ACROWAVE SYSTEMS ACROLAN ACCESS POINT USERS GUIDE

ACROWAVE SYSTEMS

WIRELESS LAN ACCCESS POINT USER'S GUIDE

AAP-1100E SERIES

COPYRIGHT ACROWAVE SYSTEMS 2000

DOC-XXX – YYY

Contents

Chapter 1	Introduction To The Wireless LAN
1.1 What's the Wireless LAN? 5	
1.2 Wir	eless LAN Standard and Structure6
Chapter 2	Setup AcroLAN Access Point 13
2.1 Befo	ore You Begin Installation 13
2.2 Installing The Acrowave AcroLAN AWL-1100 Series Access Poir	
	15
	Adjust the antennas15
	Ethernet Cable Connection16
	Connect The Power Pack17
	Connect Serial Cable18
	Open Terminal Program19
	Configuration Change21
2.3 Verit	fying the Operation of the Acrowave Access Point28
Chapter 3	Access Point Management30
3.1 Starting a Configuration Tool	
	Access Point Connection
	Access Point Configuration Window
	Terminal Window for Diagnosis37
	Firmware Upgrade Window
	Firmware Upgrade Via Internet
	Firmware Upgrade Via Local Disk41
	Access Point Detail Control42
3.2 Setting Bridge Mode 43	

Chapter 4 Troubleshooting45

ACROWAVE SYSTEMS ACROLAN ACCESS POINT USERS GUIDE

ACROWAVE SYSTEMS

WIRELESS LAN ACCCESS POINT USER'S GUIDE

AAP-1100E SERIES

COPYRIGHT ACROWAVE SYSTEMS 2000

DOC-XXX – YYY

Appendix

Appendix A	Cell Planning (Radio Range)46
Appendix B	Technical Specification48
Appendix C	Channel Allocation50

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR ACROWAVE REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency energy. If it is not installed in accordance with Acrowave's installation instructions, it may cause interference with radio and television reception. This equipment has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules. These specifications are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation.

Modifying the equipment without Acrowave's written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices. In that event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference to radio or television communications at your own expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, the Acrowave equipment or one of its peripheral devices probably caused it. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of the following measures:

- Turn the television or radio antenna until the interference stops.
- Move the equipment to one side or the other of the television or radio.
- Move the equipment farther away from the television or radio.

• Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radios are on circuits controlled by different circuit breakers or fuses.)

Modifications to this product not authorized by Acrowave Systems Co., Ltd. could void the FCC approval and negate your authority to operate the product.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. ACROWAVE AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL ACROWAVE OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF ACROWAVE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AcroLAN, the Acrowave logo are registered trademarks of Acrowave Systems Co., Ltd. or its affiliates in the Korea, U.S. and certain other countries. All other trademarks mentioned in this document are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Acrowave and any of its resellers.

The Acrowave AcroLAN Access Point User's Guide Copyright© 2000, Acrowave Systems Co., Ltd All rights reserved.

Chapter 1 Introduction To The Wireless LAN

A wireless LAN (WLAN) is a flexible data communication system implemented as an extension to, or as an alternative for, a wired LAN within a building or campus. Using electromagnetic waves, WLANs transmit and receive data over the air, minimizing the need for wired connections. Thus, WLANs combine data connectivity with user mobility, and, through simplified configuration, enable movable LANs. WLANs have gained strong popularity in a number of vertical markets, including the health-care, retail, manufacturing, warehousing, and academic arenas. These industries have profited from the productivity gains of using hand-held terminals and notebook computers to transmit real-time information to centralized hosts for processing. Today WLANs are becoming more widely recognized as a general-purpose connectivity alternative for a broad range of business customers.

1.1 What's Wireless LAN?

Wireless LANs use electromagnetic airwaves (radio and infrared) to communicate information from one point to another without relying on any physical connection. Radio waves are often referred to as radio carriers because they simply perform the function of delivering energy to a remote receiver. The data being transmitted is superimposed on the radio carrier so that it can be accurately extracted at the receiving end. This is generally referred to as modulation of the carrier by the information being transmitted. Once data is superimposed (modulated) onto the radio carrier, the radio signal occupies more than a single frequency, since the frequency or bit rate of the modulating information adds to the carrier.

Multiple radio carriers can exist in the same space at the same time without interfering with each other if the radio waves are transmitted on different radio frequencies. To extract data, a radio receiver tunes in (or selects) one radio frequency while rejecting all other radio signals on different frequencies.

In a typical WLAN configuration, a transmitter/receiver (transceiver) device, called an access point, connects to the wired network from a fixed location using standard Ethernet cable. At a minimum, the access point receives, buffers, and transmits data between the WLAN and the wired network infrastructure. A single access point can support a small group of users and can function within a range of less than one hundred

to several hundred feet. The access point (or the antenna attached to the access point) is usually mounted high but may be mounted essentially anywhere that is practical as long as the desired radio coverage is obtained.

