

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Class II Permissive Change pursuant to FCC Part 15, Subpart C (15.247) DTS Specifications, FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 5 (LELEAN Devices) on the Intel Corporation Model: WM3B2915ABG

FCC ID: UPN:	PD9FJ3B2915ABG 1000M-FJ2915
GRANTEE:	Intel Corporation 13280 Evening Creek Drive San Diego, CA 92128
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086
REPORT DATE:	August 8, 2005

FINAL TEST DATE:

July 30 and August 3, 2005

AUTHORIZED SIGNATORY:

mar

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: WM3B2915ABG

Manufacturer:

Intel Corporation 13280 Evening Creek Drive San Diego, CA 92128

Tested to applicable standards:

RSS-210, Issue 5, November 2001 (Low Power License-Exempt Radiocommunication Devices) FCC Part 15.247 (DTS) FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC 4549-4 Dated July 19, 2003

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4:2003 as detailed in section 5.3 of RSS-210, Issue 5); and that the equipment performed in accordance with the data submitted in this report.

Signature Name Title Company Address

Juan mar

Juan Martinez
Senior EMC Engineer
Elliott Laboratories Inc.
684 W. Maude Ave
Sunnyvale, CA 94086
USA

Date: August 8, 2005

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
SUMMARY OF RESULTS	6
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	9
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	10
EUT OPERATION DURING TESTING	10
ANTENNA REQUIREMENTS	10
PROPOSED MODIFICATION DETAILS	10
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	13
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	15
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	16
FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
RS-210 6.2.2(Q1) OUTPUT POWER LIMITS	
RSS 210 (O) AND FCC 15.247 TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS	
RS 210 (Q1) AND FCC 15E TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS	19
RS 210 TABLE 3 RECEIVE MODE SPURIOUS RADIATED EMISSIONS LIMITS	
FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS	
RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	.1
EXHIBIT 2: Test Data Log Sheets	.2
EXHIBIT 3: Test Configuration Photographs	
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: Advertising Literature	
EXHIBIT 11: RF Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model WM3B2915ABG pursuant to Subparts C and E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 5 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4:2003 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation model WM3B2915ABG and therefore apply only to the tested sample. The sample was selected and prepared by Robert Paxman of Intel Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with Subparts C and E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Measured Value	Comments	Result
15.247(a)	6.2.2(o)(b)	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (b) (3)	6.2.2(o)(b)	Output Power, 2400 - 2483.5 MHz (802.11b)	17.3 dBm (Peak)	Multi-point applications: Maximum permitted is 1Watt, with EIRP limited to 4 Watts.	Complies
15.247 (b) (3) 15.247 (b) (4) (i)	6.2.2(o)(b)	Output Power, 2400 - 2483.5 MHz (802.11g)	24.2 dBm (Peak) 15.3 dBm (Avg) (Note 1)	Multi-point applications: Maximum permitted is 1Watt, with EIRP limited to 4 Watts.	Complies
15.247 (b) (3) 15.247 (b) (4) (i)	6.2.2(o)(b)	Output Power, 5725 - 5850 MHz	17.7dBm (Avg), 23.16 dBm (Peak); (Note 1)	Multi-point applications: Maximum permitted is 1Watt, with EIRP limited to 4 Watts.	Complies
15.247(c) / 15.209		Radiated Spurious Emissions – 30MHz –26.5GHz	50.9dBuV/m @ 11651 MHz (- 3.1dB)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.247 (b) (5)		RF Exposure Requirements	MPE Calculation		
15.203		RF Connector	Hirose connector (Antennas will be installed inside laptops)	Standard rf connectors permitted for professionally installed systems	Complies

Note 1: Original report states average and peak power. Due to the inconsistency in the measured peak power (Using peak power meter and UNII power measurement method), the average power was measured and matched it with the original powers that were reported in the original application. Then measured the peak power and recorded the results.

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result	
Operation in t	he 5.15 – 5.25 GI	Hz Band	•		
15.407 (d)		As the device operates in the $5.15 - 5.25$ GHz band the antenna must be integral to the device.	Antenna Gain = 4.31 dBi The antenna is integral	COMPLIES	
15.407(a) (1)	6.2.2 q1 (i)	Output Power	10.8dBm (Avg), 16.6dBm (Peak); Note 1	COMPLIES	
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	48.7dBuV/m @ 10359 MHz (-5.3dB)	COMPLIES	
density of spur	rious emissions ir		is not restricted to indoor use only, therefore were limited to the power spectral limit of -27		
		Maximum Antenna Gain	Antenna Gain = 4.2 dBi The antenna is integral	COMPLIES	
15.407(a) (2)	6.2.2 q1 (ii)	Output Power	16.6dBm (Avg), 21.2dBm (Peak); Note 1	COMPLIES	
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	48.7dBuV/m @ 10359 MHz (-5.3dB)	COMPLIES	
General requir	General requirements for all bands				
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11	COMPLIES	

Note 1: Original report states average and peak power. Due to the inconsistency in the measured peak power (Using peak power meter and UNII power measurement method), the average power was measured and matched it with the original powers that were reported in the original application. Then measured the peak power and recorded the results.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model WM3B2915ABG is a 802.11/ab/g wireless that is designed to connect to PC. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, treated as tabletop equipment during testing to simulate the end-user environment. The EUT is powered via the PC.

The sample was received on July 30, 2005 and tested on July 30 and August 3, 2005. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Intel	WM3B2915ABG	802.11a/b/g card	N/A	PD9FJ3B2915ABG

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	Pavilian a300n	Computer	MXK3391864	-
Hewlett Packard	M042KG	Mouse	030870136	-
Hewlett Packard	5183	Keyboard	BF3339165	E5XKB5183
Samsung	151S R	Monitor	GG15H4JTB04858E	-

No equipment was used as remote support equipment for emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Port Connected To Cable(s)			
TOIL	Connected 10	Description	Shielded or Unshielded	Length(m)
Main Ant	Antenna	Coax	Shielded	0.25

EUT OPERATION DURING TESTING

The EUT was transmitting continuously on either the low, middle, and high.

ANTENNA REQUIREMENTS

As the device is intended to operate in the 5.15 - 5.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The antenna for the device is an integral antenna to the end product.

PROPOSED MODIFICATION DETAILS

The only modification proposed is the addition of a new antenna. Refer to the exhibit "FCC Class II Letter".

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on July 30 and August 3, 2005 at the Elliott Laboratories Anechoic Chamber# 4 located at 41039 Boyce Road, Fremont, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power retwork through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and **peak** power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \text{ microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a)and RSS 210 (o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watts (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watts (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watts (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RSS 210 (o) AND FCC 15.247 TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest inband signal level (30dB if the power is measured using the sample detector/power averaging method).

