Test report no.:

Oulu_SAR_0452_06

SAR Compliance Test Report 2_06 Date of report: 2005-01-05 Number of pages: 39 Client: Nokia Finland

Template version:	2	Number of pages:	39			
Testing laboratory:	TCC Oulu	Client:	Nokia Finland			
	Yrttipellontie 6		Visiokatu 6			
	P.O. Box 300		P.O.Box 68			
	FIN-90401 OULU		FIN-33721 Tampere			
	Tel. +358-7180-08000		Tel. +358-7180-08000			
	Fax. +358-7180-47222		Fax. +358-7180-46880			
Responsible test engineer:	Kai Niskala	Product contact person:	Tero Huhtala			
Measurements made by:	Kai Niskala, Kirsi Kyllönen					
Tested device:	RM-36					
FCC ID:	PDNRM-36	IC:	661R-RM36			
Supplement reports:						
Testing has been	47CFR §2.1093					
carried out in accordance with:	Radiofrequency Radiation Exposure Evaluation: Portable Devices					
accordance with:	FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields					
	RSS-102 Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields					
	IEEE 1528 - 2003					
	IEEE Recommended Prac	the Human Head from Wir	ak Spatial-Average Specific eless Communications Devices:			
Documentation:	The documentation of the testing performed on the tested devices is archived for 15 years at TCC Oulu					
Test results:	The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.					
Date and signatures:		2005-01-05	1,			
For the contents:		Kin.	Kyht			
for the contents.	Kirsi Kyllönen					
		Laborato	ry Engineer			

SAR Report Oulu_SAR_0452_06 Applicant: Nokia Corporation Type: RM-36

Copyright © 2005 TCC Oulu

TCC _{Oulu}

CONTENTS	
1. SUMMARY OF SAR TEST REPORT	3
1.1 TEST DETAILS 1.2 MAXIMUM RESULTS 1.2.1 Head Configuration 1.2.2 Body Worn Configuration 1.2.3 Maximum Drift 1.2.4 Measurement Uncertainty	3 3 3 3 3 3 3 3
2. DESCRIPTION OF THE DEVICE UNDER TEST	4
2.1 PICTURE OF THE DEVICE2.2 DESCRIPTION OF THE ANTENNA	4 5
3. TEST CONDITIONS	5
3.1 TEMPERATURE AND HUMIDITY3.2 TEST SIGNAL, FREQUENCIES, AND OUTPUT POWER	5 5
4. DESCRIPTION OF THE TEST EQUIPMENT	5
 4.1 MEASUREMENT SYSTEM AND COMPONENTS 4.1.1 Isotropic E-field Probe ET3DV6 4.2 PHANTOMS 4.3 SIMULATING LIQUIDS 4.3.1 Liquid Recipes 4.3.2 Verification of the System 4.3.3 Tissue Simulants used in the Measurements 	5 6 7 7 7 8 8
5. DESCRIPTION OF THE TEST PROCEDURE	10
 5.1 DEVICE HOLDER 5.2 TEST POSITIONS 5.2.1 Against Phantom Head 5.2.2 Body Worn Configuration 5.3 SCAN PROCEDURES 5.4 SAR AVERAGING METHODS 	10 10 10 11 11 12
6. MEASUREMENT UNCERTAINTY	13
7. RESULTS	14
APPENDIX A: VALIDATION SCANS	16
APPENDIX B: MEASUREMENT SCANS	21
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	32
APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	33
SAR Report Oulu_SAR_0452_06 Applicant: Nokia Corporation	Type: RM-36 Copyright © 2005 TCC Oulu

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2004-12-16 to 2004-12-17
SN, HW and SW numbers of	SN: 004400/47/161981/5, DUT#: 30288, HW: 5001, SW: 1.48.21
tested device	
Batteries used in testing	BL-5C, DUT#'s: 30246, 30289, 30290
Headsets used in testing	HS-3, DUT#:30293
Other accessories used in	MMC card, DUT#: 30291
testing	
State of sample	Prototype Unit
Notes	

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / <i>f</i> (MHz)	ERP/EIRP	Position	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
2-slot GPRS 1900	810 / 1909.8	28.14 dBm	Left Cheek	1.6 W/kg	0.56 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / <i>f</i> (MHz)	ERP/EIRP	Separation distance	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
2-slot GPRS 1900	810 / 1909.8	28.14 dBm	1.5 cm	1.6 W/kg	0.67 W/kg	PASSED

1.2.3 Maximum Drift

Maximum drift during measurements	-0.14 dB

1.2.4 Measurement Uncertainty

Extended Uncertainty (k=2) 95% ± 29.8 %	

Copyright © 2005 TCC Oulu

Type: RM-36

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	portable
Exposure environment	general population/uncontrolled

Modes and Bands of Operation	GSM 1900	GPRS	E-GPRS	ВТ
Modulation Mode	GMSK	GMSK	8PSK	GFSK
Duty Cycle	1/8	1/8 or 2/8	1/8 or 2/8	
Transmitter Frequency Range (MHz)	1850.2 - 1909.8	1850.2-1909.8	1850.2-1909.8	2402 - 2480

Outside of USA and Canada, the transmitter is capable of operating also in GSM900, GSM1800 and WCDMA which are not part of this filing.

