

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC OET BULLETIN 65 SUPPLEMENT C

FOR

INTEL WIRELESS WIFI LINK 4965AG

MODEL: 4965AG

FCC ID: PD9LEN4965AG

REPORT NUMBER: 07U10925-4, REVISION B

ISSUE DATE: APRIL 17, 2007

Prepared for

INTEL CORPORATION 2111 N. E. 25TH AVE HILLSBORO, OR 97124, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issued date	Revisions	Revised By
	April 12, 2003	Initial issue	Sunny Shih
В	April 17, 2007	Corrected typo on page 3	ND

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DATES O	DATES OF TEST: March 26, 27, 28, 29, and April 5 and 9, 6 2007					
APPLICANT:	Intel Corporation					
ADDRESS:	2111 N. E. 25th Ave, Hillsboro, OR, 97124, USA					
FCC ID:	PD9LEN4965AG					
MODEL:	4965AG					
DEVICE CATEGORY:	Portable Device					
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure					

Intel Wireless WiFi Link 4965AG is installed in ThinkPad X60 Tablet Series and ThinkPad X61 Tablet Series along with Bluetooth FCC ID: MCLJ07H081.

Test Sample is a:	Production unit										
Modulation type:	Direct Sequence Spread S	Direct Sequence Spread Spectrum (DSSS) for 802.11b									
	Orthogonal Frequency Divi	sion Multiplexing (OFDM) for	r 802.11ag								
	Frequency Hopping Spread	d Spectrum (FHSS) for Bluet	ooth module								
		The Highest	Collocation SAR Values								
Rule Parts	Frequency Range [MHz]	SAR Values [1g_mW/g]	[1g_mW/g]								
FCC 15.247	2412 - 2462	0.158	0.159								
	5745 - 5825	0.174	0.201								
FCC 15.401	5180 - 5320	0.128	0.132								

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (Edition 01-01).

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fr Shih

Hsin Fu Shih Engineering Supervisor Compliance Certification Services Tested By:

Winey Dorough

Ninous Davoudi EMC Engineer Compliance Certification Services

Table Of Contents

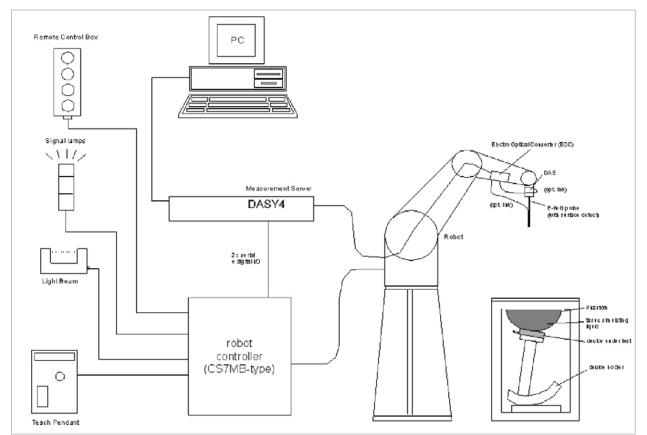
1	DEVICE UNDER TEST (DUT) DESCRIPTION	5
2	FACILITIES AND ACCREDITATION	6
3	SYSTEM DESCRIPTION	7
	3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	
4	SIMULATING LIQUID PARAMETERS CHECK	9
	4.1 SIMULATING LIQUID PARAMETER CHECK RESULT	.11
5	SYSTEM PERFORMANCE CHECK	. 18
	5.1 SYSTEM PERFORMANCE CHECK RESULTS	.20
6	SAR MEASURMENT PROCEDURE	.23
	6.1 DASY4 SAR MEASURMENT PROCEDURE	.24
7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	.25
8	SAR MEASURMENT RESULTS	.27
	8.1 2.4GHZ	.27
	8.1.1 PRIMARY LANDSCAPE (HOST DEVICE - X61)	.27
	8.1.2 SECONDARY LANDSCAPE (HOST DEVICE - X61)	
	 8.1.3 SECONDARY LANDSCAPE (HOST DEVICE - X60) 8.1.4 PRIMARY PORTRAIT (HOST DEVICE - X61) 	
	8.1.5 SECONDARY PORTRAIT (HOST DEVICE - X61)	
	8.1.6 LAP HELD – MAIN ANTENNA (HOST DEVICE - X61)	. 32
	8.1.7 LAP HELD – MAIN ANTENNA (HOST DEVICE - X60)	
	8.1.8 LAP HELD – AUX ANTENNA (HOST DEVICE - X61)	
	8.2 5.2GHZ	
	 8.2.1 PRIMARY LANDSCAPE (HOST DEVICE - X61) 8.2.2 SECONDARY LANDSCAPE (HOST DEVICE - X61) 	
	 8.2.2 SECONDARY LANDSCAPE (HOST DEVICE - X61) 8.2.3 SECONDARY LANDSCAPE (HOST DEVICE - X60) 	
	8.2.4 PRIMARY PORTRAIT (HOST DEVICE - X61)	
	8.2.5 SECONDARY PORTRAIT (HOST DEVICE - X61)	
	8.2.6 LAP HELD – MAIN ANTENNA (HOST DEVICE - X61)	
	8.2.7 LAP HELD – MAIN ANTENNA (HOST DEVICE - X60)	.41
	8.2.8 LAP HELD – AUX ANTENNA (HOST DEVICE - X61)	
	8.3 5.8GHZ	
	 8.3.1 PRIMARY LANDSCAPE (HOST DEVICE - X61) 8.3.2 SECONDARY LANDSCAPE (HOST DEVICE - X61) 	
	 8.3.2 SECONDARY LANDSCAPE (HOST DEVICE - X61) 8.3.3 SECONDARY LANDSCAPE (HOST DEVICE - X60) 	
	8.3.4 PRIMARY PORTRAIT (HOST DEVICE - X61)	
	8.3.5 SECONDARY PORTRÀIT (HOST DEVICE - X61)	
	8.3.6 LAP HELD – MAIN ANTENNA (HOST DEVICE - X61)	
	8.3.7 LAP HELD – MAIN ANTENNA (HOST DEVICE - X60)	
•	8.3.8 LAP HELD – AUX ANTENNA (HOST DEVICE - X61)	
9		-
	9.1 MEASURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ	
40	9.2 MEASURMENT UNCERTAINTY 3 GHZ – 6 GHZ	
10	EQUIPMENT LIST AND CALIBRATION	
11 12	PHOTOS ATTACHMENTS	
12		. 50

1 DEVICE UNDER TEST (DUT) DESCRIPTION

Intel Wireless WiFi Link 4965AG is installed in ThinkPad X60 Tablet Series and ThinkPad X61 Tablet Series along with Bluetooth FCC ID: MCLJ07H081.

Conce along that Blactor	
Normal operation:	Lap-held position, and underarm position
Accessory:	N/A
Earphone/Headset Jack:	N/A
Duty cycle:	98% for b mode
	91% for a and g
Host Device(s):	Lenovo ThinkPad X61 Tablet Series
	Lenovo ThinkPad X60 Tablet Series
	The difference between these models is the WWAN structure.
Antenna(s)	Main Antenna Installed in ThinkPad X60:
	Wistron NeWeb Corporation, PIFA PN: 25.90354.001
	Main Antenna Installed in ThinkPad X61:
	Wistron NeWeb Corporation, PIFA PN: 25.90424.001
	AUX Antenna for both ThinkPad X60 and ThinkPad X61:
	Wistron NeWeb Corporation, PIFA PN: 25.90356.001
Power supply:	Power supplied through the laptop computer (host device).

