

FCC Test Report

FCC Part 22,24 / RSS 132,133

FOR:

Internet Location Manager

MODEL #: iLM3170-W, iLM3175-W, iLM3177-WG

@Road, a Trimble Company 47071 Bayside Pkwy. Fremont, CA 94538

FCC ID: PDC-ILM317XU

IC ID: 5079A-ILM317XU

TEST REPORT #: EMC_ATROA_006_07002_FCC22_24 DATE: 2007-07-05

Bluetooth Qualification Test Facility (BQTF)

FCC listed: A2LA accredited

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Date of Report: 2007-7-10 Page 2 of 87

Table of Contents

1	ASSESSMENT	4
2	ADMINISTRATIVE DATA	5
	2.1 IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT	
	2.2 IDENTIFICATION OF THE CLIENT	
	2.3 IDENTIFICATION OF THE MANUFACTURER	
3		
J		
	3.1 SPECIFICATION OF THE EQUIPMENT UNDER TEST	
	3.2 IDENTIFICATION OF THE EQUIPMENT UNDER TEST (EUT)	
	3.3 IDENTIFICATION OF ACCESSORY EQUIPMENT	/
4	SUBJECT OF INVESTIGATION	8
5	MEASUREMENTS	9
	5.1.1 FCC 2.1046 Measurements required: RF power output	
	5.1.2.1 FCC 22.913 (a) Effective radiated power limits.	
	5.1.2.2 FCC 24.232 (b)(c) Power limits.	
	5.1.3 Conducted Output Power Measurement procedure:	
	5.1.4 Radiated Output Power Measurement procedure:	
	5.1.5 ERP Results 850 MHz band:	
	5.1.6 EIRP Results UMTS FDD5 band:	
	5.1.7 EIRP Results 1900 MHz band:	11
	5.1.8 EIRP Results UMTS FDD2 band:	11
	5.2 OCCUPIED BANDWIDTH/EMISSION BANDWIDTH	
	5.2.1 FCC 2.1049 Measurements required: Occupied bandwidth	
	5.2.2 Occupied / emission bandwidth measurement procedure:	
	5.2.3 Occupied / Emission bandwidth results 850 MHz band:	
	5.3 FREQUENCY STABILITY	
	5.3.1 Limit	
	5.3.2 FREQUENCY STABILITY (GSM-850)	
	5.3.3 FREQUENCY STABILITY (PCS-1900)	
	5.4 Spurious Emissions Conducted	
	5.4.1 FCC 2.1051 Measurements required: Spurious emissions at antenna terminals	
	5.4.2.1 FCC 22.017 Emission limitations for callular agriculture and	
	5.4.2.1 FCC 22.917 Emission limitations for cellular equipment. 5.4.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment.	
	5.4.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment	
	5.5 Spurious Emissions Radiated	
	5.5.1 FCC 2.1053 Measurements required: Field strength of spurious radiation	
	5.5.2 Limits:	
	5.5.2.1 FCC 22.917 Emission limitations for cellular equipment.	
	5.5.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment.	
	5.5.3 Radiated out of band measurement procedure:	
	5.5.4 Radiated out of band emissions results on EUT:	

Date of Report: 2007-7-10 Page 3 of 87

_	BLOCK DIAGRAMS	0.0
7	REFERENCES	85
6	TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	84
	5.6.2.2 Receiver Spurious Emission PCS-1900	
	5.6.2.1 Receiver Spurious Emission GSM850	
	5.6.2 Test Results	76
	5.6.1 Limits SUBCLAUSE § RSS-133	76
	5.6 RECEIVER RADIATED EMISSIONS § 2.1053 / RSS-132 & 133	
	5.5.4.6 RADIATED SPURIOUS EMISSIONS (UMTS FDD2)	
	5.5.4.5 RADIATED SPURIOUS EMISSIONS (PCS 1900)	
	5.5.4.4 RESULTS OF RADIATED TESTS PCS-1900:	57
	5.5.4.3 RADIATED SPURIOUS EMISSIONS (UMTS FDD5)	
	5.5.4.2 RADIATED SPURIOUS EMISSIONS (GSM-850)	
	5.5.4.1 RESULTS OF RADIATED TESTS GSM-850:	39

Date of Report: 2007-7-10

Page 4 of 87

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Parts 2, 22 and 24 of Title 47 of the Code of Federal Regulations and in compliance with the applicable criteria specified in Industry Canada rules RSS132 and RSS133.

Company	Description Model #	
@Road, A Trimble Company	Internet Location Manager	<i>i</i> LM3170-W, <i>i</i> LM3175-W, <i>i</i> LM3177-WG

This report is reviewed by:

Lothar Schmidt (Director Regulatory and

		(Director Regulatory and	
2007-07-10	EMC & Radio	Antenna Services)	
Date	Section	Name	Signature
This report i	s prepared by:		

Peter Mu

2007-07-10	EMC & Radio	(EMC Project Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

The test results of this test report relate exclusively to radiated measurement only. Radio module used in this product has been previously certified under its own FCC and IC ID. For results of the conducted measurement please refer to the following test reports:

Part 22 24 RF conducted test report MC8775pdf.pdf

Test Report #:
Date of Report:

2007-7-10

Page 5 of 87

2 Administrative Data

2.1 <u>Identification of the Testing Laboratory Issuing the EMC Test Report</u>

Company Name:	CETECOM Inc.	
Department:	EMC	
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.	
Telephone:	+1 (408) 586 6200	
Fax:	+1 (408) 586 6299	
Responsible Test Lab Manager:	Lothar Schmidt	
Responsible Project Leader:	Peter Mu	
Date of test:	2007-6-19 to 2007-7-6	

2.2 <u>Identification of the Client</u>

APPLICANT		
Applicant (Company Name)	@Road, A Trimble Company	
Street Address	47071 Bayside Pkwy.	
City/Zip Code	Fremont, CA 94538	
Country	USA	
Contact Person	Hung Phan	
Telephone	(510)870-1252	
Fax	(510)870-1281	
e-mail	hphan@road-inc.com	

2.3 <u>Identification of the Manufacturer</u>

MANUFACTURER (If different from Applicant)		
Applicant (Firm Name):	Everex Communications, Inc.	
Contact Person:	Vincent Chan	
Telephone:	408-410-4561	
Fax:	510-687-0076	
Address Line 1:	5020-A Brandin Court Fremont, CA 94538	
Address Line 2:		
City:	Fremont	
State:	CA	

Date of Report: 2007-7-10 Page 6 of 87

Postal Code:	94538
Country:	USA
e-mail:	vincentc@everexcomm.net

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name of EUT (if not same as Model No.)	GeoMagager	
Description	Internet Location Manager	
Model No.	<i>i</i> LM3170-W, <i>i</i> LM3175-W, <i>i</i> LM3177-WG	
FCC-ID	PDC-ILM317XU	
IC-ID (Industry Canada)		
Frequency Range:	824.2MHz – 848.8MHz for GSM 850	
requency range.	1850.2MHz – 1909.8MHz for PCS 1900	
Type(s) of Modulation:	GMSK	
Number of Channels:	124 for GSM-850, 299 for PCS-1900	
Antenna Type:	Tribands Cell/PCS/GPS, 5dBi Gain For both Cellular and PCS	
	Conducted: Tests Conducted not by Cetecom. Report submitted separately.	
Max. Output Power:	Radiated: see section 4.1.5 and 4.1.6	
	25.34dBm (0.342W) @ 836MHz ERP 24.6dBm (0.288W) @1909.8MHz EIRP	

3.2 Identification of the Equipment under Test (EUT)

EUT#	ТҮРЕ	MANF.	MODEL	SERIAL #
1	EUT	@Road	iLM3175-W	FF040005

3.3 Identification of Accessory equipment

AE#	TYPE	MANF.	MODEL	SERIAL#
1	WLAN/GSM combo antenna	Mobile Mark	SMW-UMB 1A3J2C	901-0023-000

Test Report #:

EMC ATROA 006 07002 FCC22 24

Date of Report:

2007-7-10

Page 8 of 87

Subject of Investigation

All testing was performed on the EUT listed in Section 3. The EUT was maximized in the X,Y, Z positions, all data in this report shows the worst case between horizontal and vertical polarization for above 1GHz.

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Parts 2, 22 and 24 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS132 and RSS133.

This EUT is a FCC approved module Sierra Wireless MC8775. This report refers only to the radiated measurements. The conducted measurements are documented in test report

Part 22 24 RF conducted test report MC8775pdf.pdf

This report is applicable for all three models listed below:

iLM3170-W iLM3175-W iLM3177-WG

The manufacturer declares that all the models have identical hardware and each model is sold at specific regions only.

All models support EGPRS mode with 8PSK modulation in GSM band and FDD2 and FDD5 mode in WCDMA bands. According to the conducted test report section 4.3 and 4.4, conducted output power with GMSK modulation is the highest among all the modes of operation. Therefore radiated measurements are made with GPRS mode and GMSK modulation. The results represent worse case emission and show compliance to FCC regulations.

Date of Report: 2007-7-10

5 Measurements

5.1 RF Power Output

5.1.1 FCC 2.1046 Measurements required: RF power output.

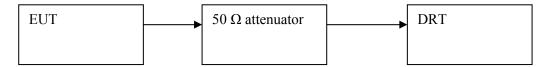
Power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on circuit elements as specified. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

Page 9 of 87

5.1.2 Limits:

5.1.2.1 FCC 22.913 (a) Effective radiated power limits.

The effective radiated power (ERP) of mobile transmitters must not exceed 7 Watts.

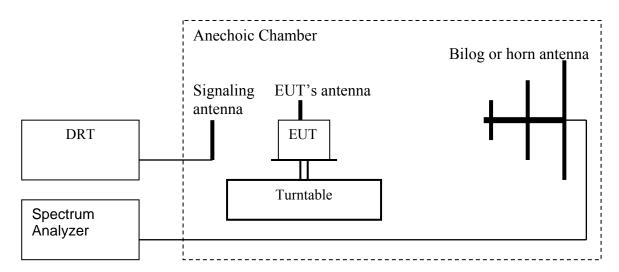

5.1.2.2 FCC 24.232 (b)(c) Power limits.

- (b) Mobile/portable stations are limited to 2 Watts effective isotropic radiated power (EIRP).
- (c) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms equivalent voltage. The measurement results shall be properly adjusted for any limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement over the full bandwidth of the channel.

5.1.3 Conducted Output Power Measurement procedure:

Based on TIA-603C 2004

2.2.1 Conducted Carrier Output Power Rating


- 1. Connect the equipment as shown in the above diagram. A Digital Radiocommunication Tester (DRT) is used to enable the EUT to transmit and to measure the output power.
- 2. Adjust the settings of the DRT to set the EUT to its maximum power at the required channel.
- 3. Record the output power level measured by the DRT.
- 4. Correct the measured level for all losses in the RF path.
- 5. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

5.1.4 Radiated Output Power Measurement procedure:

Based on TIA-603C 2004

2.2.17.2 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation.
- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to the channel frequency. Set the analyzer to measure peak hold with the required settings.
- 4. Rotate the EUT 360°. Record the peak level in dBm (LVL).
- 5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the ERP using the following equation: ERP (dBm) = LVL (dBm) + LOSS (dB)
- 8. Determine the EIRP using the following equation: EIRP (dBm) = ERP (dBm) + 2.14 (dB)
- 9. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band. **Spectrum analyzer settings = rbw=vbw=3MHz**

(**note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4, 7 and 8 above are performed with test software.)

5.1.5 ERP Results 850 MHz band:

Power Control Level	Burst Peak ERP
5	≤38.45dBm (7W)

Frequency (MHz)	Effective Radiated Power (dBm)	
	GPRS	EGPRS
824.2	21.25	21.32
836.6	25.34	21.57
848.8	21.35	22.21

5.1.6 **EIRP Results UMTS FDD5 band:**

Frequency (MHz)	Effective Radiated Power (dBm)
826.4	18.62
836.6	19.84
846.6	19.00

5.1.7 EIRP Results 1900 MHz band:

Power Control Level	Burst Peak EIRP	
0	≤33dBm (2W)	

Frequency (MHz)	Effective Isotropic Radiated Power (dBm)	
	GSM	EGPRS
1850.2	21.91	24.09
1880.0	23.99	23.77
1909.8	22.14	24.6

5.1.8 EIRP Results UMTS FDD2 band:

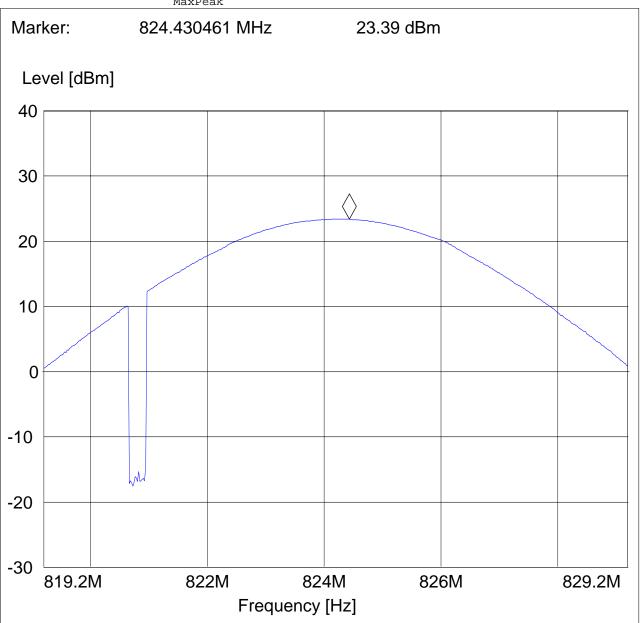
Frequency (MHz)	Effective Isotropic Radiated Power (dBm)
1852.4	18.87
1880	19.74
1907.6	18.68

2007-7-10 Date of Report: Page 12 of 87

EIRP (GSM 850) CHANNEL 128 GPRS

iLM317X Customer: Atroad Inc. Test Mode: GSM850

ANT Orientation: H EUT Orientation: H


Test Engineer: Peter Mu Power Supply: 12Vdc battery Comments: unit with fix SWEEP TABLE: "EIRP 850 CH 128 H"

IF Transducer Start Stop Detector Meas.

Frequency Frequency Time

DUMMY-DBM 819.2 MHz 829.2 MHz MaxPeak Coupled 3 MHz

MaxPeak

Bandw.

2007-7-10 Date of Report: Page 13 of 87

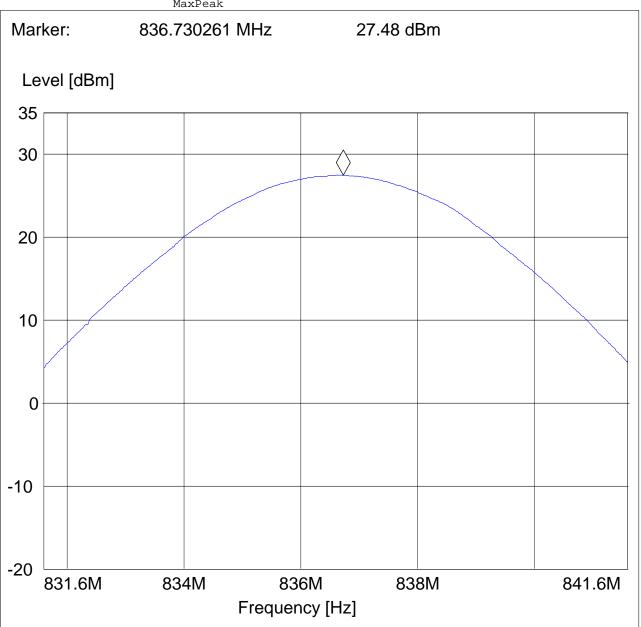
EIRP (GSM 850) CHANNEL 190 GPRS

iLM317X Customer: Atroad Inc. Test Mode: GSM850

ANT Orientation: H EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12Vdc battery

Comments: unit with fix, TT242°


SWEEP TABLE: "EIRP 850 CH 190 H"

IF Transducer Start Stop Detector Meas.