Push-to-Talk/Voice-over-IP capability is not available through the internal earpiece of the device. SAR evaluation was unnecessarily made in 2-slot GPRS mode at the ear position of the phantom. The results in GSM and 2-slot GPRS modes are very similar; GPRS SAR values are marginally higher than those for GSM and the SAR values included in this report may be marginally over estimated

2.1 Picture of the Device

2.2 Description of the Antenna

The device has an internal patch antenna.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Period of measurement:	2004-12-16 to 2004-12-17
Ambient temperature (°C):	22.3 to 24.2
Ambient humidity (RH %):	24 to 40

3.2 Test Signal, Frequencies, and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The power output was measured by a separate test laboratory on the same unit as used for SAR testing.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY 4 software version 4.4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements on the device was the 'worst-case extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE3	555	12 months	02/05
E-field Probe ET3DV6	1765	12 months	02/05
Dipole Validation Kit, D1900V2	5d030	24 months	04/05

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	HP 8657B	3630U08114	12 months	06/05
RF Amplifier	AR 5S1G4	306024	-	-
Power Reflection Meter	R&S NRT	101143	12 months	04/05
Directional Power Sensor	R&S NRT-Z43	100239	12 months	04/05
Network Analyzer	HP 8753D	3410A08934	12 months	06/05
Dielectric Probe Kit	Agilent 85070D	US01440162	-	-
Thermometer	Fluke 51 II	84350048	12 months	06/05
Radio Communication Tester	R&S CMU200	104499	12 months	02/05
Radio Communication Tester	R&S CMU200	106354	12 months	10/05

4.1.1 Isotropic E-field Probe ET3DV6

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., butyl diglycol)
Calibration	Calibration certificate in Appendix C
Frequency Optical Surface Detection Directivity	10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz) ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces ± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB

6/33

Copyright © 2005 TCC Oulu

Dimensions	Overall length: 330 mm
	Tip length: 16 mm
	Body diameter: 12 mm
	Tip diameter: 6.8 mm
	Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetry up to 3 GHz
	Compliance tests of mobile phones
	Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both validation testing and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

Validation tests were performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Simulating Liquids

Recommended values for the dielectric parameters of the simulating liquids are given in IEEE 1528 - 2003 and FCC Supplement C to OET Bulletin 65. All tests were carried out using liquids whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the liquid was 15.0 ± 0.5 cm measured from the ear reference point during validation and device measurements.

4.3.1 Liquid Recipes

The following recipes were used for Head and Body liquids:

	1900MHz band	
Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	54.88	69.02
Butyl Diglycol	44.91	30.76
Salt	0.21	0.22

Copyright © 2005 TCC Oulu

4.3.2 Verification of the System

The manufacturer calibrates the probes annually. Dielectric parameters of the simulating liquids were measured every day using the dielectric probe kit and the network analyser. A SAR measurement was made following the determination of the dielectric parameters of the liquids, using the dipole validation kit. A power level of 239mW or 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The validation results (dielectric parameters and SAR values) are given in the table below.

		SAR [W/kg],	Dielectric F	Parameters	Temp
f [MHz]	Description	1g	٤r	σ [S/m]	[°C]
	Reference result	10.50	38.8	1.44	N/A
1900	$\pm10\%$ window	9.45 - 11.55			
	2004-12-16	10.2	38.1	1.43	21.8

System verification, head tissue simulant

System verification, body tissue simulant

		SAR [W/kg],	Dielectric F	Parameters	Temp
f [MHz]	Description	1g	٤r	σ [S/m]	[°C]
	Reference result	10.70	51.2	1.59	N/A
1900	$\pm10\%$ window	9.63 - 11.77			
	2004-12-17	10.6	51.7	1.58	22.0

Plots of the Verification scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

		Dielectric F	Parameters	Temp
f [MHz]	Description	٤r	σ [S/m]	[°C]
	Recommended value	40.0	1.40	22
1880	\pm 5% window	38.0 - 42.0	1.33 - 1.47	
	2004-12-16	38.2	1.42	22

	Body tissue sir	<u>mulant measurem</u>	ents	
		Dielectric P	Parameters	Temp
f [MHz]	Description	٤r	σ [S/m]	[°C]
	Recommended value	53.3	1.52	22
1880	\pm 5% window	50.6 - 56.0	1.44 - 1.60	
	2004-12-17	51.8	1.56	22

TCC

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

Type: RM-36

Photo of the device in "cheek" position

Photo of the device in "tilt" position

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in the photo below using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its antenna facing the phantom since this orientation gave higher results.