RS 210 (q1) and FCC 15E TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted bands above 1GHz.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm (note 1)	68.3 dBuV/m
5725 - 5825	-27 dBm (note 2)	68.3 dBuV/m
	-17 dBm (note 3)	78.3 dBuV/m

Note 1: If operation is restricted to indoor use only then emissions in the band 5.15 – 5.25 GHz must meet the power spectral density limits for the intentional signals detailed in RSS 210 and FCC Subpart E for devices operating in the 5.15 – 5.25 GHz band.
Note 2: Applies to spurious signals separated by more than 10 MHz from the allocated band.
Note 3: Applies to spurious signals within 10 MHz of the allocated band.

_

RS 210 Table 3 RECEIVE MODE SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions from the receiver as detailed in table 3of RSS 210:

Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
100	40
150	43.5
200	46.0
500	54.0
1000	60.0
	(uV/m @ 3m) 100 150 200 500

FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000 5.000 to 30.000	46.0 50.0	56.0 60.0

RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

Frequency Range	Limit	Limit
(MHz)	(uV)	(dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

1 Page

, 01-Aug-05 Engineer: Mehran Birgani <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard Miteq

Description Horn Antenna, D. Ridge 1-18GHz EMC Spectrum Analyzer, 9KHz-26.5GHz High Pass filter, 8.2GHz Preamplifier, 1-18GHz

Model #	Asset #	<u>Cal Due</u>
3115	868	20-Apr-06
8593EM	1141	10-Jun-06
P/N 84300-80039 (84125C)	1392	12-May-06
AFS44	1715	21-Dec-05

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 60672 31 Pages

EMC Test Data

Client:	Intel Corporation	Job Number:	160632
	WM3B2915ABG Permissive Change w/	T-Log Number:	
	Sony Antenna	Account Manager:	
Contact:	Robert Paxman		
Emissions Spec:	FCC 15.247 & 15.401	Class:	-
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Intel Corporation

Model

WM3B2915ABG Permissive Change w/ Sony Antenna

Date of Last Test: 7/29/2005

	line	4					
El C	10	J			EM	C Test Data	
		Intel Corporation			Job Number:		
	Model:	WM3B2915ABG	Permiss	ve Change w/	T-Log Number:		
	0	Sony Antenna			Account Manager:	Nesha Lambert	
Contact: Robert Paxman Emissions Spec: FCC 15.247 & 15.401			Class:				
	ty Spec:		0.401		Environment:	-	
EUT INFORMATION							
				General Descriptior			
		•		3	to PC. Normally, the EUT v	-	
1 0				e, treated as tabletop equ	ipment during testing to sir	nulate the end-user	
environment.	I ne EUI	is powered via th	e PC.				
			E	quipment Under Te	st		
Manufactur	rer	Model		Description	Serial Number	FCC ID	
Intel		WM3B2915A	BG	802.11a/b/g card		PD9FJ3B2915ABG	
Other EUT Details IC ID: 1000M-FJ2915							
The EUT anter The antenna is 2412 - 2462 M 5150 - 5350 M 5725 - 5825 M	integral Hz, Gain Hz, Gain	= 2.1 dBi = 4.3 dBi	15.001	EUT Antenna			
0.20 0020							
The EUT does	s not hav	e an enclosure as	it is des	EUT Enclosure igned to be installed within	n the enclosure of a host co	omputer.	
				Modification History	I		
Mod. #	Mod. # Test Date Modification						
1							
Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.							

EMC Test Data

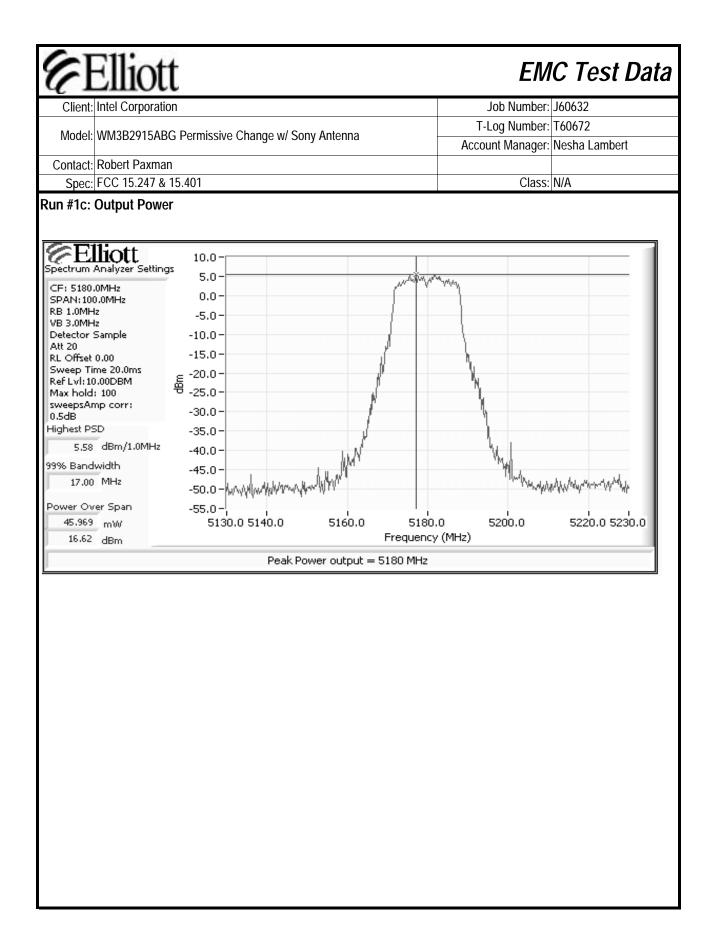
Client:	Intel Corporation	Job Number:	J60632
Model:	WM3B2915ABG Permissive Change w/	T-Log Number:	T60672
	Sony Antenna	Account Manager:	Nesha Lambert
Contact:	Robert Paxman		
Emissions Spec:	FCC 15.247 & 15.401	Class:	-
Immunity Spec:	-	Environment:	-