Frequency Frequency Time Bandw.

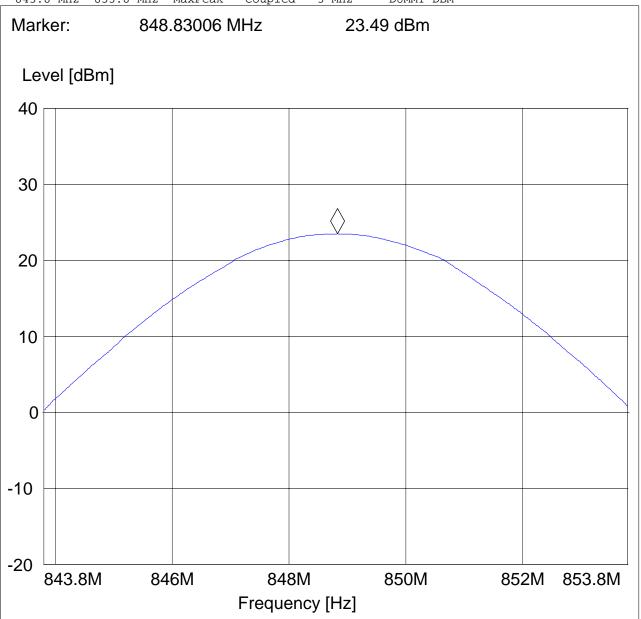
831.6 MHz 841.6 MHz MaxPeak Coupled 3 MHz DUMMY-DBM

MaxPeak

Date of Report: 2007-7-10 Page 14 of 87

EIRP (GSM 850) CHANNEL 251 GPRS

EUT: iLM317X
Customer: Atroad Inc.
Test Mode: GSM850


ANT Orientation: H EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12Vdc battery
Comments: unit with fix
SWEEP TABLE: "EIRP 850 CH 251 H"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

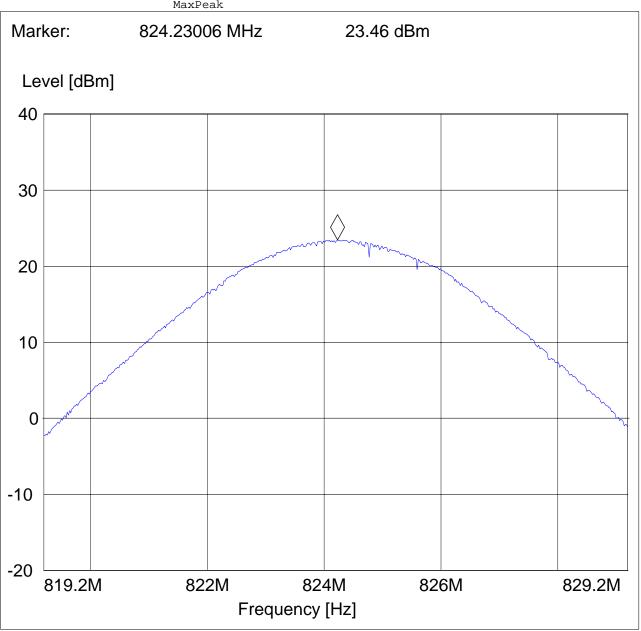
843.8 MHz 853.8 MHz MaxPeak Coupled 3 MHz DUMMY-DBM

2007-7-10 Date of Report: Page 15 of 87

EIRP (GSM 850) CHANNEL 128 EGPRS

iLM3177-WG Customer: AtRoad Test Mode: **EGPRS** ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "EIRP 850 CH 128 V"

Detector IF Transducer Start Stop Meas. Frequency Frequency Time Bandw.

819.2 MHz 829.2 MHz MaxPeak Coupled 3 MHz DUMMY-DBM

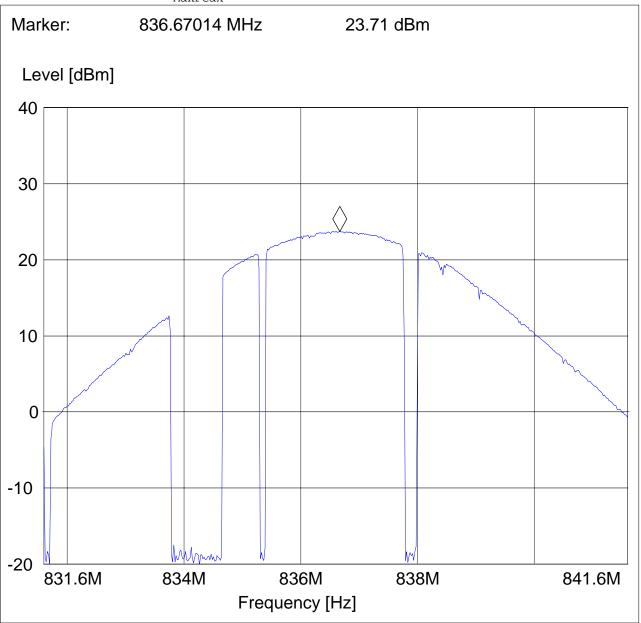
MaxPeak

Date of Report: 2007-7-10 Page 16 of 87

EIRP (GSM 850) CHANNEL 190 EGPRS

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: EGPRS
ANT Orientation: V
EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "EIRP 850 CH 190 V"

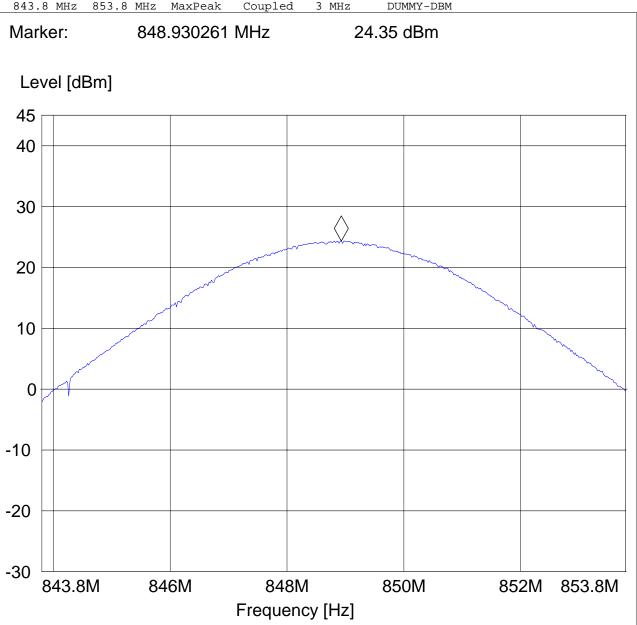
Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

831.6 MHz 841.6 MHz MaxPeak Coupled 3 MHz DUMMY-DBM

MaxPeak

Date of Report: 2007-7-10 Page 17 of 87

EIRP (GSM 850) CHANNEL 251 EGPRS


EUT: iLM3177-WG
Customer: AtRoad
Test Mode: EGPRS
ANT Orientation: V
EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt

Comments:

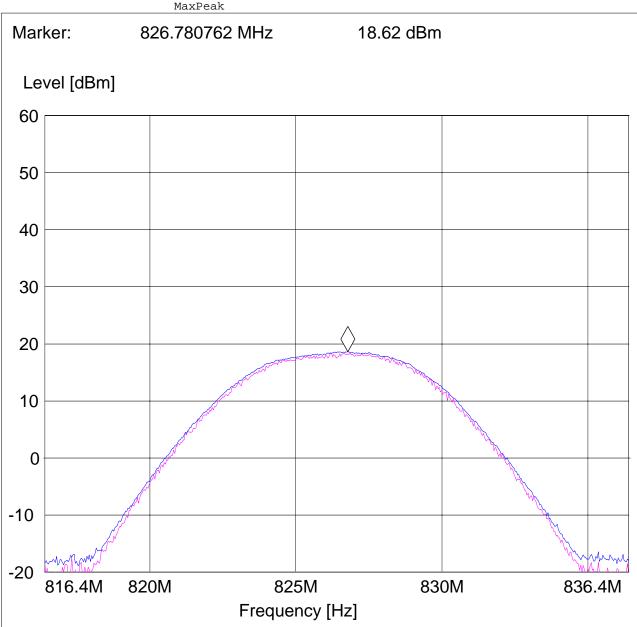
SWEEP TABLE: "EIRP 850 CH 251 V"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 843.8 MHz 853.8 MHz MaxPeak Coupled 3 MHz DUMMY-DBM

2007-7-10 Date of Report: Page 18 of 87

EIRP (UMTS FDD5) CHANNEL 4132

EUT: iLM3177-WG Customer: AtRoad Test Mode: UMTS FDD II


ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu 12V DC batt Power Supply: TT176° Comments:

SWEEP TABLE: "EIRP 850 CH 4132V"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw. 816.4 MHz 836.4 MHz MaxPeak Coupled 5 MHz DUMMY-DBM

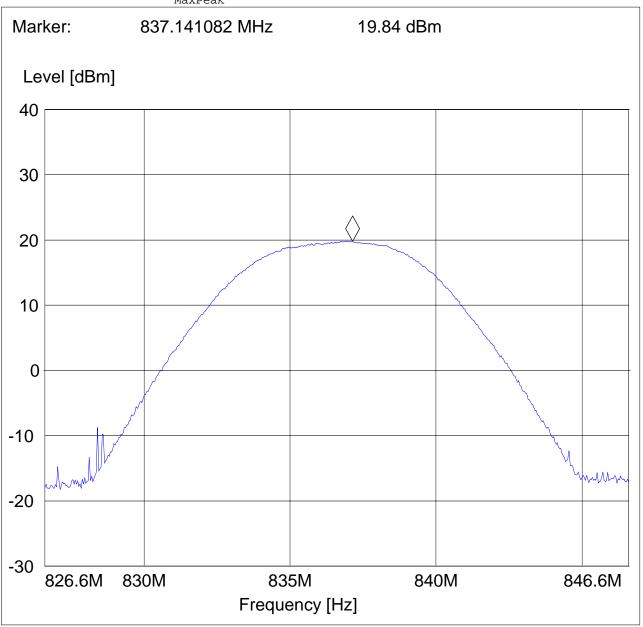
2007-7-10 Date of Report: Page 19 of 87

EIRP (UMTS FDD5) CHANNEL 4183

EUT: iLM3177-WG Customer: AtRoad Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu 12V DC batt Power Supply: TT176° Comments:


SWEEP TABLE: "EIRP 850 CH 4183 V"

Start Stop Detector Meas. IF Transducer

Frequency Frequency

Time Bandw. 826.6 MHz 846.6 MHz MaxPeak Coupled 5 MHz DUMMY-DBM

MaxPeak

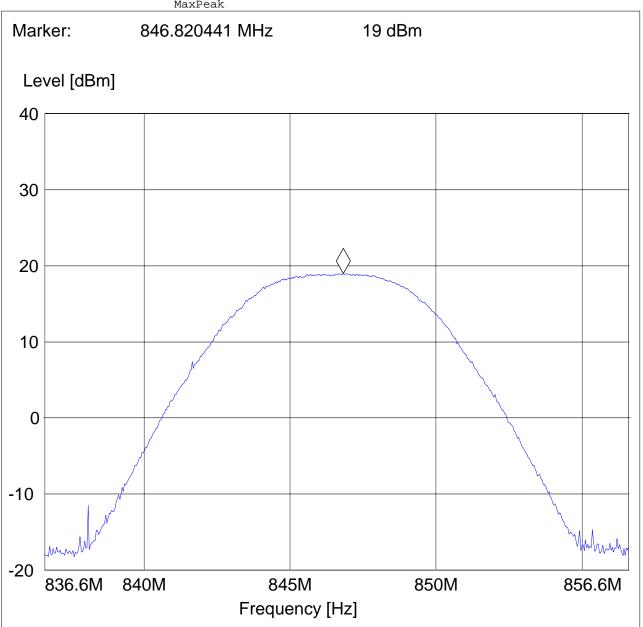
2007-7-10 Date of Report: Page 20 of 87

EIRP (UMTS FDD5) CHANNEL 4233

iLM3177-WG Customer: AtRoad Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt TT176° Comments:


SWEEP TABLE: "EIRP 850 CH 4233 V"

Start Stop Detector Meas. IF Transducer Time Bandw.