2 FACILITIES AND ACCREDITATION


The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, CA 94538 USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

NVLAP LAB CODE 200065-0

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

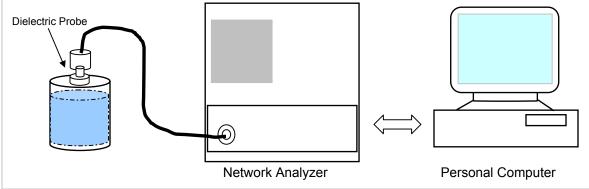
3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)								
(% by weight)	45	50	83	35	915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose


Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	H	ead	Bo	ody
raiget requeitcy (initz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

f (MHz)	Head	Tissue	Body	Body Tissue				
1 (IVII 12)	rel. permitivity	conductivity	rel. permitivity	conductivity	Reference			
3000	38.5	2.40	52.0	2.73	Standard			
5800	35.3	5.27	48.2	6.00	Standard			
5000	36.2	1.45	49.3	5.07	Interpolated			
5100	36.1	4.55	49.1	5.18	Interpolated			
5200	36.0	4.66	49.0	5.30	Interpolated			
5300	35.9	4.76	48.9	5.42	Interpolated			
5400	35.8	4.86	48.7	5.53	Interpolated			
5500	35.6	4.96	48.6	5.65	Interpolated			
5600	35.5	5.07	48.5	5.77	Interpolated			
5700	35.4	5.17	48.3	5.88	Interpolated			

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 22°C; Relative humidity = 50%

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	weasured		Deviation (%)	LIIIII (%)
2450	21	15	e'	53.9484	Relative Permittivity (ε_r): 53.9484	52.7	2.37	± 5
2400	21	10	e"	14.5628	Conductivity (σ	: 1.98486	1.95	1.79	± 5
Liquid Ch									
	•		leg	. C; Liqu	id temperature: 21.0	deg C			
March 26	6, 2007 02								
Frequenc	су	e'			e"				
2400000	000.	54	.28	320	14.4193				
2405000	000.	54	.27	'33	14.4282				
2410000	000.	54	.26	625	14.4322				
2415000	000.	54	.24	76	14.4418				
2420000	000.	54	.22	201	14.4565				
2425000	000.	54	.19	937	14.4540				
2430000	000.	54	.16	673	14.4837				
2435000	000.	54	.11	25	14.4921				
2440000	000.	54	.06	634	14.5250				
2445000	000.			999	14,5499				
2450000				84	14.5628				
2455000	000.	53	.90)11	14.5784				
2460000				617	14.5996				
2465000	000.	53	.82	253	14.6169				
2470000)73	14.6415				
2475000				867	14.6697				
2480000				372	14.7013				
2485000				77	14.7428				
2490000				'54	14.7746				
2495000				841	14.7994				
2500000				30	14.8443				
The cond	luctivity (ס) can be פ	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	^f ε₀e"							
where f									
EO	= 8.854 *	• 10 ⁻¹²							

Room Ambient Temperature = 23°C; Relative humidity = 40%

S	imulating Lic	quid			Deremetere	Maggurad	Target	Deviation $(9/)$	$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{n} \right)$
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	Measured		Deviation (%)	Limit (%)
5200	22	15	e'	47.58	Relative Permittivity (ε_r):	47.5800	49.0	-2.90	± 10
0200		10	e"	18.4197	Conductivity (σ):	5.32850	5.30	0.54	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 d	deg	. C; Liqu	id temperature: 22.0 o	deg C			
March 27	, 2007 02	2:46 PM	-			-			
Frequence	су	e'			e"				
4600000	000.	48	.55	92	17.2929				
4650000	000.	48	5.57	60	17.2953				
4700000	000.	48	.25	43	17.3704				
4750000	000.	48	.21	12	17.4263				
4800000			5.11		17.5620				
4850000			.08		17.6085				
4900000			.89		17.7405				
4950000			.90		17.8061				
5000000			.91		17.8960				
5050000			.85		17.9361				
5100000			.82		18.0772				
5150000			.62		18.3248				
5200000			.58		18.4197				
5250000			.44		18.3938				
5300000			.42		18.3848				
5350000			.33		18.4312				
5400000			.41		18.4524				
5450000			.08		18.3642				
5500000			.90		18.4679				
5550000			.81		18.4339				
5600000			6.60		18.4610				
5650000			.49		18.5890				
5700000			.43		18.7408				
5750000			.51		18.8251				
5800000			.26		18.6737				
5850000			5.14		19.0176				
5900000			.47		18.9602				
5950000			5.77		18.9080				
6000000	000.	45	.95	43	19.3784				
The cond	luctivity (ס) can be	give	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
ε ₀	= 8.854 *	· 10 ⁻¹²							

Room Ambient Temperature = 23°C; Relative humidity = 35%

S	imulating Lic	quid			Deremetere	Maggurad	Target	Doviotion (9/)	$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{n} \right)$
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	Measured		Deviation (%)	Limit (%)
5200	22	15	e'	46.2698	Relative Permittivity (ε_r):	46.2698	49.0	-5.57	± 10
0200		.0	e"	18.2237	Conductivity (σ):	5.27180	5.30	-0.53	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 c	leg	. C; Liqu	id temperature: 22.0 (deg C			
March 28	3, 2007 02	2:22 PM	_	-	-	-			
Frequence	су	e'			e"				
4600000	000.	47	.31	63	17.0761				
4650000	000.	47	.36	572	17.1822				
4700000	000.	47	.05	687	17.1585				
4750000	000.	46	.92	25	17.2804				
4800000	000.	46	.95	579	17.3977				
4850000				624	17.4139				
4900000				37	17.5811				
4950000			.68		17.5691				
5000000			.62		17.7553				
5050000				'46	17.7321				
5100000				.38	17.8984				
5150000			.44		18.1646				
5200000				98	18.2237				
5250000				34	18.2436				
5300000)12	18.1798				
5350000				30	18.2496				
5400000				93	18.2472				
5450000				00	18.1498				
5500000			.69		18.2613				
5550000				24	18.2632				
5600000				646	18.2622				
5650000				'17	18.4426				
5700000				27	18.4520				
5750000				644	18.6388				
5800000				56	18.4102				
5850000				34	18.7470				
5900000			.22		18.6966				
5950000			.43		18.5464				
6000000	000.	44	.67	05	19.1429				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
EO	= 8.854 *	* 10***							

Room Ambient Temperature = 23°C; Relative humidity = 35%

S	imulating Lie	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)				Meddared		Deviation (70)	Emme (70)
5200	22	15	e'	50.7202	Relative Permittivity (ε_r):	50.7202	49.0	3.51	± 10
			e"	18.5451	Conductivity (σ):	5.36478	5.30	1.22	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 c	deg	. C; Liqu	id temperature: 22.0 (deg C			
March 29	9, 2007 0	1:09 PM							
Frequence		e'			e"				
4600000	000.	51	.73	373	17.2350				
4650000	000.	51	.83	68	17.3946				
4700000	000.	51	.48	63	17.3214				
4750000				20	17.5092				
4800000			.41		17.6089				
4850000				595	17.6316				
4900000				575	17.8106				
4950000				282	17.7802				
5000000				36	18.0112				
5050000				687	17.9436				
5100000				92	18.1805				
5150000				'43	18.4739				
5200000				202	18.5451				
5250000				592	18.5583				
5300000			.66		18.4562				
5350000				92	18.5338				
5400000			.73		18.5165				
5450000				95	18.4078				
5500000				'97	18.5726				
5550000				27	18.5744				
5600000				64	18.5726				
5650000				58	18.7857				
5700000				'37	18.7528				
5750000			.75		19.0071				
5800000				90	18.7003				
5850000				93	19.1237				
5900000				280	19.0171				
5950000			.79		18.8690				
6000000	000.	49	.21	28	19.5537				
The cond	luctivity (σ) can be g	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
ε ₀	= 8.854 *	r 10 **							