Photo of the device positioned for Body SAR measurement. The spacer was removed for the tests.

5.3 Scan Procedures

First coarse scans were used for determination of the field distribution. Next a cube scan, 5x5x7 points covering a volume of 30x30x30 mm was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the coarse scan and again at the end of the cube scan.

5.4 SAR Averaging Methods

Oulu

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the cube scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the cube scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

Copyright © 2005 TCC Oulu

T213 (EN ISO/IEC 17025)

12/33

6. MEASUREMENT UNCERTAINTY

	Section						
	in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	Ci .Ui (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.8	Ν	1	1	±5.8	∞
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p) ^{1/2}	±1.9	8
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p) ^{1/2}	±3.9	∞
Boundary Effect	E2.3	±8.3	R	√3	1	±4.8	∞
Linearity	E2.4	±4.7	R	√3	1	±2.7	∞
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	±1.0	Ν	1	1	±1.0	∞
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	8
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5.2	±3.9	R	√3	1	±2.3	~
Test sample Related							
	E4.2.1	±6.0	Ν	1	1	±6.0	11
	E4.1.1	±5.0	Ν	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±10.0	R	√3	1	±5.8	∞
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Liquid Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Liquid Conductivity - measurement uncertainty	E3.3	±5.5	Ν	1	0.64	±3.5	5
Liquid Permittivity Target tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Liquid Permittivity - measurement uncertainty	E3.3	±2.9	Ν	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±14.9	206
Coverage Factor for 95%			k=2				
Expanded Standard Uncertainty						±29.8	

Table 6.1 – Measurement uncertainty evaluation

SAR Report Oulu_SAR_0452_06 Applicant: Nokia Corporation

Type: RM-36

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

		1900 neau SA		
		SAR, av	eraged over 1g	(W/kg)
Posi	tion	Ch 512	Ch 661	Ch 810
		1850.2 MHz	1880.0 MHz	1909.8 MHz
2-slot GPRS	Power level	27.48 dBm	28.48 dBm	28.14 dBm
Left	Cheek	0.52	0.52	0.53
	Tilt		0.50	
Right	Cheek		0.44	
	Tilt		0.40	
	nera lens cover			0.56
-	en .			
	nera lens cover			0.56
	ut MMC card			
	nera lens cover			
	t MMC card, BT			0.56
act	ive			
GSM Pov	ver level	31.1 dBm	30.8 dBm	30.0 dBm
Left Cheek can	nera lens cover			
• •	ut MMC card			0.49
repeated in	GSM mode			
2-slot EGPRS	Power level	28.58 dBm	29.45 dBm	28.82 dBm
Left Cheek can	nera lens cover			
• •	ut MMC card			0.35
repeated in	2-slot EGPRS			0.55
ma	ode			

2-slot GPRS 1900 Head SAR results

Copyright © 2005 TCC Oulu

	SAR, av	eraged over 1g	(W/kg)
Body-worn location setup	Ch 512	Ch 661	Ch 810
	1850.2 MHz	1880.0 MHz	1909.8 MHz
2-slot GPRS Power level	27.48 dBm	28.48 dBm	28.14 dBm
Without headset	0.50	0.61	0.67
Headset HS-3	0.44	0.52	0.55
Without headset repeated			0.67
with camera lens cover open			0.07
Without headset repeated			
with camera lens cover open,			0.65
without MMC card			
Without headset repeated			
with camera lens cover open,			0.66
BT active			
GSM Power level	31.1 dBm	30.8 dBm	30.0 dBm
Without headset repeated in			
GSM mode with camera lens			0.56
cover open			
2-slot EGPRS Power level	28.58 dBm	29.45 dBm	28.82 dBm
Without headset repeated in			
2-slot EGPRS mode with			0.41
camera lens cover open			

2-slot GPRS 1900 Body SAR results

Plots of the Measurement scans are given in Appendix B.