Frequency Frequency

836.6 MHz 856.6 MHz MaxPeak Coupled 5 MHz DUMMY-DBM

MaxPeak

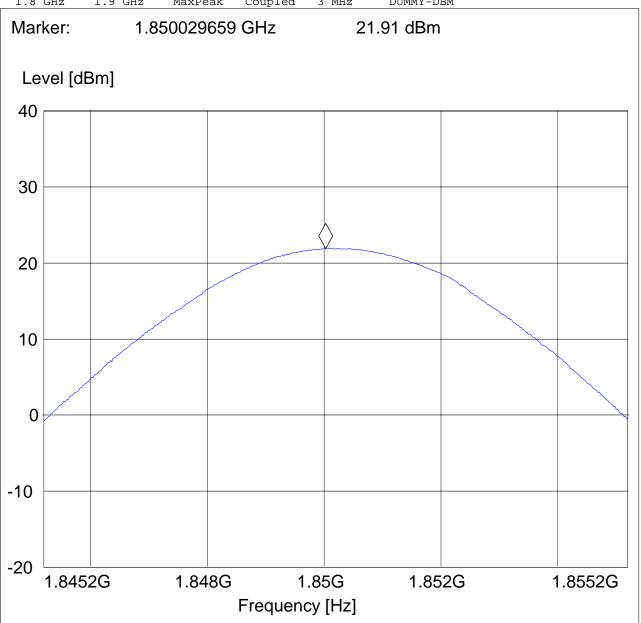
2007-7-10 Date of Report: Page 21 of 87

EIRP (PCS-1900) CHANNEL 512 GPRS

iLM317X Customer: Atroad Inc. Test Mode: GSM1900

ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12Vdc battery


Comments: unit with fix, TT151°

SWEEP TABLE: "EIRP 1900 CH512"

EIRP PCS 1900 for channel-512 Short Description: Start Detector Meas. IF Transducer Stop

Frequency Frequency ${\tt Bandw.}$ Time

1.8 GHz 1.9 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

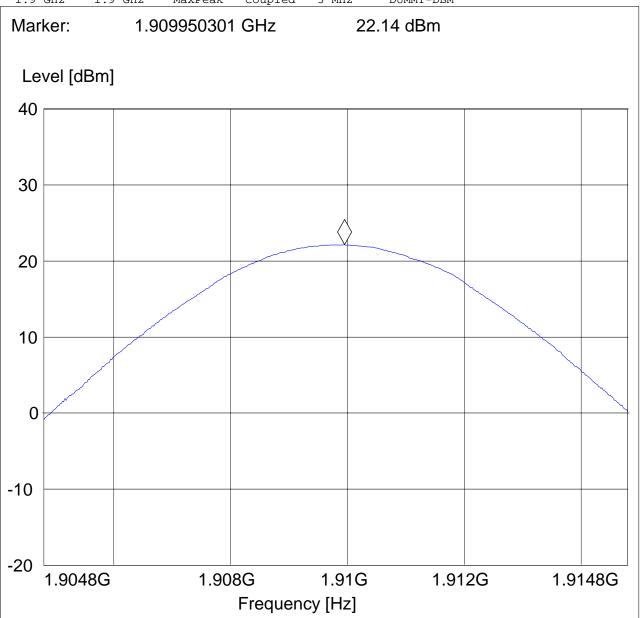
Date of Report: 2007-7-10 Page 22 of 87

EIRP (PCS-1900) CHANNEL 661 GPRS

EUT: iLM317X Customer: Atroad Inc. Test Mode: GSM1900

ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12Vdc battery


Comments: unit with fix, TT151°

SWEEP TABLE: "EIRP 1900 CH810"

Short Description: EIRP PCS 1900 for channel-810 Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.9 GHz 1.9 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

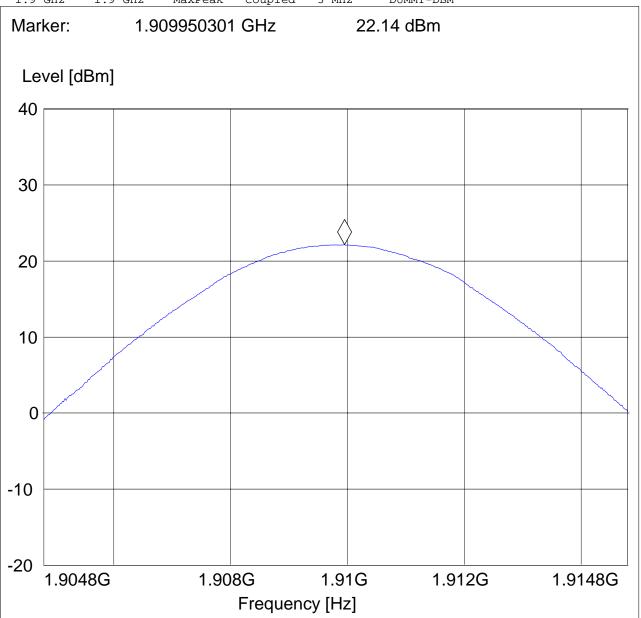
Date of Report: 2007-7-10 Page 23 of 87

EIRP (PCS-1900) CHANNEL 810 GPRS

EUT: iLM317X
Customer: Atroad Inc.
Test Mode: GSM1900

ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12Vdc battery


Comments: unit with fix, TT151°

SWEEP TABLE: "EIRP 1900 CH810"

Short Description: EIRP PCS 1900 for channel-810 Start Stop Detector Meas. IF Transducer

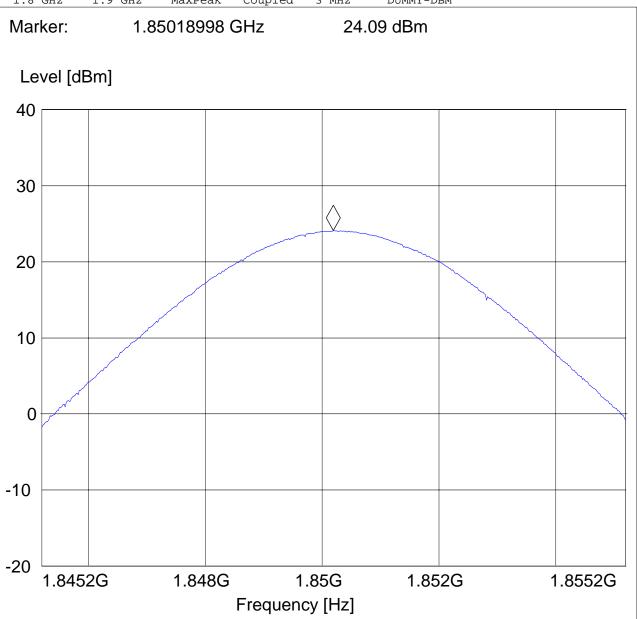
Frequency Frequency Time Bandw.

1.9 GHz 1.9 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 24 of 87

EIRP (PCS-1900) CHANNEL 512 EGPRS

EUT: ILM3177-WG
Customer: AtRoad
Test Mode: EGPRS
ANT Orientation: V
EUT Orientation: H


Test Engineer: Peter Mu Power Supply: 12V DC batt

Comments:

SWEEP TABLE: "EIRP 1900 CH512"

Short Description: EIRP PCS 1900 for channel-512 Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

1.8 GHz 1.9 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

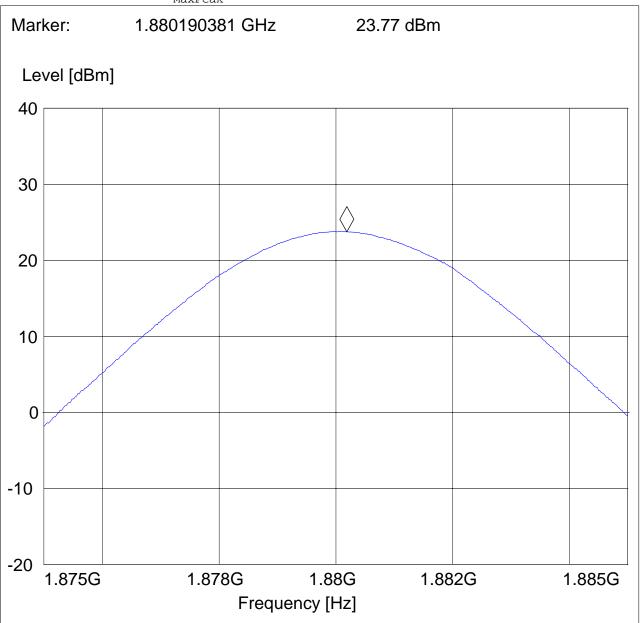
Date of Report: 2007-7-10 Page 25 of 87

EIRP (PCS-1900) CHANNEL 661 EGPRS

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: EGPRS
ANT Orientation: V
EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12V DC batt

Comments:


SWEEP TABLE: "EIRP 1900 CH661"

Short Description: EIRP PCS 1900 for channel-661
Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.9 GHz 1.9 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

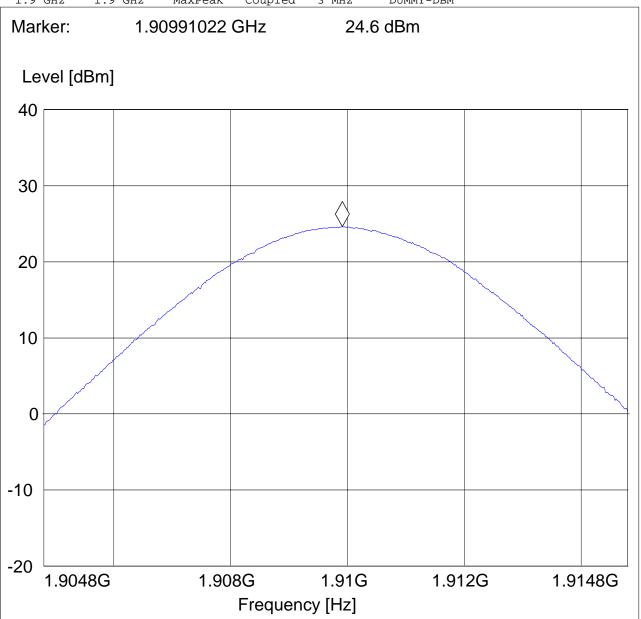
MaxPeak

Date of Report: 2007-7-10 Page 26 of 87

EIRP (PCS-1900) CHANNEL 810 EGPRS

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: EGPRS
ANT Orientation: V
EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "EIRP 1900 CH810"

Short Description: EIRP PCS 1900 for channel-810
Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

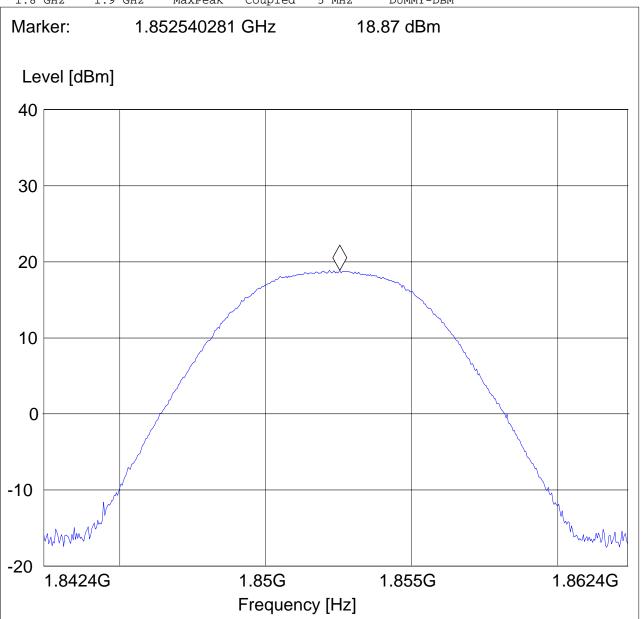
1.9 GHz 1.9 GHz MaxPeak Coupled 3 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 27 of 87

EIRP (UMTS FDD2) CHANNEL 9262

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H


Test Engineer: Peter Mu
Power Supply: 12V DC batt
Comments: TT140°

SWEEP TABLE: "EIRP 1900 CH 9262"

Short Description: EIRP PCS 1900 for channel-512
Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.8 GHz 1.9 GHz MaxPeak Coupled 5 MHz DUMMY-DBM

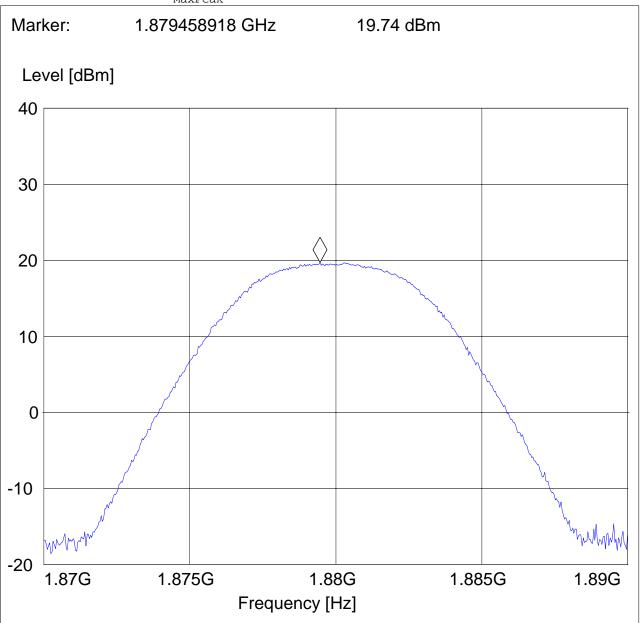
Date of Report: 2007-7-10 Page 28 of 87

EIRP (UMTS FDD2) CHANNEL 9400

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12V DC batt
Comments: TT140°


SWEEP TABLE: "EIRP 1900 CH 9400"

Short Description: EIRP PCS 1900 for channel-661
Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.9 GHz 1.9 GHz MaxPeak Coupled 5 MHz DUMMY-DBM

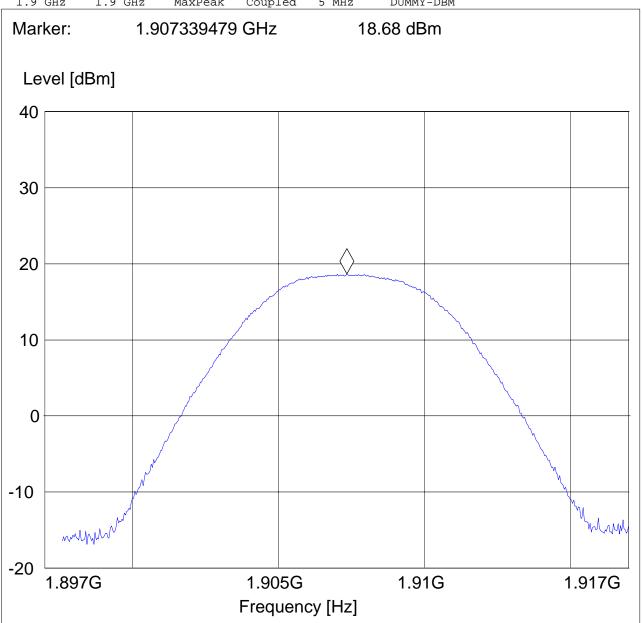
MaxPeak

2007-7-10 Date of Report: Page 29 of 87

EIRP (UMTS FDD2) CHANNEL 9538

iLM3177-WG Customer: AtRoad Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H


Test Engineer: Peter Mu Power Supply: 12V DC batt TT140° Comments:

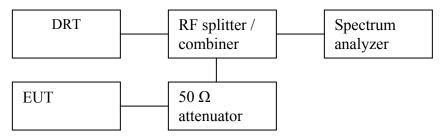
SWEEP TABLE: "EIRP 1900 CH 9538"

Short Description: EIRP PCS 1900 for channel-810 Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

DUMMY-DBM 1.9 GHz 1.9 GHz MaxPeak Coupled 5 MHz

Date of Report: 2007-7-10 Page 30 of 87


5.2 Occupied Bandwidth/Emission Bandwidth

5.2.1 FCC 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable.

(h) Transmitters employing digital modulation techniques-when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated.

5.2.2 Occupied / emission bandwidth measurement procedure:

- 1. Connect the equipment as shown in the above diagram.
- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to measure the 99% (-20 dB) occupied bandwidth. Record the value.
- 4. Set the spectrum analyzer to measure the 99.5% (-26 dB) emission bandwidth. Record the value.
- 5. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

Date of Report: 2007-7-10 Page 31 of 87

5.2.3 Occupied / Emission bandwidth results 850 MHz band:

The test results of this test report relate exclusively to radiated measurement only. Radio module used in this product has been previously certified under its own FCC and IC ID. For results of the conducted measurement please refer to the following test reports:

Part 22 24 RF conducted test report_MC8775pdf.pdf

Date of Report: 2007-7-10 Page 32 of 87

5.3 Frequency Stability

5.3.1 Limit

For Hand carried battery powered equipment:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.2VDC and 4.5VDC, with a nominal voltage of 3.7VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of –2.7% and +21.62%. For the purposes of measuring frequency stability these voltage limits are to be used.

