

Electromagnetic Emissions Test Report and Application for Class II Permissive Change pursuant to FCC Part 15, Subpart C (15.247) DTS Specifications, Industry Canada RSS 210 Issue 5 on the Intel Corporation Model: WM3B2200BG

> FCC ID: PD9WM3B2200BG UPN: 1000M-3B2200BG

GRANTEE: **Intel Corporation**

> 13280 Evening Creek Drive San Diego, CA 92128

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: August 8, 2005

FINAL TEST DATE: July 29, 2005

AUTHORIZED SIGNATORY:

Senior EMC Engineer

Juan Martinez

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: WM3B2200BG

Manufacturer:

Intel Corporation 13280 Evening Creek Drive San Diego, CA 92128

Tested to applicable standards:

RSS-210, Issue 5, November 2001 (Low Power License-Exempt Radiocommunication Devices) FCC Part 15.247 (DTS)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC 4549-4 Dated July 19, 2003

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4:2003 as detailed in section 5.3 of RSS-210, Issue 5); and that the equipment performed in accordance with the data submitted in this report.

Signature

Name Title

Senior EMC Engineer

Company Address Juan Martinez

Elliott Laboratories Inc. 684 W. Maude Ave

Sunnyvale, CA 94086

USA

Date: August 8, 2005

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R60775 Page 2 of 22 pages

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
SUMMARY OF RESULTS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION DURING TESTING	8 8 8
PROPOSED MODIFICATION DETAILS	10
GENERAL	10
TEST SITE	10
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	10
MEASUREMENT INSTRUMENTATION	11
RECEIVER SYSTEM	11 12 12 12 12
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	13 13 14
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
FCC 15.407 (A) AND RSS 210 (O) OUTPUT POWER LIMITS	16 17 18 19 20 20

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Data Log Sheets	
EXHIBIT 3: Test Configuration Photographs	
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	4
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: Advertising Literature	
EXHIBIT 11: RF Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model WM3B2200BG pursuant to Subparts C Part 15 of FCC Rules and RSS-210 Issue 5 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4: 2003 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation model WM3B2200BG and therefore apply only to the tested sample. The sample was selected and prepared by Robert Paxman of Intel Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with Subparts C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

File: R60775 Page 5 of 22 pages

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Measured Value	Comments	Result
15.247(a)	6.2.2(o)(b)	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	6.2.2(o)(b)	6dB Bandwidth	N/A	Minimum allowed is 500kHz	Complies
	RSP 100	99% Bandwidth	N/A	For information only	Complies
15.247 (b) (3)	6.2.2(o)(b)	Output Power, 2400 - 2483.5 MHz	17 dBm (0.501 Watts) EIRP = 0.0813 W	Multi-point applications: Maximum permitted is 1Watt, with EIRP limited to 4 Watts.	Complies
15.247(d)	6.2.2(o)(b)	Power Spectral Density	N/A	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	6.2.2(o)(e1)	Antenna Port Spurious Emissions – 30MHz – 26.5 GHz	All spurious emissions < -20dBc	All spurious emissions < -20dBc.	Complies
15.247(c) / 15.209		Radiated Spurious Emissions – 30MHz – 26.5 GHz	48.9dBuV/m @ 4823.99MHz (- 5.1dB)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.207		AC Conducted Emissions	N/A		N/A
	6.6	AC Conducted Emissions	N/A		N/A
15.247 (b) (5)		RF Exposure Requirements	MPE Calculation		
15.203		RF Connector	Hirose connector (Antennas will be installed inside laptops)	Unique antenna connection required for user-installed applications.	Complies

EIRP calculated using antenna gain of dBi (2.1) for the highest EIRP point-to-multipoint system.

File: R60775 Page 6 of 22 pages

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

File: R60775 Page 7 of 22 pages

Test Report Report Date: August 8, 2005

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model WM3B2200BG is a 802.11/ab/g wireless that is designed to connect to PC. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, treated as tabletop equipment during testing to simulate the end-user environment. The EUT is powered via the PC.