Copyright © 2005 TCC Oulu

APPENDIX A: VALIDATION SCANS

Date/Time: 12/16/04 09:21:53

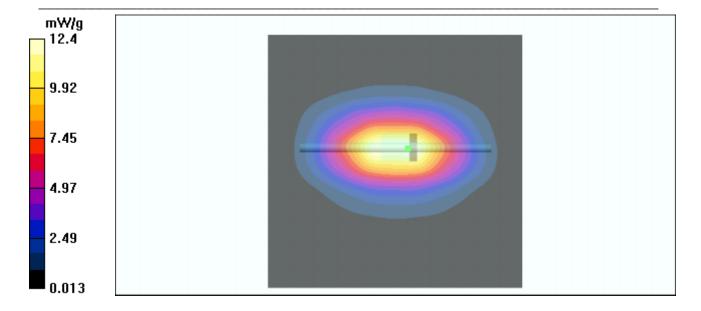
Test Laboratory: TCC Oulu **DUT: Dipole 1900 MHz; Serial: D1900V2 - SN:5d030** Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL1900 Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY4 Configuration: - Probe: ET3DV6 - SN1765; ConvF(5.24, 5.24, 5.24); Calibrated: 16.02.2004 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) - Electronics: DAE3 Sn555; Calibrated: 10.02.2004

- Phantom: SAM 3; Type: SAM 4.0; Serial: 1215

- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

d=10mm, Pin=250mW, t=21.8 C/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (interpolated) = 12.4 mW/g


d=10mm, Pin=250mW, t=21.8 C/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.1 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 18 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.33 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 11.6 mW/g

Date/Time: 12/17/04 09:03:32

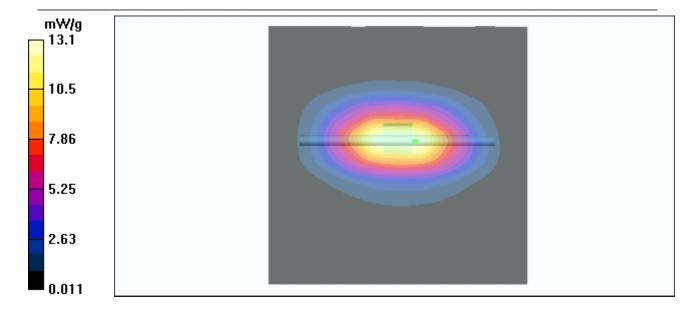
Test Laboratory: TCC Oulu **DUT: Dipole 1900 MHz; Serial: D1900V2 - SN:5d030** Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: BSL1900 Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY4 Configuration: - Probe: ET3DV6 - SN1765; ConvF(4.59, 4.59, 4.59); Calibrated: 16.02.2004 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) - Electronics: DAE3 Sn555; Calibrated: 10.02.2004

- Phantom: SAM 3; Type: SAM 4.0; Serial: 1215

- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

d=10mm, Pin=250mW, t=22.0 C/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (interpolated) = 13.1 mW/g


d=10mm, Pin=250mW, t=22.0 C/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.9 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 18 W/kg SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.6 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 12 mW/g

APPENDIX B: MEASUREMENT SCANS

Date/Time: 12/16/04 17:17:19

Test Laboratory: TCC Oulu **DUT: RM-36; Serial: 004400/47/161981/5; Camera lens cover open, without MMC card** Communication System: GPRS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:4.2 Medium: HSL1900 Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.44$ mho/m; ε_r = 38.1; $\rho = 1000$ kg/m³ Phantom section: Left Section DASY4 Configuration: - Probe: ET3DV6 - SN1765; ConvF(5.24, 5.24, 5.24); Calibrated: 16.02.2004 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

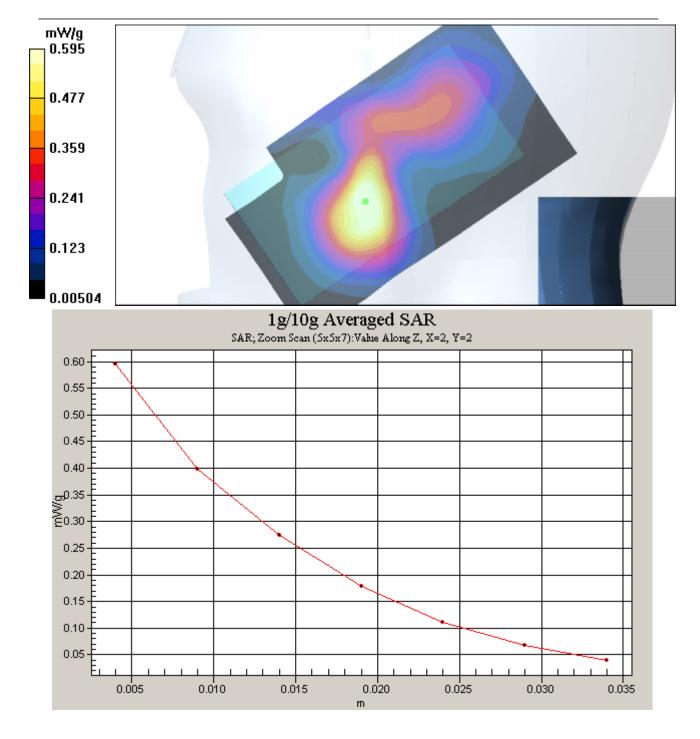
- Electronics: DAE3 Sn555; Calibrated: 10.02.2004
- Phantom: SAM 3; Type: SAM 4.0; Serial: 1215

- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Cheek position - High, t=21.6 C, worst case extrapolation/Area Scan (51x91x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (interpolated) = 0.635 mW/g


Cheek position - High, t=21.6 C, worst case extrapolation/Zoom Scan (5x5x7)

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 13.1 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 0.965 W/kg SAR(1 g) = 0.562 mW/g; SAR(10 g) = 0.322 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.595 mW/g

Date/Time: 12/16/04 16:43:28

Test Laboratory: TCC Oulu **DUT: RM-36; Serial: 004400/47/161981/5** Communication System: GPRS 1900; Frequency: 1880 MHz;Duty Cycle: 1:4.2

Medium: HSL1900 Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1765; ConvF(5.27, 5.27, 5.27); Calibrated: 16.02.2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn555; Calibrated: 10.02.2004
- Phantom: SAM 3; Type: SAM 4.0; Serial: 1215

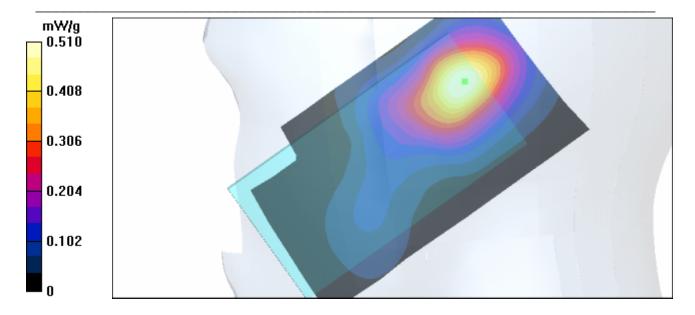
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Tilt position - Middle, t=21.6 C, worst case extrapolation/Area Scan (51x91x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (interpolated) = 0.510 mW/g

Tilt position - Middle, t=21.6 C, worst case extrapolation/Zoom Scan (5x5x7)


(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.497 mW/g; SAR(10 g) = 0.262 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.528 mW/g

Copyright © 2004 TCC Oulu

Date/Time: 12/16/04 15:27:53

Test Laboratory: TCC Oulu **DUT: RM-36; Serial: 004400/47/161981/5** Communication System: GPRS 1900; Frequency: 1880 MHz;Duty Cycle: 1:4.2

Medium: HSL1900 Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1765; ConvF(5.27, 5.27, 5.27); Calibrated: 16.02.2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn555; Calibrated: 10.02.2004
- Phantom: SAM 3; Type: SAM 4.0; Serial: 1215

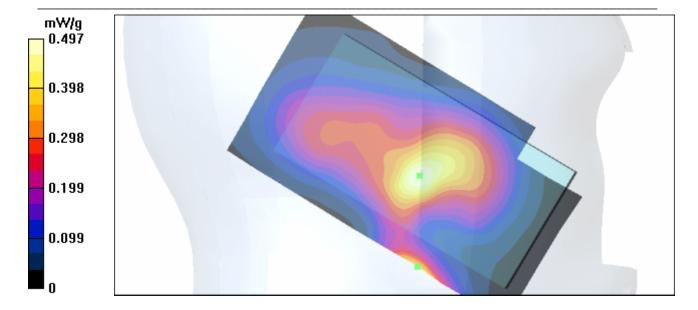
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Cheek position - Middle, t=21.5 C, worst case extrapolation/Area Scan (51x91x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (interpolated) = 0.497 mW/g

Cheek position - Middle, t=21.5 C, worst case extrapolation/Zoom Scan (5x5x7)


(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 11.5 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 0.883 W/kg SAR(1 g) = 0.435 mW/g; SAR(10 g) = 0.260 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.477 mW/g

Copyright © 2004 TCC Oulu

Date/Time: 12/16/04 15:27:53

Test Laboratory: TCC Oulu **DUT: RM-36; Serial: 004400/47/161981/5** Communication System: GPRS 1900; Frequency: 1880 MHz;Duty Cycle: 1:4.2

