Class II Permissive Change Test Report

For

Mini PCI Type 3B Single Band 802.11b WLAN Adapter Model Number: WM3B2100

MEASUREMENTS PERFORMED IN ACCORDANCE WITH THE FOLLOWING EMISSIONS STANDARD

47 CFR Part 15, Subpart C (Section 15.247)

Test Method:

ANSI C63.4: 1992 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

CERTIFICATE NUMBER; IIII.UI

To view a copy of the Scope of Accreditation visit www.A2LA2.net

PREPARED FOR:

Intel Corporation 2300 Corporate Center Drive Thousand Oaks, California 91320

Contact(s): Jim Baer

PREPARED BY:

Aegis Labs, Inc. 22431 Antonio Parkway B160-417 Rancho S. Margarita, CA 92688

Agent(s): Mr. Steve Kuiper

Mr. Rick Candelas

Test Report #: INTEL-030204FTest Date: February 4-5, 2003

	REPORT	APPENDICES	TOTAL
	BODY	I	
PAGES	13	29	42

The contents of this report shall not be reproduced except in full, without the written approval of Aegis Labs, Inc.

AEGIS LABS, INC 22431 Antonio Parkway B160-417, Rancho Santa Margarita, CA 92688 949-459-7886 TEL 949-459-7869 FAX www.aegislabsinc.com

Page 1 of 13

Report Number: INTEL-030204F

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	COVER SHEET	01
	TABLE OF CONTENTS	02
1.0	CERTIFICATION OF TEST DATA	03
2.0	ADMINISTRATIVE DATA AND TEST DESCRIPTION	04
3.0	DESCRIPTION OF EUT CONFIGURATION	05
3.1	EUT Description.	05
3.1.1	Channel Number and Frequencies.	06
3.2	EUT Configuration.	07
3.3	EUT and Sub-Assemblies List.	08
3.4	Accessory / Host Equipment List.	08
3.5	Cabling Diagram and Description.	09
4.0	TEST EQUIPMENT SETTINGS AND TEST SETUPS	10
4.1	Maximum Peak Output Power Measurement.	10
4.1.1	Maximum Peak Output Power Measurement– Test Setup	10
4.2	Spurious Radiated Emissions	11
4.2.1	Spurious Radiated Emissions – Test Setup.	12
5.0	MODIFICATIONS AND RECOMMENDATIOS	13
APPENDI	CES	
I	Data Sheets	•

Page 2 of 13

Report Number: INTEL-030204F

1.0 CERTIFICATION OF TEST DATA

Aegis Labs, Inc. operates as both a Nevada and California Corporation with no organizational or financial relationship with any company, institution, or private individual.

Testing and engineering functions provided by Aegis Labs are furnished through the use of part-time, full-time or consulting engineers with the appropriate qualifications to carry out their duties. The intended purpose of this test report is to describe the measurement procedure and to determine whether the equipment under test "EUT" complies with the radiated emissions limits. Limits for emissions testing are described under 47 CFR Part 15, Subpart C (Section 15.247).

The data, data evaluation and equipment configuration represented herein are a true and accurate representation of the Equipment Under Test (EUT) under the requirements specified in the emissions standard as described below. The test results contained in this report are only representative of the test sample tested as described in Section 2.0 of this report.

The test results provided within this report, indicate that the information technology equipment has been found to be in **COMPLIANCE** with the test specifications based upon the following RF compliance standards:

Pass/Fail determination is based upon the nominal values of the test data.

EMISSIONS STANDARDS	DESCRIPTION	TEST RESULTS
FCC 47 CFR, Part 15.247(b)	Maximum Peak Output Power Measurement	PASSED
FCC 47 CFR, Part 15.247(c), 15.209	Spurious Radiated Emissions (1-26.5 GHz)	PASSED

Prepared By:

02/10/03

Rick Candelas Date:

Staff Engineer Aegis Labs, Inc.

Report Approved By:

02/10/03

Date:

Steve J. Kuiper O/A Manager

Aegis Labs, Inc.

2.0 ADMINISTRATIVE DATA AND TEST DESCRIPTION

DEVICE TESTED: Trade Name: Mini PCI Type 3B Single Band 802.11b WLAN

Adapter

Model Number: WM3B2100 Serial Number: 000423467D5D FCC ID: PD9WM3B2100

TEST DATE(S): February 4-5, 2003 February 4, 2003

ORIGIN OF TEST

SAMPLE(S): Production

RESPONSIBLE PARTY: Intel Corporation

2300 Corporate Center Drive Thousand Oaks, California 91320

CLIENT CONTACT: Mr. Jim Baer
MANUFACTURER: Intel Corporation

TEST LOCATION: Aegis Labs, Inc.

32231 Trabuco Creek Road Trabuco Canyon, CA 92678

Conducted Site #2 Radiated Site #2

A2LA CERTIFICATE: 1111.01, Valid until February 28, 2004

PURPOSE OF TEST: To demonstrate compliance with the relevant standards described

in Section 1.0 of this report.

TEST(S) PERFORMED: Refer to Table in Section 1 of this report.

All calibration vendors were responsible for certifying Aegis Labs, Inc. test equipment as per the manufacturer's specifications and that the equipment is calibrated using instruments and standards where the accuracy is traceable to the National Institute of Standards and Technology (NIST). Calibration of all test equipment conforms to ANSI/NCSL Z540-1 and ISO 10012-1 and/or ISO/IEC Guide 17025 compliance (Additionally, other pertinent test equipment will carry MIL-STD-45662A). All calibration documents are on file with Aegis Labs, Inc., with copies provided upon request.