The sample was received on July 29, 2005 and tested on July 29, 2005. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Intol	WMB32200BG	902 11b/g gard	B2C80C494BC883	PD9WM3B2
Intel	W MID32200DG	802.11b/g card	05001	200BG

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	Pavilian a300n	Computer	MXK3391864	-
Hewlett Packard	M042KG	Mouse	030870136	-
Hewlett Packard	5183	Keyboard	BF3339165	E5XKB5183
Samsung	151S R	Monitor	GG15H4JTB04858E	-

No equipment was used as remote support equipment for emissions testing:

File: R60775 Page 8 of 22 pages

Test Report Report Date: August 8, 2005

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port Connected To		Cable(s)		
Tort	Connected 10	Description	Shielded or Unshielded	Length(m)
Main Ant	Antenna	Coax	Shielded	0.25

EUT OPERATION DURING TESTING

The EUT was transmitting continuously on either the low, 2412 MHz, the middle, 2437 MHz, or the high, 2462 MHz.

File: R60775 Page 9 of 22 pages

PROPOSED MODIFICATION DETAILS

GENERAL

For details of the modifications being proposed to the Intel Corporation model WM3B2200BG, please refer to Intel Class II Permissive Change Letter.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on July 29, 2005 at the Elliott Laboratories Anechoic Chamber # 4 located at 41039 Boyce Road, Fremont, CA 94538-2435. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines.

File: R60775 Page 10 of 22 pages

Test Report Report Date: August 8, 2005

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R60775 Page 11 of 22 pages

POWER METER

A power meter and **peak** power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R60775 Page 12 of 22 pages

Test Report Report Date: August 8, 2005

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

File: R60775 Page 13 of 22 pages

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

File: R60775 Page 14 of 22 pages

Test Report Report Date: August 8, 2005

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \quad \text{microvolts per meter}$$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

File: R60775 Page 15 of 22 pages

FCC 15.407 (a)and RSS 210 (o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watts (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watts (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watts (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R60775 Page 16 of 22 pages

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RSS 210 (o) AND FCC 15.247 TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest inband signal level (30dB if the power is measured using the sample detector/power averaging method).

File: R60775 Page 17 of 22 pages

RS 210 (q1) and FCC 15E TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted bands above 1GHz.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm (note 1)	68.3 dBuV/m
5725 – 5825	-27 dBm (note 2)	68.3 dBuV/m
	-17 dBm (note 3)	78.3 dBuV/m

Note 1: If operation is restricted to indoor use only then emissions in the band 5.15 – 5.25 GHz must meet the power spectral density limits for the intentional signals detailed in RSS 210 and FCC Subpart E for devices operating in the 5.15 – 5.25 Ghz band.

Note 2: Applies to spurious signals separated by more than 10 MHz from the allocated band.

Note 3: Applies to spurious signals within 10 MHz of the allocated band.

File: R60775 Page 18 of 22 pages

RS 210 Table 3 RECEIVE MODE SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions from the receiver as detailed in table 3 of RSS 210:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)	
30 to 88	100	40	
88 to 216	150	43.5	
216 to 960	200	46.0	
960 to 1610	500	54.0	
Above 1610	1000	60.0	

File: R60775 Page 19 of 22 pages

FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

Range	Limit	Limit	
(MHz)	(uV)	(dBuV)	
0.450 to 30.000	250	48	

File: R60775 Page 20 of 22 pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R60775 Page 21 of 22 pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R60775 Page 22 of 22 pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R60775 Exhibit Page 1 of 11

Radiated Emissions, 1000 - 12,600 MHz, 29-Jul-05 Engineer: Mehran Birgani

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	EMC Spectrum Analyzer, 9KHz-26.5GHz	8593EM	1141	10-Jun-06
Micro-Tronics	Band Reject Filter, 2400-2500MHz	BRM50702-02	1731	09-Jun-06

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T60665 13 Pages

File: R60775 Exhibit Page 2 of 11

t	EM	C Test Data
Intel	Job Number:	J60624
WM3B2200BG Permissive Change w/	T-Log Number:	T60665
Sony Antenna	Account Manager:	Nesha Lambert
Robert Paxman		
FCC 15.247	Class:	Radio
-	Environment:	-
	WM3B2200BG Permissive Change w/ Sony Antenna Robert Paxman FCC 15.247	Intel Job Number: WM3B2200BG Permissive Change w/ T-Log Number: Sony Antenna Account Manager: Robert Paxman FCC 15.247 Class:

EMC Test Data

For The

Intel

Model

WM3B2200BG Permissive Change w/ Sony Antenna

Date of Last Test: 7/29/2005

Ellio	tt	EMC Test Data		
Client:	Intel	Job Number:	J60624	
Model:	WM3B2200BG Permissive Change w/	T-Log Number:	T60665	
	Sony Antenna	Account Manager:	Nesha Lambert	
Contact:	Robert Paxman			
Emissions Spec:	FCC 15.247	Class:	Radio	
Immunity Spec:	-	Environment:	-	

EUT INFORMATION

General Description

The WMB32200BG is a 802.11/ab/g wireless that is designed to connect to PC. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, treated as tabletop equipment during testing to simulate the end-user environment. The EUT is powered via the PC.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Intel	WMB32200BG	802.11b/g card	B2C80C494BC88305001	PD9WM3B2200BG

Other EUT Details

IC ID: 1000M-3B2200BG

EUT Antenna

The EUT antenna is an The antenna is integral to the device

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

Modification History

Mod. #	Test	Date	Modification
1			
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Ellion	tt		C Test Data
Client:	Intel	Job Number:	J60624
Model:	WM3B2200BG Permissive Change w/	T-Log Number:	T60665
	Sony Antenna	Account Manager:	Nesha Lambert
Contact:	Robert Paxman		
Emissions Spec:	FCC 15.247	Class:	Radio
Immunity Spec:	-	Environment:	-

Test Configuration #1

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID	
Hewlett Packard	Pavilian a300n	Computer	MXK3391864	-	
Hewlett Packard	M042KG	Mouse	030870136	-	
Hewlett Packard	5183	Keyboard	BF3339165	E5XKB5183	
Samsung	151S R	Monitor	GG15H4JTB04858E	-	

Remote Support Equipment

	·····					
Manufacturer	Model	Description	Serial Number	FCC ID		
None						

Interface Cabling and Ports

Dort	Connected To	Cable(s)			
Port	Connected To	Description	Shielded or Unshielded	Length(m)	
Main Ant	Antenna	Coax	Shielded	0.25	

EUT Operation During Emissions Tests

The EUT was transmitting continuously on either the low, 2412MHz, the middle, 2437MHz, or the high, 2462MHz.

į		11
	41	liott
	'	шоп
4	_	

EMC Test Data

_			
Client:	Intel	Job Number:	J60624
Model:	WM3B2200BG Permissive Change w/ Sony Antenna	T-Log Number:	T60665
	WWSb2200bG Ferrilissive Change W/ Sorry America	Account Manager:	Nesha Lambert
Contact:	Robert Paxman		
Spec:	FCC 15.247	Class:	N/A

FCC 15.247 DTS - Spurious Emissions (802.11b)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 7/29/2005 Config. Used: 1 Test Engineer: Jmartinez Config Change: None Test Location: Fremont Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 17 °C Temperature:

> Rel. Humidity: 43 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
	RE, 1000 - 25000 MHz -	FCC Part 15.209 /		48.9dBuV/m
1	Spurious Emissions In	15.247(c)	Pass	(278.6uV/m) @
	Restricted Bands	13.247(C)		4823.99MHz (-5.1dB)
2	Output Power	15.247(b)	Pass	17dBm @ 2412MHz
				52.2dBuVm
3	Recever Emissions	RSS-210	Pass	(408.3uV/m) @
				3312MHz (-7.8dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Job Number: J60624 Client: Intel T-Log Number: T60665 Model: WM3B2200BG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Spec: FCC 15.247 Class: N/A Run #1a: Radiated Spurious Emissions, 1000 - 25000 MHz. Low Channel @ 2412MHz Gain Setting - 30 Н ٧ Fundamental emission level @ 3m in 1MHz RBW: 103.89 102.65 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW 99.5 Average Measurement (RB=1MHz, VB=10Hz) 100.26 Delta Marker - Peak 50.2 dB Delta Marker - Average 53.8 dB Calculated Band-Edge Measurement: 53.69 dBuV/m Peak Calculated Band-Edge Measurement: 46.46 dBuV/m Average ATTEN 18dB RL 8dBm AMKR 50. 174B AMKR 53.84dB RL 18.8dBm 10dB/ 22. 92MHz 10dB/ 26. 25MHz n D CENTER Z 39000GHz *RBW 1 0MHz *VBW 1 0MHz SPAN 50.00MHz SMP 13sec SPAN 50 00MHz SWP 50ms CENTER Z 39000GHz *RBW 1 0MHz *VBW 18Hz MURN 15.209 / 15.247 Pol Detector Azimuth Level Height Comments Frequency MHzMargin Pk/QP/Ava $dB\mu V/m$ v/h Limit degrees meters 4824.015 Restricted 40.4 ٧ 54.0 -13.6 AVG 121 1.0 4824.015 44.8 ٧ 74.0 -29.2 PK 121 1.0 Restricted 9647.954 57.2 ٧ 93.8 -36.6 PΚ 225 Non-Restricted 1.0 4823.925 48.9 Н 54.0 -5.1AVG 174 1.1 Restricted 4823.925 Н 74.0 -22.7 PΚ 174 51.3 1.1 Restricted 9647.887 61.5 Н 93.8 -32.4 PK 200 1.0 Non-Restricted For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB Note 1: below the level of the fundamental.