Medium: HSL1900 Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1765; ConvF(5.27, 5.27, 5.27); Calibrated: 16.02.2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn555; Calibrated: 10.02.2004
- Phantom: SAM 3; Type: SAM 4.0; Serial: 1215

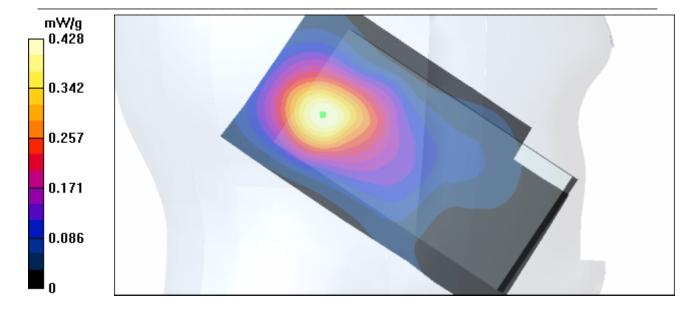
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Tilt position - Middle, t=21.5 C, worst case extrapolation/Area Scan (51x91x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (interpolated) = 0.428 mW/g

Tilt position - Middle, t=21.5 C, worst case extrapolation/Zoom Scan (5x5x7)


(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 15.1 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 0.806 W/kg SAR(1 g) = 0.395 mW/g; SAR(10 g) = 0.214 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.418 mW/g

Copyright © 2004 TCC Oulu

Date/Time: 12/17/04 11:32:48

Test Laboratory: TCC Oulu **DUT: RM-36; Serial: 004400/47/161981/5; Camera lens cover open** Communication System: GPRS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:4.2 Medium: BSL1900 Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY4 Configuration: - Probe: ET3DV6 - SN1765; ConvF(4.59, 4.59, 4.59); Calibrated: 16.02.2004 - Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

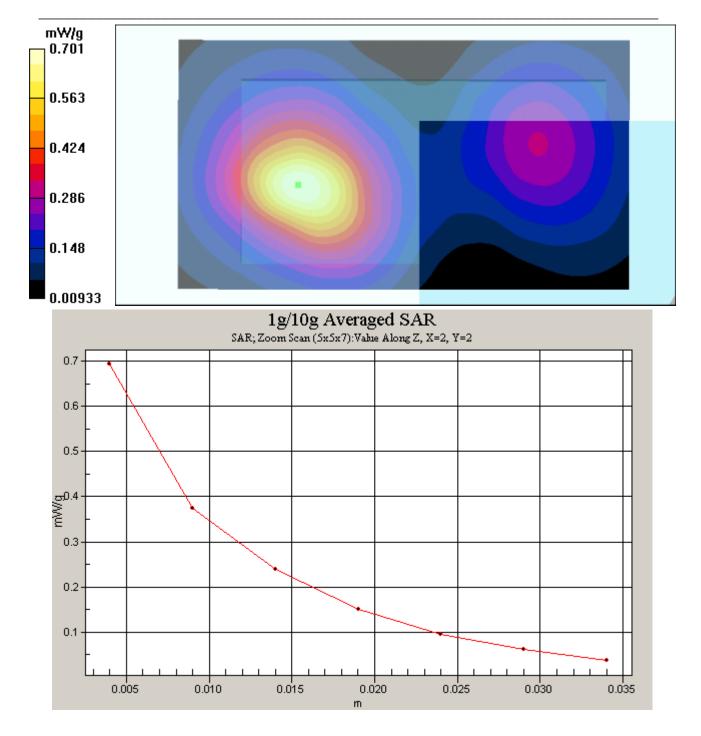
- Electronics: DAE3 Sn555; Calibrated: 10.02.2004
- Phantom: SAM 3; Type: SAM 4.0; Serial: 1215

- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Body worn - High, t=21.5 C, worst case extrapolation/Area Scan (51x91x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (interpolated) = 0.701 mW/g


Body worn - High, t=21.5 C, worst case extrapolation/Zoom Scan (5x5x7)

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 19.4 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 0.673 mW/g; SAR(10 g) = 0.371 mW/g

Info: Interpolated medium parameters used for SAR evaluation! Maximum value of SAR (measured) = 0.693 mW/g

