

Page 1 of 29

Certificate of Compliance

Test Report No.:	SKTTRT-051019-027			
NVLAP CODE:	200220-0			
Applicant:	NITGen Co., Ltd.			
Applicant Address:	Sanhak Research Foundation Seoul, 137-070 South Korea		31, Seocho-dong, Seocho-ku,	
Manufacturer:	NITGen Co., Ltd.			
Manufacturer Address:	Sanhak Research Foundation Seoul, 137-070 South Korea		31, Seocho-dong, Seocho-ku,	
Device Under Test:	Multi-Biometrics System	Multi-Biometrics System		
FCC ID:	PEBENBIOGATE	Model Name:	eNBio Gate	
Receipt No.:	SKTEU05-0570	Date of receipt:	August 29, 2005	
Date of Issue:	October 19, 2005			
Location of Testing:	SK TECH CO., LTD. 820-2, Wolmoon-Ri, Wabu-l	Jp, Namyangju-Si, K	yunggi-Do, Korea	
Test Specification:	FCC Part 15 Rules			
FCC Equipment Class:	DXX - Part 15 Low Power 0	Communication Dev	vice Transmitter	
Test Result:	The above-mentioned device has been tested and passed.			
Tested & Reported by:	Jong-Soo, Yoon Approved by: Jae-Kyung, Bae			
N		1001000	B	
	2005. 10. 19		2005. 10. 19	
Signature	Date	Signature	Date	

Other Aspects:

Abbreviations: · OK, Pass = passed · Fail = failed · N/A = not applicable

•This test report is not permitted to copy partly without our permission.

•This test result is dependent on only equipment to be used.

•This test result is based on a single evaluation of one sample of the above mentioned.

- •This test report must not be used to claim product endorsement by NVLAP or any agency of the U.S Government.
- We certify that this test report has been based on the measurement standards that is traceable to the national or International standards.

Page 2 of 29

>> CONTENTS <<

1. GENERAL ····································	4
2.1 Location 2.2 List of Test and Measurement Instruments 2.3 Test Date 2.4 Test Environment	5
3. DESCRIPTION OF The EQUIPMENT UNDER TEST 3.1 Rating and Physical Characteristics 3.2 Submitted Documents 3.3 Equipment Modifications	6 6
4. MEASUREMENT CONDITIONS 4.1 Description of test configuration 4.2 List of Peripherals 4.3 Type of used Cables 4.4 Uncertainty	10 10 11
5. TEST AND MEASUREMENTS	1 2
5.2 RADIATED EMISSIONS 5.2.1 Regulation 5.2.2 Measurement Procedure 5.2.3 Calculation of the filed strength limits below 30 MHz 5.2.4 Test Results Table 1: Field strength below 30 MHz Table 2: Field strength above 30 MHz Figure 1: Plot of the Band Edge	1314151616
5.3 FREQUENCY TOLERANCE OF CARRIER SIGNAL 5.3.1 Regulation 5.3.2 Measurement Procedure 5.3.3 Test Results Table 3: Frequency Tolerance	19 19 20

Page 3 of 29

5.4 CONDUCTED EMISSIONS	21
5.4.1 Regulation ·····	21
5.4.2 Measurement Procedure ······	21
5.4.3 Test Results ·····	22
Table 4: Conducted Emissions - DIRECT ······	22
Table 5: Conducted Emissions - INDIRECT ······	24
Figure 2: Plot of the Conducted Emissions - DIRECT	26
Figure 3: Plot of the Conducted Emissions - INDIRECT	28

Page 4 of 29

1. GENERAL

These tests were performed using the test procedure outlined in ANSI C63.4, 2003 for intentional radiators, and in accordance with the limits set forth in FCC Part 15.225. The EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards.

We attest to the accuracy of data. All measurements reported herein were performed by SK Tech Co., Ltd. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. TEST SITE

SK TECH Co., Ltd.

2.1 Location

820-2, Wolmoon Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea

This test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

This laboratory is accredited by NVLAP for NVLAP Lab. Code: 200220-0 and DATech for DAR-Registration No.: TTI-P-G155/97-10

SKTTRT-051019-027 FCC ID: PEBENBIOGATE

SK TECH CO., LTD.

Page 5 of 29

2.2 List of Test and Measurement Instruments

Description	Manufacturer	Model #	Serial #	
Spectrum Analyzer	Agilent	E4405B	US40520856	\boxtimes
EMC Spectrum Analyzer	Agilent	E7405A	US40240203	\boxtimes
EMI Test Receiver	Rohde&Schwarz	ESVS10	825120/013	\boxtimes
EMI Test Receiver	Rohde&Schwarz	ESVS10	834468/008	\boxtimes
EMI Test Receiver	Rohde&Schwarz	ESHS10	825120/013	\boxtimes
EMI Test Receiver	Rohde&Schwarz	ESHS10	834468/008	\boxtimes
Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	836679/018	\boxtimes
Pre-amplifier	HP	8447F	3113A05153	\boxtimes
Pre-amplifier	HP	8349B	2644A03250	
Power Meter	Agilent	E4418B	3318A13916	
Power Sensor	HP	8485A	3318A13916	
Frequency Counter	HP	5343A	2022A00167	\boxtimes
VHF Precision Dipole Antenna (TX & RX)	Schwarzbeck	VHAP	1014 & 1015	
UHF Precision Dipole Antenna (TX & RX)	Schwarzbeck	UHAP	989 & 990	
Loop Antenna	Schwarzbeck	HFH2-Z2	863048/019	\boxtimes
TRILOG Broadband Antenna	Schwarzbeck	VULB9160	3141	\boxtimes
Biconical Antenna	Schwarzbeck	VHA9103	2265	\boxtimes
Log-Periodic Antenna	Schwarzbeck	UHALP9107	1819	\boxtimes
Horn Antenna	AH Systems	SAS-200/571	304	
Horn Antenna	ETS-LINDGREN	3115	00040723	
Horn Antenna	ETS-LINDGREN	3115	00056768	
Vector Signal Generator	Agilent	E4438C	MY42080359	
Signal Generator	HP	8349B	2644A03250	
DC Power Supply	HP	6634A	2926A-01078	
DC Power Supply	HP	6268B	2542A-07856	
Digital Multimeter	HP	HP3458A	2328A14389	
PCS Interface	HP	83236B	3711J00881	
CDMA Mobile Test Set	HP	8924C	US35360253	
Hygro/Thermo Graph	SATO	PC-5000TRH-II	-	\boxtimes
Temperature/Humidity Chamber	All Three	ATH-50M	20030425	
Temperature/Humidity Chamber	Tabai	PR-4STH	1300515	\boxtimes