Room Ambient Temperature = 23°C; Relative humidity = 50%

	imulating Lic				Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)							
5800	22	15	e'	45.7518	Relative Permittivity (ε_r):	45.7518	48.2	-5.08	± 10
			e"	18.9367	Conductivity (σ):	6.11014	6.00	1.84	± 5
_iquid Ch	eck								
Ambient t	emperat	ure: 23.0 c	leg	. C; Liqu	id temperature: 22.0 (deg C			
April 05, 2	2007 09:0	01 AM							
Frequenc		e'			e"				
46000000				52	17.3468				
46500000				548	17.5724				
47000000				77	17.4217				
47500000				86	17.7559				
48000000				39	17.7121				
48500000				70	17.8416				
49000000			.47		17.8639				
49500000				269	17.9369				
50000000				46	18.0859				
50500000			.30		18.0416				
51000000				40	18.2857				
51500000			.13		18.3686				
52000000				342	18.5387				
52500000			.93		18.4961				
53000000				53	18.5075				
53500000				86	18.5592				
54000000				16	18.5280				
54500000				642	18.4641				
55000000				00	18.5401				
55500000)75	18.6494				
56000000				66	18.6168				
56500000				260	18.7423				
57000000				26	18.8455				
57500000				756	18.9141				
58000000				518	18.9367				
58500000				60	19.0731				
59000000			.80		19.1302				
59500000			.17		18.9369				
60000000	JUU.	45	.33	36	19.5960				
The cond	uctivity (σ) can be g	giv	en as:					
$\sigma = \omega \varepsilon_{\theta} \epsilon$	e"=2πj	fε₀e"							
where f									
ε ₀	= 8.854 *	* 10 ⁻¹²							

Room Ambient Temperature = 23°C; Relative humidity = 50%

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)				Measureu		Deviation (70)	Linit (70)
5800	22	15	e'	44.138	Relative Permittivity (ε_r):	44.1380	48.2	-8.43	± 10
			e"	19.1106	Conductivity (o):	6.16625	6.00	2.77	± 5
_iquid Ch	neck								
Ambient	temperat	ure: 23.0 c	deg	. C; Liqu	id temperature: 22.0	deg C			
April 06, 1	2007 09:0	03 AM							
requence		e'			e"				
1600000			.65		17.3261				
4650000			.72		17.6635				
4700000			.42		17.3964				
4750000			.21		17.8691				
4800000			.30		17.7565				
4850000			.99		17.8733				
4900000			.03		17.8964				
4950000			.88		17.9475				
5000000			.81		18.1785				
5050000			.78		17.9857				
5100000			.50		18.3686				
5150000			.64		18.3613				
5200000			.20		18.5841				
5250000			.43		18.5505				
5300000			.20		18.5325				
5350000			.36		18.6184				
5400000			.22		18.5196				
5450000			.96		18.5277				
5500000			.88		18.5180				
5550000			.63		18.7055				
5600000			.39		18.7017				
5650000			.21		18.7934				
5700000			.38		18.9295				
5750000			.18		18.9166				
5800000			.13		19.1106				
5850000				30	19.1092				
5900000			.04		19.1781				
5950000			5.54		19.0118				
6000000	000.	43	.69	00	19.6477				
The cond	luctivity (σ) can be	give	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
	= target f								
E_	= 8.854 *	* 10 ¹²							

Room Ambient Temperature = 23°C; Relative humidity = 50%

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)				Medbured		Deviation (70)	Emile (70)
5800	22	15	e'	45.2406	Relative Permittivity (ε_r):	45.2406	48.2	-6.14	± 10
			e"	19.0250	Conductivity (σ):	6.13863	6.00	2.31	± 5
iquid Ch	neck								
mbient	temperat	ure: 23.0 d	deg	. C; Liqu	id temperature: 22.0 (deg C			
vpril 09, 1	2007 07:4	49 AM							
requenc		e'			e"				
600000		47	.70)58	17.1723				
650000				616	17.6179				
700000		47	.60	16	17.3130				
750000				697	17.7539				
800000		47	.47	'43	17.6796				
850000			.09		17.7679				
900000		47	.18	68	17.7909				
950000				'89	17.7998				
000000				240	18.1014				
050000				38	17.8506				
5100000				606	18.2778				
5150000				206	18.2721				
200000				328	18.3787				
5250000			5.53		18.4086				
5300000				96	18.4393				
5350000				502	18.4476				
5400000				23	18.3647				
5450000				90	18.4282				
500000				555	18.3797				
550000				526	18.5201				
5600000				79	18.5866				
650000				64	18.6899				
5700000				16	18.7521				
5750000				12	18.6797				
5800000				06	19.0250				
5850000				37	18.9759				
5900000				20	19.0518				
950000			.93		19.1932				
6000000	000.	45	.35	510	19.5238				
he cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f	= target f	$f * 10^{6}$							
\mathcal{E}_{θ}	= 8.854 *	* 1012							

5 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm).
 For 5 GHz band Special 8x8x8 fine cube was chosen for cube integration(dx=dy=4.3mm; dz=3mm)
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.0mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using finite-difference time-domain FDTD method (feed point-impedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

f (MHz)	Head	Tissue	Body Tissue				
1 (141112)	SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	SAR _{Peak}		
5000	72.9	20.7	68.1	19.2	260.3		
5100	74.6	21.1	78.8	19.6	272.3		
5200	76.5	21.6	71.8	20.1	284.7		
5500	83.3	23.4	79.1	22.0	326.3		
5800	78.0	21.9	74.1	20.5	324.7		

Note: All SAR values normalized to 1 W forward power.

5.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 706

Date: March 26, 2007

Room Ambient Temperature = 22°C; Relative humidity = 50%

Bod	Body Simulating Liquid		SAR (mW/q)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mw/g)		to 1 W	raiget	(%)	(%)
2450	2450 21	15	1 g	13.30	53.2	51.2	3.91	± 10
2400	21	10	10g	6.05	24.2	23.7	2.11	± 10

System Validation Dipole: D5GHzV2 SN 1003

Date: March 27, 2007

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/q)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)			d to 1 W	Taryet	(%)	(%)
5200	5200 22	15	1 g	18.50	74	71.8	3.06	± 10
5200	22	15	10g	5.22	20.88	20.1	3.88	± 10

Date: March 28, 2007

Room Ambient Temperature = 23°C; Relative humidity = 35%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/g)		Normalize	Torgot	Deviation (%)	L im it
f(MHz)	Temp.(°C)	Depth (cm)			to 1 W	Target		(%)
5200	22	15	1 g	18.90	75.6	71.8	5.29	± 10
5200	22	10	10g	5.31	21.24	20.1	5.67	± 10

Date: March 29, 2007

Room Ambient Temperature = 23°C; Relative humidity = 35%

Bod	y Simulating	g Liquid	SAR (mW/q)		Normalize d	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)			to 1 W	Target	(%)	(%)
5200	5200 22	15	1 g	19.60	78.4	71.8	9.19	± 10
5200	22	15	10g	5.47	21.88	20.1	8.86	± 10