Type: RM-36

Copyright © 2004 TCC Oulu

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Clion	4	
Clien	L	

Nokia Oulu

)bject(s)	ET3DV6 - SN:	1765	
Calibration procedure(s)	QA CAL-01.v2 Calibration pro	2 bocedure for dosimetric E-field prob	bes
Calibration date:	February 16, 2	2004	
Condition of the calibrated item	In Tolerance (according to the specific calibratio	n document)
Calibration Equipment used (M&TE			
Indel Type	ID#	Cal Date (Calibrated by Certificate No.)	Scheduled Calibration
	ID# GB41293874	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04
ower meter EPM E4419B		2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250)	Apr-04 Apr-04
ower meter EPM E4419B lower sensor E4412A deference 20 dB Attenuator	GB41293874 MY41495277 SN: 5086 (20b)	2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340)	Арг-04 Арг-04 Арг-04
ower meter EPM E4419B ower sensor E4412A Reference 20 dB Attenuator Tuke Process Calibrator Type 702	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	Apr-04 Apr-04 Apr-04 Sep-04
Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03)	Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05
Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	Apr-04 Apr-04 Apr-04 Sep-04
Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700	2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02)	Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05
Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585	2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05
Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585 Name	2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03) Function	Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05 Signature
Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Puke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585 Name Katja Pokovic	2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03) Function	Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Oct 05 In house check: Oct 05 Signature
Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585 Name Katja Pokovic	2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03) Function	Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05 Signature

880-KP0301061-A

Page 1 of 8

February 16, 2004

ET3DV6 SN:1765

DASY - Parameters of Probe: ET3DV6 SN:1765

Sensitivity in Fre	e Space	Diode	Comp	pression ^A
NormX	1.64 μV/(V/m) ²	DCP X	94	mV
NormY	1.85 μV/(V/m) ²	DCP Y	94	mV
NormZ	1.92 µV/(V/m) ²	DCP Z	94	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

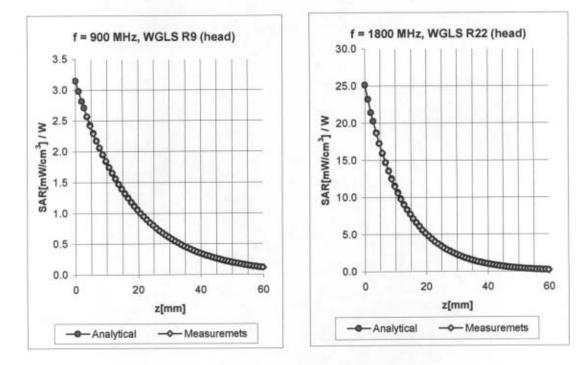
Boundary Effect

Head 9	00 MHz	Typical SAR	gradient: 5	5 % per mm
--------	--------	-------------	-------------	------------

Sensor Cener to	Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	10.6	5.8
SAR _{be} [%]	With Correction Algorithm	0.3	0.6

Head

1800 MHz Typical SAR gradient: 10 % per mm


Sensor to Sur	face Distance	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	13.4	8.8	
SAR _{be} [%]	With Correction Algorithm	0.2	0.1	

Sensor Offset

Probe Tip to Sensor Center	2.7 mm
Optical Surface Detection	in tolerance

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A numerical linearization parameter: uncertainty not required

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Unce	ertainty
835	793-877	Head	41.5 ± 5%	0.90 ± 5%	0.68	1.81	6.55 ± 9.	5% (k=2)
900	855-945	Head	41.5 ± 5%	0.97 ± 5%	0.44	2.37	6.45 ± 9.	6% (k=2)
1800	1710-1890	Head	40.0 ± 5%	1.40 ± 5%	0.55	2.42	5.27 ± 10	0.9% (k=2)
1880	1786-1974	Head	40.0 ± 5%	1.40 ± 5%	0.56	2.58	5.24 ± 1	1.0% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	1.07	1.81	4.80 ± 9.	7% (k=2)
835	793-877	Body	55.2 ± 5%	0.97_± 5%	0.43	2.38	6.23 ± 9.	5% (k=2)
900	855-945	Body	55.0 ± 5%	1.05 ± 5%	0.47	2.29	6.02 ± 9.	6% (k=2)
1800	1710-1890	Body	53.3 ± 5%	1.52 ± 5%	0.63	2.56	4.65 ± 10	0.9% (k=2)
1880	1786-1974	Body	53.3 ± 5%	1.52 ± 5%	0.64	2.64	4.59 ± 1	1.0% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.65	1.35	4.18 ± 9.	7% (k=2)

^a The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Page 7 of 8

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client	Nokia Oyj, Oulu	TIMER.