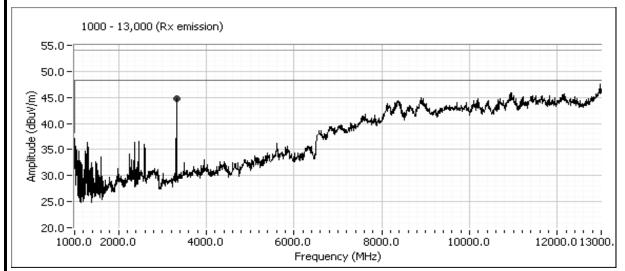
Robert Pax CC 15.24 adiated S	kman -7	missive Ch	ange w/ So	mu Amtonno			ob Number:	
Robert Pax CC 15.24 adiated S	kman -7	missive Ch	ange w/ So	mı. Amtamma		T-I	og Number:	T60665
CC 15.24 adiated S	.7			ny Antenna				Nesha Lambert
adiated S							<u> </u>	
	_						Class:	N/A
20	purious	Emissions	s, 1000 - 25	5000 MHz. C	enter Chani	nel @ 2437	MHz	
- 30	•							
Level	Pol	15.209 <i>i</i>	15.247	Detector	Azimuth	Height	Comments	
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
42.7	V	54.0	-11.3	AVG	123	1.3	Restricted	
						1.3	Restricted	
						1.1	Non-Restric	cted
45.9	Н	54.0	-8.1	AVG	171	1.0	Restricted	
49.3	Н	74.0	-24.7	PK	171	1.0	Restricted	
61.4	Н	93.8	-32.4	PK	194	1.5	Non-Restric	cted
	42.7 46.7 56.8 45.9 49.3 61.4	42.7 V 46.7 V 56.8 V 45.9 H 49.3 H 61.4 H	42.7 V 54.0 46.7 V 74.0 56.8 V 93.8 45.9 H 54.0 49.3 H 74.0 61.4 H 93.8 or emissions in restricted bar	42.7 V 54.0 -11.3 46.7 V 74.0 -27.3 56.8 V 93.8 -37.1 45.9 H 54.0 -8.1 49.3 H 74.0 -24.7 61.4 H 93.8 -32.4	42.7 V 54.0 -11.3 AVG 46.7 V 74.0 -27.3 PK 56.8 V 93.8 -37.1 PK 45.9 H 54.0 -8.1 AVG 49.3 H 74.0 -24.7 PK 61.4 H 93.8 -32.4 PK or emissions in restricted bands, the limit of 15.209 was also as a second of the limit of 15.209 was also as a second of the limit of 15.209 was also as a second of the limit of 15.209 was a second of th	42.7 V 54.0 -11.3 AVG 123 46.7 V 74.0 -27.3 PK 123 56.8 V 93.8 -37.1 PK 229 45.9 H 54.0 -8.1 AVG 171 49.3 H 74.0 -24.7 PK 171 61.4 H 93.8 -32.4 PK 194 or emissions in restricted bands, the limit of 15.209 was used. Fo	42.7 V 54.0 -11.3 AVG 123 1.3 46.7 V 74.0 -27.3 PK 123 1.3 56.8 V 93.8 -37.1 PK 229 1.1 45.9 H 54.0 -8.1 AVG 171 1.0 49.3 H 74.0 -24.7 PK 171 1.0 61.4 H 93.8 -32.4 PK 194 1.5 or emissions in restricted bands, the limit of 15.209 was used. For all other expressions in restricted bands, the limit of 15.209 was used.	42.7 V 54.0 -11.3 AVG 123 1.3 Restricted 46.7 V 74.0 -27.3 PK 123 1.3 Restricted 56.8 V 93.8 -37.1 PK 229 1.1 Non-Restricted 45.9 H 54.0 -8.1 AVG 171 1.0 Restricted 49.3 H 74.0 -24.7 PK 171 1.0 Restricted 61.4 H 93.8 -32.4 PK 194 1.5 Non-Restricted or emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the

