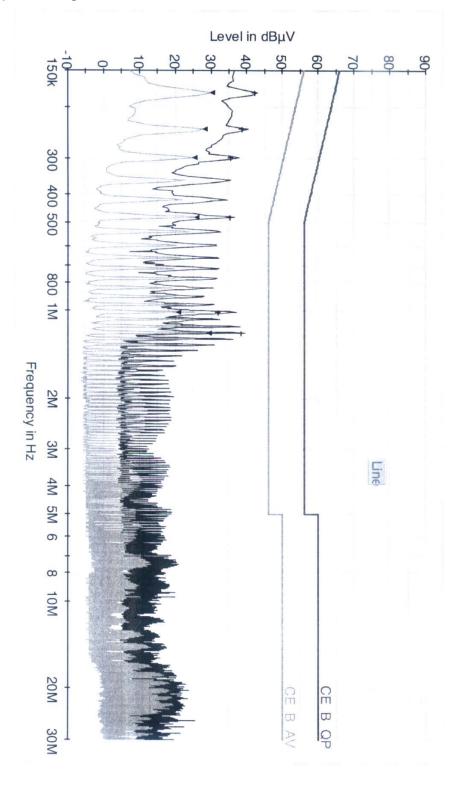
If the EUT is a DC-Powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the Rohde & Schwarz LISN.

All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length.

Sufficient time for the EUT, Support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The frequency producing the maximum level was reexamined using EMI field Intensity meter (ESIB40). The detector function was set to CISPR quasi-peak mode.

The bandwidth of the receiver was set to 10kHZ. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; if applicable; whichever determined the worst-case emission.

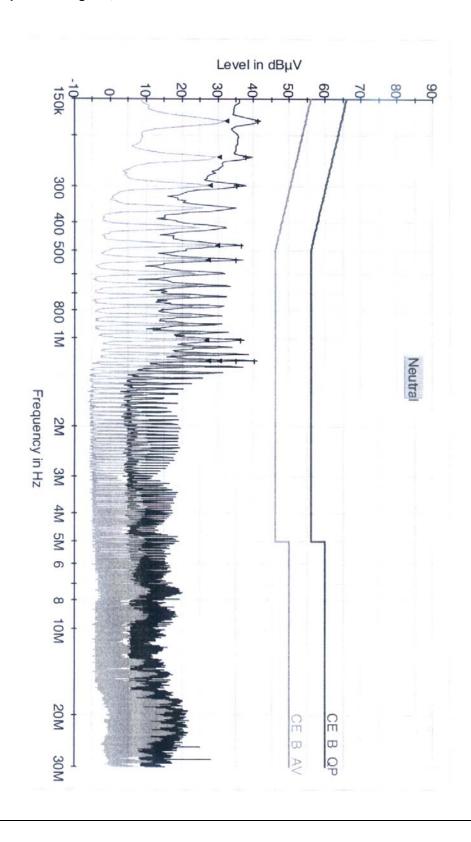
Photographs of the worst-case emission can be seen in photograph of conducted test.


Each EME reported was calibrated using self-calibrating mode.

Korea Technology Institute Co., Ltd.

Page 9 of 22

Figure 2: Spectral Diagram, LINE-PE



Korea Technology Institute Co., Ltd.

Page 10 of 22

Figure 3: Spectral Diagram, NEUTRAL-PE

Korea Technology Institute Co., Ltd.

Page 11 of 22

Table 3: Test Data, Conducted Emissions

Frequency (MHz)	(1) Reading (dBµV)	Line	(2)C/F (dB)	(3)Actual (dBµV)	(4) Limit (dBµV)	(5) Margin (dB)
0.18	41.98	L1	0.22	42.20	64.49	22.29
0.24	38.38	L1	0.22	38.60	62.10	23.50
0.30	35.38	L1	0.22	35.60	60.24	24.64
0.48	36.29	L2	0.31	36.60	56.34	19.74
1.01	39.76	L2	0.24	40.00	56.00	16.00
1.19	35.96	L2	0.24	36.20	56.00	19.80

NOTES:

- All modes of operation were investigated
 And the worst-case emissions are reported.
- 2. All other emissions are non-significant.
- 3. All readings are calibrated by self-mode in receiver.
- 4. Measurements using CISPR Quasi-peak mode.
- 5. L1 = LINE-PE, L2 = NEUTRAL-PE
- 6. C/F = Correction Factor(LISN factor + Cable loss)
- 7. The limit for Class B digital device is 66dBuV to 56dBuV from 150KHz to 500KHz, 56dBuV from 500KHz to 5MHz, 60dBuV Above 5MHz.

♠ Margin Calculation

Korea Technology Institute Co., Ltd. Page 18 of 22

6. Radiated EMISSION Test

Summary of Test Results

Table 4: Test Data, Radiated Emissions

Requirement	CFR Section	Report Section	Test Result
Antenna Requirement	15.203	5.1	PASS
Radiated Spurious Emissions	15.209	5.2	PASS
Conducted Emissions	15.207	*	*
Radiated Spurious Emissions	15.109	*	*
Conducted Emissions	15.107	*	*

^{*}According to the Section 15.33(b)(1)&(c), Radiated Emissions & Conducted Emissions were reported in Report No. -.