3.0 DESCRIPTION OF EUT

3.1 EUT Description

Equipment Under Test (EUT)			
Trade Name:	Mini PCI Type 3B Single Band 802.11b WLAN Adapter		
Model Number:	WM3B2100		
Frequency Range:	2.412 – 2.462 GHz		
Type of Transmission:	Direct Sequence Spread Spectrum		
Transfer Rate:	1/2/5.5/11 Mbps		
Number of Channels:	11		
Modulation Type:	DBPSK, DQPSK, CCK		
Antenna Type:	Hirose U.FL-R-SMT mates with cable connector U.FL-LP-066		
Antenna Gain (See Note 2):	WLAN PIFA Antenna = 3.0dBi CF-73 802.11b Antenna = 3.3dBi		
Transmit Output Power:	16 dBm (Typical) Please see Appendix I (Data Sheets) for actual output power.		
Power Supply:	3.3VDC from computer MPCI slot.		
Number of External Test Ports Exercised:	2 Antenna Ports (1 Main & 1 Auxiliary)		

The Mini PCI Type 3B Single Band 802.11b WLAN Adapter is an embedded 2.4 GHz Wireless Local Area Network Mini-PCI adapter. The Mini-PCI Type 3B form factor is designed for notebook computer systems where overall thickness must be kept to an absolute minimum. It is capable of a data rate of up to 11 Mbps at 2.4 GHz. Please refer to Section 3.2 of this report for a further description of the configuration tested.

This report is submitted as a Class II Permissive Change for the currently certified Mini PCI Type 3B Single Band 802.11b WLAN Adapter, FCC ID Number: PD9WM3B2100. Two new antenna types were tested (WLAN PIFA and CF-73 antenna types).

NOTE 1: For a more detailed description, please refer to the manufacture's specifications or User's Manual.

NOTE 2: The EUT was tested separately with two different sets of antennas (WLAN PIFA antennas and CF-73 80.211b antennas). Refer to each antenna specifications.

3.1.1 Channel Number and Frequencies

Eleven channels are provided for the EUT.

Channel	Frequency (MHz)
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462

3.2 EUT Configuration

The EUT was set-up according to the ANSI C63.4: 1992 guidelines for emissions testing. For emissions testing the EUT (Mini PCI Type 3B Single Band 802.11b WLAN Adapter, Model Number: WM3B2100) had a loaded antenna connected to both its main and auxiliary ports. All the appropriate test ports were exercised during both the pre-qualification and final evaluation scans.

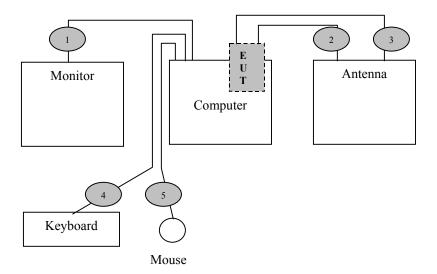
The EUT was tested installed in the Mini-PCI slot of the IBM host computer as a modular device using a PCI extender board to extend the EUT outside the computer chassis. The EUT was then connected to a set of antennas via its main and auxiliary Hirose U.FL-R-SMT ports. Data for a set of WLAN PIFA and CF-73 80.211b antennas can be found in Appendix I (Data Sheets)

The IBM host computer was connected to an NEC monitor, IBM keyboard, and IBM mouse via its video, keyboard, and mouse ports respectively.

The low (channel 1), middle (channel 6, and high (channel 11) were tested. The EUT was transmitting and receiving on a continuous basis.

The final data was taken in this mode of operation. The external cables were bundled and routed as shown in the photographs in Appendix I (Data Sheets).

3.3 EUT and Sub-Assemblies List


EUT and Sub-Assemblies List					
Manufacturer Equipment Name Model Number Serial Numb					
Intel Corporation	Mini PCI Type 3B Single Band 802.11b WLAN Adapter	WM3B2100	000423467D5D		
Sub-Assemblies					
N/A	WLAN PIFA Antenna	Aquila	None		
N/A	CF-73 802.11b Antenna	None	None		

3.4 Accessory / Host Equipment List

Accessory / Host Equipment List					
Manufacturer Equipment Model Number Serial Num					
	Name				
NetVista Computer	IBM	21U	KAOL42K		
Monitor	NEC	JC-1575VMA	2Y785821		
Keyboard	IBM	SK-8811	1922408		
Mouse	IBM	MU295	23-161493		

NOTE: All the power cords of the above support equipment are standard non-shielded, 1.8 meters long.

3.5 Cabling Diagram and Description

- Cable 1: This is a 6-foot braid and foil shielded round cable connecting the host IBM computer with the NEC monitor. It has metallic DB-15 type connector at the computer end and is hardwired to the monitor. The cable is bundled to a length of one meter and the shield of the cable is grounded to the chassis of both devices via the connector shells.
- Cables 2-3: These are rolled copper with Kapton tape on both sides round coax cables connecting the EUT main and auxiliary antenna ports to the loaded antennas. They have a metallic Hirose U.FL-LP-006 type of connectors at the EUT end and are hardwired to the loaded antennas.
- Cable 4: This is a 1-meter foil shielded round cable connecting the IBM host computer to the IBM keyboard. It has a metallic 6 pin Mini DIN type connector at the computer end and is hardwired at the keyboard end. The shield of the cable is grounded to the chassis via the connector shell.
- Cable 5: This is a 1-meter foil shielded round cable connecting the IBM host computer to the IBM mouse. It has a metallic 6 pin Mini DIN type connector at the computer end and is hardwired at the mouse end. The shield of the cable is grounded to the chassis via the connector shell.