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU 200 UNIVERSAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30 C.
- 3. With the EUT, powered via nominal voltage, connected to the CMU 200 and in a simulated call on mid channel (190 for GSM 850 & 4183 for FDD5 & 661 for PCS-1900&9400 for FDD2), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10 C increments from -30 C to +50 C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50 C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU 200 and in a simulated call on mid channel (190 for GSM 850 & 4183 for FDD5 & 661 for PCS-1900&9400 for FDD2), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C increments from +50 C to -30 C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

For equipment powered by primary supply voltage:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

For this EUT section 2.1055(d)(1) applies. This requires to vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

Test Report #: EMC ATROA 006 07002 FCC22 24

Date of Report: 2007-7-10 Page 33 of 87

5.3.2 FREQUENCY STABILITY (GSM-850)

Some of the test results in this report are extracted from conducted test report for the GSM radio module. Radio module used in this product has been previously certified under its own FCC and IC ID. For results of the conducted measurement please refer to the following test reports:

Part 22 24 RF conducted test report MC8775pdf.pdf

5.3.3 FREQUENCY STABILITY (PCS-1900)

Some of the test results in this report are extracted from conducted test report for the GSM radio module. Radio module used in this product has been previously certified under its own FCC and IC ID. For results of the conducted measurement please refer to the following test reports:

Part 22 24 RF conducted test report MC8775pdf.pdf

Date of Report:

2007-7-10

Page 34 of 87

5.4 Spurious Emissions Conducted

5.4.1 FCC 2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in FCC 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

5.4.2 Limits:

5.4.2.1 FCC 22.917 Emission limitations for cellular equipment.

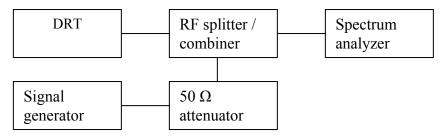
The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
- (b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.4.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
- (b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the



transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.4.3 Conducted out of band emissions measurement procedure:

Based on TIA-603C 2004

2.2.13 Unwanted Emissions: Conducted Spurious

- 1. Connect the equipment as shown in the above diagram.
- 2. Set the spectrum analyzer to measure peak hold with the required settings.
- 3. Set the signal generator to a known output power and record the path loss in dB (**LOSS**) for frequencies up to the tenth harmonic of the EUT's carrier frequency. **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm).
- 4. Replace the signal generator with the EUT.
- 5. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 6. Set the spectrum analyzer to measure peak hold with the required settings. Offset the spectrum analyzer reference level by the path loss measured above.
- 7. Measure and record all spurious emissions up to the tenth harmonic of the carrier frequency.
- 8. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.
- 9. If necessary steps 6 and 7 may be performed with the spectrum analyzer set to average detector.

(**note:** Step 3 above is performed prior to testing and **LOSS** is recorded by test software. Steps 2, 6, and 7 above are performed with test software.)

The test results of this test report relate exclusively to radiated measurement only. Radio module used in this product has been previously certified under its own FCC and IC ID. For results of the conducted measurement please refer to the following test reports:

Part 22 24 RF conducted test report MC8775pdf.pdf

2007-7-10

Page 36 of 87

5.5 **Spurious Emissions Radiated**

5.5.1 FCC 2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission.

5.5.2 Limits:

5.5.2.1 FCC 22.917 Emission limitations for cellular equipment.

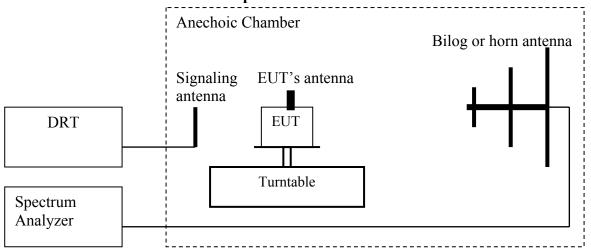
The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
- (b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.5.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.
- (b) Measurement procedure. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required



measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.5.3 Radiated out of band measurement procedure:

Based on TIA-603C 2004

2.2.12 Unwanted emissions: Radiated Spurious

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.
- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to measure peak hold with the required settings.
- 4. Place the measurement antenna in a horizontal orientation. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency.
- 5. Replace the EUT with a horizontally polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB):
- 8. Repeat steps 4, 5 and 6 with all antennas vertically polarized.
- 9. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB):
- 10. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

Test Report #: EMC ATROA 006 07002 FCC22 24

Date of Report: 2007-7-10 Page 38 of 87

(**note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4 and 7 above are performed with test software.)

Spectrum analyzer settings:

Res B/W: 1 MHz Vid B/W: 1 MHz

Measurement Survey:

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the GSM-850 & PCS-1900 bands. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM-850 & PCS-1900 band into any of the other blocks respectively. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

Radiated out of band emissions results on EUT: 5.5.4

5.5.4.1 **RESULTS OF RADIATED TESTS GSM-850:**

Harmonics	Tx ch-128 Freq. (MHz)	Level (dBm)	Tx ch-190 Freq. (MHz)	Level (dBm)	Tx ch-251 Freq. (MHz)	Level (dBm)
2	1648.4	NF	1673.2	NF	1697.6	NF
3	2472.6	NF	2509.8	NF	2546.4	NF
4	3296.8	NF	3346.4	NF	3395.2	NF
5	4121	NF	4183	NF	4244	NF
6	4945.2	NF	5019.6	NF	5092.8	NF
7	5769.4	NF	5856.2	NF	5941.6	NF
8	6593.6	NF	6692.8	NF	6790.4	NF
9	7417.8	NF	7529.4	NF	7639.2	NF
10	8242	NF	8366	NF	8488	NF
NF = NOISE FLOOR						

Date of Report: 2007-7-10 Page 40 of 87

5.5.4.2 RADIATED SPURIOUS EMISSIONS (GSM-850)

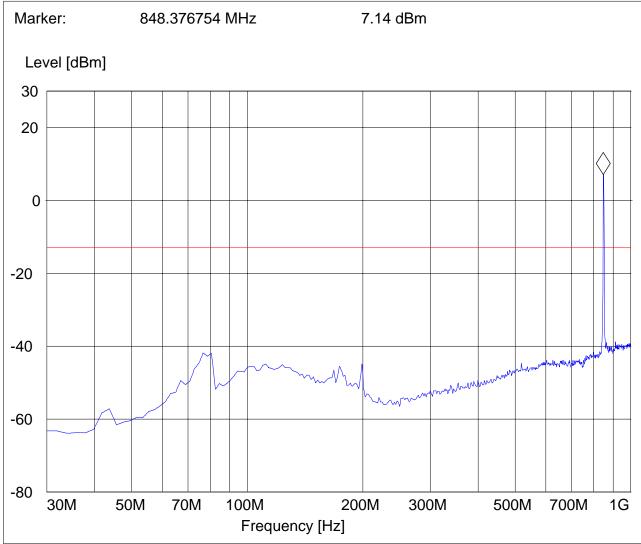
TX: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: vertical Note:

1. The peak above the limit line is the carrier freq.

2. This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM317X
Customer: Atroad Inc.
Test Mode: GPRS 850; Ch 251

ANT Orientation: V EUT Orientation: H


Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery

Comments: Marker placed on uplink SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

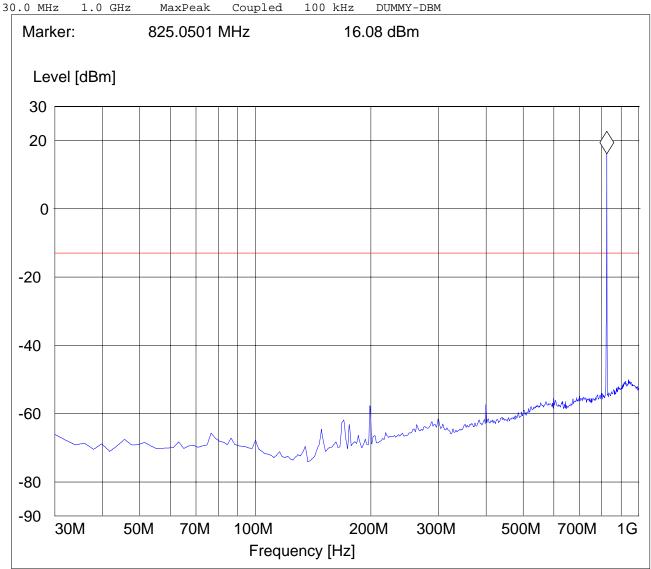
Date of Report: 2007-7-10 Page 41 of 87

TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: Horizontal Note:

1. The peak above the limit line is the carrier freq.

2. This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM317X Customer: Atroad Inc. Test Mode: GPRS 850


ANT Orientation: H EUT Orientation: H Test Engineer: Ed

Power Supply: 12v dc battery

Comments:

SWEEP TABLE: "FCC 24 Spur 30M-1G_H"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

Date of Report: 2007-7-10 Page 42 of 87

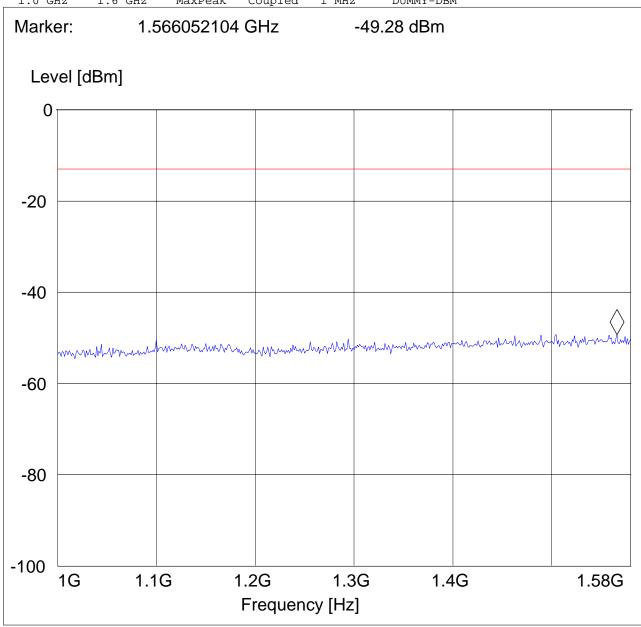
RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 824.2MHz: 1GHz – 1.58GHz

Spurious emission limit -13dBm
EUT: iLM317X
Customer: Atroad Inc.
Test Mode: GPRS 850; Ch 128

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments:

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 1.6 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 43 of 87

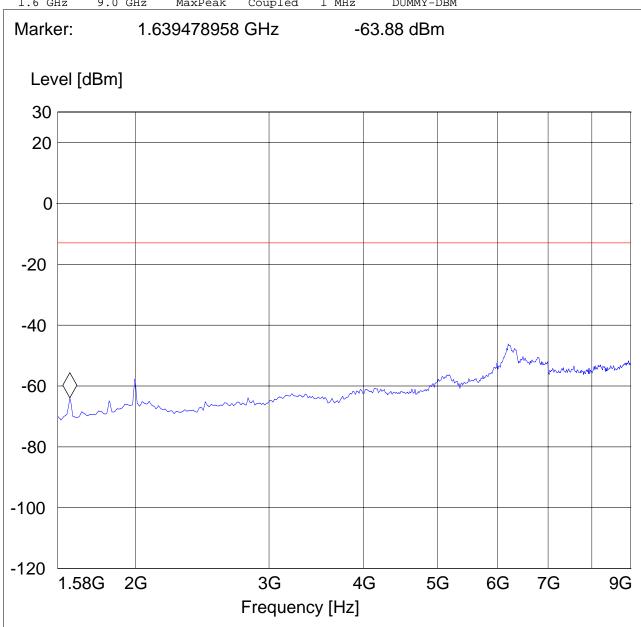
RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 824.2MHz: 1.58GHz - 9GHz

Spurious emission limit -13dBm
EUT: iLM317X
Customer: Atroad Inc.
Test Mode: GPRS 850; Ch 128

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments:

SWEEP TABLE: "FCC 22Spuri 1.58-9G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.6 GHz 9.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 44 of 87

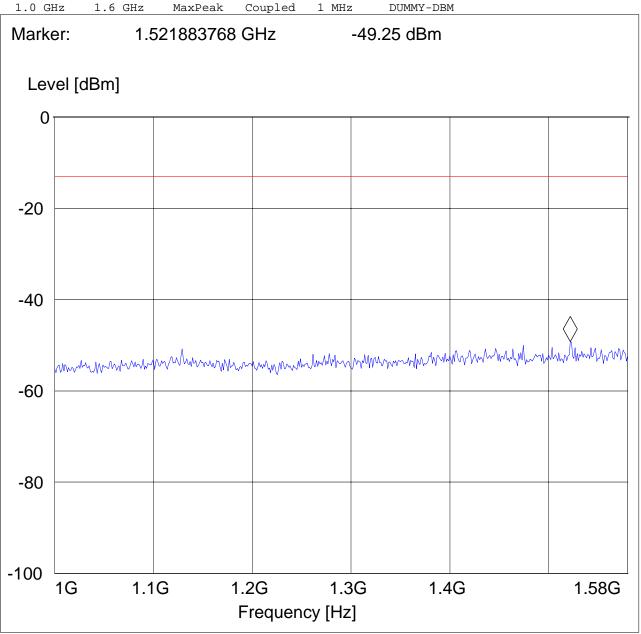
RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 836.6MHz: 1GHz - 1.58GHz

Spurious emission limit -13dBm EUT: iLM317X Customer: Atroad Inc. GPRS 850; Ch 190 Test Mode:

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments:

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Transducer Start Stop Detector Meas. TF

Bandw. Frequency Frequency Time

MaxPeak 1 MHz DUMMY-DBM

2007-7-10 Date of Report: Page 45 of 87

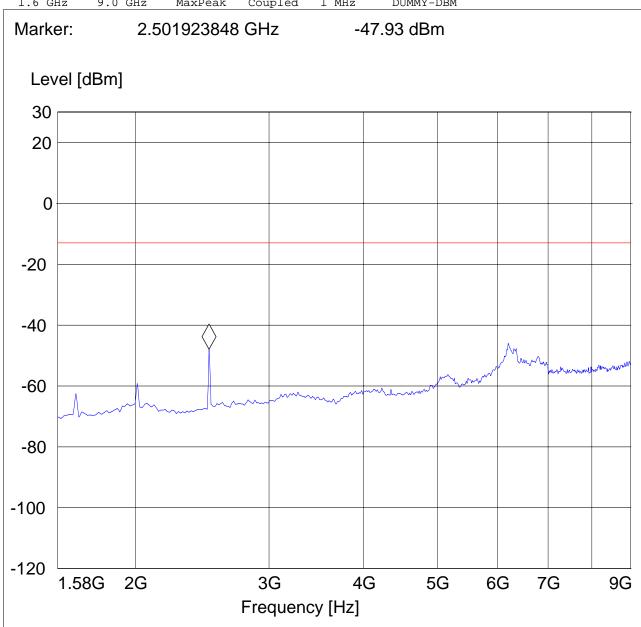
RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 836.6MHz: 1.58GHz – 9GHz

Spurious emission limit -13dBm EUT: iLM317X Customer: Atroad Inc. GPRS 850; Ch 190 Test Mode:

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Marker placed on second harmonic Comments:

SWEEP TABLE: "FCC 22Spuri 1.58-9G"

Transducer ΙF Start Stop Detector Meas.

Frequency Frequency Time Bandw.