Elliott EMC Test Data Job Number: J60624 Client: Intel T-Log Number: T60665 Model: WM3B2200BG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Spec: FCC 15.247 Class: N/A Run #1c: Radiated Spurious Emissions, 1000 - 25000 MHz. High Channel @ 2462 MHz Gain Setting - 30 Н ٧ Fundamental emission level @ 3m in 1MHz RBW: 102.64 104.89 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW 99.1 101.21 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - Peak 48.7 dB Delta Marker - Average 49.2 dB Calculated Band-Edge Measurement: 56.19 dBuV/m Peak Calculated Band-Edge Measurement: 52.01 dBuV/m Average ATTEN 204B ΔMKR 48. 67dB ATTEN 10dB RL_0dBm AMKR 49 16dB -27 50MHz 18.8dBm 10dB/ 10dB/ D D CENTER 2.48358GHz *RBN 1.0MHz #VBN SPAN SE BENHZ SHP Senz CENTER 2.48350GHz *RBN 1.8MHz *VBH SPAN 50.00MHz SWP 13sec 18Hz 15.209 / 15.247 Pol Detector Azimuth Level Height Comments Frequency MHz $dB\mu V/m$ Margin Pk/QP/Ava v/h Limit degrees meters 4924.059 43.8 -10.3 AVG 1.3 ٧ 54.0 123 Restricted 4924.059 47.4 ٧ 74.0 -26.6 PK 123 1.3 Restricted 9847.966 55.9 ٧ 94.0 -38.1 PΚ 173 Non-Restricted 1.1 4923.916 45.3 Н 54.0 -8.7 AVG 195 1.0 Restricted 4923.916 Н 74.0 -25.4 PΚ 195 Restricted 48.6 1.0 9847.884 59.4 Н 94.0 -34.7 PK 197 1.0 Non-Restricted For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB Note 1: below the level of the fundamental.

Elliott

EMC Test Data

Client:	Intel	Job Number:	J60624
Model	WM3B2200BG Permissive Change w/ Sony Antenna	T-Log Number:	T60665
wouei.	WWSb2200bG Ferrilissive Change W/ Sorry America	Account Manager:	Nesha Lambert
Contact:	Robert Paxman		
Spec:	FCC 15.247	Class:	N/A


Run #2: Output Power

Maximum antenna gain: 2.1 dBi

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	EIRP (W)
Low	2412	17.0	0.0501	0.0813
Mid	2437	17.0	0.0501	0.0813
High	2462	17.0	0.0501	0.0813

Note 1: Output power measured using a peak power meter

Run #3: Radiated Emissions, 1000 - 10000 MHz. Rx Mode, Center Channel @ 2437 MHz

Frequency	Level	Pol	RSS	-210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
3312.909	47.5	V	60.0	-12.5	AVG	175	1.0	
3312.909	49.5	V	80.0	-30.5	PK	175	1.0	
3312.842	52.2	Н	60.0	-7.8	AVG	330	1.0	
3312.842	53.3	Н	80.0	-26.7	PK	330	1.0	

	11.
6E	lliott
	mou
į	

EMC Test Data

Client:	Intel	Job Number:	J60624
Model:	WM3B2200BG Permissive Change w/ Sony Antenna	T-Log Number:	T60665
	WMSb2200bG Permissive Change W/ Sony America	Account Manager:	Nesha Lambert
Contact:	Robert Paxman		
Spec:	FCC 15.247	Class:	N/A

FCC 15.247 DTS - Spurious Emissions (802.11g)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 7/29/2005 Config. Used: 1 Test Engineer: Mehran Birgani Config Change: None Test Location: Fremont Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 18 °C