4.0 TEST EQUIPMENT AND TEST SETUPS

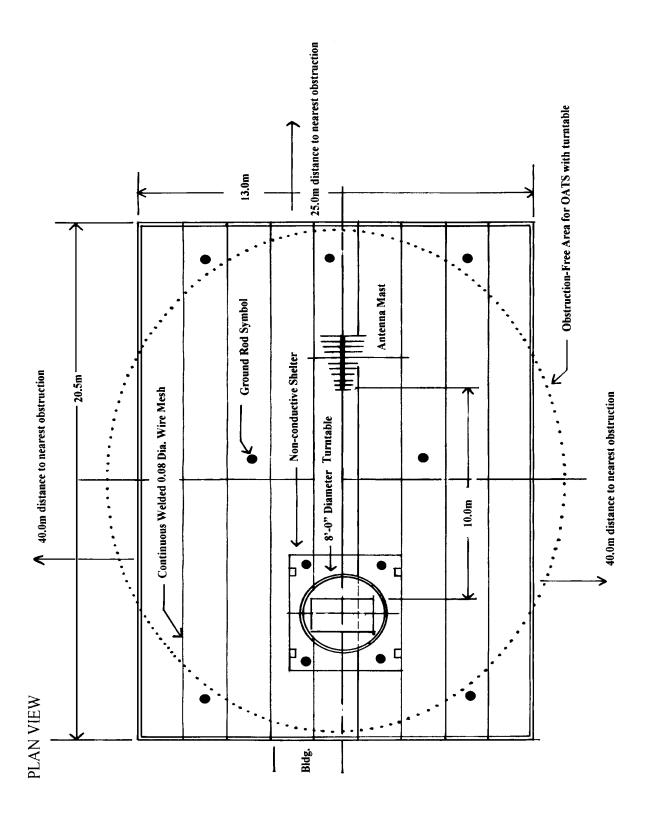
The test equipment settings and functions are selected using the guidance of ANSI C63.4-1992. All test equipment setups and operations during testing are in accordance with this reference document.

4.1 Maximum Peak Output Power Measurement

A power meter along with a power sensor was used to measure the maximum peak output power. The low (channel 1), middle (channel 6), and high (channel 11) were measured as well as data rates 1, 5.5, and 11 Mbps.

The EUT maximum peak output power is less than 1 Watt. Please refer to Appendix I for the data sheets.

4.1.1 Maximum Peak Output Power Measurement – Test Setup


4.2 Spurious Radiated Emissions

A spectrum analyzer was used as the measuring instrumentation. The pre-amplifiers were used to increase the sensitivity of the instrument. The spectrum analyzer was used in the peak detector mode with the "max-hold" feature activated and in Positive Peak mode. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. The average detector was used only for those readings, which are marked accordingly in the data sheet. These measurement readings were taken with the transducer placed at a 3-meter test distance from the EUT.

The Open Area Test Sites (OATS) was used for radiated emission testing. The test site is designed according to ANSI C63.4: 1992 and ANSI C63.7: 1992 guidelines. The Measurements were conducted in accordance with ANSI C63.4: 1992 and ANSI C63.7: 1992 requirements.

Broadband antennas were used as transducers during the measurement reading phase. The six highest emission readings in both horizontal and vertical polarities are highlighted on the data sheets in Appendix I.

4.2.1 Spurious Radiated Emissions – Test Setup

Page 12 of 13 Report Number: INTEL-030204F FCC ID: PD9WM3B2100

5.0 MODIFICATIONS AND RECOMMENDATIONS

There were no modifications done to the EUT.

APPENDIX I

DATA SHEETS

Page 1 of 29

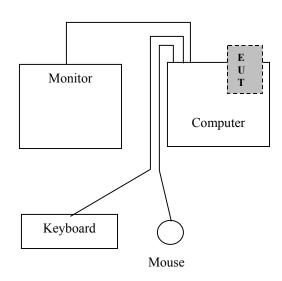
Report Number: INTEL-030204F

MAXIMUM PEAK OUTPUT POWER MEASUREMENT

CLIENT:	Intel Corporation	DATE:	02/19/03
EUT:	Mini PCI Type 3B Single Band	le Band PROJECT	
	802.11b WLAN Adapter	NUMBER:	(Rev. A, 02/19/03)
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423467D5D	SITE #:	2
CONFIGUARTION:		TEMPERATURE:	20 C
Installed outside of IBM NetVista Desktop Computer, SN:		HUMIDITY:	65% RH
KAOL42K	KAOL42K		8:00 AM

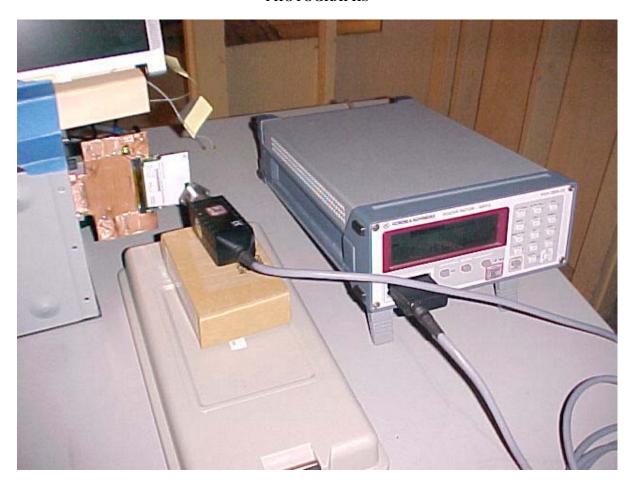
Standard:	FCC CFR 47, Part 15, 15.247(b)
Description:	Peak Output Power – Conducted
Results:	Maximum Peak Output Power is less than 1 W.
	44.67 mW @ Channel 1 at a data rate of 1 Mbps

Frequency (MHz)	Rate (Mbps)	Power (dBm)	Cable Factor	Power Corrected	Power (mW)
		, ,	(dB)	(dBm)	, ,
2412.00	1	16.41	0.15	16.56	45.29
2412.00	5.5	16.23	0.15	16.38	43.45
2412.00	11	16.10	0.15	16.25	42.17
2437.00	1	16.50	0.15	16.65	46.24
2437.00	5.5	16.35	0.15	16.50	44.67
2437.00	11	16.23	0.15	16.38	43.45
2462.00	1	16.35	0.15	16.50	44.67
2462.00	5.5	16.18	0.15	16.33	42.95
2462.00	11	16.01	0.15	16.16	41.30


NOTE: Using CRTU Ver. 1.1.7 software provided by Intel Corporation to set power limits.