End users access the WLAN through wireless LAN adapters, which are implemented as PC cards in notebook computers, or use PCI adapters in desktop computers. WLAN adapters provide an interface between the client network operating system (NOS) and the airwaves (via an antenna). The nature of the wireless connection is transparent to the NOS.

1.2 Wireless LAN Standard and Structure

O Wireless LAN Standard – IEEE802.11b

The widespread acceptance of WLANs depends on industry standardization to ensure product compatibility and reliability among the various manufacturers. The Institute of Electrical and Electronics Engineers (IEEE) ratified the original 802.11 specifications in 1997 as the standard for wireless LANs. That version of 802.11 provides for 1 Mbps and 2 Mbps data rates and a set of fundamental signaling methods and other services. The most critical issue affecting WLAN demand has been limited throughput. The data rates supported by the original 802.11 standard are too slow to support most general business requirements and have slowed adoption of WLANs. Recognizing the critical need to support higher data-transmission rates, the IEEE recently ratified the 802.11b standard (also known as 802.11 High Rate) for transmissions of up to 11 Mbps.

With 802.11b, WLANs will be able to achieve wireless performance and throughput comparable to wired Ethernet. Outside of the standards bodies, wireless industry leaders have united to form the Wire-less Ethernet Compatibility Alliance (WECA).

WECA's mission is to certify cross-vendor interoperability and compatibility of IEEE 802.11b wireless networking products and to promote that standard for the enterprise, the small business, and the home. Members include WLAN semiconductor manufacturers, WLAN providers, computer system vendors, and software makers.

O Wireless LAN Network Equipment

802.11 defines two pieces of equipment, a wireless *station*, which is usually a PC equipped with a wireless network interface card (NIC), and an *access point (AP)*, which acts as a bridge between the wireless and wired networks. An access point usually

consists of a radio, a wired network interface (e.g., 802.3), and bridging software conforming to the 802.1d bridging standard. The access point acts as the base station for the wireless network, aggregating access for multiple wireless stations onto the wired network. Wireless end stations can be 802.11 PC Card, PCI.

O Wireless LAN Network Configuration

The 802.11 standard define two modes: *infrastructure* mode and *ad hoc* mode (or independent or peer-to-peer).

• Ad Hoc Mode

Ad hoc mode (also called peer-to-peer mode or an Independent Basic Service Set, or IBSS) is simply a set of 802.11 wireless stations that communicate directly with one another without using an access point or any connection to a wired network. This mode is useful for quickly and easily setting up a wireless network anywhere that a wireless infrastructure does not exist or is not required for services, such as a hotel room, convention center, or airport, or where access to the wired network is barred (such as for consultants at a client site).

Independent Basic Service Set (IBSS)

- Figure 1. Ad Hoc Mode
- Infrastructure Mode

In infrastructure mode, the wireless network consists of at least one access

point connected to the wired network infrastructure and a set of wireless end stations. This configuration is called a *Basic Service Set (BSS)*. An *Extended Service Set (ESS)* is a set of two or more BSSs forming a single sub-network. Since most corporate WLANs require access to the wired LAN for services (file servers, printers, Inter-net links) they will operate in infrastructure mode.

Service Set (SS) - Multiple

Figure 2. Infrastructure Mode

O Roaming

Wireless communication is limited by how far signals carry for given power output. WLANs use cells, called microcells, similar to the cellular telephone system to extend the range of wireless connectivity. At any point in time, a mobile PC equipped with a WLAN adapter is associated with a single access point and its microcell, or area of coverage. Individual microcells overlap to allow continuous communication within wired network. They handle low power signals and "hand off" users as they roam through a given geographic area.

The 802.11 MAC layer is responsible for how a client associates with an access point.

When an 802.11 client enters the range of one or more APs, it chooses an access point to associate with (also called joining a Basic Service Set), based on signal strength and observed packet error rates. Once accepted by the access point, the client tunes to the radio channel to which the access point is set. Periodically it surveys all 802.11 channels in order to assess whether a different access point would provide it with better performance characteristics. If it determines that this is the case, it reassociates with the new access point, tuning to the radio channel to which that access point is set. Reassociation usually occurs because the wireless station has physically moved away from the original access point, causing the signal to weaken. In other cases, Reassociation occurs due to a change in radio characteristics in the building, or due simply to high network traffic on the original access point. In the latter case this function is known as "load balancing," since its primary function is to distribute the total WLAN load most efficiently across the available wireless infrastructure. This process of dynamically associating and reassociating with APs allows network managers to set up WLANs with very broad coverage by creating a series of overlapping 802.11b cells throughout a building or across a campus. To be successful, the IT manager ideally will employ "channel reuse," taking care to set up each access point on an 802.11 DSSS channel that does not overlap with a channel used by a neighboring access point.

Figure 3. Roaming