2.3 Test Date

Date of Application : August 29, 2005

Date of Test : October 15, 2005 ~ October 17, 2005

2.4 Test Environment

See each test item's description.

Page 6 of 29

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

The product specification described herein was obtained from the product data sheet or user's manual.

3.1 Rating and Physical Characteristics

Product description	Multi-Biometrics System
FCC ID	PEBENBIOGATE
Model Name	eNBio Gate
Power source	DC 24V (AC/DC Adaptor), DC 5V (USB)
Dimensions [mm]	320 (W) × 380 (D) × 866 (H)
Local Oscillator, X-tal	RFID card reader: 12 MHz, 13.56 MHz, 22.1184 MHz Main board: 15 MHz Fingerprint scanner: 12 MHz
Operating frequency	13.56MHz (fixed)
Type of Modulation	ASK
Antenna	Integral (PCB loop antenna, Diameter: about 51mm, 3-turns)
External Interface	USB interface for RFID card reader Parallel & PS2 connector for Fingerprint scanner 1 USB interface for Fingerprint scanner 2 Video signal output Audio signal connector

^{**} The test report for compliance with FCC Part 15B as a Class B digital should be issued with other test report number.

3.2 Submitted Documents

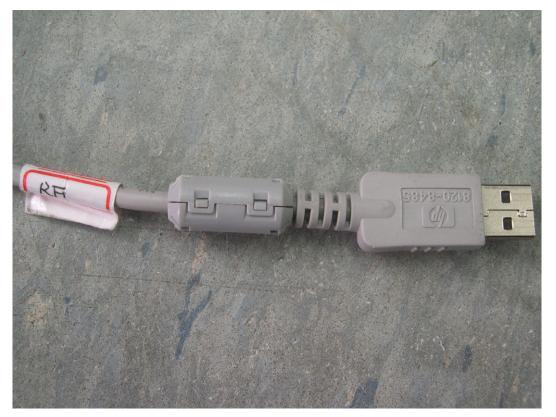
Block diagram / Schematic diagram / Part List / User's manual

3.3 Equipment Modifications

The following modifications were necessary for compliance:

Ferrite cores are inserted additionally as follows:

#	Ferrite core location	Manufacturer	Model Name	Quantity
1	USB cable	TDK	ZCAT1325-0530	2
2	Video signal cable	FEELUX	BNF-18	1
3	Audio signal cable	TDK	ZCAT1730-0730	1
4	External cables	FEELUX	BNF-27	1
5	AC/DC adaptor	TOKIN	ESD-SR-15	1



Page 7 of 29

1. Ferrite core on USB Cable for RFID card reader

2. Ferrite core on USB Cable for RFID card reader

Page 8 of 29

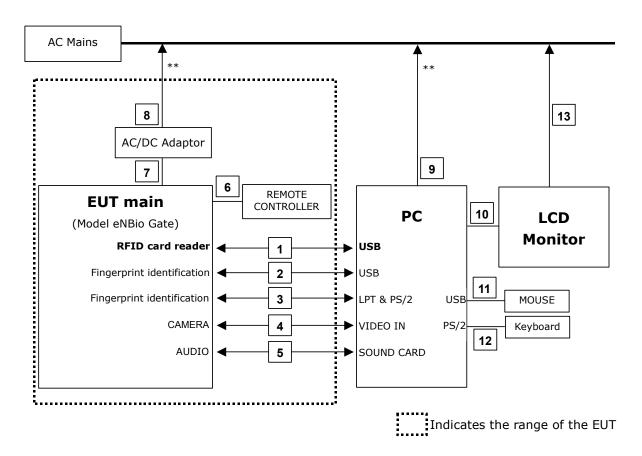
3. Ferrite core on Video signal cable

4. Ferrite core on Audio signal cable

Page 9 of 29

5. Ferrite core on External cables

6. Ferrite core on AC/DC Adaptor



Page 10 of 29

4. MEASUREMENT CONDITIONS

4.1 Description of test configuration

The EUT was connected to AC mains through AC/DC Adaptor and the measurements were taken in transmitting mode under practical operation, without RFID card (unmodulated carrier signal) and with RFID card (modulated) using RF test program, RF_API_TEST.exe, supplied by the applicant.

^{**} For conducted emission measurements, both tested; The EUT was DIRECTLY powered from the LISN port and the transmitter portion of the EUT, RFID card reader, was INDIRECTLY powered from the LISN port (to which the PC was connected).