MAXIMUM PEAK OUTPUT POWER MEASUREMENT (Continued)

TEST EQUIPMENT USED						
Equipment Name Manufacturer Model Serial Calibration Calil						
		Number	Number	Due Date	Cycle	
Power Meter	Rohde & Schwarz	NRVS	DE30863	11/24/03	1 Year	
Power Sensor	Leistungsmesskoph	NRV-Z5	844855/012	11/24/03	1 Year	
Temperature /	Dickson	TH550	7255185	01/18/04	1 Year	
Humidity Monitor						


EUT ACCESSORIES						
Equipment Name Manufacturer Model Number Serial Number						
NetVista Computer	IBM	21U	KAOL42K			
Monitor	NEC	JC-1575VMA	2Y785821			
Keyboard	IBM	SK-8811	1922408			
Mouse	IBM	MU295	23-161493			

BLOCK DIAGRAM

MAXIMUM PEAK OUTPUT POWER MEASUREMENT (Continued)

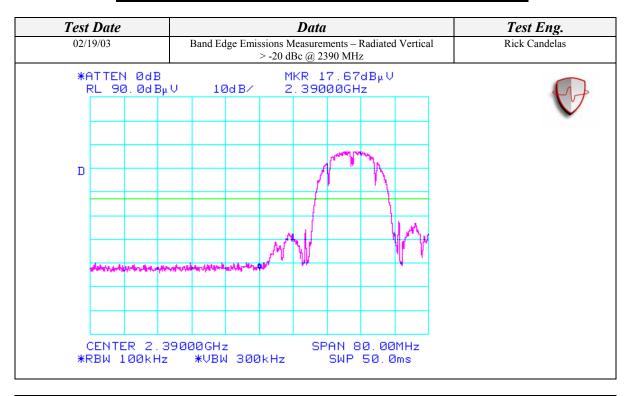
PHOTOGRAPHS

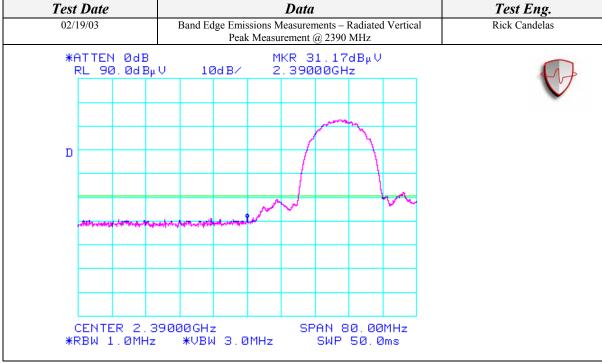
SPURIOUS RADIATED EMISSIONS

CLIENT:	Intel Corporation	DATE:	02/19/03
EUT:	Mini PCI Type 3B Single Band	PROJECT	INTEL-030204
	802.11b WLAN Adapter	NUMBER:	
MODEL NUMBER:	WM3B2100	TEST ENGINEER:	Rick Candelas
SERIAL NUMBER:	000423467D5D	SITE #:	2
CONFIGUARTION:		TEMPERATURE:	25 C
Installed outside of IBM NetVista Desktop Computer, SN:		HUMIDITY:	50% RH
KAOL42K		TIME:	9:00 AM

Standard:	FCC CFR 47, Part 15, 15.247(c), 15.209
Description:	Spurious Emissions Measurements - Radiated
Results:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Fundamental and Band Edge Measurements at Channels 1, 6, & 11

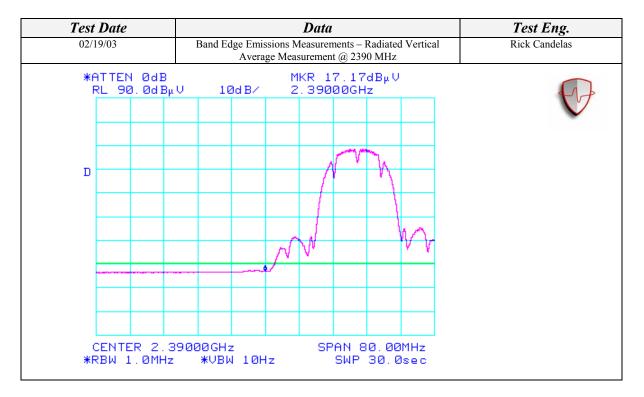

USING CF-73 802.11b ANTENNAS

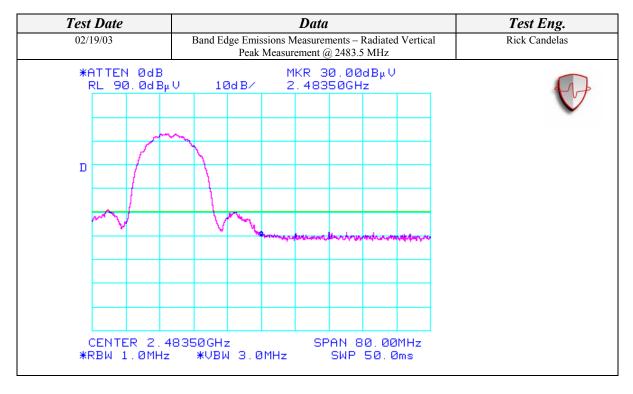

Aegis Labs, Inc. File #: INTEL-030204-02 (Rev. A, 02-19-03)

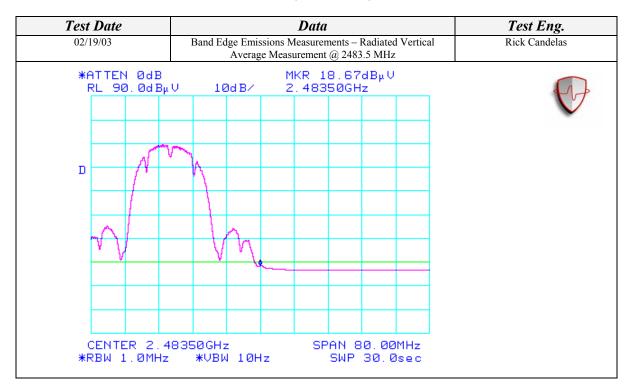
	Horizontal Open Field Maximized Data							
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV))	Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
2412.90	72.98	100	225			107.03		
2389.60	30.17	100	225			64.26	74.00	-9.74
2387.20				17.83	A	51.92	54.00	-2.08
2435.98	73.40	100	225			107.41		
2460.96	72.12	100	225			106.09		
2483.50	31.00	100	225			64.93	74.00	-9.07
2483.50				19.17	A	53.10	54.00	-0.90