0bject(s)	D1900V2 - SN:50	1030	In Proper Division Marca
Calibration procedure(s)	QA CAL-05.v2 Calibration proces	dure for dipole validation kit	S
Calibration date:	April 8, 2003		
Condition of the calibrated item	In Tolerance (acc	ording to the specific calibra	ation document)
This calibration statement docume 7025 international standard.	ents traceability of M&TE used	In the calibration procedures and conform	nity of the procedures with the ISO/IEC
Al calibrations have been conduct	ted in the closed laboratory fa	cility: environment temperature 22 +/- 2 de	egrees Celsius and humidity < 75%.
Calibration Equipment used (M&T	E critical for calibration)		
	E critical for calibration)	Cal Date	Scheduled Calibration
lodel Type		Cal Date 27-Mar-2002	Scheduled Calibration In house check: Mar-05
lodel Type F generator R&S SML-03	ID#		
fodel Type IF generator R&S SML-03 rower sensor HIP 8481A	ID # 100698	27-Mar-2002	In house check: Mar-05
Nodel Type IF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A	ID # 100698 MY41092317	27-Mar-2002 18-Oct-02	In house check: Mar-05 Oct-04
Model Type EF generator R&S SML-03 Power sensor HIP 8481A Power sensor HIP 8481A Power meter EPM E442	ID # 100698 MY41092317 US37292783	27-Mar-2002 18-Oct-02 30-Oct-02	In house check: Mar-05 Oct-04 Oct-03
Aodel Type F generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442	ID # 100698 MY41092317 US37292783 GB37480704	27-Mar-2002 18-Oct-02 30-Oct-02 30-Oct-02	In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: May 03
Aodel Type &F generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442 Vetwork Analyzer HP 8753E	ID # 100698 MY41092317 US37292783 GB37480704 US38432426	27-Mar-2002 18-Oct-02 30-Oct-02 30-Oct-02 3-May-00	In house check: Mar-05 Oct-04 Oct-03 Oct-03
Model Type 8F generator R&S SML-03 Power sensor HP 8481A Power meter EPM E442 Network Analyzer HP 8753E Calibrated by:	ID # 100698 MY41092317 US37292783 GB37480704 US38432426 Name	27-Mar-2002 18-Oct-02 30-Oct-02 30-Oct-02 3-May-00 Function	In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: May 03 Signature
Calibration Equipment used (M&T Model Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442 Vetwork Analyzer HP 8753E	ID # 100698 MY41092317 US37292783 GB37480704 US38432426 Name Katja Pokovic	27-Mar-2002 18-Oct-02 30-Oct-02 30-Oct-02 3-May-00 Function Laboratory Director	In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: May 03 Signature

Page 1 of 1

Date/Time: 04/01/03 15:53:35

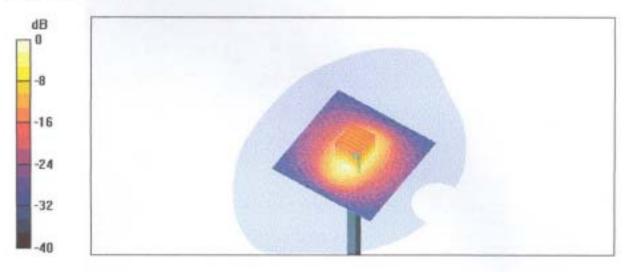
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN5d030_SN1507_HSL1900_010403.da4

DUT: Dipole 1900 MHz; Serial: D1900V2 - SN5d030 Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz; ($\sigma = 1.44$ mho/m, $\varepsilon_r = 38.78$, $\rho = 1000$ kg/m³) Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/18/2003


- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 - SN411; Calibrated: 1/16/2003

- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006

- Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.5 V/m Peak SAR = 18.4 W/kg SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.42 mW/g Power Drift = 0.03 dB

Date/Time: 04/08/03 14:15:07

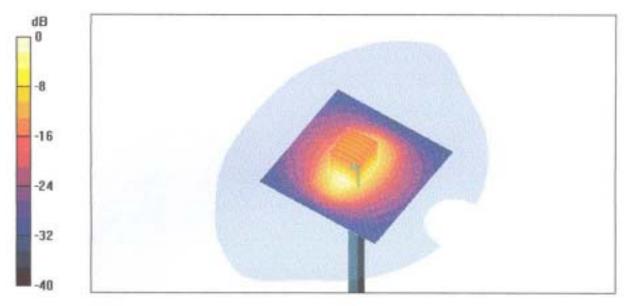
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN5d030_SN1507_M1900_080403.da4

DUT: Dipole 1900 MHz; Serial: D1900V2 - SN5d030 Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz; ($\sigma = 1.59$ mho/m, $\epsilon_r = 51.2$, $\rho = 1000$ kg/m³) Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(4.8, 4.8, 4.8); Calibrated: 1/18/2003


- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 - SN411; Calibrated: 1/16/2003

- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006

- Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.4 V/m Peak SAR = 18.7 W/kg SAR(1 g) = 10.7 mW/g; SAR(10 g) = 5.52 mW/g Power Drift = 0.03 dB