4.2 List of Peripherals

Equipment Type	Manufacturer	Model	S/N
PC	SAMSUNG	DM-P40	Z39699AXC00334V
LCD Monitor	LG IBM	1510TFT Rev B	304KG04896
Mouse (USB type)	LG	LMULBGS011	04CU000247
Keyboard (PS/2 type)	LG	LK3100	-

Page 11 of 29

4.3 Type of Used Cables

	9	START	END			Cable	
#	Name	I/O Port	Name	I/O Port	Length	Shielded	Ferrite Core
1	EUT main	RFID card reader	PC	USB	1.8	YES	YES **
2	EUT main	Fingerprint ID	PC	USB	1.8	YES	YES
3	EUT main	Fingerprint ID	PC	LPT & PS/2	2.5	NO	YES
4	EUT main	CAMERA	PC	VIDEO IN	1.8	NO	YES **
5	EUT main	AUDIO	PC	Sound Card	2.5	NO	YES **
6	EUT main	Remote Controller	-	-	1.5	NO	NO
7	EUT main	DC input	Adaptor	DC output cable	1.5	NO	YES **
8	Adaptor	AC power cable	AC Mains	-	1.8	NO	NO
9	PC	AC input	AC Mains	-	1.8	NO	NO
10	PC	VGA output	LCD	Monitor cable	1.8	YES	YES
11	PC	USB	MOUSE	Mouse cable	1.8	NO	NO
12	PC	PS/2	Keyboard	Keyboard cable	1.5	NO	NO
13	LCD	AC power cable	AC Mains	-	1.8	NO	NO

^{**} Ferrite cores are additionally inserted for compliance

4.4 Uncertainty

Measurement Item	Combined Standard Uncertainty	Expanded Uncertainty U = KUc (K = 2)
Radiated disturbance	± 2.37 dB	±4.74dB
Conducted disturbance	± 1.47 dB	± 2.94dB

Page 12 of 29

5. TEST AND MEASUREMENTS

Summary of Test Results

Requirement	FCC, 47CFR15	Report Section	Test Result
Antenna Requirement	15.203	5.1	PASS
Radiated Emissions Field Strength within the band 13.553-13.567 MHz	15.225(a)	5.2	PASS
Field Strength within the bands 13.410-13.553 MHz and 13.567-13.710 MHz 13.110-13.410 MHz and 13.710-14.010 MHz	15.225(b) & (c)	5.2	PASS
Radiated Harmonics and Spurious Emissions Outside of the 13.110 – 14.010 MHz	15.225(d)	5.2	PASS
Frequency Tolerance of Carrier Signal	15.225(e)	5.3	PASS
Power Line Conducted Emissions	15.207(a)	5.4	PASS

5.1 ANTNNA REQUIRMENT

5.1.1 Regulation

FCC 47CFR15 - 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

5.1.2 Result: PASS

The transmitter has an integral PCB loop antenna that is enclosed within the housing of the EUT, and meets the requirements of this section.

Page 13 of 29

5.2 RADIATED EMISSIONS

5.2.1 Regulation

FCC 47CFR15 - 15.225

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Frequency	Field strength limit	Field strength limit	Field strength limit
(MHz)	(μV/m) @ 30 m	(dBµV/m) @ 30 m	(dBµV/m) @ 3 m
13.110 – 13.410	106	40.5	80.5
13.410 – 13.553	334	50.5	90.5
13.553 – 13.567	15,848	84.0	124.0
13.567 - 13.710	334	50.5	90.5
13.710 – 14.010	106	40.5	80.5

FCC 47CFR15 - 15.209

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength limit (μV/m)	Field strength limit (dBµV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F (kHz) = 266.7 – 4.9	48.5 – 13.8	300
0.490 - 1.705	24000/F (kHz) = 49.0 – 14.1	33.8 – 23.0	30
1.705 – 30.0	30	29.5	30
30 – 88	100 **	40.0	3
88 – 216	150 **	43.5	3
216 – 960	200 **	46.0	
Above 960	500	54.0	3

^{*} Use quasi-peak below 1000 MHz and averaging meter above 1000 MHz.

^{*} The lower limit shall apply at the transition frequencies.

Page 14 of 29

5.2.2 Measurement Procedure

Radiated Emissions Test, 9 kHz to 30 MHz (Magnetic Field Test)

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions at a distance of 3 meters according to Section 15.31(f)(2).
- 2. The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table.
- 3. Emissions from the EUT are maximized by adjusting the orientation of the Loop antenna and rotating the EUT on the turntable. Manipulating the system cables also maximizes EUT emissions if applicable.
- 4. To obtain the final measurement data, each frequency found during preliminary measurements was reexamined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

Radiated Emissions Test, 30 MHz to 18000 MHz

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters.
- 2. The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 30 to 1000 MHz using the TRILOG broadband antenna, and from 1000 MHz to 18000 MHz using the horn antenna.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 × 4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 6. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.

Page 15 of 29

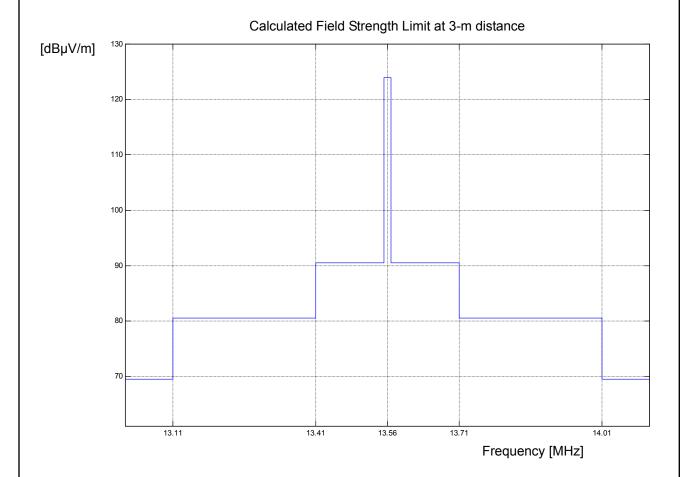
5.2.3 Calculation of the field strength limits below 30 MHz