Vertical Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV	7)	Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
2412.86	69.50	100	45			103.55		
2387.07	31.17	100	45			65.26	74.00	-8.74
2388.00				17.17	A	51.26	54.00	-2.74
2436.00	71.20	100	315			105.21		
2460.99	71.50	125	315			105.47		
2483.50	30.00	125	315			63.93	74.00	-10.07
2483.50				18.67	A	52.60	54.00	-1.40

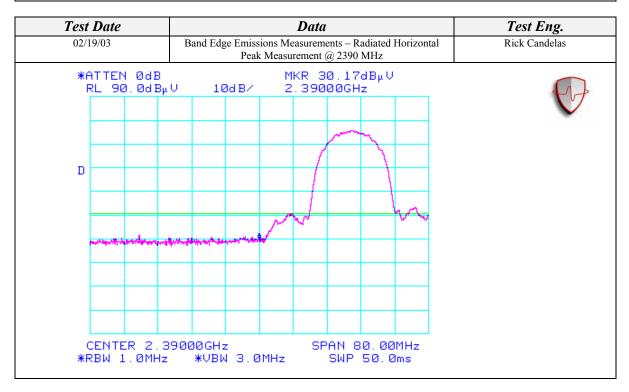
Band Edge Measurement Plots at Channels 1 & 11

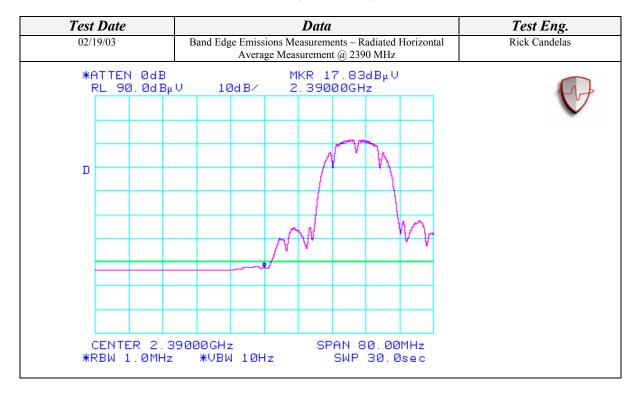


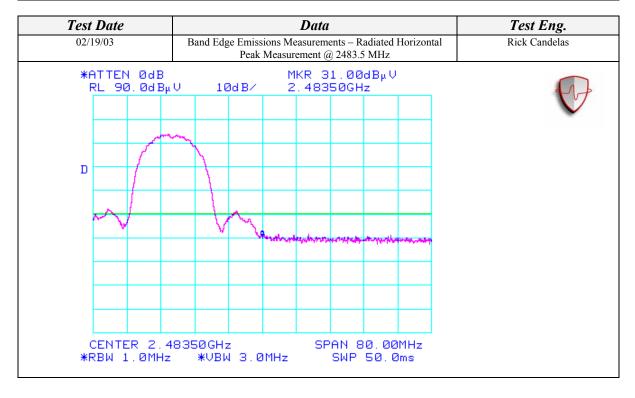

Page 7 of 29

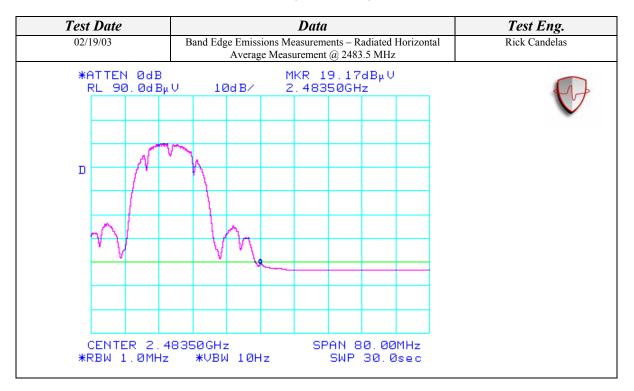

Report Number: INTEL-030204F

SPURIOUS RADIATED EMISSIONS (Continued)

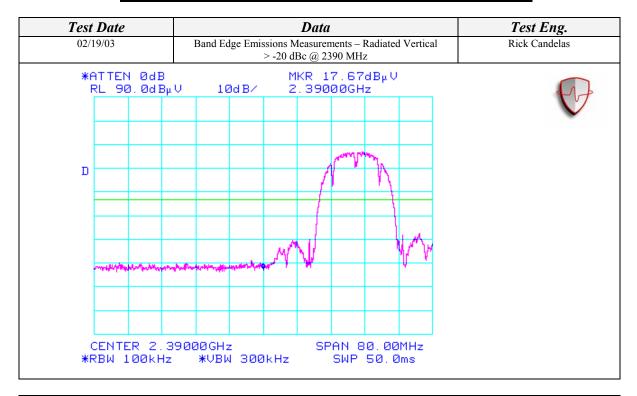


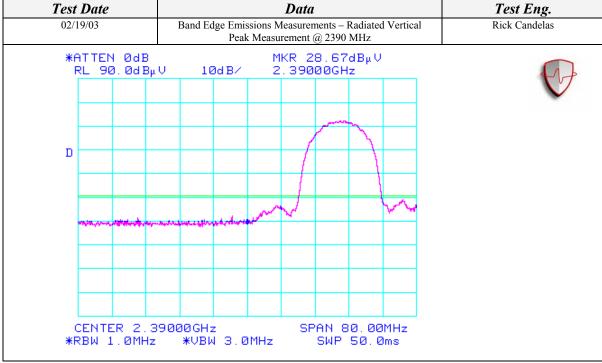

Test Date	Data	Test Eng.
02/19/03	Band Edge Emissions Measurements – Radiated Vertical > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90. ØdΒμ	MKR 19.33dBμV V 10dB∕ 2.48350GHz	
		V
	Propagation of the state of the	
m\/	Markey minimum and markey mark	
	A and a series and the series are the series and the series and the series and the series are the series and the series and the series are the series are the series and the series are th	
CENTER 2 4	DOESCH- COON OR ROMU-	
CENTER 2.4 *RBW 100kHz	8350GHz SPAN 80.00MHz *VBW 300kHz SWP 50.0ms	