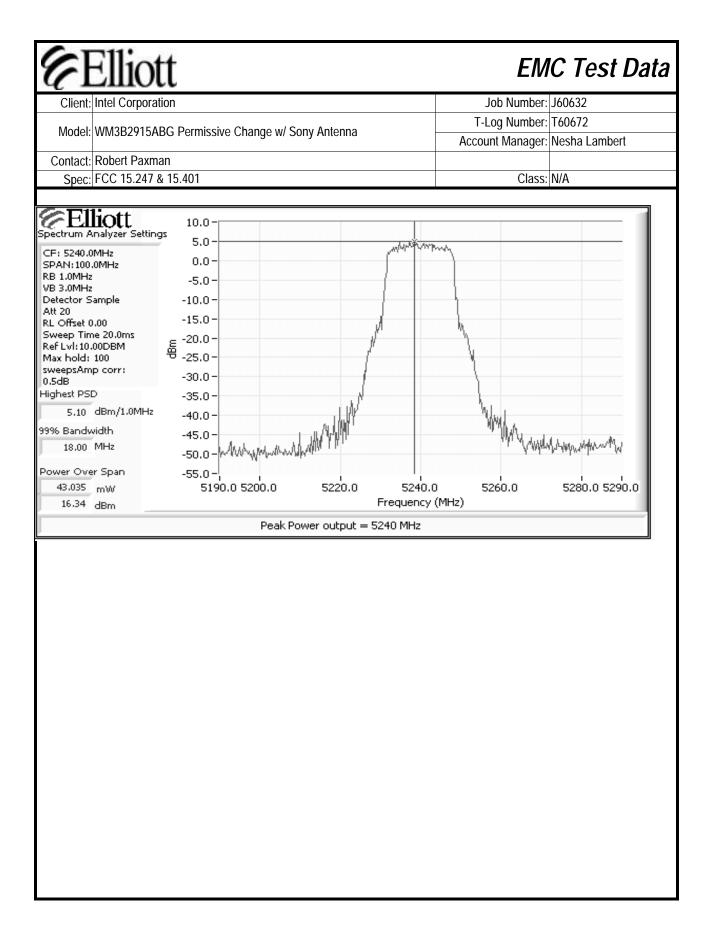
Test Configuration #1

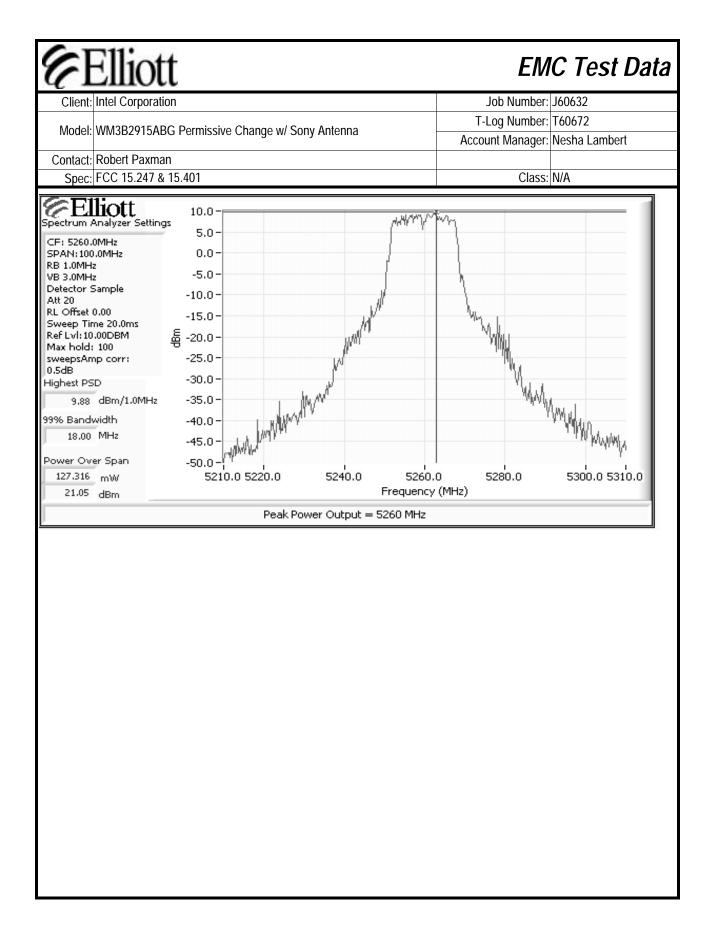
Local Support Equipment

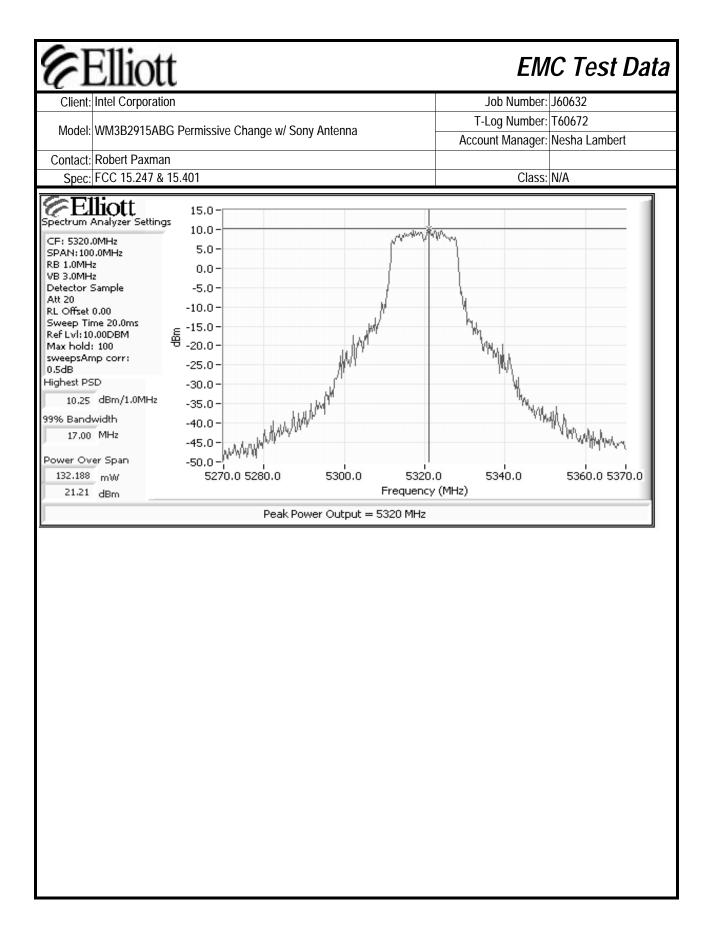
Manufacturer	Model	Description	Serial Number	FCC ID	
Hewlett Packard	Pavilian a300n	Computer	MXK3391864	-	
Hewlett Packard	M042KG	Mouse	030870136	-	
Hewlett Packard	5183	Keyboard	BF3339165	E5XKB5183	
Samsung	151S R	Monitor	GG15H4JTB04858E	-	