> Rel. Humidity: 48 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
	RE, 1000 - 25000 MHz	FCC Part 15,209 /		47.1dBuV/m
1	Spurious Emissions in	15.247(c)	Pass	(226.5uV/m) @ 7381.37
	Restricted Bands	13.247(C)		MHz (-6.9dB)
2	Output Power	15.247(b)	Pass	16dBm @ 2412MHz
				24.4dBµ V/m
3	Receiver Emissions	RSS-210	Pass	(16.6µ V/m) @
				3005.7MHz (-29.6dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Job Number: J60624 Client: Intel T-Log Number: T60665 Model: WM3B2200BG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Spec: FCC 15.247 Class: N/A Run #1a: Radiated Spurious Emissions, 1000 - 25000 MHz. Low Channel @ 2412 MHz Gain Setting - 23 Н ٧ Fundamental emission level @ 3m in 1MHz RBW: 98.65 98.54 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 89.59 89.18 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - Peak 42.2 dB Delta Marker - Average 43.0 dB Calculated Band-Edge Measurement: 56.45 dBuV/m Peak Calculated Band-Edge Measurement: 46.59 dBuV/m Average ATTEN 20dB RL 5.1dBm ΔMKR 42.17dB 19.50MHz ATTEN 10dB RL 0dBm ΔMKR 43.00dB 20.75MHz 10dB/ 10dB/ D CENTER 2.39000GHz *RBW 1.0MHz *VBW SPAN 50.00MHz SWP 13xec CENTER 2.39000GHz *RBN 1.0MHz *VBN SPAN 58.00MHz #SWP 200ms *****UBW 10Hz *VBH 1.8MHz 15.209 / 15.247 Pol Detector Azimuth Height Frequency Level Comments Margin Pk/QP/Avg MHz dBuV/m v/h Limit degrees meters 4826.510 28.7 Н 54.0 -25.3 AVG 185 1.0 2nd Harmonics 27.7 ٧ 54.0 **AVG** 128 1.0 2nd Harmonics 4823.213 -26.3 4826.510 40.5 Н 74.0 -33.5PK 185 1.0 2nd Harmonics 4823.213 39.2 ٧ 74.0 PK 128 -34.8 1.0 2nd Harmonics 12062.03 37.3 ٧ 54.0 -16.7 AVG 193 1.0 5th Harmonics (Noise Floor) 12062.03 48.8 ٧ -25.2 PK 193 5th Harmonics (Noise Floor) 74.0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB Note 1: below the level of the fundamental.

Elliott EMC Test Data Job Number: J60624 Client: Intel T-Log Number: T60665 Model: WM3B2200BG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Spec: FCC 15.247 Class: N/A Run #1b: Radiated Spurious Emissions, 1000 - 25000 MHz. Center Channel @ 2437 MHz Gain Setting - 23 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz dBμV/m Pk/QP/Avg v/h Limit Margin degrees meters 7305.490 31.8 -22.2 AVG Н 54.0 265 1.0 3rd Harmonics 7310.918 31.3 ٧ 54.0 -22.7 AVG 39 1.0 3rd Harmonics 4873.880 AVG 29.2 Н 54.0 -24.8 172 1.0 2nd Harmonics 4879.920 28.4 ٧ 54.0 -25.6 AVG 128 1.0 2nd Harmonics 7305.490 43.3 Н 74.0 -30.7 PK 265 1.0 3rd Harmonics ٧ 74.0 PK 39 7310.918 42.6 -31.4 1.0 3rd Harmonics 40.5 Н 74.0 -33.5 PK 172 1.0 4873.880 2nd Harmonics 4879.920 39.3 ٧ 74.0 -34.7 PK 128 1.0 2nd Harmonics For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 1: the level of the fundamental.

Elliott EMC Test Data Client: Intel Job Number: J60624 T-Log Number: T60665 Model: WM3B2200BG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Spec: FCC 15.247 Class: N/A Run #1c: Radiated Spurious Emissions, 1000 - 25000 MHz. High Channel @ 2462 MHz Gain Setting - 23 Н ٧ Fundamental emission level @ 3m in 1MHz RBW: 97.58 96.52 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: Average Measurement (RB=1MHz, VB=10Hz) 88.26 88.23 Delta Marker - Peak 39.3 dB Delta Marker - Average 41.2 dB Calculated Band-Edge Measurement: 58.28 dBuV/m Peak Calculated Band-Edge Measurement: 47.06 dBuV/m Average ΔMKR 39.33dB -23.92MHz ATTEN 20dB ATTEN 10dB RL 0dBm ΔMKR 41.17dB -22.92MHz 10dB/ 10dB/ ٠ D D CENTER 2.48350GHz *RBW 1.0MHz *VBW SPAN 50.00MHz SNP 50ms SPAN 50.00MHz SMP 13sec CENTER 2.48350GHz *RBN 1.0MHz *VBW ₩UBW 1.0MHz ₩UBW 18Hz 15.209 / 15.247 Pol Detector Azimuth Comments Frequency Level Height