System Validation Dipole: D5GHzV2 SN 1003

Date: April 5, 2007

Room Ambient Temperature = 23°C; Relative humidity = 50%

Measured by: Ninous Davoudi

Bod	Body Simulating Liquid		SAR (mW/q)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mw/g)		d to 1 W	Taryet	(%)	(%)
5800	5800 22	15	1 g	18.40	73.6	74.1	-0.67	± 10
5000	22	15	10g	5.12	20.48	20.5	-0.10	± 10

Date: April 5, 2007

Room Ambient Temperature = 23°C; Relative humidity = 50%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/g)		Normalize	Torgot	Deviation (%)	Lim it
f(MHz)	Temp.(°C)	Depth (cm)			to 1 W	Target		(%)
5800	22	15	1 g	18.10	72.4	74.1	-2.29	± 10
5800	22	10	10g	5.02	20.08	20.5	-2.05	± 10

Date: April 9, 2007

Room Ambient Temperature = 23°C; Relative humidity = 50%

Bod	y Simulating	g Liquid	SAR (mW/a)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)			d to 1 W	Target	(%)	(%)
5800	5800 22	15	1 g	18.50	74	74.1	-0.13	± 10
5800	22	15	10g	5.18	20.72	20.5	1.07	± 10

6 SAR MEASURMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the DUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the DUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the DUT to ensure that the hotspot was correctly identified.

For 5 GHz band - The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the DUT and the horizontal grid spacing is 10 mm x 10 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the DUT to ensure that the hotspot was correctly identified.

c) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

For 5 GHz band - Around this point, a volume of X=Y=24 and Z=20 mm is assessed by measuring 7 x 7 x 9 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

- (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
- (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
- (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

6.1 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 7 x 7 x 9 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

7 PROCEDURE USED TO ESTABLISH TEST SIGNAL

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, CRTU, which enables a user to control the frequency and output power of the module.

2.4GHz Band

802.11b

Channel	Frequency	Average Power	Average Power
	(MHz)	Chain A	Chain B
		(dBm)	(dBm)
Low	2412	15.5	15.4
Middle	2437	15.7	15.6
High	2462	16.7	16.7

802.11g

Channel	Frequency	Average Power	Average Power
	(MHz)	Chain A (dBm)	Chain B (dBm)
Low	0440		
Low	2412	16.7	16.5
Middle	2437	17.6	17.6
High	2462	16.6	16.8

5.2GHz Band

802.11a

Channel	Frequency	Average Power	Average Power
	(MHz)	Chain A	Chain B
		(dBm)	(dBm)
Low	5180	16.5	16.4
Middle	5260	17.5	17.6
High	5320	16.5	16.5

5.8GHz Band

802.11a

Channel	Frequency	Average Power	Average Power
	(MHz)	Chain A	Chain B
		(dBm)	(dBm)
Low	5745	17.6	17.5
Middle	5785	17.6	17.6
High	5825	17.6	17.6

8 SAR MEASURMENT RESULTS

8.1 2.4GHZ

8.1.1 PRIMARY LANDSCAPE (HOST DEVICE - X61)

This mode is skipped since SAR values are too low.

Notes:

 The exact method of extrapolation is Measured SAR x 10[^](-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.1.2	SECONDARY	LANDSCAPE	(HOST DEVICE ·	- X61)
-------	-----------	-----------	----------------	--------

802.11b Channel	f (MHz)	Measured SAR 1g (mW/g)		Extrapolated ¹⁾ SAR 1g (mW/g)	
1 6 11	2412 2437 2462				
802.11g					
Channel		1g (mW/g)	(dB)	1g (mW/g)	
1 6 11	2412 2437 2462	0.076	0.000	0.076	
process by the DASY measurement proces	4 system can b s.	e scaled up by the Pov	wer drift to determin	ne the SAR at the beginning o	of the
	Channel 1 6 11 802.11g Channel 1 6 11 6 11 The exact method of process by the DASY measurement proces	Channel f (MHz) 1 2412 6 2437 11 2462 802.11g f (MHz) 1 2412 6 2437 11 2462 802.11g f (MHz) 1 2412 6 2437 11 2462 The exact method of extrapolation is process by the DASY4 system can b measurement process.	Channelf (MHz)Measured SAR 1g (mW/g)12412624371124620.044802.11gMeasured SAR 1g (mW/g)12412624371124620.076112462	Channelf (MHz)Measured SAR 1g (mW/g)Power Drift (dB)124121(dB)624370.0440.000802.11gMeasured SAR 1g (mW/g)Power Drift (dB)124120.0440.000802.11g124120.0760.000124120.0760.0000.0001124620.0760.0000.000The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAF process by the DASY4 system can be scaled up by the Power drift to determine measurement process.	Channelf (MHz)Measured SAR 1g (mW/g)Power Drift (dB)Extrapolated 1) SAR 1g (mW/g)12412 62437 110.0440.0000.044802.11gMeasured SAR 1g (mW/g)Power Drift (dB)Extrapolated 1) SAR 1g (mW/g)12412 60.0440.0000.044802.11gMeasured SAR 1g (mW/g)Power Drift (dB)Extrapolated 1) SAR 1g (mW/g)12412 6 124370.0760.0000.0761124620.0760.0000.076The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the m process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of

8.1.3 SECONDARY LANDSCAPE (HOST DEVICE - X60)

						1
						J T
	802.11g	1		D D 14	1)	-
	Channel	f (MHz)	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR	
					1 ~ (ma\\//~)	
			1g (mW/g)	(dB)	1g (mW/g)	
	1	2412				
	1 6	2437	1g (mw/g) 0.025	-0.193	0.026	
	1					
Notes:	1 6 11	2437 2462	0.025	-0.193	0.026	
Notes: 1)	1 6 11 The exact method of	2437 2462 extrapolation is	0.025 Measured SAR x 10 ⁴ (-0.193 (-drift/10). The SAF	0.026 R reported at the end of the n	
	1 6 11 The exact method of process by the DAS	2437 2462 extrapolation is (4 system can b	0.025 Measured SAR x 10 ⁴ (-0.193 (-drift/10). The SAF	0.026	
1)	1 6 11 The exact method of process by the DASY measurement process	2437 2462 extrapolation is (4 system can b ss.	0.025 Measured SAR x 10 ⁴ (be scaled up by the Pow	-0.193 (-drift/10). The SAF wer drift to determin	0.026 R reported at the end of the n he the SAR at the beginning of	of the
	1 6 11 The exact method of process by the DAS measurement proces The SAR measured	2437 2462 extrapolation is (4 system can b ss. at the middle ch	0.025 Measured SAR x 10 [^] (be scaled up by the Pov annel for this configura	-0.193 (-drift/10). The SAF wer drift to determin	0.026 R reported at the end of the n	of the
1)	1 6 11 The exact method of process by the DASY measurement proces The SAR measured mW/g), thus testing a	2437 2462 extrapolation is (4 system can b ss. at the middle ch at low & high cha	0.025 Measured SAR x 10 ⁴ (be scaled up by the Pov annel for this configura annel is optional.	-0.193 (-drift/10). The SAF wer drift to determin ation is at least 3 dE	0.026 R reported at the end of the n he the SAR at the beginning of	of the R limit (1.6

4) AUX antenna is disabled at this position.

5) 802.11b is skipped since power levels are significantly lower than 802.11g.