- 1. No special calculation for obtaining the field strength in $dB\mu V/m$ is necessary, because the EMI receiver and the active loop antenna operate as a system, where the reading gives directly the field strength result ($dB\mu V/m$). The antenna factors and cable losses are already taken into consideration.
- 2. For test distance other than what is specified, but fulfilling the requirements of section 15.31 (f) (2) the field strength is calculated by adding additionally an extrapolation factor of 40dB/decade (inverse linear distance for field strength measurements).
- 3. All following emission measurements were performed using the test receiver's average, peak, and quasi-peak detector function with specified bandwidth.
- 4. The basic equation is as follows;

FS= RA + DF

Where

FS = Field strength in dBµV/m


RA = Receiver Amplitude in $dB\mu V/m$

DF = Distance Extrapolation Factor in dB

Where DF = $40log(D_{TEST} / D_{SPEC})$ where D_{TEST} = Test Distance and D_{SPEC} = Specified Distance

DF = 40log(3m/300m) = -80dB, for frequency band: 0.009 to 0.490MHz

DF = $40\log(3m/30m)$ = -40dB, for frequency band: 0.490 to 30MHz

Page 16 of 29

5.2.4 Test Results:

PASS

TEST MODE: without RFID card (unmodulated)

Table 1: Field strength below 30 MHz										
Receiver Bandwidth	Reading	Preamp Gain	Actual	Limit (at 3m)	Margin					
[kHz]	[dB(µV/m)]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]					
Emissi	ions Quasi	peak DATA u	nder 15.225(a), (b)&(c)						
10	79.4	28.5	50.9	124.0	73.1					
		•								
Emiss	ions Quasi	-peak DATA u	nder 15.225(d), 15.209						
	Receiver Bandwidth [kHz] Emiss	Receiver Bandwidth [kHz] [dB(µV/m)] Emissions Quasi- 10 79.4	Receiver Bandwidth [kHz] [dB(μV/m)] [dB] Emissions Quasi-peak DATA under the second peak of the second pe	Receiver Bandwidth Reading Preamp Gain Actual [kHz] [dB(μV/m)] [dB] [dB(μV/m)] Emissions Quasi-peak DATA under 15.225(a 10 79.4 28.5 50.9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

TEST MODE: with RFID card (modulated)

Frequency	Receiver Bandwidth	Reading	Preamp Gain	Actual	Limit (at 3m)	Margin
[MHz]	[kHz]	[dB(µV/m)]	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
	Emissi	ions Quasi-	peak DATA ui	nder 15.225(a), (b)&(c)	
13.560	10	79.6	28.5	51.1	124.0	72.9
13.349	10	54.3	28.5	25.8	80.5	54.7
13.427	10	54.8	28.5	26.3	90.5	64.2
13.484	10	55.2	28.5	26.7	90.5	63.8
13.639	10	55.6	28.5	27.1	90.5	63.4
13.695	10	54.8	28.5	26.3	90.5	64.2
13.769	10	54.6	28.5	26.1	80.5	54.4
	Emiss	ions Quasi	-peak DATA u	nder 15.225(d), 15.209	

Actual $(dB\mu V/m) = Reading - Preamp Gain Margin (dB) = Limit - Actual$

Page 17 of 29

TEST MODE: without RFID card (unmodulated)

Table 2:	Field stre	ngth	above 3	30 MHz					
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Reading	Amp Gain	AF / CL	Actual	Limit	Margin
[MHz]	[kHz]	(V/H)	[m]	[dB(µV)]	[dB]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]
		Emi	ssions Q	uasi-peak l	DATA 15.	225(d), 1	5.209		
109.58	120	Н	1.4	45.7	27.9	11.6/1.7	31.1	43.5	12.4
127.96	120	Н	1.5	48.1	27.8	13.7/1.7	35.7	43.5	7.8
162.72	120	Н	2.8	36.8	27.5	15.3/2.1	26.7	43.5	16.8
216.96	120	Н	1.8	38.0	27.2	16.9/2.5	30.2	46.0	15.8
230.52	120	Н	1.3	37.3	27.1	17.2/2.6	30.0	46.0	16.0
244.08	120	Н	1.4	38.3	27.0	17.4/2.6	31.3	46.0	14.7

TEST MODE: with RFID card (modulated)

Frequency	Receiver	Pol.	Antenna	Reading	Amp	AF / CL	Actual	Limit	Margin
	Bandwidth		Height		Gain				
[MHz]	[kHz]	(V/H)	[m]	[dB(µV)]	[dB]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]
		Emi	ssions Q	uasi-peak [DATA 15.	225(d), 1	5.209		
109.58	120	Н	1.4	46.2	27.9	11.6/1.7	31.6	43.5	11.9
127.96	120	Н	1.5	48.7	27.8	13.7/1.7	36.3	43.5	7.2
162.72	120	Н	2.8	38.4	27.5	15.3/2.1	28.3	43.5	15.2
216.96	120	Н	1.8	39.0	27.2	16.9/2.5	31.2	46.0	14.8
230.52	120	Н	1.3	38.5	27.1	17.2/2.6	31.2	46.0	14.8
244.08	120	Н	1.4	41.6	27.0	17.4/2.6	34.6	46.0	11.4

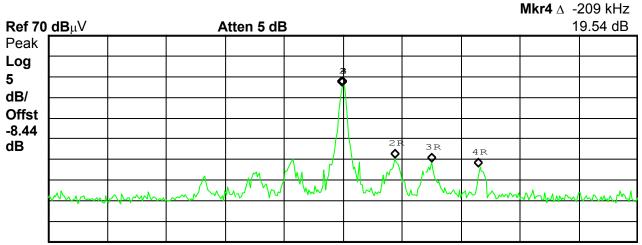
Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + AF + CL]

- 1. H = Horizontal, V = Vertical Polarization
- 2. AF/CL = Antenna Factor and Cable Loss

NOTE: The spectrum was scanned from 30 MHz to 1 GHz. All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

SKTTRT-051019-027 FCC ID: PEBENBIOGATE


SK TECH CO., LTD.