Test Date	Data	Test Eng.
02/19/03	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 9Ø. ØdBµ	> -20 dBc @ 2390 MHz MKR 17 . 67dBμ V	Rick Callucias
CENTER 2.3 *RBW 100kHz		

Test Date	Data	Test Eng.
02/19/03	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90.ØdΒμ	MKR 19.17dBμV V 10dB∕ 2.48350GHz	
D V		
, h	W Advantage before and an actual and an actual and a second	
CENTER 2.4		
*RBW 100kHz	*VBW 300kHz SWP 50.0ms	

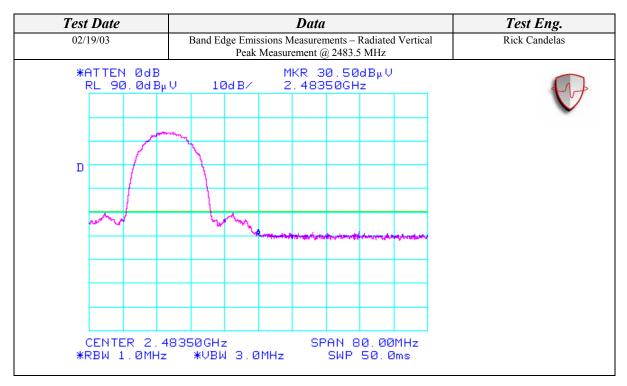

Fundamental and Band Edge Measurements at Channels 1, 6, & 11
USING WLAN PIFA ANTENNAS

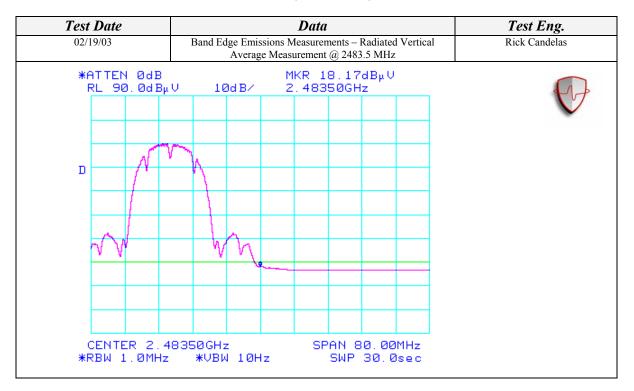

Aegis Labs, Inc. File #: INTEL-030204-02 (Rev. A, 02-19-03)

	Horizontal Open Field Maximized Data							
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV))	Corrected Reading (dBuV)	Limits (dBuV)	Diff (dB) +=FAIL
2411.04	64.25	100	135			98.30		
2389.60	29.33	100	135			63.42	74.00	-10.58
2386.67				17.00	A	51.09	54.00	-2.91
2436.05	64.87	125	225			98.88		
2430.03	04.07	123	223			76.66		
2461.01	65.00	125	225			98.97		
2483.50	31.50	125	225			65.43	74.00	-8.57
2483.50				18.33	A	52.26	54.00	-1.74

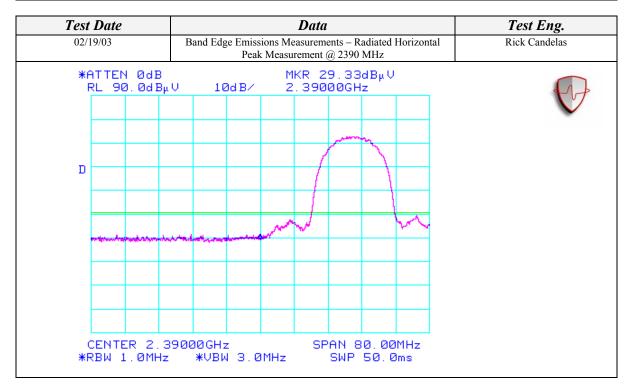
Vertical Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBu)	V)	Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
2411.02	68.21	125	270			102.26		
2387.47	28.67	125	270			62.76	74.00	-11.24
2386.93				17.00	Α	51.09	54.00	-2.91
2435.98	68.00	125	270			102.01		
2461.02	65.45	100	270			99.42		
2484.03	30.50	100	270			64.43	74.00	-9.57
2483.50				18.17	Α	52.10	54.00	-1.90

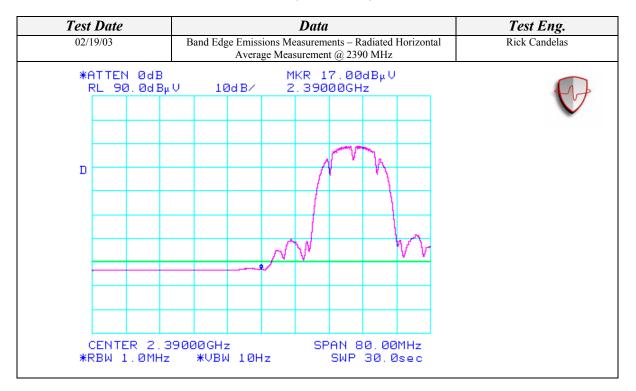
Band Edge Measurement Plots at Channels 1 & 11