8.1.4 PRIMARY PORTRAIT (HOST DEVICE - X61)

802.1	116				
002.1	10		Measured SAR	Power Drift	
Ch	nannel	f (MHz)	1g (mW/g)	(dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
	1	2412	ig (invv/g)	(ub)	ig (inwig)
	6	2437			
	0				
	11	2462	0.111	0.000	0.111
802.1	11	2462			
	11	2462 f (MHz)	0.111 Measured SAR 1g (mW/g)	0.000 Power Drift (dB)	0.111 Extrapolated ¹⁾ SAR 1g (mW/g)
	11 1 1 g	f (MHz) 2412	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
	11 11g nannel 1 6	f (MHz) 2412 2437	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
	11 11g 1annel 1 6 11	f (MHz) 2412	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
	11 11g nannel 1 6	f (MHz) 2412 2437	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Ch tes:	11 11g 1annel 1 6 11 6 ⁴⁾	f (MHz) 2412 2437 2462 2437	Measured SAR 1g (mW/g) 0.158 0.159	Power Drift (dB) 0.000 0.000	Extrapolated ¹⁾ SAR 1g (mW/g) 0.158 0.159
Ch es: 1) The exact	11 11 11 1 6 11 6 ⁴⁾ method of e	f (MHz) 2412 2437 2462 2437 extrapolation is	Measured SAR 1g (mW/g) 0.158 0.159 Measured SAR x 10^(Power Drift (dB) 0.000 0.000 -drift/10). The SAF	Extrapolated ¹⁾ SAR 1g (mW/g) 0.158 0.159 R reported at the end of the m
S: 1) The exact process by	11 11 11 1 6 11 6 ⁴⁾ method of e	f (MHz) 2412 2437 2462 2437 extrapolation is 4 system can b	Measured SAR 1g (mW/g) 0.158 0.159 Measured SAR x 10^(Power Drift (dB) 0.000 0.000 -drift/10). The SAF	Extrapolated ¹⁾ SAR 1g (mW/g) 0.158 0.159

mW/g), thus testing at low & high channel is optional.
Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

4) Collocation with Bluetooth module.

8.1.5 SECONDARY PORTRAIT (HOST DEVICE - X61)

This position is skipped since SAR values are too low.

Notes:	
1)	The exact method of extrapolation is Measured SAR x 10 ^(-drift/10) . The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.
2)	The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.
3) 4)	Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. Main Antenna is disabled at this position

8.1.6	LAP HELD – MAIN ANTENNA (HOST DEVICE - X61)
-------	---

	802.11b					1
			Measured SAR	Power Drift	Extrapolated ¹⁾ SAR	
	Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)	
	1	2412				
	1 6	2437	0.010	-0.097	0.010	
	11					
	-	2437	0.010	-0.097	0.010	
	11	2437	0.010 Measured SAR	-0.097 Power Drift	0.010 Extrapolated ¹⁾ SAR	
	11 802.11g Channel	2437 2462 f (MHz)	0.010	-0.097	0.010	
	11 802.11g Channel 1	2437 2462 f (MHz) 2412	0.010 Measured SAR 1g (mW/g)	-0.097 Power Drift (dB)	0.010 Extrapolated ¹⁾ SAR 1g (mW/g)	
	11 802.11g Channel 1 6	2437 2462 f (MHz) 2412 2437	0.010 Measured SAR	-0.097 Power Drift	0.010 Extrapolated ¹⁾ SAR	
	11 802.11g Channel 1	2437 2462 f (MHz) 2412	0.010 Measured SAR 1g (mW/g)	-0.097 Power Drift (dB)	0.010 Extrapolated ¹⁾ SAR 1g (mW/g)	
Notes:	11 802.11g Channel 1 6 11	2437 2462 f (MHz) 2412 2437 2462	0.010 Measured SAR 1g (mW/g) 0.025	-0.097 Power Drift (dB) -0.151	0.010 Extrapolated ¹⁾ SAR 1g (mW/g) 0.026	
1) Th	11 802.11g Channel 1 6 11	2437 2462 f (MHz) 2412 2437 2462 extrapolation is	0.010 Measured SAR 1g (mW/g) 0.025 Measured SAR x 10%	-0.097 Power Drift (dB) -0.151 (-drift/10). The SAF	0.010 Extrapolated ¹⁾ SAR 1g (mW/g) 0.026 R reported at the end of the m	
1) Th pro	11 802.11g Channel 1 6 11	2437 2462 f (MHz) 2412 2437 2462 extrapolation is 4 system can b	0.010 Measured SAR 1g (mW/g) 0.025 Measured SAR x 10%	-0.097 Power Drift (dB) -0.151 (-drift/10). The SAF	0.010 Extrapolated ¹⁾ SAR 1g (mW/g) 0.026	
1) Th pro me 2) Th	11 802.11g Channel 1 6 11 ne exact method of ocess by the DASY easurement proces	2437 2462 f (MHz) 2412 2437 2462 extrapolation is 4 system can b s. at the middle ch	0.010 Measured SAR 1g (mW/g) 0.025 Measured SAR x 10 ^A e scaled up by the Por annel for this configura	-0.097 Power Drift (dB) -0.151 (-drift/10). The SAF wer drift to determin	0.010 Extrapolated ¹⁾ SAR 1g (mW/g) 0.026 R reported at the end of the m	of the

measurement process.

2)

802.11b				
	f (MHz)	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
802.11b Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1	2412	1g (mW/g)	(dB)	1g (mW/g)
Channel 1 6	2412 2437			•
Channel 1 6 11	2412	1g (mW/g)	(dB)	1g (mW/g)
Channel 1 6 11 802.11g	2412 2437 2462	1g (mW/g) 0.019	(dB) 0.000	1g (mW/g) 0.019
Channel 1 6 11	2412 2437	1g (mW/g) 0.019 Measured SAR	(dB)	1g (mW/g) 0.019 Extrapolated ¹⁾ SAR
Channel 1 6 11 802.11g	2412 2437 2462	1g (mW/g) 0.019	(dB) 0.000 Power Drift	1g (mW/g) 0.019
Channel 1 6 11 802.11g Channel	2412 2437 2462 f (MHz)	1g (mW/g) 0.019 Measured SAR	(dB) 0.000 Power Drift	1g (mW/g) 0.019 Extrapolated ¹⁾ SAR

8.1.7 LAP HELD – MAIN ANTENNA (HOST DEVICE - X60)

mW/g), thus testing at low & high channel is optional.Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6

8.1.8 LAP HELD – AUX ANTENNA (HOST DEVICE - X61)

This position is skipped since SAR values are too low.

Notes							
1	pro me	The exact method of extrapolation is Measured SAR x 10 ⁽ -drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.					
2		The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.					
3		Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.					

8.2 5.2GHZ

8.2.1 PRIMARY LANDSCAPE (HOST DEVICE - X61)

This mode is skipped since SAR values are too low.

Notes:						
1)						
	process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.					
2)	The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6					
	mW/g), thus testing at low & high channel is optional.					
3)	Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.					

8.2.2 SECONDARY LANDSCAPE (HOST DEVICE - X61)

	802.11a								
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)				
	36 52 64	5180 5260 5320	0.086	0.000	0.086				
Notes: 1)	The exact method of extrapolation is Measured SAR x 10 ^(-drift/10) . The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.								
2) 3) 4)	The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional. Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. AUX antenna is disabled at this position.								