Page 18 of 29

Figure 1: Plot of the Band edge

TEST MODE: with RFID card (modulated)

* Agilent 09:43:25 Oct 17, 2005

 Start 13.11 MHz
 Stop 14.01 MHz

 #Res BW 9 kHz
 VBW 30 kHz
 Sweep 25.33 ms (401 pts)

Marker	Trace	Туре	X Axis	Amplitude	
1	(1)	Freq	13.560 MHz	57.76 dBμV	
2R	(1)	Freq	13.639 MHz	$40.35~dB_{\mu}V$	
2Δ	(1)	Freq	-79 kHz	17.4 dB	
3R	(1)	Freq	13.695 MHz	39.38 dBμV	
3∆	(1)	Freq	-135 kHz	18.38 dB	
4R	(1)	Freq	13.769 MHz	$38.21 \text{ dB}_{\mu}\text{V}$	
4Δ	(1)	Freq	-209 kHz	19.54 dB	
		·			
	` '	•		•	

Offset (-8.44 dB) = Antenna Factor (19.56 dB) + Cable Loss (0.5 dB) - Preamp Gain (28.5 dB)

Spectrum Analyzer setting was as follows: Frequency range: 13.11 – 14.01 MHz

Resolution bandwidth: 9 kHz

Detector: Peak

Trace: Max Hold mode

Sweep: Auto

SKTTRT-051019-027 FCC ID: PEBENBIOGATE

SK TECH CO., LTD.

Page 19 of 29

5.3 FREQUENCY TOLERANCE OF CARRIER SIGNAL

5.3.1 Regulation

FCC 47CFR15 - 15.225(e)

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery-operated equipment, the equipment tests shall be performed using a new battery.

5.3.2 Measurement Procedure

Frequency stability versus environmental temperature

- 1. Supply the EUT with nominal AC voltage.
- 2. Turn the EUT off, and place it inside an environmental temperature chamber. For devices that are normally operated continuously, the EUT may be energized while inside the test chamber. For devices that have oscillator heaters, energize only the heater circuit while the EUT is inside the chamber.
- 3. RF output was connected to a frequency counter or other frequency-measuring instrument via feed through attenuators.
- 4. Set the temperature control on the chamber to the highest specified EUT operating temperature, and allow the temperature inside the chamber to stabilize at the set temperature before starting frequency measurements.
- 5. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup and two, five, and ten minutes after the EUT is energized.
- 6. After all measurements have been made at the highest specified temperature turn the EUT off.
- 7. Repeat the above measurement process for the EUT with the test chamber set at the appropriate temperature.

Frequency Stability versus Input Voltage

- 1. At room temperature (20 \pm 5 °C), supply the EUT with nominal AC voltage.
- 2. Couple RF output to a frequency counter or other frequency-measuring instrument.
- 3. Turn the EUT on, and measure the EUT operating frequency at startup and two, five, and ten minutes after startup.
- 4. Supply it with 85% of the nominal AC voltage and repeat the above procedure.
- 5. Supply it with 115% of the nominal AC voltage and repeat the above procedure.

Page 20 of 29

5.3.3 Test Results: PASS

TEST MODE: without RFID card (unmodulated)

Table 3: F	Table 3: Frequency Tolerance										
	Reference Frequency: 13.5600MHz, LIMIT: within ± 1356 Hz										
Environment	Environment Power Carrier Frequency Measured with Time Elapsed										
Temperature	Supplied	STAR	UP	2 minu	utes	5 minu	ıtes	10 min	utes		
[°C]	[V _{AC}]	[MHZ]	Err [Hz]								
+50	120	13.559511	-489	13.559508	-492	13.559507	-493	13.559507	-493		
+40	120	13.559533	-467	13.559528	-472	13.559525	-475	13.559524	-476		
+30	120	13.559571	-429	13.559561	-439	13.559558	-442	13.559555	-445		
+20	120	13.559609	-391	13.559599	-401	13.559596	-404	13.559592	-408		
+10	120	13.559634	-366	13.559632	-368	13.559632	-368	13.559631	-369		
0	120	13.559654	-346	13.559652	-348	13.559651	-349	13.559651	-349		
-10	120	13.559636	-364	13.559644	-356	13.559646	-354	13.559647	-353		
-20	120	13.559611	-389	13.559621	-379	13.559628	-372	13.559630	-370		

Reference Frequency: 13.5600MHz, LIMIT: 100 PPM (within \pm 1356 Hz)										
Power Supplied		Carrier Frequency Measured with Time Elapsed								
Fower Supplied	STAR	UP	2 minu	utes	5 minu	ites	10 min	utes		
[V _{AC}]	[MHZ]	Err [Hz]	[MHZ]	Err [Hz]	[MHZ]	Err [Hz]	[MHZ]	Err [Hz]		
85 %	13.559601	-399	13.559585	-415	13.559577	-423	13.559573	-427		
100 %	13.559601	-399	13.559585	-415	13.559577	-423	13.559573	-427		
115 %	13.559601	-399	13.559585	-415	13.559577	-423	13.559573	-427		

Err [Hz] = Measured carrier frequency (MHz) - Reference Frequency (13.56 MHz)

SKTTRT-051019-027 FCC ID: PEBENBIOGATE

SK TECH CO., LTD.