1.6 GHz 9.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 46 of 87

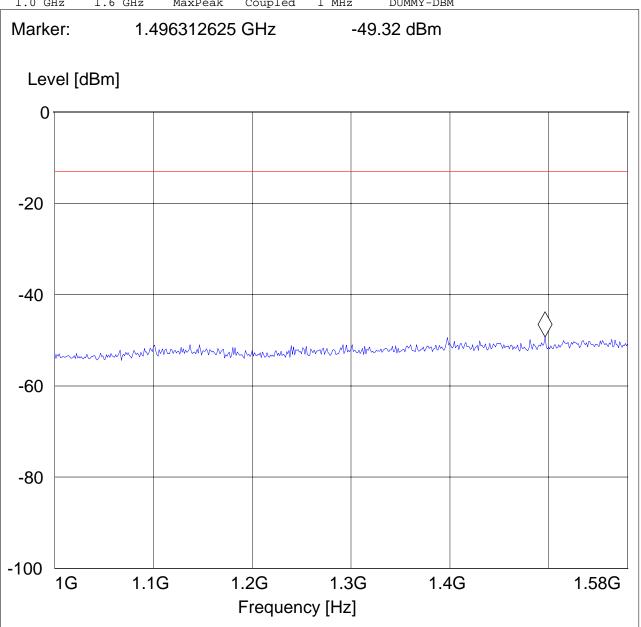
RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 848.8MHz: 1GHz - 1.58GHz

Spurious emission limit -13dBm EUT: iLM317X Customer: Atroad Inc. GPRS 850; Ch 251 Test Mode:

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments:

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Transducer Start Stop Detector Meas. TF

Frequency Frequency Bandw. Time

Coupled 1.0 GHz 1.6 GHz MaxPeak 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 47 of 87

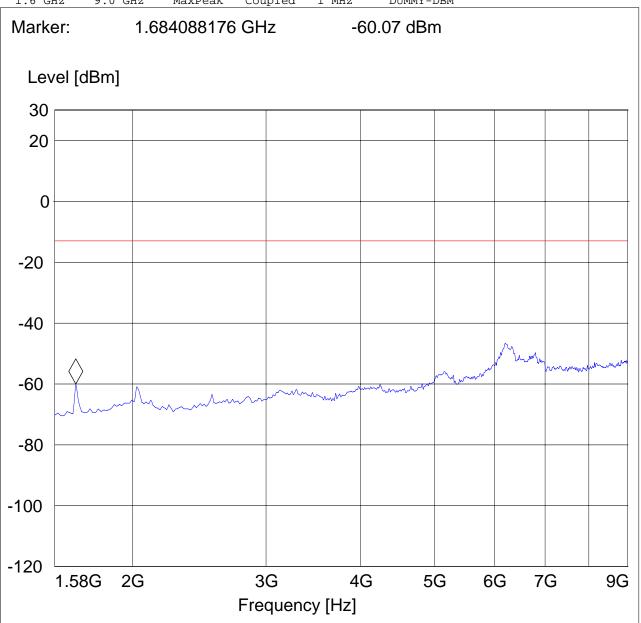
RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 848.8MHz: 1.58GHz – 9GHz

Spurious emission limit -13dBm
EUT: iLM317X
Customer: Atroad Inc.
Test Mode: GPRS 850; Ch 251

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments:

SWEEP TABLE: "FCC 22Spuri 1.58-9G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.6 GHz 9.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 48 of 87

5.5.4.3 RADIATED SPURIOUS EMISSIONS (UMTS FDD5)

EUT Transmitting (Limit: -13dBm) §22.917

Harmonics	Tx ch-4132 Freq. (MHz)	Level(dBm)	Tx ch-4183 Freq. (MHz)	Level(dBm)	Tx ch-4233 Freq. (MHz)	Level(dBm)
2	1652.8	NF	1673.2	NF	1693.2	NF
3	2479.2	NF	2509.8	NF	2539.8	NF
4	3305.6	NF	3346.4	NF	3386.4	NF
5	4132	NF	4183	NF	4233	NF
6	4958.4	NF	5019.6	NF	5079.6	NF
7	5784.8	NF	5856.2	NF	5926.2	NF
8	6611.2	NF	6692.8	NF	6772.8	NF
9	7437.6	NF	7529.4	NF	7619.4	NF
10	8264	NF	8366	NF	8466	NF

NF = Noise Floor

Date of Report: 2007-7-10 Page 49 of 87

TX: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: vertical Note:

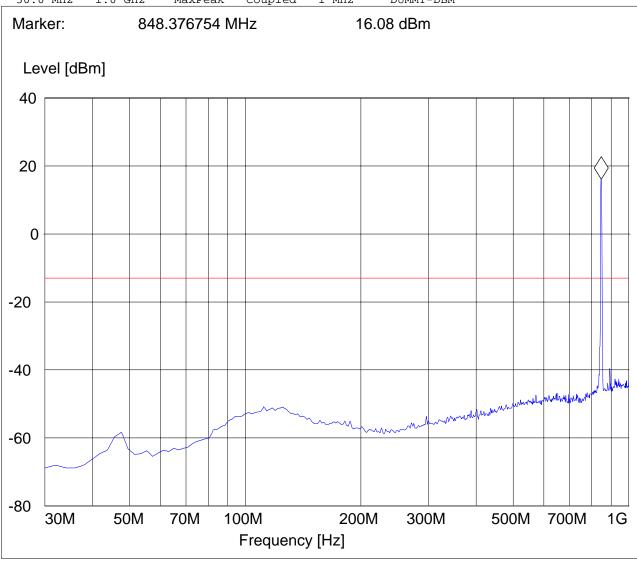
1. The peak above the limit line is the carrier freq.

2. This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

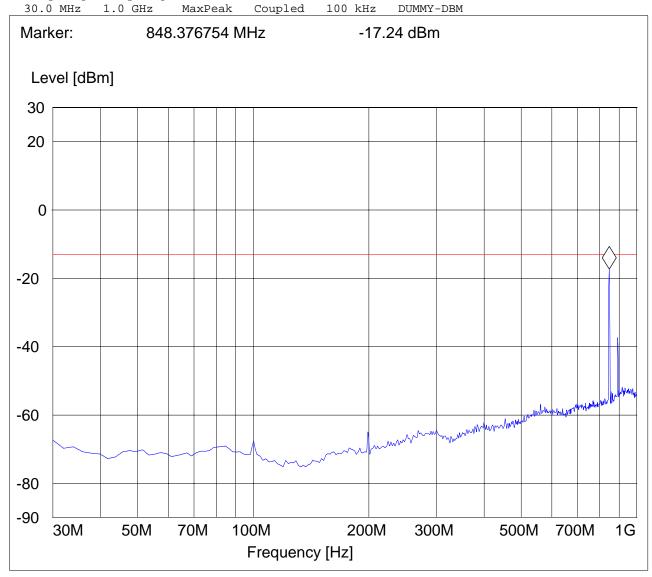
Date of Report: 2007-7-10 Page 50 of 87

TX: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: horizontal Note:

1. The peak above the limit line is the carrier freq.

2. This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II


ANT Orientation: H
EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt

Comments:

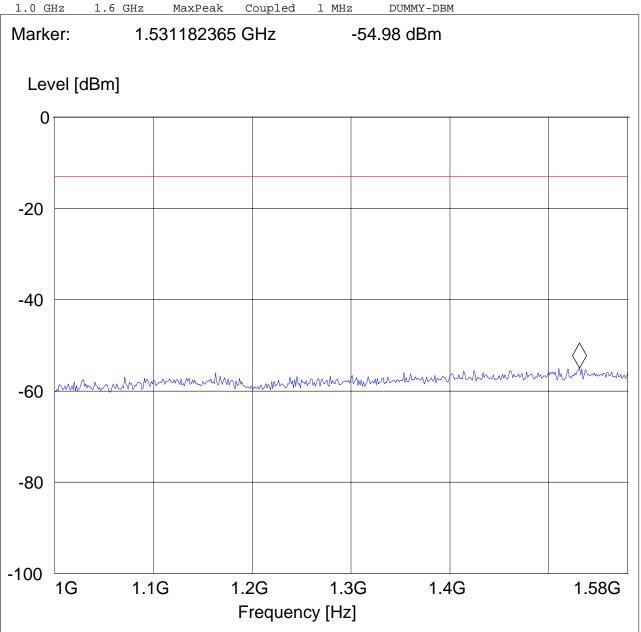
SWEEP TABLE: "FCC 24 Spur 30M-1G_H"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

Date of Report: 2007-7-10 Page 51 of 87

TX @ 826.4MHz 1-1.58GHz
EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H


Test Engineer: Peter Mu
Power Supply: 12V DC batt

Comments:

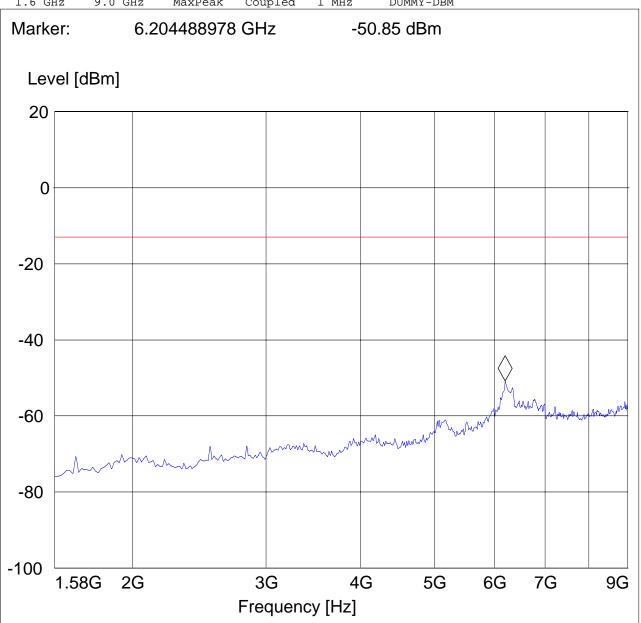
SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

1.0 GHz 1.6 GHz MaxPeak Coupled 1 MHz DIMMY-DBM

Date of Report: 2007-7-10 Page 52 of 87

TX @ 826.4MHz 1.58-9GHz
EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II


ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12V DC batt

Comments:

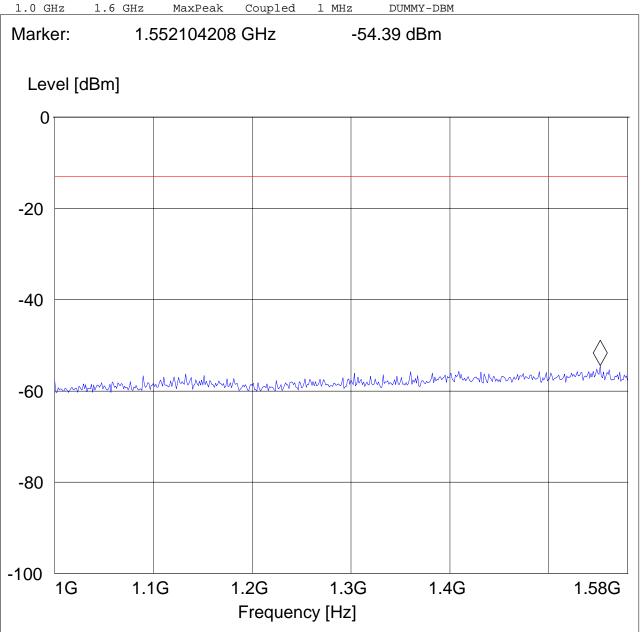
SWEEP TABLE: "FCC 22Spuri 1.58-9G"

Start Stop IF Transducer Detector Meas. Frequency Frequency Time Bandw. DUMMY-DBM 1.6 GHz 9.0 GHz MaxPeak Coupled 1 MHz

Date of Report: 2007-7-10 Page 53 of 87

TX @ 836.6MHz 1-1.58GHz
EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H


Test Engineer: Peter Mu Power Supply: 12V DC batt

Comments:

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

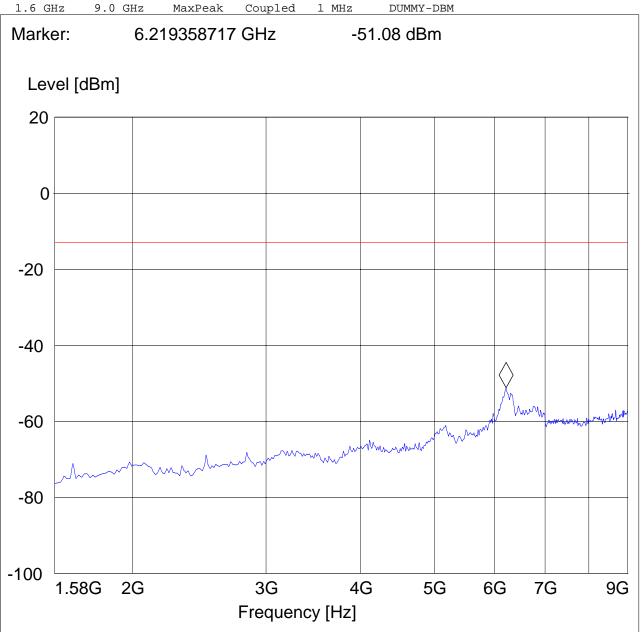
1.0 GHz 1.6 GHz MaxPeak Coupled 1 MHz DIMMY-DBM

Date of Report: 2007-7-10 Page 54 of 87

TX @ 836.6MHz 1.58-9GHz EUT: iLM3177-WG Customer: AtRoad

Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H


Test Engineer: Peter Mu
Power Supply: 12V DC batt

Comments:

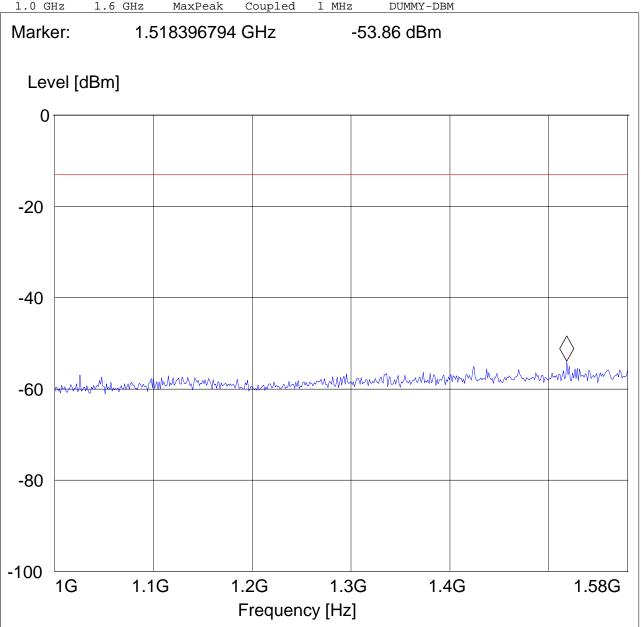
SWEEP TABLE: "FCC 22Spuri 1.58-9G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

1 6 GHz 9 0 GHz MayDeak Coupled 1 MHz DIMMY-DBM

Date of Report: 2007-7-10 Page 55 of 87

TX @ 846.6MHz 1-1.58GHz
EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II


ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt

Comments:

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

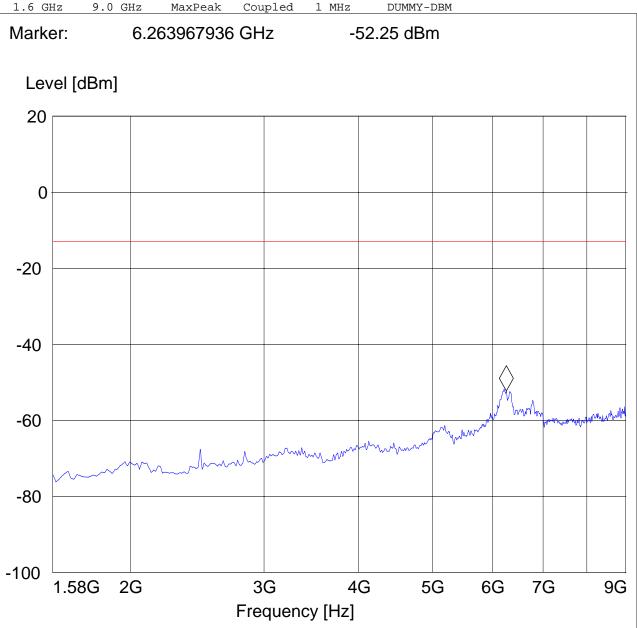
Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

Date of Report: 2007-7-10 Page 56 of 87

TX @ 846.6MHz 1.58-9GHz EUT: iLM3177-WG Customer: AtRoad

Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H


Test Engineer: Peter Mu Power Supply: 12V DC batt

Comments:

SWEEP TABLE: "FCC 22Spuri 1.58-9G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

1.6 GHz 9.0 GHz MaxPeak Coupled 1 MHz DIMMY-DBM

5.5.4.4 RESULTS OF RADIATED TESTS PCS-1900:

Harmonic	Tx ch-512 Freq.(MHz)	Level (dBm)	Tx ch-661 Freq. (MHz)	Level (dBm)	Tx ch-810 Freq. (MHz)	Level (dBm)
2	3700.4	NF	3760	NF	3819.6	NF
3	5550.6	NF	5640	NF	5729.4	NF
4	7400.8	NF	7520	NF	7639.2	NF
5	9251	NF	9400	NF	9549	NF
6	11101.2	NF	11280	NF	11458.8	NF
7	12951.4	NF	13160	NF	13368.6	NF
8	14801.6	NF	15040	NF	15278.4	NF
9	16651.8	NF	16920	NF	17188.2	NF
10	18502	NF	18800	NF	19098	NF
NF = NOISE FLOOR						

Date of Report: 2007-7-10 Page 58 of 87

5.5.4.5 RADIATED SPURIOUS EMISSIONS (PCS 1900)

TX: 30MHz - 1GHz

Spurious emission limit –13dBm

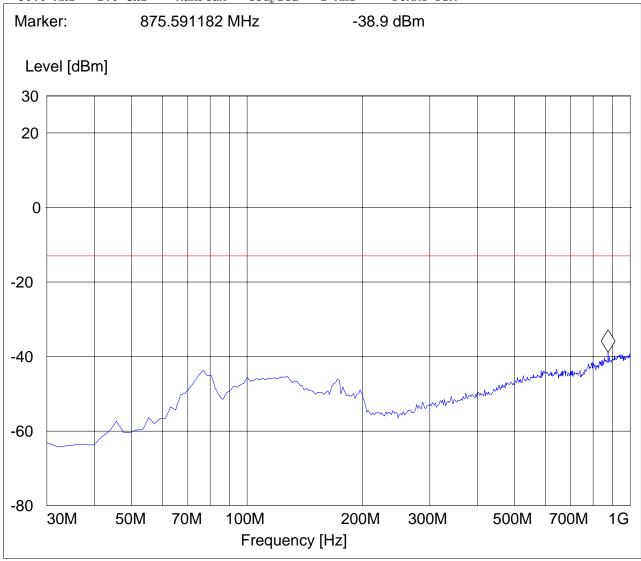
Antenna: vertical

EUT: iLM317X Customer: Atroad Inc. Test Mode: GPRS 1900; Ch 810

ANT Orientation: V

EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments:

SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 59 of 87

TX: 30MHz - 1GHz

Spurious emission limit -13dBm

Antenna: horizontal

EUT: iLM317X Customer: Atroad Inc.

Test Mode: GPRS 1900; Ch 512

ANT Orientation: H
EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery

Comments:

SWEEP TABLE: "FCC 24 Spur 30M-1G_H"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz DUMMY-DBM

Marker: 947.51503 MHz -50.68 dBm Level [dBm] 30 20 0 -20 -40 -60 MM -80 -90 30M 50M 70M 100M 200M 300M 500M 700M 1G Frequency [Hz]

2007-7-10 Date of Report: Page 60 of 87

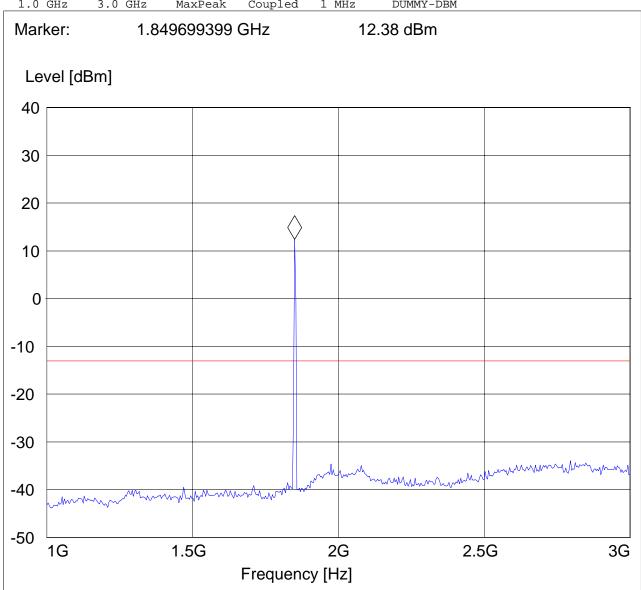
RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1850.2MHz: 1GHz - 3GHz Spurious emission limit -13dBm EUT: iLM317X Customer: Atroad Inc.

GPRS 1900; Ch 512 Test Mode:

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments: Marker placed on uplink

SWEEP TABLE: "FCC 24Spuri 1-3G"

Start Stop Detector Meas. IF Transducer

Time Frequency Frequency Bandw.

MaxPeak 1.0 GHz 3.0 GHz Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 61 of 87

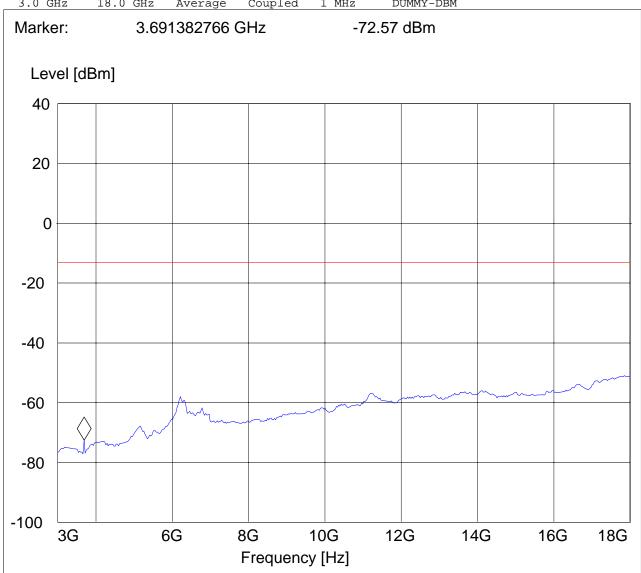
RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1850.2MHz: 3GHz – 18GHz Spurious emission limit -13dBm EUT: iLM317X Customer: Atroad Inc. GPRS 1900; Ch 512

ANT Orientation: V EUT Orientation: H

Test Mode:

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments: Marker placed on first harmonic

SWEEP TABLE: "FCC 24Spuri 3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz Coupled 1 MHz DUMMY-DBM Average

Date of Report: 2007-7-10 Page 62 of 87

RADIATED SPURIOUS EMISSIONS(PCS 1900)

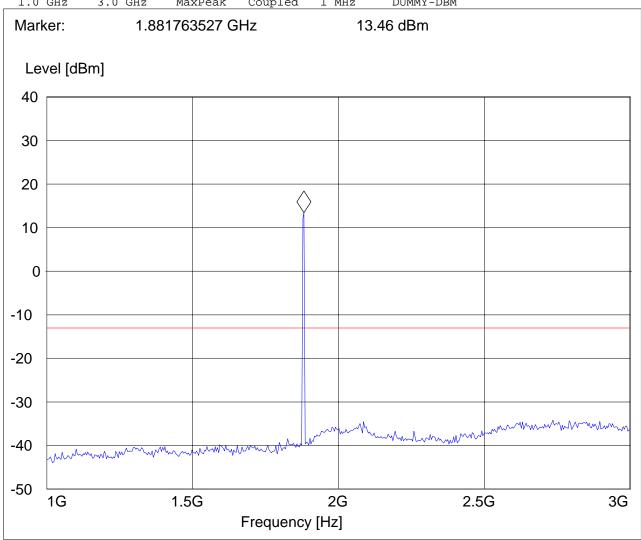
Tx @ 1880.0MHz: 1GHz - 3GHz Spurious emission limit -13dBm

Note: The peak above/close to the limit line is the carrier freq. at ch-661.

EUT: iLM317X Customer: Atroad Inc.

GPRS 1900; Ch 661 Test Mode:

ANT Orientation: V EUT Orientation: H


Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery

Comments: Marker is placed on uplink

SWEEP TABLE: "FCC 24Spuri 1-3G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

2007-7-10 Date of Report: Page 63 of 87

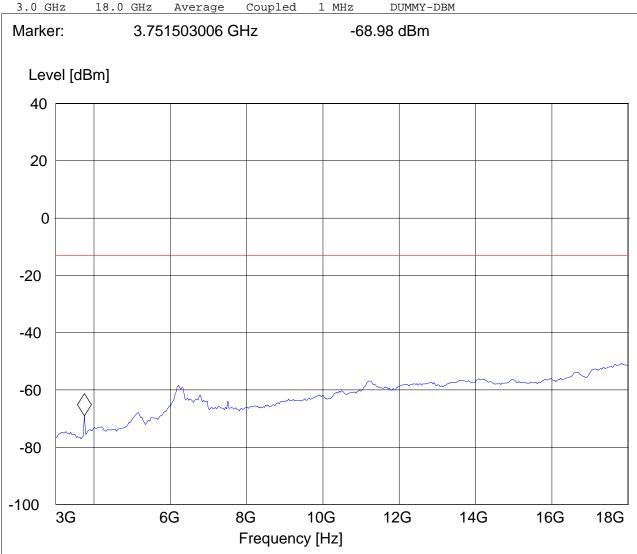
RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1880.0MHz: 3GHz - 18GHz Spurious emission limit -13dBm

EUT: iLM317X Customer: Atroad Inc. GPRS 1900; Ch 661 Test Mode:

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments: Marker placed on first harmonic

SWEEP TABLE: "FCC 24Spuri 3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

18.0 GHz Coupled 1 MHz

2007-7-10 Date of Report: Page 64 of 87

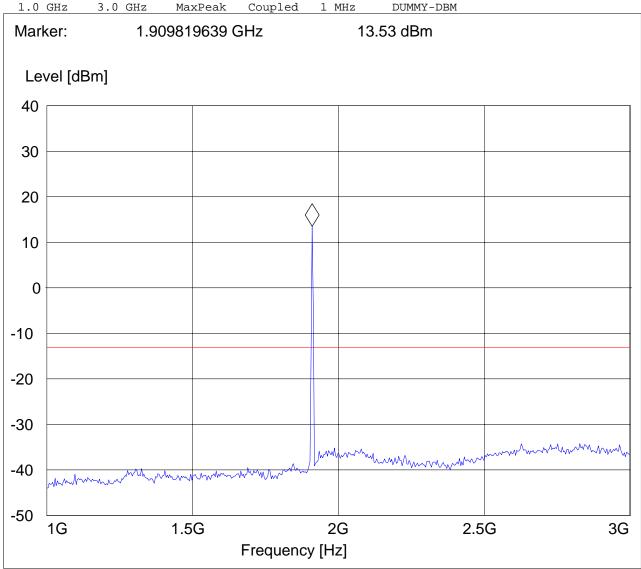
RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1909.8MHz: 1GHz - 3GHz Spurious emission limit -13dBm EUT: iLM317X

Customer: Atroad Inc. GPRS 1900; Ch 810 Test Mode:

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments: Marker placed on uplink

SWEEP TABLE: "FCC 24Spuri 1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

2007-7-10 Date of Report: Page 65 of 87

RADIATED SPURIOUS EMISSIONS(PCS 1900)

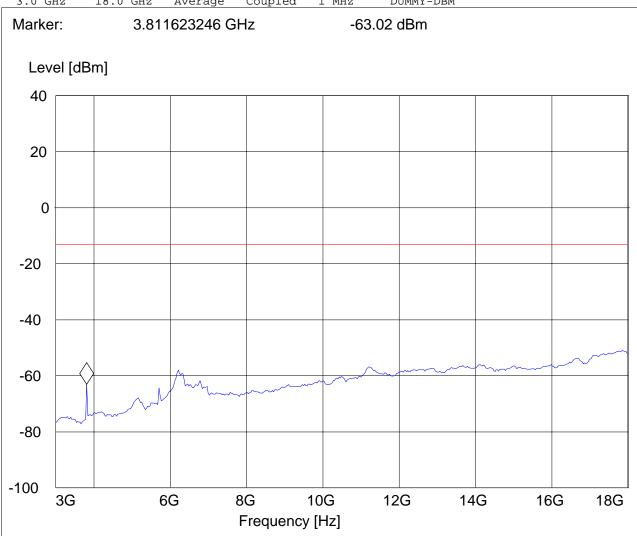
Tx @ 1909.8MHz: 3GHz – 18GHz Spurious emission limit –13dBm

EUT: iLM317X Customer: Atroad Inc.

GPRS 1900; Ch 810 Test Mode:

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Marker placed on first harmonic Comments:

SWEEP TABLE: "FCC 24Spuri 3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz Coupled 1 MHz DUMMY-DBM Average

Date of Report: 2007-7-10 Page 66 of 87

RADIATED SPURIOUS EMISSIONS(PCS 1900) 18GHz – 19.1GHz

Spurious emission limit –13dBm

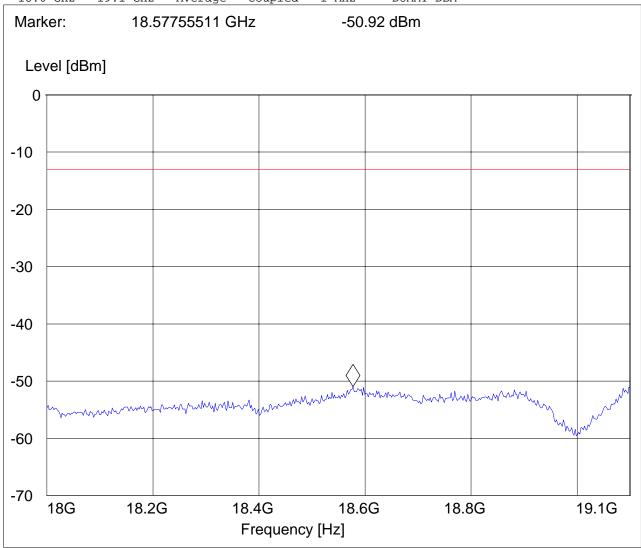
Note: This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM317X Customer: Atroad Inc.