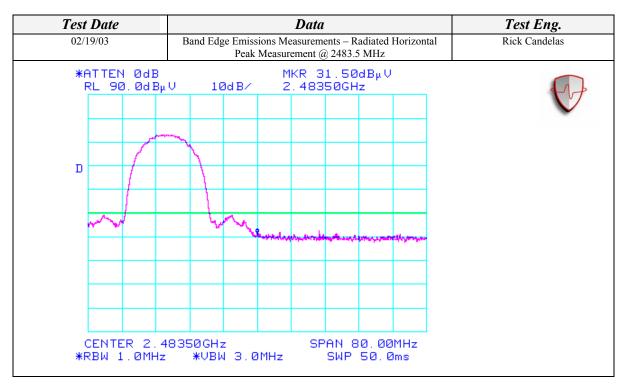


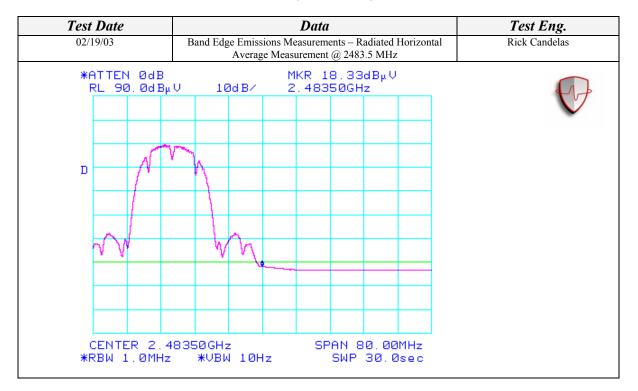


SPURIOUS RADIATED EMISSIONS (Continued)




Test Date	Data	Test Eng.
02/19/03	Band Edge Emissions Measurements – Radiated Vertical > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 90.ØdΒμ	MKR 19.17dBμV V 10dB/ 2.48350GHz	M.
		V
D A		
	WM.	
	What went of the profession was a few to the profession of the pro	
CENTER 2.4 *RBW 100kHz	B35ØGHz SPAN 80.00MHz *VBW 300kHz SWP 50.0ms	




Test Date	Data	Test Eng.
02/19/03	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2390 MHz	Rick Candelas
*ATTEN ØdB RL 9Ø. ØdBµ	> -20 dBc @ 2390 MHz MKR 17 . 5ØdBµ ∪	
CENTER 2.3 *RBW 100kHz		

Test Date	Data	Test Eng.
02/19/03	Band Edge Emissions Measurements – Radiated Horizontal > -20 dBc @ 2483.5 MHz	Rick Candelas
*ATTEN ØdB RL 9Ø. ØdBµ	> -20 dBc @ 2483.5 MHz MKR 19 . 67dBµV	Truck Cultidolus
CENTER 2.4 *RBW 100kHz	8350GHz SPAN 80.00MHz *VBW 300kHz SWP 50.0ms	

Harmonic Measurements at Channels 1, 6, & 11@ 1Mbps Data Rate
USING CF-73 802.11b ANTENNAS
Aegis Labs, Inc. File #: INTEL-030204-03

		Hor	izontal Open	Field Maxim	ized	Data		
Freq.	Meter Reading	Antenna	Azimuth	Quasi pk	;	Corrected	Limits	Diff (dB)
(MHz)	(dBuV)	Height (cm)	(degrees)	or AVG (dBi	uV)	Reading (dBuV)	(dBuV)	+=FAIL
4823.95	45.33	100	135			48.44	74.00	-25.56
4823.95				35.45	A	38.56	54.00	-15.44
7235.84	44.33	100	180			53.84	74.00	-20.16
7235.84				31.83	A	41.34	54.00	-12.66
9648.13	45.50	100	180			54.35	86.22	-31.87
4873.98	43.33	100	180			46.62	74.00	-27.38
4873.87	10.00	100	100	32.22	A	35.51	54.00	-18.49
7311.16	44.67	100	180	52.22		54.06	74.00	-19.94
7311.16	11.07	100	100	31.35	A	40.74	54.00	-13.26
9748.01	45.67	100	180			54.76	85.34	-30.58
4024.07	45.50	100	100			40.00	74.00	25.02
4924.07	45.50	100	180	27.22	-	48.98	74.00	-25.02
4924.07	45.15	100	100	37.32	A	40.80	54.00	-13.20
7385.77	45.17	100	180	22.40	+.	54.45	74.00	-19.55
7385.77	45.02	100	22.5	32.49	A	41.77	54.00	-12.23
9848.16	45.83	100	225			55.16	84.97	-29.81
		Ve	ertical Open	Field Maximiz	zed D			
Freq.	Meter Reading	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)
(MHz)	(dBuV)	Height (cm)	(degrees)	or AVG (dBi	uV)	Reading (dBuV)	(dBuV)	+=FAIL
4824.02	44.50	100	225			47.61	74.00	-26.39
4824.02				34.00	A	37.11	54.00	-16.89
7235.53	44.50	100	225			54.01	74.00	-19.99
7235.53				31.86	A	41.37	54.00	-12.63
9647.74	45.33	100	180			54.17	82.35	-28.18
4874.00	43.17	100	225			46.46	74.00	-27.54
4874.00				32.63	A	35.92	54.00	-18.08
7311.18	44.50	100	180			53.89	74.00	-20.11
7311.18				31.32	A	40.71	54.00	-13.29
9747.94	46.00	100	225			55.09	83.68	-28.59
4923.78	44.83	100	180			48.31	74.00	-25.69
4923.78	77.03	100	100	36.04	A	39.52	54.00	-14.48
7385.89	45.50	100	180	30.04	Λ	54.78	74.00	-14.48
7385.89	75.50	100	100	31.91	A	41.19	54.00	-19.22
9847.96	45.17	100	225	31.71	Λ	54.50	84.30	-29.80

Harmonic Measurements at Channels 1, 6, & 11@ 1Mbps Data Rate
USING WLAN PIFA ANTENNAS
Aegis Labs, Inc. File #: INTEL-030204-03