Page 21 of 29

5.4 CONDUCTED EMISSIONS

5.4.1 Regulation

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Fraguency of omission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHz)	Qausi-peak	Average				
0.15 – 0.5	66 to 56 *	56 to 46 *				
0.5 – 5	56	46				
5 – 30	60	50				

^{*} Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

5.4.2 Test Procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu H$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
- 5. The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

Page 22 of 29

5.4.3 Test Results: PASS

The EUT was DIRECTLY powered from the LISN port and the transmitter portion of the EUT, RFID card reader, was powered from the PC.

TEST MODE: without RFID card (unmodulated)

Table 4:	Conduct	ed Emis	ssions –	DIRECT					
Frequency	Reading	[dBµV]	CF/CL	Actual	[dBµV]	Limit [dBµV]	Margi	n [dB]
[MHz]	Qp	Ave	[dB]	Qp	Ave	Qp	Ave	Qp	Ave
				LINE -	PE				
0.18	46.68		0.08/0.1	46.86		64.49	54.49	17.63	
0.24	40.54		0.08/0.1	40.72		62.10	52.10	21.38	
0.30	36.50		0.08/0.1	36.68		60.24	50.24	23.56	
13.56	42.14		0.61/0.6	43.35		60.00	50.00	16.65	
15.37	36.24		0.67/0.6	37.51		60.00	50.00	22.49	
15.43	36.71		0.67/0.6	37.98		60.00	50.00	22.02	
15.61	35.88		0.70/0.6	37.18		60.00	50.00	22.82	
16.14	35.80		0.70/0.6	37.10		60.00	50.00	22.90	
			N	IEUTRAL	. – PE				
0.18	48.61		0.13/0.1	48.84		64.49	54.49	15.65	
0.24	41.06		0.13/0.1	41.29		62.10	52.10	20.81	
0.30	36.91		0.14/0.1	37.15		60.24	50.24	23.09	
13.56	41.82		0.47/0.6	42.89		60.00	50.00	17.11	
15.43	38.24		0.50/0.6	39.34		60.00	50.00	20.66	
16.02	36.30		0.52/0.6	37.42		60.00	50.00	22.58	
16.08	36.24		0.52/0.6	37.36		60.00	50.00	22.64	
16.14	37.33		0.52/0.6	38.45		60.00	50.00	21.55	
16.26	37.13		0.52/0.6	38.25		60.00	50.00	21.75	

Margin (dB) = Limit - Actual
[Actual = Reading + CF + CL]

- 1. Remark "---" means the level is undetectable or the Qausi-peak value is lower than the limit of Average.
- 2. CF/CL = Correction Factor and Cable Loss
- 3. Qp = Quasi-peak, Ave = Average value

Page 23 of 29

The EUT was DIRECTLY powered from the LISN port and the transmitter portion of the EUT, RFID card reader, was powered from the PC.

TEST MODE: with RFID card (modulated)

Table 4:	Conduct	ed Emi	ssions –	DIRECT	(contin	ued)			
Frequency	Reading	[dBµV]	CF/CL	Actual	[dBµV]	Limit [dBµV]	Margi	n [dB]
[MHz]	Qp	Ave	[dB]	Qp	Ave	Qp	Ave	Qp	Ave
				LINE -	PE				
0.18	43.74		0.08/0.1	43.92		64.49	54.49	20.57	
0.24	37.67		0.08/0.1	37.85		62.10	52.10	24.25	
0.30	33.66		0.08/0.1	33.84		60.24	50.24	26.40	
13.56	42.26		0.61/0.6	43.47		60.00	50.00	16.53	
14.83	34.13		0.67/0.6	35.40		60.00	50.00	24.60	
16.02	35.78		0.70/0.6	37.08		60.00	50.00	22.92	
16.08	35.92		0.70/0.6	37.22		60.00	50.00	22.78	
16.14	35.60		0.70/0.6	36.90		60.00	50.00	23.10	
16.32	35.68		0.70/0.6	36.98		60.00	50.00	23.02	
			N	IEUTRAL	. – PE				
0.18	50.17		0.13/0.	50.40		64.49	54.49	14.09	
0.24	42.59		0.13/0.1	42.82		62.10	52.10	19.28	
0.30	38.52		0.14/0.1	38.76		60.24	50.24	21.48	
13.56	43.07		0.47/0.6	44.14		60.00	50.00	15.86	
15.37	37.43		0.50/0.6	38.53		60.00	50.00	21.47	
15.43	37.63		0.50/0.6	38.73		60.00	50.00	21.27	
15.61	35.46		0.52/0.6	36.58		60.00	50.00	23.42	
16.14	37.49		0.52/0.6	38.61		60.00	50.00	21.39	

Margin (dB) = Limit - Actual [Actual = Reading + CF + CL]

- 1. Remark "---" means the level is undetectable or the Qausi-peak value is lower than the limit of Average.
- 2. CF/CL = Correction Factor and Cable Loss
- 3. Qp = Quasi-peak, Ave = Average value

Page 24 of 29

The transmitter portion of the EUT, RFID card reader, was INDIRECTLY powered from the LISN port (to which the PC was connected).