Test Mode: GPRS 1900; Ch 661

ANT Orientation: V EUT Orientation: H

Test Engineer: Satya Radhakrishna Power Supply: 12Vdc battery


Comments:

SWEEP TABLE: "FCC 24spuri 18-19.1G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

18.0 GHz 19.1 GHz Average Coupled 1 MHz DUMMY-DBM

5.5.4.6 RADIATED SPURIOUS EMISSIONS (UMTS FDD2)

EUT Transmitting (Limit: -13dBm) §24.238

Harmonics	Tx ch-9262 Freq. (MHz)	Level (dBm)	Tx ch-9400 Freq. (MHz)	Level (dBm)	Tx ch-9538 Freq. (MHz)	Level (dBm)
2	3704.8	NF	3760	NF	3815.2	NF
3	5557.2	NF	5640	NF	5722.8	NF
4	7409.6	NF	7520	NF	7630.4	NF
5	9262	NF	9400	NF	9538	NF
6	11114.4	NF	11280	NF	11445.6	NF
7	12966.8	NF	13160	NF	13353.2	NF
8	14819.2	NF	15040	NF	15260.8	NF
9	16671.6	NF	16920	NF	17168.4	NF
10	18524	NF	18800	NF	19076	NF

NF = Noise Floor

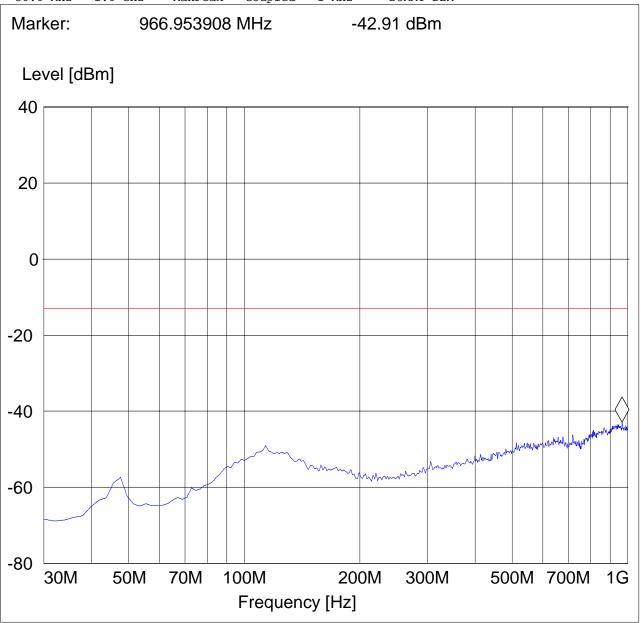
Date of Report: 2007-7-10 Page 68 of 87

TX: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: vertical Note: This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM3177-WG Customer: AtRoad Test Mode: UMTS FDD II

ANT Orientation: H
EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

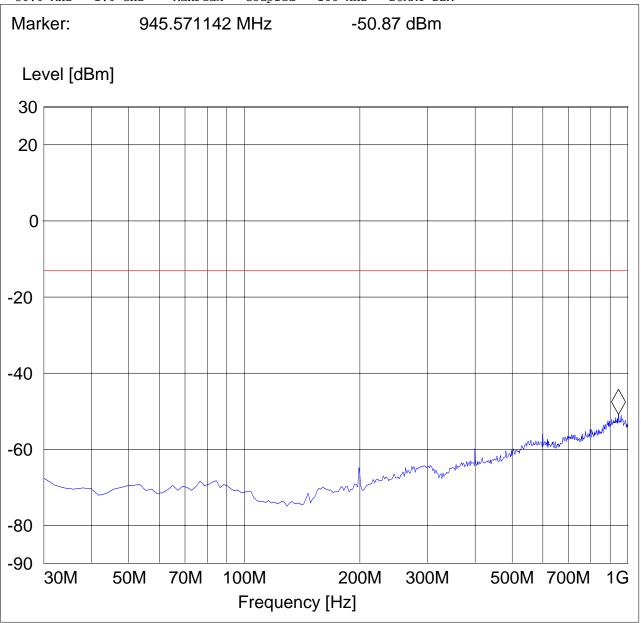
Date of Report: 2007-7-10 Page 69 of 87

TX: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: horizontal Note: This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM3177-WG Customer: AtRoad Test Mode: UMTS FDD II

ANT Orientation: H
EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "FCC 24 Spur 30M-1G_H"

Start Stop Detector Meas. IF Transducer

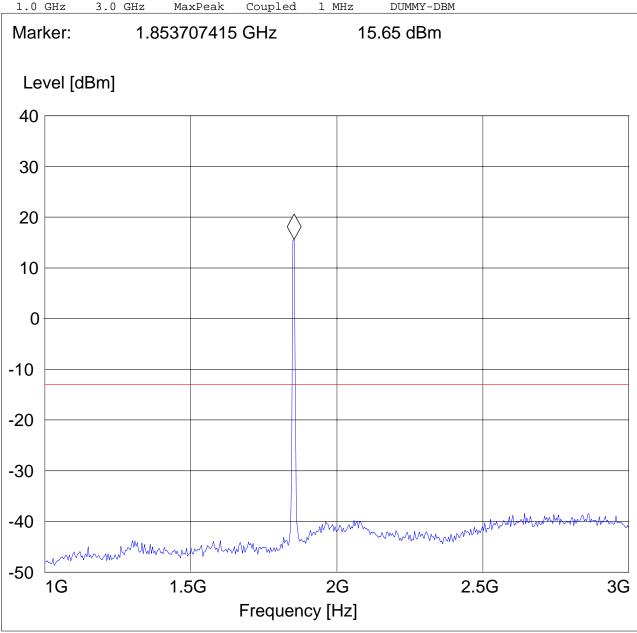
Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz DUMMY-DBM

Date of Report: 2007-7-10 Page 70 of 87

TX: @ 1852.4MHz, 1-3GHz, Note: Marker is mobile uplink.

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II


ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12V DC batt

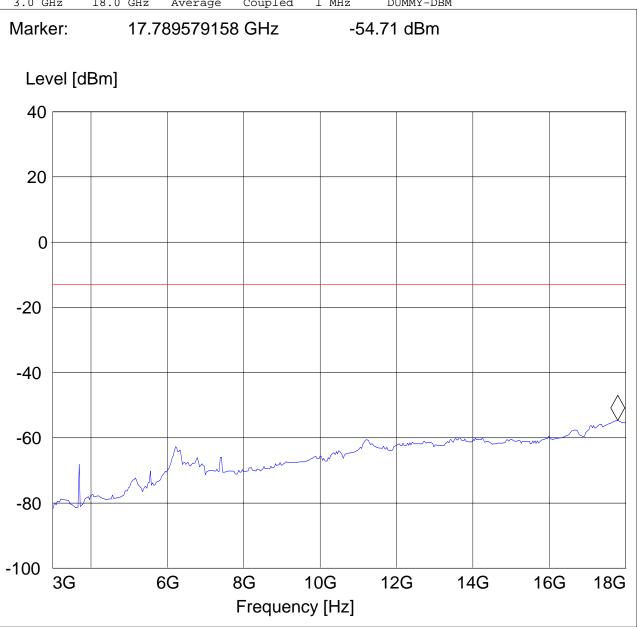
Comments:

SWEEP TABLE: "FCC 24Spuri 1-3G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

Date of Report: 2007-7-10 Page 71 of 87

TX: @ 1852.4MHz, 3-18GHz
EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II


ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt

Comments:

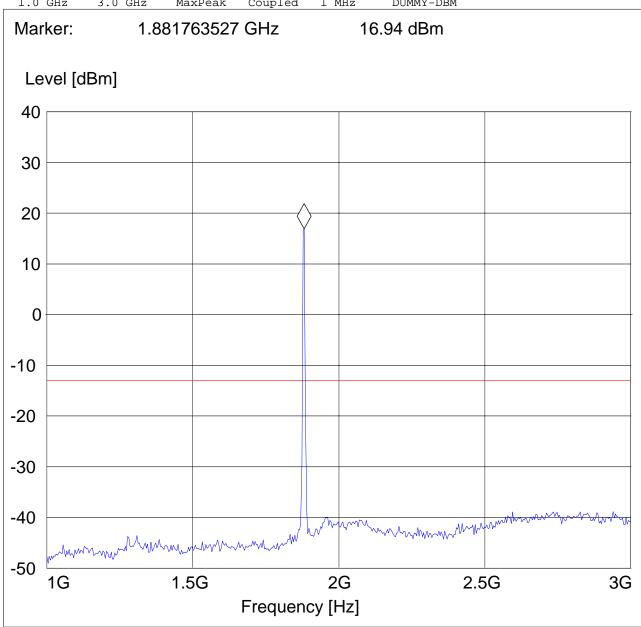
SWEEP TABLE: "FCC 24Spuri 3-18G"

Transducer Start Stop Detector Meas. IF Frequency Frequency Time Bandw. 3.0 GHz 18.0 GHz Average Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 72 of 87

TX: @ 1880MHz, 1-3GHz, Note: Marker is mobile uplink.

EUT: iLM3177-WG Customer: AtRoad Test Mode: UMTS FDD II


ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12V DC batt

Comments:

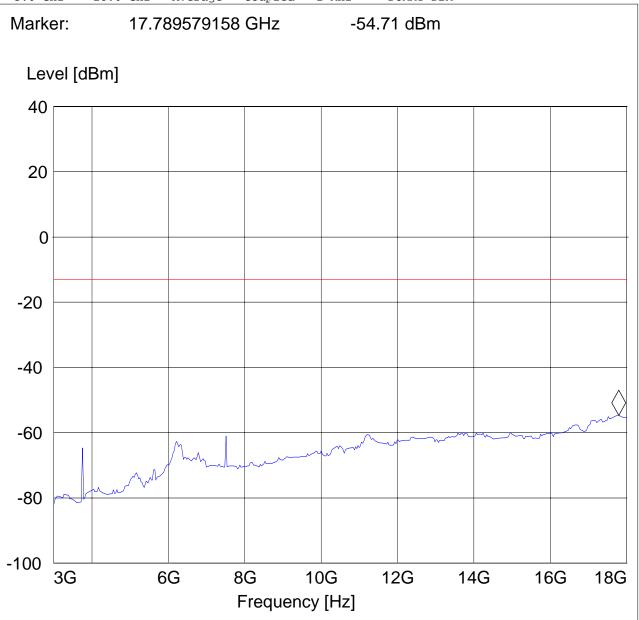
SWEEP TABLE: "FCC 24Spuri 1-3G"

Start Stop Detector IF Transducer Meas. Frequency Frequency Time Bandw. 1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 73 of 87

TX: @ 1880MHz, 3-18GHz
EUT: iLM3177-WG
Customer: AtRoad
Test Mode: UMTS FDD II

ANT Orientation: V EUT Orientation: H


Test Engineer: Peter Mu Power Supply: 12V DC batt

Comments:

SWEEP TABLE: "FCC 24Spuri 3-18G"

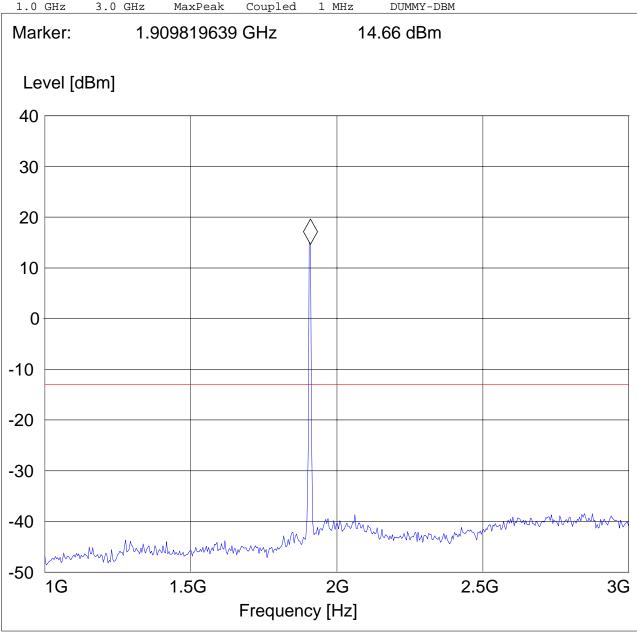
Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz Average Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 74 of 87

TX: @ 1907.6MHz, 1-3GHz, Note: Marker is mobile uplink.

EUT: iLM3177-WG Customer: AtRoad Test Mode: UMTS FDD II


ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12V DC batt
Comments: TT140°

SWEEP TABLE: "FCC 24Spuri 1-3G"

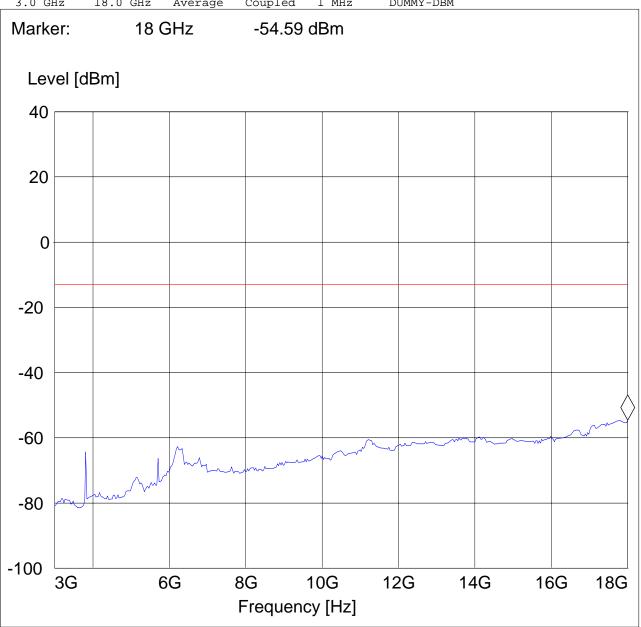
Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

1 0 GHz 3 0 GHz MaxPeak Coupled 1 MHz DIMMY-DBM

Date of Report: 2007-7-10 Page 75 of 87

TX: @ 1907.6MHz, 3-18GH

EUT: iLM3177-WG Customer: AtRoad Test Mode: UMTS FDD II


ANT Orientation: V EUT Orientation: H

Test Engineer: Peter Mu
Power Supply: 12V DC batt

Comments:

SWEEP TABLE: "FCC 24Spuri 3-18G"

Transducer Start Stop Detector Meas. IF Frequency Frequency Time Bandw. 3.0 GHz 18.0 GHz Average Coupled 1 MHz DUMMY-DBM

Date of Report: 2007-7-10 Page 76 of 87

5.6 RECEIVER RADIATED EMISSIONS

§ 2.1053 / RSS-132 & 133

NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3GHz and 26.5GHz very short cable connections to the antenna was used to minimize the noise level.