		Hor	rizontal Open	Field Maxim	ized	Data		
Freq.	Meter Reading	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)
(MHz)	(dBuV)	Height (cm)	(degrees)	or AVG (dBı	uV)	Reading (dBuV)	(dBuV)	+=FAIL
4823.95	45.17	100	90			48.28	74.00	-25.72
4823.95				34.58	Α	37.69	54.00	-16.31
7235.73	43.83	100	225			53.34	74.00	-20.66
7235.73				30.45	Α	39.96	54.00	-14.04
9647.83	44.83	100	180			53.67	76.72	-23.05
4873.91	44.33	100	90			47.62	74.00	-26.38
4873.91	11.55	100	70	34.01	A	37.30	54.00	-16.70
7310.51	43.00	100	180	54.01	7.1	52.39	74.00	-21.61
7310.51	13.00	100	100	30.54	A	39.93	54.00	-14.07
9748.15	45.83	100	135	30.31	11	54.92	76.84	-21.92
77 10.15	13.03	100	155			31.92	70.01	21.72
4923.90	47.33	100	180			50.81	74.00	-23.19
4923.90	1,100			39.51	Α	42.99	54.00	-11.01
7386.23	44.00	100	180			53.28	74.00	-20.72
7386.23				31.27	A	40.55	54.00	-13.45
9847.76	46.83	100	225			56.15	76.97	-20.82
		Ve	ertical Open	Field Maximiz	zed D	ata		
Freq.	Meter Reading	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff (dB)
(MHz)	(dBuV)	Height (cm)	(degrees)	or AVG (dBı		Reading (dBuV)	(dBuV)	+=FAIL
4826.45	43.50	100	180	,		46.61	74.00	-27.39
4826.45				32.01	Α	35.12	54.00	-18.88
7236.13	42.83	100	225			52.34	74.00	-21.66
7236.13				30.06	Α	39.57	54.00	-14.43
9646.55	44.83	100	180			53.67	81.55	-27.88
4873.76	44.17	100	225			47.46	74.00	-26.54
4873.76	/	100		33.57	A	36.86	54.00	-17.14
7310.67	43.17	100	180	55.57	- 11	52.56	74.00	-21.44
7310.67	13.17	100	100	30.28	A	39.67	54.00	-14.33
9747.53	46.50	100	135	30.20	11	55.58	79.18	-23.60
	3.50					1172		
4924.06	46.00	100	225			49.48	74.00	-24.52
4924.06				37.50	A	40.98	54.00	-13.02
7385.64	44.17	100	180			53.45	74.00	-20.55
7385.64				30.85	A	40.13	54.00	-13.87
9848.03	46.00	100	225			55.33	77.80	-22.47

Spurious Emissions Measurements on Ch. 1 @ 1Mbps Data Rate
USING CF-73 802.11b ANTENNAS
Aegis Labs, Inc. File #: INTEL-030204-04

Horizontal Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBul	or AVG (dBuV)		(dBuV)	+=FAIL
	(dBuV)							
1122.80	55.67	100	135			47.35	74.00	-26.65
1122.80				43.28	Α	34.96	54.00	-19.04
1348.00	54.17	100	225			47.23	74.00	-26.77
1348.00				41.65	Α	34.71	54.00	-19.29
1461.44	58.00	125	180			52.17	74.00	-21.83
1461.44				40.13	A	34.30	54.00	-19.70
1593.13	52.67	100	135			47.48	74.00	-26.52
1593.13				35.13	A	29.94	54.00	-24.06
1727.97	56.67	125	180			53.02	86.22	-33.20

Vertical Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV)		Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
1122.96	52.17	100	180			43.85	74.00	-30.15
1122.96				40.19	A	31.87	54.00	-22.13
1465.84	54.00	100	0			48.21	74.00	-25.79
1465.84				35.03	A	29.24	54.00	-24.76
1589.45	51.00	100	180			45.81	74.00	-28.19
1589.45				34.44	A	29.25	54.00	-24.75

Spurious Emissions Measurements on Ch. 1 @ 1Mbps Data Rate
USING WLAN PIFA ANTENNAS
Aegis Labs, Inc. File #: INTEL-030204-04

Horizontal Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)
(MHz)	Reading	Height (cm)	(degrees)	~ .		Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)				1			
1123.74	57.83	100	180			49.52	74.00	-24.48
1123.74				45.65	Α	37.34	54.00	-16.66
1347.65	56.00	100	135			49.06	74.00	-24.94
1347.65				43.85	Α	36.91	54.00	-17.09
1460.72	55.17	125	135			49.33	74.00	-24.67
1460.72				39.56	Α	33.72	54.00	-20.28
1593.97	55.17	100	225			49.98	74.00	-24.02
1593.97				38.54	A	33.35	54.00	-20.65
1727.11	56.00	100	270	-		52.34	76.72	-24.38

Vertical Open Field Maximized Data								
Freq.	Meter	Antenna	Azimuth	Quasi pk		Corrected	Limits	Diff(dB)
(MHz)	Reading	Height (cm)	(degrees)	or AVG (dBuV)		Reading (dBuV)	(dBuV)	+=FAIL
	(dBuV)							
1122.28	51.67	100	225			43.34	74.00	-30.66
1122.28				39.52	A	31.19	54.00	-22.81
1466.45	52.17	100	180			46.38	74.00	-27.62
1466.45				33.45	Α	27.66	54.00	-26.34
1589.17	51.33	100	135	-		46.14	74.00	-27.86
1589.17				35.65	A	30.46	54.00	-23.54

TEST EQUIPMENT USED									
Equipment Name	Manufacturer	Model	Serial	Calibration	Calibration				
		Number	Number	Due Date	Cycle				
Spectrum Analyzer	Agilent	8564EC	4046A00387	02/28/04	2 Years				
Preamplifier	Agilent	8449B	3008A01573	04/29/03	1 Year				
Antenna - Horn	Com-Power	AH-118	10069	12/09/03	1 Year				
Temperature/Humidity Monitor	Dickson	TH550	7255185	01/18/43	1 Year				

EUT ACCESSORIES							
Equipment Name	Manufacturer	Model Number	Serial Number				
NetVista Computer	IBM	21U	KAOL42K				
Monitor	NEC	JC-1575VMA	2Y785821				
Keyboard	IBM	SK-8811	1922408				
Mouse	IBM	MU295	23-161493				

BLOCK DIAGRAM

SPURIOUS RADIATED EMISSIONS (Continued)

PHOTOGRAPHS

Page 29 of 29 Report Number: INTEL-030204F FCC ID: PD9WM3B2100