TEST MODE: without RFID card (unmodulated)

Table 5:	Conduct	ed Emis	ssions –	INDIREC	СТ				
Frequency	Reading	[dBµV]	CF/CL	Actual	[dBµV]	Limit [dBµV]	Margi	n [dB]
[MHz]	Qp	Ave	[dB]	Qp	Ave	Qp	Ave	Qp	Ave
				LINE -	PE				
0.15	51.06		0.09/0.1	51.25		66.00	56.00	14.75	
0.22	44.62		0.08/0.1	44.80		62.82	52.82	18.02	
0.44	44.76		0.09/0.1	44.95		57.06	47.06	12.11	
0.65	39.85		0.12/0.1	40.07		56.00	46.00	15.93	
1.16	39.53		0.11/0.1	39.74		56.00	46.00	16.26	
2.57	38.55		0.15/0.3	39.00		56.00	46.00	17.00	
2.64	39.59		0.15/0.3	40.04		56.00	46.00	15.96	
2.71	39.18		0.15/0.3	39.63		56.00	46.00	16.37	
5.43	34.20		0.24/0.4	34.84		60.00	50.00	25.16	
13.56	38.36		0.61/0.6	39.57		60.00	50.00	20.43	
			N	IEUTRAL	. – PE				
0.15	49.19		0.13/0.1	49.42		66.00	56.00	16.58	
0.22	45.90		0.13/0.1	46.13		62.82	52.82	16.69	
0.44	45.40		0.15/0.1	45.65		57.06	47.06	11.41	
0.66	38.93		0.15/0.1	39.18		56.00	46.00	16.82	
1.16	39.53		0.15/0.1	39.78		56.00	46.00	16.22	
2.57	37.93		0.18/0.3	38.41		56.00	46.00	17.59	
2.64	39.19		0.18/0.3	39.67		56.00	46.00	16.33	
2.71	39.11		0.19/0.3	39.60		56.00	46.00	16.60	
5.43	33.36		0.25/0.4	34.01		60.00	50.00	25.99	
13.56	38.22		0.47/0.6	39.29		60.00	50.00	20.71	

Margin (dB) = Limit - Actual [Actual = Reading + CF + CL]

- 1. Remark "---" means the level is undetectable or the Qausi-peak value is lower than the limit of Average.
- 2. CF/CL = Correction Factor and Cable Loss
- 3. Qp = Quasi-peak, Ave = Average value

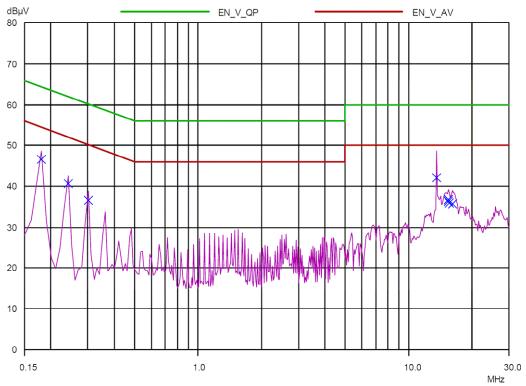
Page 25 of 29

The transmitter portion of the EUT, RFID card reader, was INDIRECTLY powered from the LISN port (to which the PC was connected).

TEST MODE: with RFID card (modulated)

Table 5:	Conduct	ed Emis	ssions –	INDIRE	CT (con	tinued)			
Frequency	Reading	[dBµV]	CF/CL	Actual	[dBµV]	Limit [dBµV]	Margin [dB]	
[MHz]	Qp	Ave	[dB]	Qp	Ave	Qp	Ave	Qp	Ave
				LINE –	PE				
0.15	43.01		0.09/0.1	43.20		66.00	56.00	22.80	
0.22	36.01		0.08/0.1	36.19		62.82	52.82	26.63	
0.44	38.43		0.09/0.1	38.62		57.06	47.06	18.44	
0.66	35.00		0.12/0.1	35.22		56.00	46.00	20.78	
1.16	32.35		0.11/0.1	32.56		56.00	46.00	23.44	
2.57	29.70		0.15/0.3	30.15		56.00	46.00	25.85	
2.64	31.34		0.15/0.3	31.79		56.00	46.00	24.21	
2.71	31.49		0.15/0.4	32.04		56.00	46.00	23.96	
13.56	38.73		0.61/0.6	39.94		60.00	50.00	20.06	
16.39	35.53		0.70/0.6	36.83		60.00	50.00	23.17	
			N	IEUTRAL	. – PE				
0.15	44.36		0.13/0.1	44.59		66.00	56.00	21.41	
0.22	41.23		0.13/0.1	41.46		62.82	52.82	21.36	
0.44	41.88		0.15/0.1	42.13		57.06	47.06	14.93	
0.66	37.44		0.15/0.1	37.69		56.00	46.00	18.31	
1.16	35.62		0.15/0.1	35.87		56.00	46.00	20.13	
2.57	32.99		0.18/0.3	33.47		56.00	46.00	22.53	
2.64	34.43		0.18/0.3	34.91		56.00	46.00	21.09	
2.71	34.72		0.19/0.3	35.21		56.00	46.00	20.79	
13.56	37.96		0.47/0.6	39.03		60.00	50.00	20.97	

Margin (dB) = Limit - Actual [Actual = Reading + CF + CL]


- 1. Remark "---" means the level is undetectable or the Qausi-peak value is lower than the limit of Average.
- 2. CF/CL = Correction Factor and Cable Loss
- 3. Qp = Quasi-peak, Ave = Average value