8.2.3 SECONDARY LANDSCAPE (HOST DEVICE - X60)

802.11a					
				1)	
Channol		Measured SAR	Power Drift	Extrapolated '' SAR	
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
36	5180	1g (mW/g)	(dB)	1g (mW/g)	
36 52	5180 5260				
36	5180	1g (mW/g)	(dB)	1g (mW/g)	
36 52 64	5180 5260 5320	1g (mW/g) 0.061	(dB) -0.111	1g (mW/g) 0.063	
36 52 64 The exact method of	5180 5260 5320 extrapolation is	1g (mW/g) 0.061 Measured SAR x 10 ⁴	(dB) -0.111 (-drift/10). The SAI	1g (mW/g) 0.063 R reported at the end of the m	
36 52 64 The exact method of process by the DAS ^N measurement proces	5180 5260 5320 extrapolation is Y4 system can b ss.	1g (mW/g) 0.061 Measured SAR x 10^4 be scaled up by the Port	(dB) -0.111 (-drift/10). The SAI wer drift to determin	1g (mW/g) 0.063 R reported at the end of the more the SAR at the beginning of	of the
36 52 64 The exact method of process by the DASY measurement proces The SAR measured	5180 5260 5320 extrapolation is Y4 system can b ss. at the middle ch	1g (mW/g) 0.061 Measured SAR x 10 ^A e scaled up by the Por annel for this configura	(dB) -0.111 (-drift/10). The SAI wer drift to determin	1g (mW/g) 0.063 R reported at the end of the m	of the
36 52 64 The exact method of process by the DAS ^V measurement proces The SAR measured mW/g), thus testing a	5180 5260 5320 extrapolation is Y4 system can b ss. at the middle ch at low & high cha	1g (mW/g) 0.061 Measured SAR x 10 ^A be scaled up by the Portannel for this configura annel for this configura annel is optional.	(dB) -0.111 (-drift/10). The SAI wer drift to determine ation is at least 3 di	1g (mW/g) 0.063 R reported at the end of the more the SAR at the beginning of	of the limit (1.6
	802.11a	802.11a	802.11a	802.11a	802.11a

8.2.4 PRIMARY PORTRAIT (HOST DEVICE - X61)

	802.11a						
	Char	inel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	30 52 64	2	5180 5260 5320	0.086	0.000	0.086	
Notes: 1)		e DASY	4 system can be		,	R reported at the end of the m ne the SAR at the beginning c	
2) 3)	mW/g), thus t	esting a	t low & high cha	innel is optional.		3 lower (0.8 mW/g) than SAR	``

8.2.5 SECONDARY PORTRAIT (HOST DEVICE - X61)

This position is skipped since SAR values are too low.

Notes:
 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.
 The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.
 Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. Main Antenna is disabled at this position

8.2.6 LAP HELD – MAIN ANTENNA (HOST DEVICE - X61)

	802.11a				
	10UZ.11d				
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
	Channel 36	5180	1g (mW/g)	(dB)	1g (mW/g)
	Channel 36 52	5180 5260			-
Notos:	Channel 36	5180	1g (mW/g)	(dB)	1g (mW/g)
Notes: 1)	Channel 36 52 64	5180 5260 5320	1g (mW/g) 0.125	(dB) 0.000	1g (mW/g)
	Channel 36 52 64 The exact method of process by the DAS	5180 5260 5320 • extrapolation is Y4 system can b	1g (mW/g) 0.125 Measured SAR x 10 ⁴ ((dB) 0.000 (-drift/10). The SAF	1g (mW/g) 0.125
	Channel 36 52 64 The exact method of process by the DAS' measurement proces	5180 5260 5320 extrapolation is Y4 system can b ss.	1g (mW/g) 0.125 Measured SAR x 10^(be scaled up by the Power	(dB) 0.000 (-drift/10). The SAF wer drift to determin	1g (mW/g) 0.125 R reported at the end of the r
1)	Channel 36 52 64 The exact method of process by the DAS' measurement proces The SAR measured mW/g), thus testing a	5180 5260 5320 • extrapolation is Y4 system can b ss. at the middle cha at low & high cha	1g (mW/g) 0.125 Measured SAR x 10^(scaled up by the Power annel for this configuration annel is optional.	(dB) 0.000 (-drift/10). The SAF wer drift to determin ation is at least 3 df	1g (mW/g) 0.125 R reported at the end of the r ne the SAR at the beginning

8.2.7 LAP HELD – MAIN ANTENNA (HOST DEVICE - X60)

	802.11a]
	802.11a Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
		f (MHz) 5180 5260 5320	Measured SAR 1g (mW/g) 0.108		Extrapolated ¹⁾ SAR 1g (mW/g) 0.109	
Notes: 1)	Channel 36 52 64 The exact method of	5180 5260 5320 extrapolation is '4 system can b	1g (mW/g) 0.108 Measured SAR x 10^	(dB) -0.054 (-drift/10). The SAF	1g (mW/g)	

8.2.8 LAP HELD – AUX ANTENNA (HOST DEVICE - X61)

	802.11a					
			Measured SAR	Power Drift	Extrapolated ¹⁾ SAR	}
	802.11a Channel	f (MHz)	Measured SAR	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
		f (MHz) 5180	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	Channel				-	
	Channel 36 52 64	5180	1g (mW/g)	(dB)	1g (mW/g)	
	Channel 36 52	5180 5260	1g (mW/g)	(dB)	1g (mW/g)	
ies:	Channel 36 52 64	5180 5260 5320	1g (mW/g) 0.124	(dB) -0.125	1g (mW/g) 0.128	
tes: 1)	Channel 36 52 64 52 ⁴)	5180 5260 5320 5260	1g (mW/g) 0.124 0.132	(dB) -0.125 0.000	1g (mW/g) 0.128	neasurei
	Channel 36 52 64 52 ⁴) The exact method of process by the DASY	5180 5260 5320 5260 extrapolation is (4 system can b	1g (mW/g) 0.124 0.132	(dB) -0.125 0.000 (-drift/10). The SAI	1g (mW/g) 0.128 0.132	
1)	Channel 36 52 64 52 ⁴) The exact method of process by the DASY measurement proces	5180 5260 5320 5260 extrapolation is 4 system can b ss.	1g (mW/g) 0.124 0.132 Measured SAR x 10^h be scaled up by the Port	(dB) -0.125 0.000 (-drift/10). The SAI wer drift to determin	1g (mW/g) 0.128 0.132 R reported at the end of the most the SAR at the beginning of the solution of the most the beginning of the solution of	of the
	Channel 36 52 64 52 ⁴) The exact method of process by the DASY measurement process The SAR measured a	5180 5260 5320 5260 extrapolation is 74 system can b ss. at the middle ch	1g (mW/g) 0.124 0.132 Measured SAR x 10 ^A be scaled up by the Portannel for this configuration	(dB) -0.125 0.000 (-drift/10). The SAI wer drift to determin	1g (mW/g) 0.128 0.132 R reported at the end of the m	of the
1)	Channel 36 52 64 52 ⁴)	5180 5260 5320 5260 extrapolation is 74 system can b ss. at the middle ch at low & high ch	1g (mW/g) 0.124 0.132 Measured SAR x 10 ^A be scaled up by the Portannel for this configuration annel is optional.	(dB) -0.125 0.000 (-driff/10). The SAI wer drift to determine ation is at least 3 di	1g (mW/g) 0.128 0.132 R reported at the end of the most the SAR at the beginning of the solution of the most the beginning of the solution of	of the R limit (1.

4) Collocation with Bluetooth Module.

8.3 5.8GHZ

8.3.1 PRIMARY LANDSCAPE (HOST DEVICE - X61)

This mode is skipped since SAR values are too low.

Notes:		
1)	The exact method of extrapolation is Measured SAR x 10 ^(-drift/10) . The SAR reported at the end of the me	
	process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning or measurement process.	t the
2)	The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR	limit (1.6
, í	mW/g), thus testing at low & high channel is optional.	-
3)	Please see attachments for the detailed measurement data and plots showing the maximum SAR location of	of the EUT.