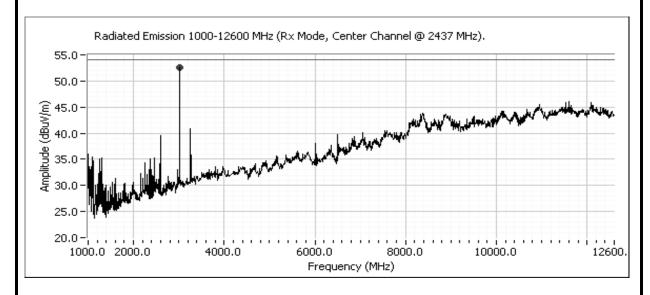
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4931.240	29.1	Н	54.0	-24.9	AVG	177	1.0	2nd Harmonics
4931.240	40.4	Н	74.0	-33.6	PK	177	1.0	2nd Harmonics
4930.340	28.9	V	54.0	-25.1	AVG	127	1.0	2nd Harmonics
4930.340	40.8	V	74.0	-33.2	PK	127	1.0	2nd Harmonics
7379.440	32.4	V	54.0	-21.6	AVG	355	1.0	3rd Harmonic
7379.440	43.7	V	74.0	-30.3	PK	355	1.0	3rd Harmonic
7381.310	32.1	Н	54.0	-21.9	AVG	231	1.0	3rd Harmonic
7381.310	42.9	Н	74.0	-31.1	PK	231	1.0	3rd Harmonic

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 1: the level of the fundamental

Elliott

EMC Test Data

Client:	Intel	Job Number:	J60624
Model:	WM3B2200BG Permissive Change w/ Sony Antenna	T-Log Number:	T60665
	WIVISB2200BG Ferrilissive Charige W/ Sorry America	Account Manager:	Nesha Lambert
Contact:	Robert Paxman		
Spec:	FCC 15.247	Class:	N/A


Run #2: Output Power

Maximum antenna gain: 2.1 dBi

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	EIRP (W)	
Low	2412	16.0	0.0398	0.0646	
Mid	2437	16.0	0.0398	0.0646	
High	2462	15.9	0.0389	0.0631	

Note 1: Output power measured using a peak power meter

Run #3: Radiated Emissions, 1000 - 10000 MHz. Rx Mode, Center Channel @ 2437 MHz

Frequency	Level	Pol	RSS	5-210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
3005.660	24.4	Н	54.0	-29.6	AVG	272	2.0	Ambient
3005.660	35.3	Н	74.0	-38.7	PK	272	2.0	Ambient

EXHIBIT 3: Test Configuration Photographs

2 Pages

File: R60775 Exhibit Page 3 of 11

EXHIBIT 4: Proposed FCC ID Label & Label Location

Unchanged from original application

File: R60775 Exhibit Page 4 of 11

Test Report Report Date: August 8, 2005

EXHIBIT 5: Detailed Photographs of Intel Corporation Model WM3B2200BGConstruction

Unchanged from original application

File: R60775 Exhibit Page 5 of 11

EXHIBIT 6: Operator's Manual for Intel Corporation Model WM3B2200BG

Unchanged from original application

File: R60775 Exhibit Page 6 of 11

EXHIBIT 7: Block Diagram of Intel Corporation Model WM3B2200BG

Unchanged from original application

File: R60775 Exhibit Page 7 of 11

Test Report Report Date: August 8, 2005

EXHIBIT 8: Schematic Diagrams for Intel Corporation Model WM3B2200BG

Unchanged from original application

File: R60775 Exhibit Page 8 of 11

EXHIBIT 9: Theory of Operation for Intel Corporation Model WM3B2200BG

Unchanged from original application

File: R60775 Exhibit Page 9 of 11

EXHIBIT 10: Advertising Literature

Unchanged from original application

File: R60775 Exhibit Page 10 of 11

EXHIBIT 11: RF Exposure Information

2 Pages

File: R60775 Exhibit Page 11 of 11