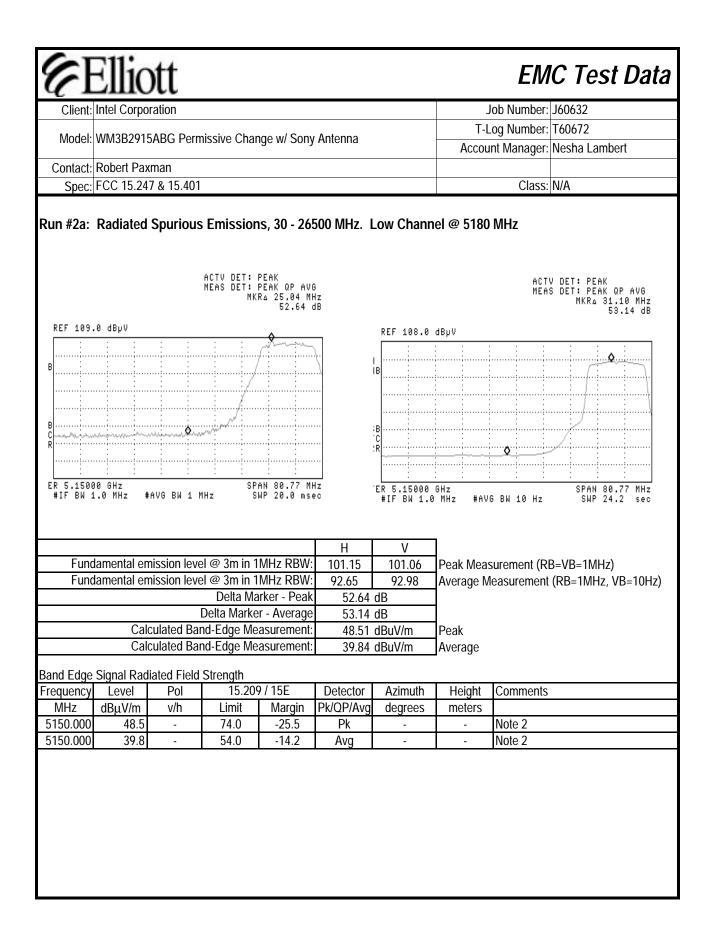
Remote Support Equipment

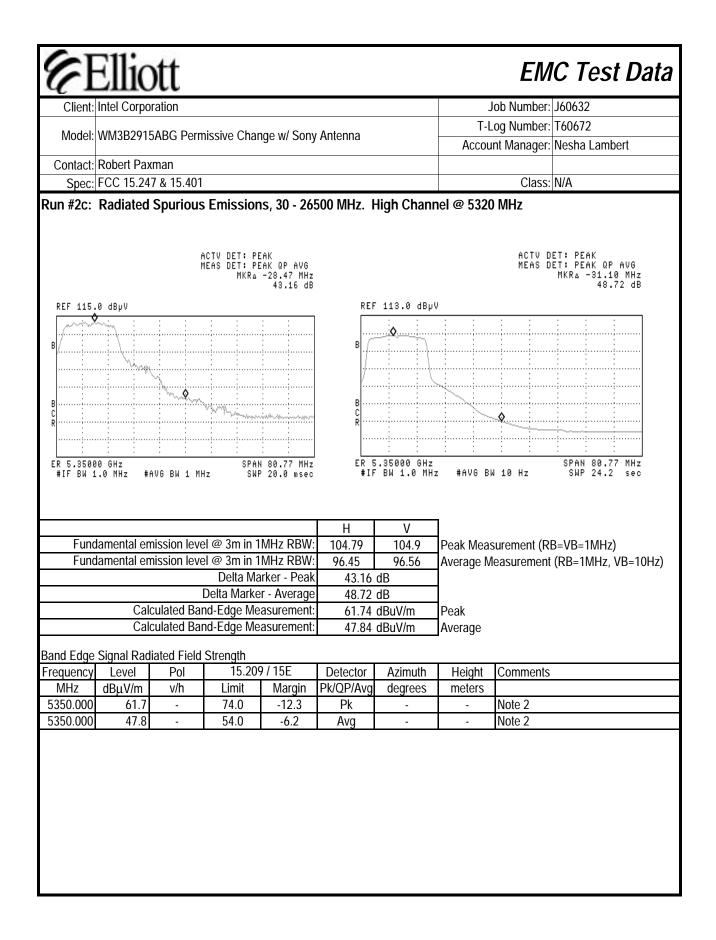

Manufacturer Model Description Serial Number FCC	
	F(:(:))
None	

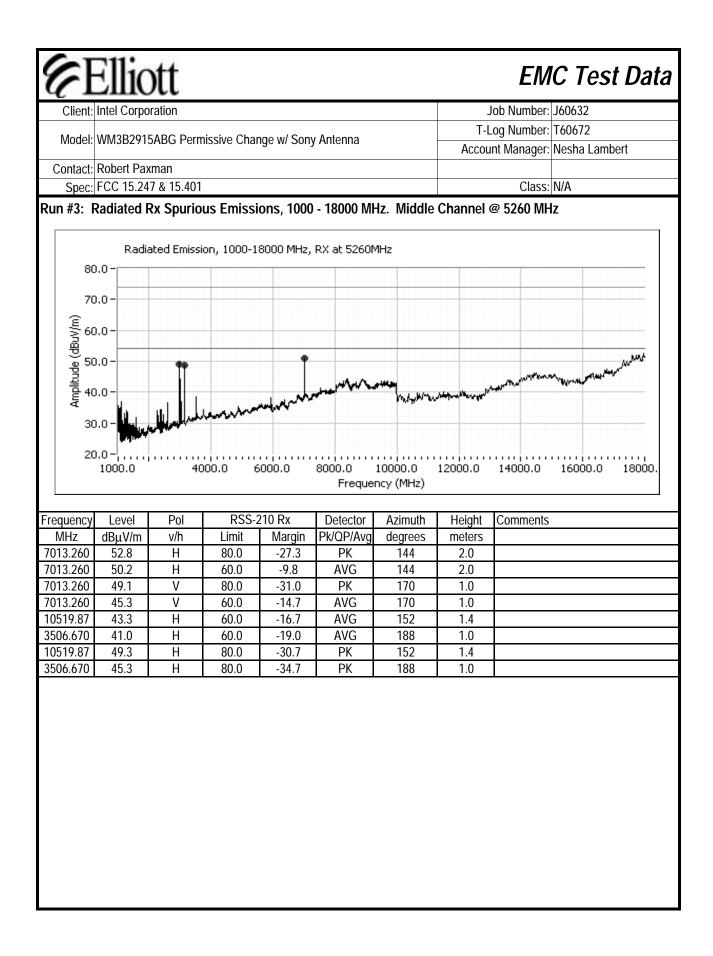

EUT Operation During Emissions Tests

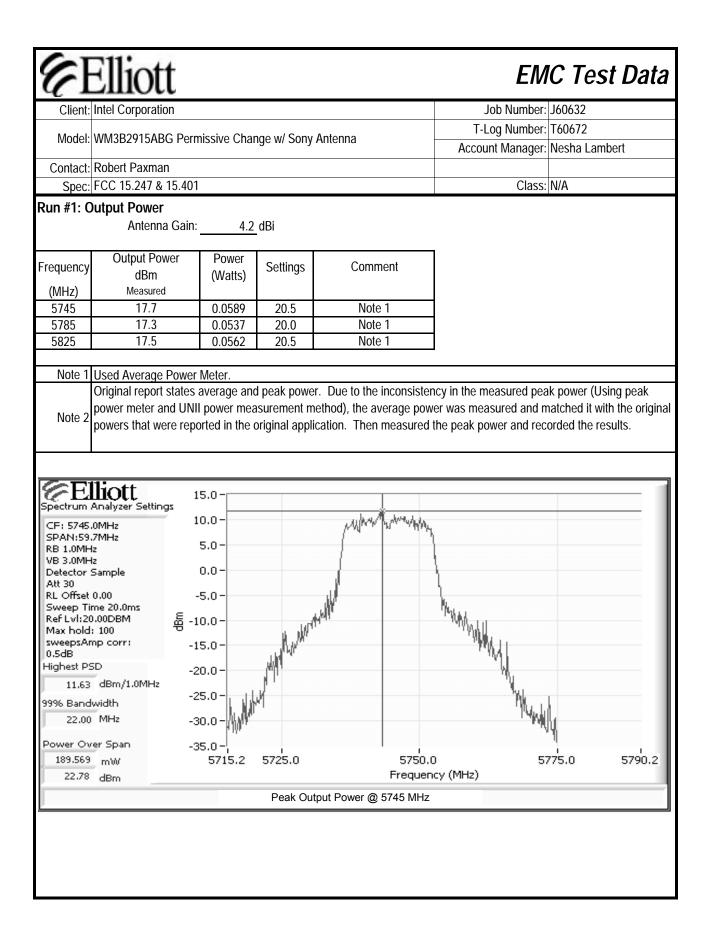

The EUT was transmitting continuously on either the low, middle, and high.

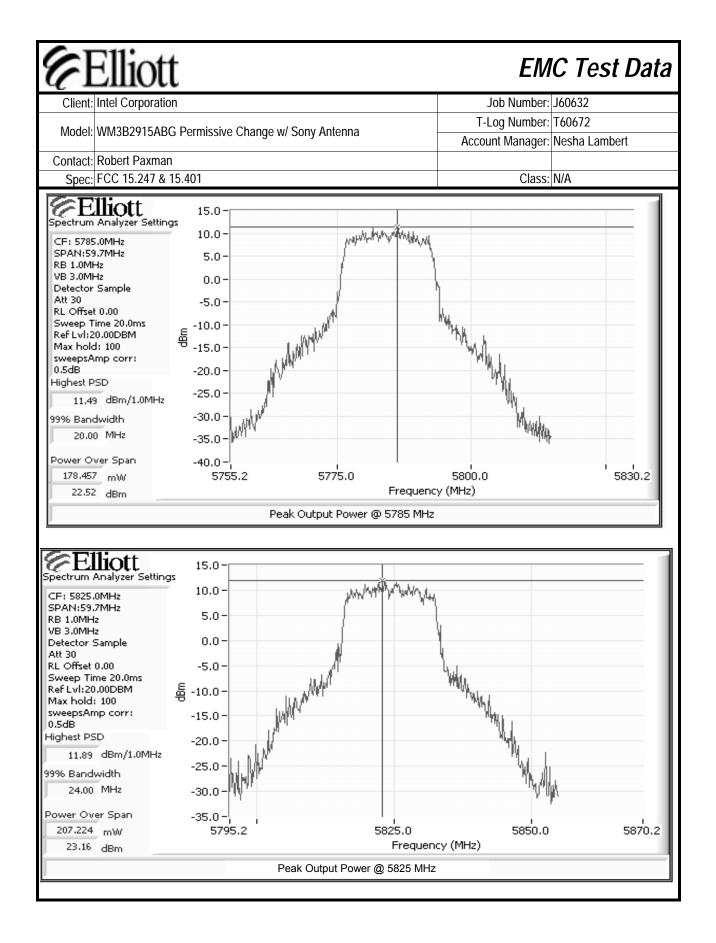

Client: Intel Corp	poration		Job Number: J60632		
Model: WM3B2915ABG Permissive Change w/ Sony Antenna				T-Log Number: T60672 Account Manager: Nesha Lar	
Contact: Robert Pa	axman	Accour	it manager:	Nesna Lamo	
Spec: FCC 15.2		Class: N/A		N/A	
	Radia	ited Emissior	IS		
st Specifics Objective	The objective of this test session is specification listed above.	to perform final qualific	ation testing	of the EUT v	with respect to
0	: 8/3/2005 : Rafael varelas & Jmartinez : Fremont Chamber #4	: 1 : None : 120V/60Hz			
radiated emission	as testing the measurement antenna	was located 3 meters fr	om the FUT		sting.
radiated emissior	ns testing the measurement antenna ons: Temperature: Rel. Humidity:	was located 3 meters fr 18 °C 41 %	om the EUT.		
nbient Conditi	ons: Temperature: Rel. Humidity:	18 °C 41 %			-
nbient Condition	ons: Temperature: Rel. Humidity: Test Performed	18 °C 41 % Limit	Pass / Fail		/ Margin
nbient Conditi	ons: Temperature: Rel. Humidity:	18 °C 41 %		Refer 48.7dBuV/r	-