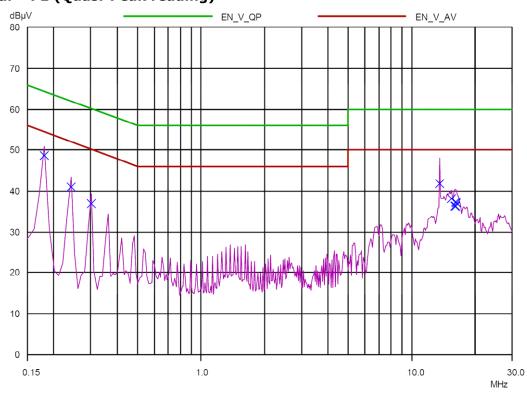
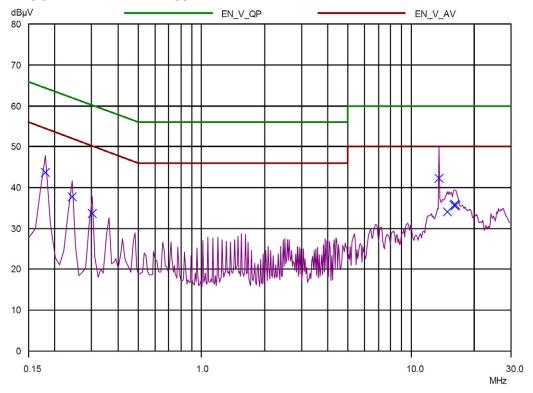

Page 26 of 29

Figure 2. Plot of the Conducted Emissions – DIRECT without RFID card (unmodulated)

Line - PE (Quasi-Peak reading)

Neutral - PE (Quasi-Peak reading)



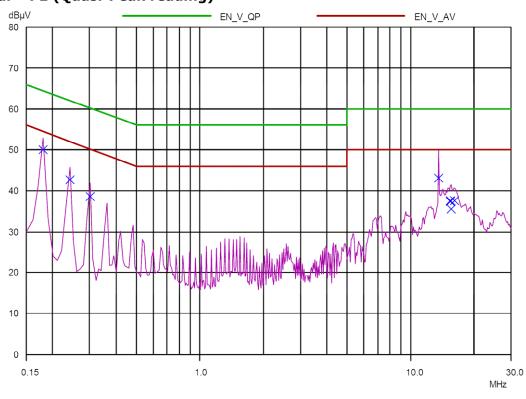
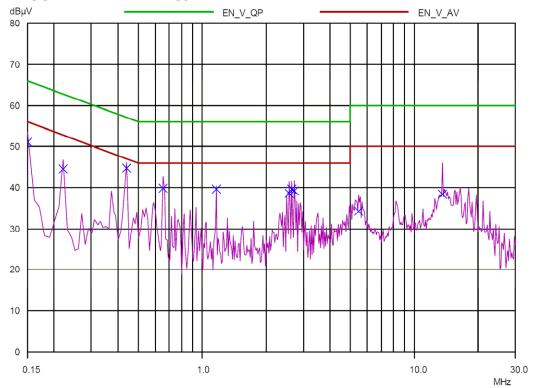

Page 27 of 29

Figure 2. Plot of the Conducted Emissions – DIRECT (Continued) with RFID card (modulated)

Line - PE (Quasi-Peak reading)

Neutral - PE (Quasi-Peak reading)



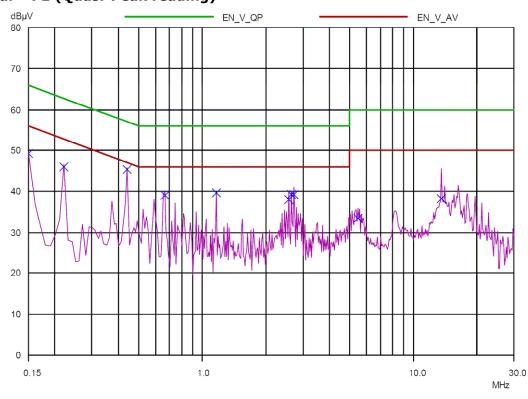
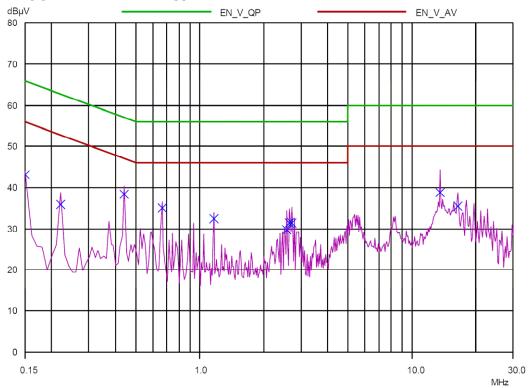

Page 28 of 29

Figure 3. Plot of the Conducted Emissions - INDIRECT without RFID card (unmodulated)

Line - PE (Quasi-Peak reading)

Neutral - PE (Quasi-Peak reading)



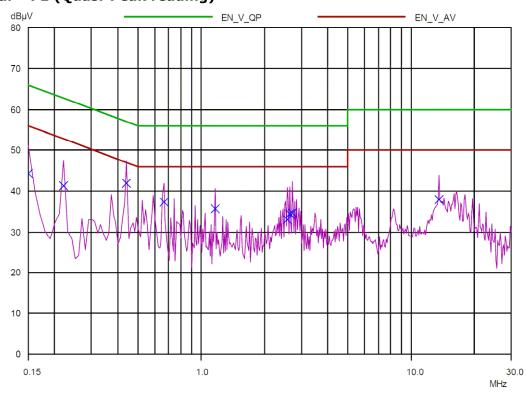

Page 29 of 29

Figure 3. Plot of the Conducted Emissions – INDIRECT (Continued) with RFID card (modulated)

Line - PE (Quasi-Peak reading)

Neutral - PE (Quasi-Peak reading)