5.6.1 Limits

SUBCLAUSE § RSS-133

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

5.6.2 <u>Test Results</u>

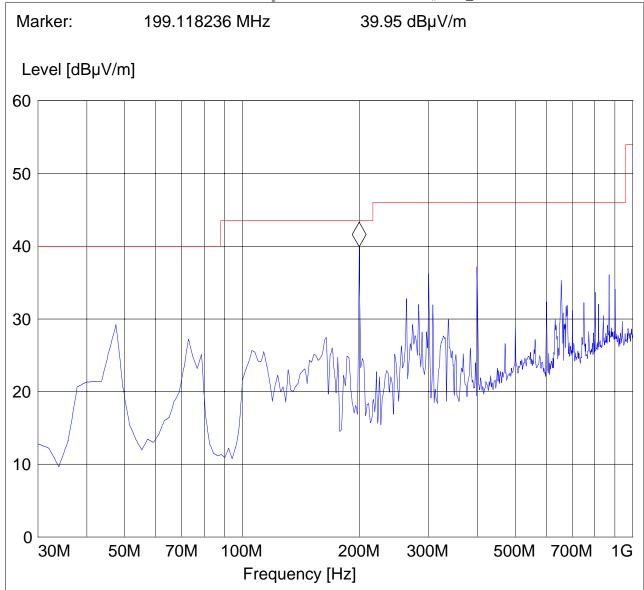
Date of Report: 2007-7-10 Page 77 of 87

5.6.2.1 Receiver Spurious Emission GSM850

RX: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: Vertical Note: This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: IDLE
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter Mu

Test Engineer: Peter Mu
Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "CANADA RE_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

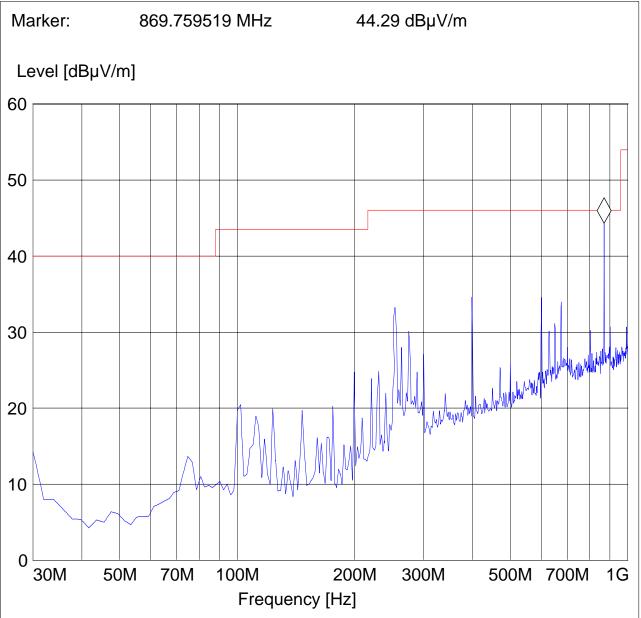
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Vert

Date of Report: 2007-7-10 Page 78 of 87

RX: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: horizontal Note: This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: IDLE
ANT Orientation: H
EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "CANDA RE_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

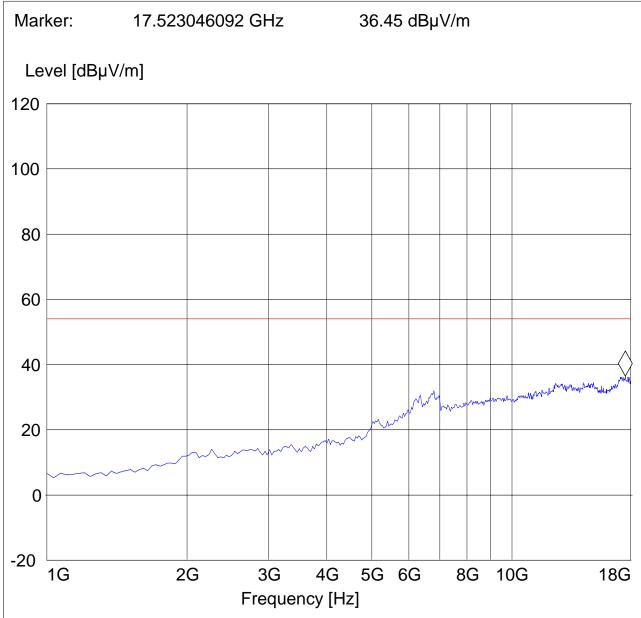
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

Date of Report: 2007-7-10 Page 79 of 87

RX 1-18GHz

EUT / Description: iLM3177-WG
Manufacturer: atRoad
Test mode: idel
ANT Orientation: : V
EUT Orientation:: H

Test Engineer: Peter Mu Voltage: 12V DC batt


Comments::

SWEEP TABLE: "CANADA RE_1-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

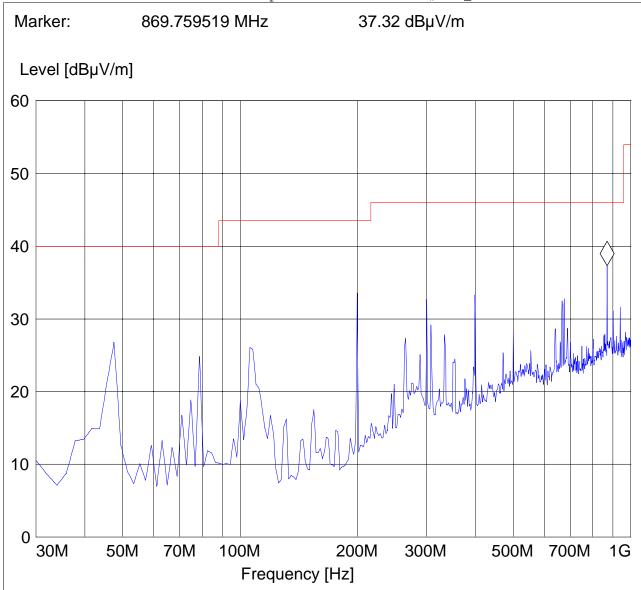
Date of Report: 2007-7-10 Page 80 of 87

5.6.2.2 Receiver Spurious Emission PCS-1900

RX: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: Vertical Note: This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: IDLE
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter Mu

Test Engineer: Peter Mu
Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "CANADA RE_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

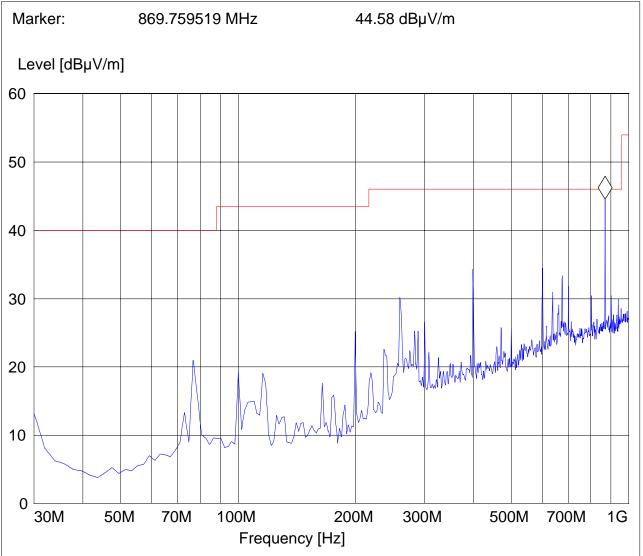
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Vert

Date of Report: 2007-7-10 Page 81 of 87

RX: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: Vertical Note: This plot is valid for low, mid & high channels (worst-case plot)

EUT: iLM3177-WG
Customer: AtRoad
Test Mode: IDLE
ANT Orientation: H
EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt


Comments:

SWEEP TABLE: "CANDA RE_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

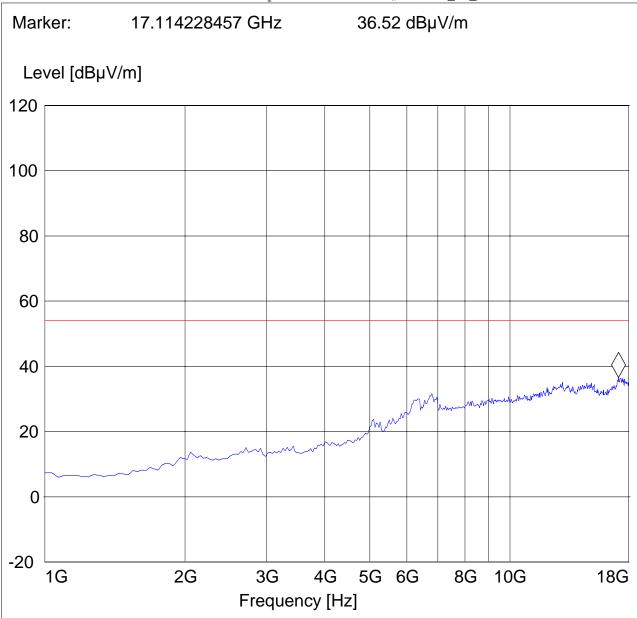
Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

Date of Report: 2007-7-10 Page 82 of 87

RX 1-18GHz

EUT / Description: iLM3177-WG
Manufacturer: atRoad
Test mode: idel
ANT Orientation: : V
EUT Orientation:: H


Test Engineer: Peter Mu Voltage: 12V DC batt

Comments::

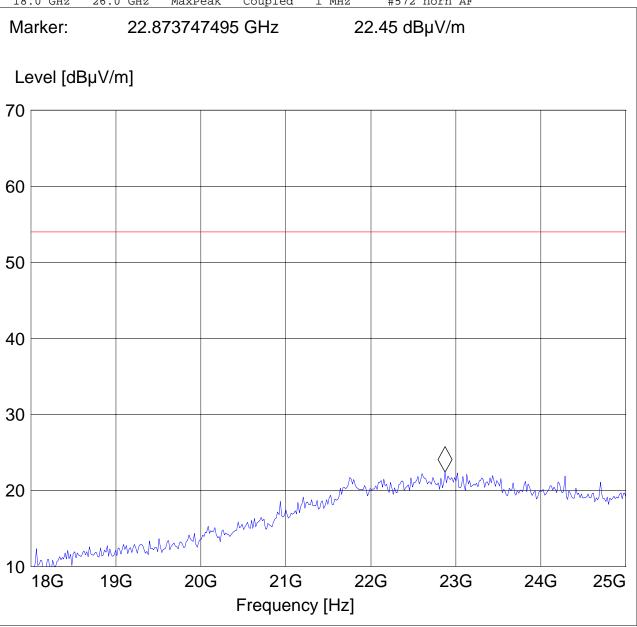
SWEEP TABLE: "CANADA RE_1-18G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

1.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Date of Report: 2007-7-10 Page 83 of 87

RX 18-26GHz


EUT: iLM3177-WG
Customer: AtRoad
Test Mode: IDLE
ANT Orientation: V
EUT Orientation: H

Test Engineer: Peter Mu Power Supply: 12V DC batt

Comments:

SWEEP TABLE: "CANADA RE_18-26.5G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 18.0 GHz 26.0 GHz MaxPeak Coupled 1 MHz #572 horn AF

EMC_ATROA_006_07002_FCC22_24

Date of Report: 2007-7-10 Page 84 of 87

Test Report #:

6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillary	Type	Manufacturer	Serial No.	Cal Due	Interval
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2008	1 year
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	100017	August 2008	1 year
03	Signal Generator	SMY02	Rohde & Schwarz	836878/011	May 2008	1 year
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008.02	May 2008	1 year
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2008	1 year
06	Horn Antenna (1- 18GHz)	SAS- 200/571	AH Systems	325	June 2008	1 year
07	Horn Antenna (18- 26.5GHz)	3160-09	EMCO	1240	June 2008	1 year
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2008	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4- 00102600	Miteq	00616	May 2008	1 year
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2008	1 year
14	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/008	May 2008	1 year
15	Universal Radio Comm. Tester	CMU 200	Rohde & Schwarz	832221/06	May 2008	1 year
16	LISN	ESH3-Z5	Rohde & Schwarz	836679/003	May 2008	1 year
17	Loop Antenna	6512	EMCO	00049838	July 2008	2 years

Date of Report: 2007-7-10 Page 85 of 87

7 References

Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION,

PART 2--FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS October 1, 2001.

Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION,

PART 22 PUBLIC MOBILE SERVICES October 1, 1998.

FCC Report and order 02-229 September 24, 2002.

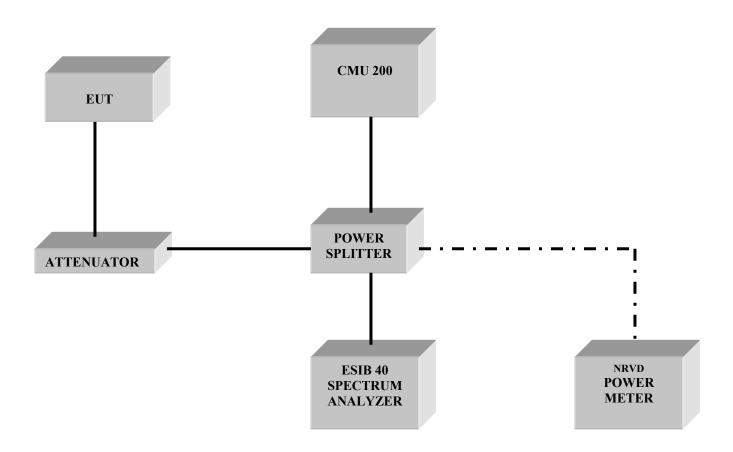
Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION,

PART 24 PERSONAL COMMUNICATIONS SERVICES October 1, 1998.

ANSI / TIA-603-C-2004 Land Mobile FM or PM Communications Equipment Measurement and Performance Standard November 7, 2002.

Test Report #:

EMC_ATROA_006_07002_FCC22_24


Date of Report:

2007-7-10

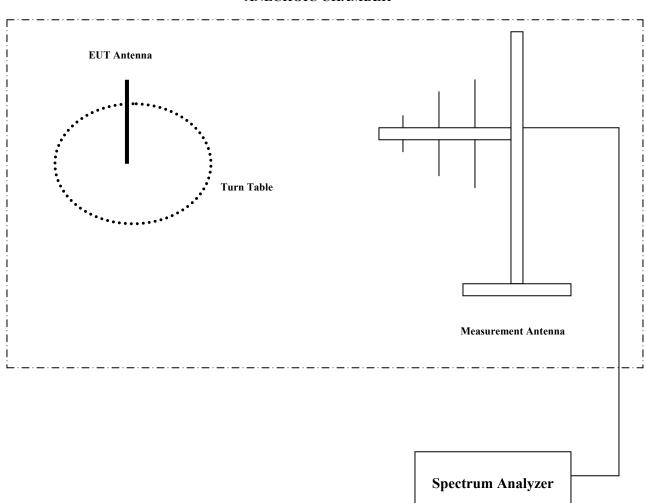
Page 86 of 87

8 BLOCK DIAGRAMS Conducted Testing

Test Report #:

EMC_ATROA_006_07002_FCC22_24

Date of Report:


2007-7-10

Page 87 of 87

Radiated Testing

ANECHOIC CHAMBER