- T	711.	312					
6	Ellic	ott			EM	IC Test Data	
Client: Intel Corporation					Job Number:	J60632	
Model: WM3R2015ARC Dermissive Change w/ Servy Antonna			T-	Log Number:	T60672		
Model: WM3B2915ABG Permissive Change w/ Sony Antenna				Ассон	unt Manager:	Nesha Lambert	
Contact: Robert Paxman							
Spec: FCC 15.247 & 15.401					Class:	N/A	
Dum #1a.							
Rull # Id:	Output Po						
		4.3 dBi					
	Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	EIRP (W)]	
	36	5180	10.9	0.012	0.033	Pwr setting = 9.5	
	51	5240	10.8	0.012	0.032	Pwr setting = 10.5	
	52	5260	16.6	0.046	0.123	Pwr setting = 16.0	
	64	5320	16.4	0.044	0.117	Pwr setting = 18.0	
Note 1		age Power Meter.	d peak power. Due to th	o inconsistancy in the n	accurad par	k nower (Lising neak	
						natched it with the original	
Note 2			original application. The				
	powers and						
-							
Run #1b:	Output Po	ower					
Run #1b:	Output Po	ower 4.3 dBi					
Run #1b:	Output Po						
Run #1b:	Output Po		Output Power (dBm)	Output Power (W)	EIRP (W)]	
Run #1b:		4.3 dBi Frequency (MHz) 5180	Output Power (dBm) 16.9	Output Power (W) 0.049	EIRP (W) 0.132	Pwr setting = 9.5	
Run #1b:	Channel	4.3 dBi Frequency (MHz) 5180 5240	16.9 16.6	0.049 0.046		Pwr setting = 9.5 Pwr setting = 10.5	
Run #1b:	Channel 36 51 52	4.3 dBi Frequency (MHz) 5180 5240 5260	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
Run #1b:	Channel 36 51	4.3 dBi Frequency (MHz) 5180 5240	16.9 16.6	0.049 0.046	0.132 0.123	Pwr setting = 9.5 Pwr setting = 10.5	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	
	Channel 36 51 52 64	4.3 dBi Frequency (MHz) 5180 5240 5260 5320	16.9 16.6 21.1	0.049 0.046 0.129	0.132 0.123 0.347	Pwr setting = 9.5 Pwr setting = 10.5 Pwr setting = 16.0	