8.3.2 SECONDARY LANDSCAPE (HOST DEVICE - X61)

		802.11a]
	ľ		f (MHz)	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR]
	ľ	802.11a Channel	f (MHz)			Extrapolated ¹⁾ SAR 1g (mW/g)]
			f (MHz) 5745	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)]
		Channel]
		Channel 149	5745	1g (mW/g)	(dB)	1g (mW/g)]
Notes:		Channel 149 157	5745 5785	1g (mW/g)	(dB)	1g (mW/g)	
Notes: 1)		Channel 149 157 165	5745 5785 5825	1g (mW/g) 0.091	(dB) 0.000	1g (mW/g)	neasuremen
	The	Channel 149 157 165 e exact method of cess by the DASY	5745 5785 5825 extrapolation is '4 system can b	1g (mW/g) 0.091 Measured SAR x 10 ⁴ ((dB) 0.000 (-drift/10). The SAF	1g (mW/g) 0.091	
1)	The proo	Channel 149 157 165 e exact method of cess by the DASY asurement proces	5745 5785 5825 extrapolation is '4 system can b is.	1g (mW/g) 0.091 Measured SAR x 10^(scaled up by the Point	(dB) 0.000 (-drift/10). The SAF wer drift to determin	1g (mW/g) 0.091 R reported at the end of the more the SAR at the beginning of	of the
	The proc mea The	Channel 149 157 165 e exact method of cess by the DASY asurement proces s SAR measured a	5745 5785 5825 extrapolation is '4 system can b is. at the middle ch	1g (mW/g) 0.091 Measured SAR x 10^(e scaled up by the Point annel for this configuration	(dB) 0.000 (-drift/10). The SAF wer drift to determin	1g (mW/g) 0.091 R reported at the end of the m	of the
1) 2)	The proc mea The mW	Channel 149 157 165 e exact method of cess by the DASY asurement proces a SAR measured a //g), thus testing a	5745 5785 5825 extrapolation is '4 system can b is. at the middle ch it low & high cha	1g (mW/g) 0.091 Measured SAR x 10^(e scaled up by the Power annel for this configura annel is optional.	(dB) 0.000 (-drift/10). The SAF wer drift to determin ation is at least 3 df	1g (mW/g) 0.091 R reported at the end of the m he the SAR at the beginning of 3 lower (0.8 mW/g) than SAR	of the limit (1.6
1)	The proo mea The mW Plea	Channel 149 157 165 e exact method of cess by the DASY asurement proces a SAR measured a //g), thus testing a	5745 5785 5825 extrapolation is '4 system can b is. at the middle ch it low & high cha nts for the detai	1g (mW/g) 0.091 Measured SAR x 10^(e scaled up by the Power annel for this configuration annel is optional. iled measurement data	(dB) 0.000 (-drift/10). The SAF wer drift to determin ation is at least 3 df	1g (mW/g) 0.091 R reported at the end of the more the SAR at the beginning of	of the limit (1.6

8.3.3 SECONDARY LANDSCAPE (HOST DEVICE - X60)

	802.11a				
	002.114				
				Power Drift	Extrapolated ¹⁾ SAP
	Channel	f (MHz)	Measured SAR	Power Drift (dB)	Extrapolated ¹⁾ SAR
	Channel 149	f (MHz) 5745	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
					-
	149	5745	1g (mW/g)	(dB)	1g (mW/g)
Notes:	149 157	5745 5785	1g (mW/g)	(dB)	1g (mW/g)
Notes: 1)	149 157 165	5745 5785 5825	1g (mW/g) 0.104	(dB) -0.212	1g (mW/g)
	149 157 165 The exact method of process by the DAS [*]	5745 5785 5825 extrapolation is Y4 system can b	1g (mW/g) 0.104	(dB) -0.212 (-drift/10). The SAF	1g (mW/g) 0.109
1)	149 157 165 The exact method of process by the DAS' measurement proces	5745 5785 5825 extrapolation is Y4 system can b ss.	1g (mW/g) 0.104 a Measured SAR x 10^(be scaled up by the Power	(dB) -0.212 (-drift/10). The SAF wer drift to determine	1g (mW/g) 0.109 R reported at the end of the me the SAR at the beginning of
	149 157 165 The exact method of process by the DAS' measurement proces The SAR measured	5745 5785 5825 extrapolation is Y4 system can b ss. at the middle ch	1g (mW/g) 0.104 a Measured SAR x 10^(be scaled up by the Power annel for this configuration	(dB) -0.212 (-drift/10). The SAF wer drift to determine	1g (mW/g) 0.109 R reported at the end of the n
,	149 157 165 The exact method of process by the DAS' measurement proces The SAR measured mW/g), thus testing a	5745 5785 5825 extrapolation is Y4 system can b ss. at the middle ch at low & high cha	1g (mW/g) 0.104 Measured SAR x 10^(be scaled up by the Power nannel for this configuration annel is optional.	(dB) -0.212 (-drift/10). The SAF wer drift to determine ation is at least 3 df	1g (mW/g) 0.109 R reported at the end of the me the SAR at the beginning of

8.3.4 PRIMARY PORTRAIT (HOST DEVICE - X61)

	802.11a					
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
						1
	149	5745				
	157	5785	0.119	0.000	0.119	
Notes						
Notes: 1)	157 165 The exact method o	5785 5825 f extrapolation is	0.119 Measured SAR x 10 [^] (0.000 -drift/10). The SAF	0.119 R reported at the end of the m	
	157 165 The exact method o process by the DAS	5785 5825 f extrapolation is Y4 system can b	0.119 Measured SAR x 10 [^] (0.000 -drift/10). The SAF	0.119	
	157 165 The exact method o process by the DAS measurement proce	5785 5825 f extrapolation is Y4 system can b ss. at the middle cha	0.119 Measured SAR x 10 ⁴ (e scaled up by the Pov annel for this configura	0.000 -drift/10). The SAF ver drift to determin	0.119 R reported at the end of the m	of the

8.3.5 SECONDARY PORTRAIT (HOST DEVICE - X61)

This position is skipped since SAR values are too low.

Notes: 1) The exact method of extrapolation is Measured SAR x 10 ^A (-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. 2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional. 3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.		
 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional. Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 		
 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional. Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 		
 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional. Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 		
 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional. Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 		
 process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process. 2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional. 3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 		
mW/g), thus testing at low & high channel is optional.Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.	1)	process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the
, , , , , , , , , , , , , , , , , , , ,	2)	
	3) 4)	

8.3.6 LAP HELD – MAIN ANTENNA (HOST DEVICE - X61)

	802.11a]
		f (MHz)	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR	
	802.11a Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	Channel 149	5745	1g (mW/g)	(dB)	1g (mW/g)	
	Channel 149 157	5745 5785			•	
	Channel 149	5745	1g (mW/g)	(dB)	1g (mW/g)	
tes:	Channel 149 157	5745 5785	1g (mW/g)	(dB)	1g (mW/g)	
ites: 1)	Channel 149 157 165 The exact method of	5745 5785 5825 extrapolation is	1g (mW/g) 0.145 Measured SAR x 10 ⁴	(dB) 0.000 (-drift/10). The SAF	1g (mW/g) 0.145 R reported at the end of the m	
	Channel 149 157 165 The exact method of process by the DASY	5745 5785 5825 extrapolation is Y4 system can b	1g (mW/g) 0.145 Measured SAR x 10 ⁴	(dB) 0.000 (-drift/10). The SAF	1g (mW/g) 0.145	
,	Channel 149 157 165 The exact method of process by the DASY measurement process	5745 5785 5825 extrapolation is Y4 system can b ss.	1g (mW/g) 0.145 Measured SAR x 10 ^A e scaled up by the Port	(dB) 0.000 (-drift/10). The SAF wer drift to determin	1g (mW/g) 0.145 R reported at the end of the more the SAR at the beginning of	of the
	Channel 149 157 165 The exact method of process by the DASY measurement process	5745 5785 5825 extrapolation is Y4 system can b ss. at the middle ch	1g (mW/g) 0.145 Measured SAR x 10 ^A e scaled up by the Por annel for this configura	(dB) 0.000 (-drift/10). The SAF wer drift to determin	1g (mW/g) 0.145 R reported at the end of the m	of the