6.1 ANTENNA REQUIREMENT

6.1.1 Regulation

FCC section 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack of electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

6.1.2 Results: PASS

The transmitter has an integral loop coil antenna and meets the requirements of this section.

Korea Technology Institute Co., Ltd.

Page 19 of 22

6.2 Test and Measurements

6.2.1 Regulation

-Emissions below 30MHz

According to 15.209, the field strength of emissions from intentional radiators operated under this frequency band shall not exceed the following:

Frequency(MHz)	Field strength	Calculation of Field	Calculation of Field	
		strength($\mu V/m$)	strength(dBµV/m)	
0.009 - 0.490	2400/F(kHz)	266.7 - 4.9	48.5 – 13.8	
	(μV/m@300m)	(μV/m@300m)	(dBµV/m@300m)	
0.490 - 1.705	24000/F(kHz)	49.0 – 14.1	33.8 – 23.0	
	(μV/m@30m)	(μV/m@30m)	(dBµV/m@30m)	
1.705 – 30.0	30(µV/m@30m)	30(µV/m@30m)	29.5(dBμV/m@30m)	

⁻Emissions above 30MHz

According to the Section 15.33(b)(1) and 15.109, Radiated Emissions were reported in Report No.KTI06

6.2.2 Measurement Procedure

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8meter high nonconductive table that sits on a flush mounted metal turntable. Preview tests are performed to determine the "worst case" mode of operation. With the EUT operating in "worst case" mode, emissions from the unit are maximized by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

The initial step in collecting radiated data is a peak scan of the measurement range with an EMI test receiver under closer distances as given in the rule. The significant peaks are then measured with the appropriate detectors(QP, AV and PK).

Korea Technology Institute Co., Ltd. Page 20 of 22

6.2.3 Calculation of the field strength limits

-Emissions below 30MHz

No special calculation for obtaining the field strength in $dB\mu V/m$ is necessary, because the EMI receiver and the active loop antenna operate as a system, where the reading gives directly the field strength result($dB\mu V/m$). The gain antenna factors and cable losses are already taken into consideration.

For test distance other than what is specified, but fulfilling the requirements of section 15.31 (f)(2) the field strength is calculated by adding additionally an extrapolation factor of 40dB/decade(inverse lineardistance for field strength measurements).

All following emission measurements were performed using the test receiver's average detector and peak detector function.

The basic equation is as follow;

FS = RA + DF

Where

FS = Field strength in $dB\mu V/m$

RA = Receiver Amplitude in dBµV/m

DF = Distance Extrapolation Factor in dB

Where DF = 20log(Dtest/Dspec) where Dtest = Test distance and Dspec = Specified Distance

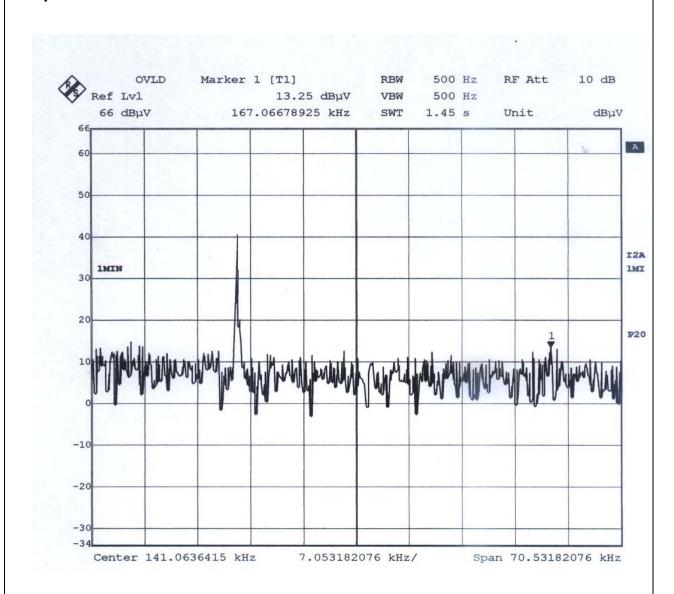
 $DF = 40log(3m/300m) = -80dB (Frequency : 0.009 \sim 0.490 MHz)$

DF = 40log(3m/30m) = -40dB (Frequency: 0.490 ~ 30 MHz)

6.2.4 Test Results: PASS

The results of the field strength of the fundamental and spurious/harmonic emissions are shown in Table 1. The worst-case emission level is 13.25 dB μ V/m @ 3m at 0.167 MHz, This is 40.75 dB below the specified limit.

Korea Technology Institute Co., Ltd. Page 21 of 22


Table 5 : Measured values of the Field strength (below 30MHz)								
Frequency(MHz)	Reading(dB μ V)	Limit(dB <i>μ</i> V/m)	Margin(dB)					
Emissions (Average	Emissions (Average Detector)							
167.0667	13.25	54	40.75					
126.4364	40.94	54	13.06					
Emissions (Peak Det	ector)							
	No Emiss	sions Found.						
Emissions DATA 15.2	205 Restricted Bands							
	No Emiss	sions Found.						

Margin(dB) = Limit – Reading

Korea Technology Institute Co., Ltd. Page 22 of 22

Spurious