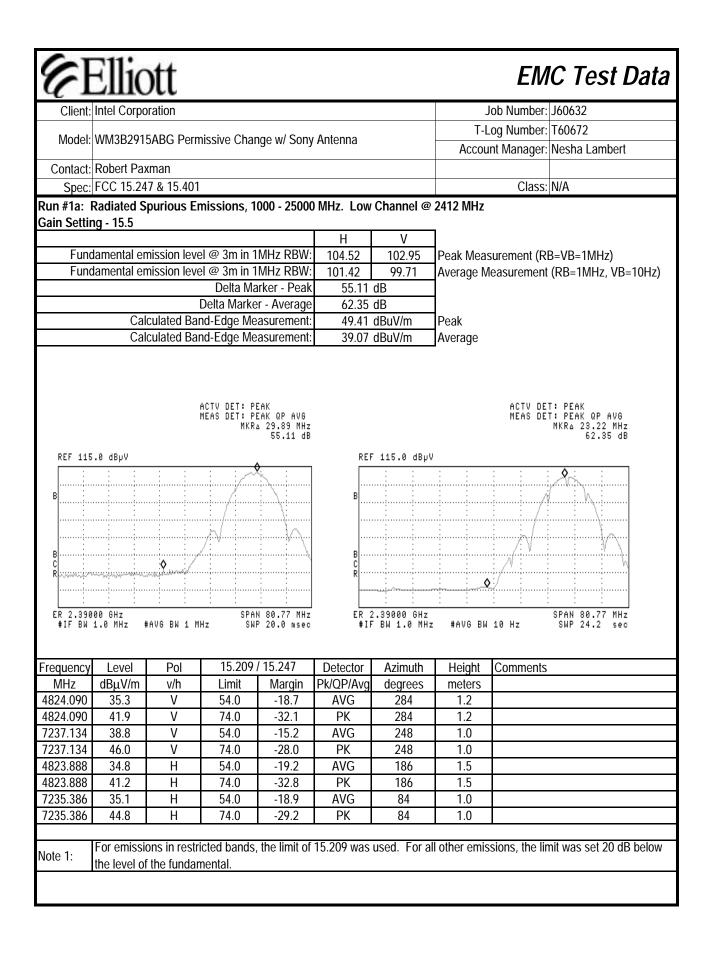


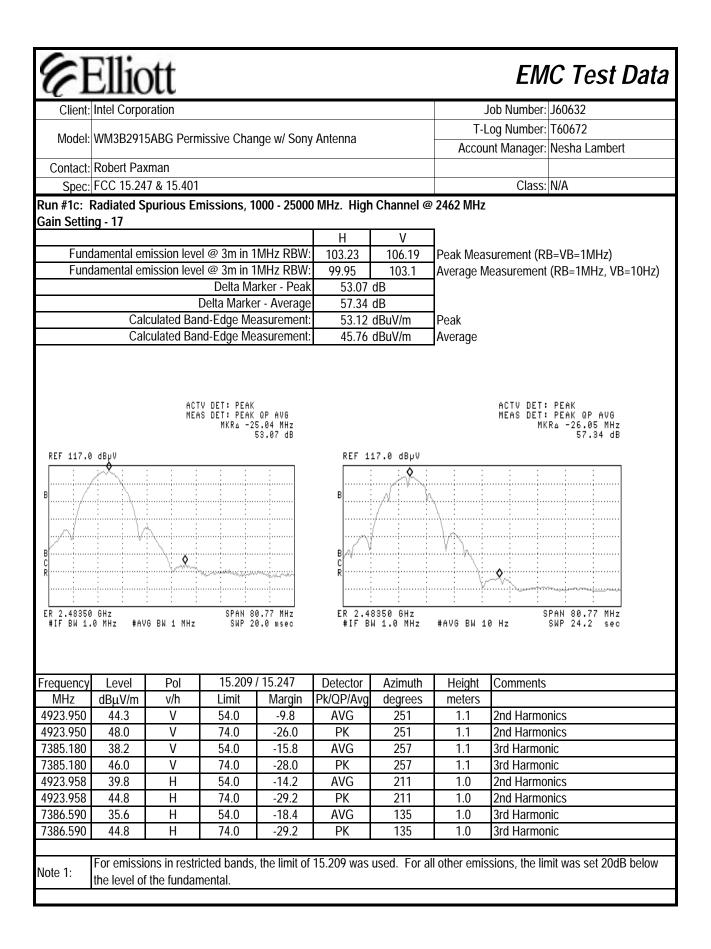

Contact: Spec: Dther Spur Frequency MHz	WM3B2915 Robert Paxi FCC 15.247	JARC Dorr						Job Number:	
Contact: Spec: Other Spur requency MHz	Robert Pax		nissive Chai	nae w/ Son	v Antenna			og Number:	
Spec: Other Spur requency MHz				J			Accou	int Manager:	Nesha Lamber
Other Spur Frequency MHz	FCC 15 24								
requency MHz	100101211	7 & 15.401						Class:	N/A
MHz	ious Radiate							-	
		Pol		9/15E	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
10359.96	43.5	V	54.0	-10.5	AVG	154	1.3		
10359.96	50.1	<u>V</u>	74.0	-23.9	PK	154	1.3		
10359.89	48.7	<u>H</u>	54.0	-5.3	AVG	158	1.0	-	
10359.89	53.0	<u>H</u>	74.0	-21.0	PK	158	1.0	-	
15538.68	40.5	<u>H</u>	54.0	-13.5	AVG PK	100	1.0		
15538.68 15540.63	53.1 40.6	H V	74.0 54.0	-20.9 -13.4	AVG	100 290	1.0 1.0		
15540.63	40.8 52.3	V	54.0 74.0	-13.4	PK	290	1.0		
10040.05	JZ.3	V	74.0	-Z1.7	PK	290	1.0		
ote 2:	27dBm/MH Band-edge marker mea	measuren	nent calcula	ted from the	e fundamenta	l field streng	th (peak or	average) mir	nus the band ed
Note 2: Run #2b:	Band-edge marker mea	measuren asurement	nent calcula		e fundamenta 500 MHz. C				nus the band ed
Run #2b:	Band-edge marker mea Radiated	measuren asurement Spuriou:	nent calcula						nus the band ed
Run #2b: Dther Spur	Band-edge marker mea Radiated ious Radiate	measuren asurement Spuriou:	nent calcula s Emission						nus the band ed
Run #2b: Other Spur	Band-edge marker mea Radiated ious Radiate	measuren asurement Spuriou: ed Emissio	nent calcula s Emission	ns, 30 - 26	500 MHz. C	Channel @	5260 MHz	<u> </u>	nus the band ed
Run #2b: Dther Spur Trequency MHz 10639.93	Band-edge marker mea Radiated ious Radiate Level dBµV/m 40.2	measuren asurement Spurious ed Emissio Pol v/h V	s Emission ns: Limit 54.0	ns, 30 - 26 9 / 15E Margin -13.8	500 MHz. C Detector Pk/QP/Avg AVG	Channel @ Azimuth degrees 118	5260 MHz Height meters 2.0	<u> </u>	nus the band ed
Run #2b: Other Spur requency MHz 10639.93 10639.93	Band-edge marker mea Radiated ious Radiate Level dBµV/m 40.2 49.5	measuren asurement Spurious ed Emissio Pol v/h V V	s Emission ns: Limit 54.0 74.0	ns, 30 - 26 9 / 15E Margin -13.8 -24.5	500 MHz. C Detector Pk/QP/Avg AVG PK	Channel @ Azimuth degrees 118 118	5260 MHz Height meters 2.0 2.0	<u> </u>	nus the band ed
Run #2b: Other Spur requency MHz 10639.93 10639.93 15966.04	Band-edge marker mea Radiated ious Radiate Level dBµV/m 40.2 49.5 43.7	measuren asurement Spurious ed Emissio Pol v/h V V V V	s Emission ns: 15.20 Limit 54.0 74.0 54.0	9 / 15E Margin -13.8 -24.5 -10.3	500 MHz. C Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 118 120	5260 MHz Height meters 2.0 2.0 1.0	<u> </u>	nus the band ed
Run #2b: Other Spur requency MHz 10639.93 10639.93 15966.04 15966.04	Band-edge marker mea Radiated ious Radiate Level dBµV/m 40.2 49.5 43.7 56.8	measuren asurement Spurious ed Emissio Pol v/h V V V V V	s Emission ns: 15.20 Limit 54.0 74.0 54.0 74.0	9 / 15E Margin -13.8 -24.5 -10.3 -17.2	500 MHz. C Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 118 118 120 120	5260 MHz Height meters 2.0 2.0 1.0 1.0	<u> </u>	nus the band ed
Run #2b: Dther Spur Trequency MHz 10639.93 10639.93 15966.04 15966.04 10639.89	Band-edge marker mea Radiated ious Radiate Level dBµV/m 40.2 49.5 43.7 56.8 41.4	measurem asurement Spurious ed Emissio Pol v/h V V V V V V V V H	s Emission ns: 15.20 Limit 54.0 74.0 54.0 74.0 54.0	9 / 15E Margin -13.8 -24.5 -10.3 -17.2 -12.6	500 MHz. C Detector Pk/QP/Avg AVG PK AVG PK AVG	Azimuth degrees 118 120 108	5260 MHz Height meters 2.0 2.0 1.0 1.0 1.0	<u> </u>	nus the band ed
Run #2b: Dther Spur Trequency MHz 10639.93 10639.93 15966.04 15966.04 10639.89 10639.89	Band-edge marker mea Radiated ious Radiated dBμV/m 40.2 49.5 43.7 56.8 41.4 50.1	measurem asurement Spurious ed Emissio Pol V/h V V V V V V V V H H	s Emission ns: 15.20 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	ns, 30 - 26 9 / 15E Margin -13.8 -24.5 -10.3 -17.2 -12.6 -23.9	500 MHz. C Detector Pk/QP/Avg AVG PK AVG PK AVG PK	Azimuth degrees 118 120 120 108	Height meters 2.0 2.0 1.0 1.0 1.0	<u> </u>	nus the band ed
Run #2b: Dther Spur Trequency MHz 10639.93 10639.93 15966.04 15966.04 10639.89	Band-edge marker mea Radiated ious Radiate Level dBµV/m 40.2 49.5 43.7 56.8 41.4	measurem asurement Spurious ed Emissio Pol v/h V V V V V V V V H	s Emission ns: 15.20 Limit 54.0 74.0 54.0 74.0 54.0	9 / 15E Margin -13.8 -24.5 -10.3 -17.2 -12.6	500 MHz. C Detector Pk/QP/Avg AVG PK AVG PK AVG	Azimuth degrees 118 120 108	5260 MHz Height meters 2.0 2.0 1.0 1.0 1.0	<u> </u>	nus the band ed