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.3.7 LAP HELD – MAIN ANTENNA (HOST DEVICE - X60)

	802.11a]
		f (MH-)	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR	Ī
	802.11a Channel	f (MHz)			Extrapolated ¹⁾ SAR 1q (mW/q)	
		f (MHz) 5745	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	Channel				-	
	Channel 149 157 165	5745	1g (mW/g)	(dB)	1g (mW/g)	
	Channel 149 157	5745 5785	1g (mW/g)	(dB)	1g (mW/g)	
es:	Channel 149 157 165	5745 5785 5825	1g (mW/g) 0.169	(dB) -0.129	1g (mW/g) 0.174	
	Channel 149 157 165 157	5745 5785 5825 5785	1g (mW/g) 0.169 0.194	(dB) -0.129 -0.148	1g (mW/g) 0.174	neasurem
1) T	Channel 149 157 165 157 ⁴⁾ The exact method of process by the DASY	5745 5785 5825 5785 extrapolation is Y4 system can b	1g (mW/g) 0.169 0.194	(dB) -0.129 -0.148 (-drift/10). The SAI	1g (mW/g) 0.174 0.201	
1) T F r	Channel 149 157 165 157 ⁴⁾ The exact method of process by the DASY measurement process	5745 5785 5825 5785 extrapolation is Y4 system can b ss.	1g (mW/g) 0.169 0.194 Measured SAR x 10 ^A be scaled up by the Port	(dB) -0.129 -0.148 (-drift/10). The SAI wer drift to determin	1g (mW/g) 0.174 0.201 R reported at the end of the more the SAR at the beginning of	of the
r 2) T	Channel 149 157 165 157 ⁴⁾ The exact method of process by the DASY measurement process	5745 5785 5825 5785 • extrapolation is Y4 system can b ss. at the middle ch	1g (mW/g) 0.169 0.194 Measured SAR x 10 ^A be scaled up by the Portannel for this configuration	(dB) -0.129 -0.148 (-drift/10). The SAI wer drift to determin	1g (mW/g) 0.174 0.201 R reported at the end of the m	of the

4) Collocation with Bluetooth module.

8.3.8 LAP HELD – AUX ANTENNA (HOST DEVICE - X61)

	802 11a					
	802.11a Channel	f (MHz)	Measured SAR		Extrapolated ¹⁾ SAR 1a (mW/a)]
		f (MHz) 5745	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	Channel					
	Channel 149	5745	1g (mW/g)	(dB)	1g (mW/g)	
lotes:	Channel 149 157 165	5745 5785 5825	1g (mW/g) 0.120	(dB) 0.000	1g (mW/g) 0.120	
lotes: 1)	Channel 149 157 165 The exact method of process by the DASY	5745 5785 5825 extrapolation is (4 system can b	1g (mW/g) 0.120	(dB) 0.000 (-drift/10). The SAF	1g (mW/g)	
	Channel 149 157 165 The exact method of process by the DASY measurement process	5745 5785 5825 extrapolation is (4 system can b ss. at the middle ch	1g (mW/g) 0.120 a Measured SAR x 10^(be scaled up by the Power annel for this configuration	(dB) 0.000 (-drift/10). The SAF wer drift to determin	1g (mW/g) 0.120 R reported at the end of the m	of the

9 MEASURMENT UNCERTAINTY

9.1 MEASURMENT UNCERTAINTY FOR 300 MHz - 3000 MHz

Uncertainty component		Probe Dist.	Div.	Ci(1r)	Ci (10c)	Std. U	Std. Unc.(±%)		
Uncertainty component	Tol. (±%)		Div.	Ci (1g)	Ci (10g)	Ui (1g)	Ui(10g)		
Measurement System									
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80		
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92		
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92		
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58		
Linearity	4.70	R	1.732	1	1	2.71	2.71		
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58		
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00		
Response Time	0.80	R	1.732	1	1	0.46	0.46		
Integration Time	2.60	R	1.732	1	1	1.50	1.50		
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92		
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00		
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23		
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67		
Extrapolation, interpolation, and integration algorithms for									
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25		
Test sample Related									
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10		
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60		
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89		
Phantom and Tissue Parameters									
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31		
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24		
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70		
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41		
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62		
Combined Standard Uncertainty	RSS					11.44	10.49		
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98		
Notesfor table	-						•		
1. Tol tolerance in influence quaitity									
2. N - Nomal									
3. R - Rectangular									
4. Div Divisor used to obtain standard uncertainty									

5. Ci - is te sensitivity coefficient

9.2 MEASURMENT UNCERTAINTY 3 GHz – 6 GHz

Uncertainty component		Probe Dist.	Div	Ci (1g)	Ci (10cr)	Std. Unc.(±%)	
Uncertainty component	Tol. (±%)		Div.		Ci (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.66	10.73
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46
Notesfor table 1. Tol tolerance in influence quaitity	•						

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

10 EQUIPMENT LIST AND CALIBRATION

Name of Equipment	Manufacturer	Tymo/Model	Serial Number	Cal. Due date			
Name of Equipment	Wanuacturer	Type/Model	Serial Number	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A		l	N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535		I	N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041		I	N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261		I	N/A	
SAM Phantom (SAM1)	SPEAG	TP-1185	QD000P40CA		I	N/A	
SAM Phantom (SAM2)	SPEAG	TP-1015	N/A		I	N/A	
Electronic Probe kit	HP	85070C	N/A		I	N/A	
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	2	14	2008	
E-Field Probe	SPEAG	EX3DV4	3552	5	30	2007	
Thermometer	ERTCO	639-1S	1718	11	7	2007	
Data Acquisition Electronics	SPEAG	DAE3 V1	427	11	16	2007	
System Validation Dipole	SPEAG	D2450V2	706	4	27	2008	
System Validation Dipole	SPEAG	D5GHzV2	1003	11	22	2007	
Signal Generator	R&S	SMP 04	DE34210	10	9	2007	
Power Meter	HP	438A	3513U04320	9	4	2007	
Amplifier	Mini-Circuits	ZVE-8G	360		I	N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5		I	N/A	
Simulating Liquid	CCS	M2450	N/A	Withir	n 24 hi	rs of first test	
Simulating Liquid	SPEAG	M5200-5800	N/A	Withir	ו 24 h	rs of first test	

11 PHOTOS

WLAN

ThinkPad X61 Tablet Series

Ant Location ThinkPad X61 Tablet Series

ThinkPad X60 Tablet Series

DUT Location

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	14
2-1	SAR Test Plots – 2.4GHz	11
2-2	SAR Test Plots – 5.2GHz	7
2-3	SAR Test Plots – 5.8GHz	7
3	Certificate of E-Field Probe - EXDV4SN3552	9
4	Certificate of System Validation Dipole - D2450 SN:706	9
5	Certificate of System Validation Dipole - D5GHzV2 SN:1003	10

END OF REPORT