Account Manager: Nesha Lambert Ontact: Robert Paxman Spec: FCC 15.247 & 15.401 Class: N/A er Spurious Radiated Emissions: Detector Azimuth Height Comments uency Level Pol 15.209 / 15E Detector Azimuth Height Comments 1Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -12.6 AVG 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 41.	Wid3B2915ABG Permissive Change W/ Sony Antenna Account Manager: Nesha Lambert Account Manager: Nesha Lambert Account Manager: Nesha Lambert Spec: FCC 15.247 & 15.401 Class: N/A r Spurious Radiated Emissions: uency Level Pol 15.209 / 15E Detector Azimuth Height Comments IHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 66.04 56.8 V 74.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 56.0 H 74.0 -10.2 AVG 148 1.0 <tr< th=""><th>Model: WM3B2915ABG Permissive Change W/ Sony Antenna Account Manager: Nesha Lambert ontact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A er Spurious Radiated Emissions: Class: N/A quency Level Pol 15.209 / 15E Detector Azimuth Height Comments AHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.0000 339.93 40.2 V 54.0 -13.8 AVG 118 2.0 0.0000 339.93 49.5 V 74.0 -24.5 PK 118 2.0 0.0000 260.04 43.7 V 54.0 -10.3 AVG 120 1.0 0.0000 260.04 56.8 V 74.0 -12.6 AVG 108 1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 <td< th=""><th>Client</th><th>Intel Corpor</th><th>ation</th><th></th><th></th><th></th><th>,</th><th>Job Number:</th><th>J60632</th></td<></th></tr<>	Model: WM3B2915ABG Permissive Change W/ Sony Antenna Account Manager: Nesha Lambert ontact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A er Spurious Radiated Emissions: Class: N/A quency Level Pol 15.209 / 15E Detector Azimuth Height Comments AHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.0000 339.93 40.2 V 54.0 -13.8 AVG 118 2.0 0.0000 339.93 49.5 V 74.0 -24.5 PK 118 2.0 0.0000 260.04 43.7 V 54.0 -10.3 AVG 120 1.0 0.0000 260.04 56.8 V 74.0 -12.6 AVG 108 1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 <td< th=""><th>Client</th><th>Intel Corpor</th><th>ation</th><th></th><th></th><th></th><th>,</th><th>Job Number:</th><th>J60632</th></td<>	Client	Intel Corpor	ation				,	Job Number:	J60632
Account Manager: Nesha Lambert Account Manager: Nesha Lambert ontact: Robert Paxman Spec: FCC 15.247 & 15.401 cr Spurious Radiated Emissions: Class: uency Level Pol 15.209 / 15E Detector Azimuth Height Comments 1Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1:	Account Manager: Nesha Lambert Account Manager: Nesha Lambert Account Manager: Nesha Lambert Spec: FCC 15.247 & 15.401 Class: N/A r Spec: r Spurious Radiated Emissions: uency Level Pol 15.209 / 15E Detector Addiated Emissions: N/A Wency Level Pol 15.209 / 15E Jag.93 40.2 V 54.0 -13.8 AVG 118 2.0 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 1.0 66.04 56.8 V 74.0 -12.6 AVG 108 1.0 1.0 39.93 41.4 H 54.0 -10.2 39.89 50.1 H 74.0 -23.9 PK 108 1.0 1.0 1.0 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 11 For emissions in restric	Account Manager: Nesha Lambert Account Manager: Nesha Lambert Spec: FCC 15.247 & 15.401 Class: ref Spurious Radiated Emissions: Class: N/A quency Level Pol 15.209 / 15E Detector Azimuth Height Comments AHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Secondary 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 Secondary	Model	\///\/3R2015	ARC Dorn	nissiva Chai	nao w/ Son	Antonna	T-L	og Number:	T60672
Spec: FCC 15.247 & 15.401 Class: N/A er Spurious Radiated Emissions: pol 15.209 / 15E Detector Azimuth Height Comments 1Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -24.5 PK 120 1.0 39.89 41.4 H 54.0 -10.2 PK 120 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 56.0 H 74.0 -10.2 AVG 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other em	Spec: FCC 15.247 & 15.401 Class: N/A r Spurious Radiated Emissions: uency Level Pol 15.209 / 15E Detector Azimuth Height Comments IHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -24.5 PK 120 1.0 39.89 41.4 H 54.0 -10.2 PK 120 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used.	Spec: FCC 15.247 & 15.401 Class: N/A er Spurious Radiated Emissions: quency Level Pol 15.209 / 15E Detector Azimuth Height Comments AHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 2.0 266.04 43.7 V 54.0 -10.3 AVG 120 1.0 2.0 266.04 56.8 V 74.0 -12.6 AVG 108 1.0 2.0 39.89 50.1 H 74.0 -12.6 AVG 108 1.0 2.0 260.68 43.8 H 54.0 -10.2 AVG 148 1.0 2.0 260.68 56.0 H 74.0 -18.0 PK 148 1.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>y Antenna</td><td>Accou</td><td>int Manager:</td><td>Nesha Lambert</td></td<>						y Antenna	Accou	int Manager:	Nesha Lambert
er Spurious Radiated Emissions: juency Level Pol 15.209 / 15E Detector Azimuth Height Comments 1Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 61.68 56.0 H 74.0 -18.0 PK 148 1.0 11: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to -	r Spurious Radiated Emissions: uency Level Pol 15.209 / 15E Detector Azimuth Height Comments IHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). 2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band	er Spurious Radiated Emissions: quency Level Pol 15.209 / 15E Detector Azimuth Height Comments /Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters >39.93 40.2 V 54.0 -13.8 AVG 118 2.0 >39.93 49.5 V 74.0 -24.5 PK 118 2.0 >66.04 43.7 V 54.0 -10.3 AVG 120 1.0 >66.04 56.8 V 74.0 -17.2 PK 120 1.0 >66.04 56.8 V 74.0 -17.2 PK 120 1.0 >66.04 56.8 V 74.0 -17.2 PK 120 1.0 >39.89 50.1 H 74.0 -12.6 AVG 108 1.0 >60.68 43.8 H 54.0 -10.2 AVG 148 1.0 >60.68 56.0 H 74.0 -18.0 PK 148 1.									
uency Level Pol 15.209 / 15E Detector Azimuth Height Comments 1Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209	uency Level Pol 15.209 / 15E Detector Azimuth Height Comments IHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209	quency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 339.93 40.2 V 54.0 -13.8 AVG 118 2.0 339.93 49.5 V 74.0 -24.5 PK 118 2.0 266.04 43.7 V 54.0 -10.3 AVG 120 1.0 266.04 56.8 V 74.0 -17.2 PK 120 1.0 266.04 56.8 V 74.0 -17.2 PK 120 1.0 266.04 56.8 V 74.0 -12.6 AVG 108 1.0 269.89 50.1 H 74.0 -23.9 PK 108 1.0 260.68 56.0 H 74.0 -18.0 PK 148 1.0 27dBm/MHz (~68dBuV/m). Eand-edge measurement calc	Spec	FCC 15.247	7 & 15.401					Class:	N/A
Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 e1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). a2: Band-edge measurement calculated from the fundamental field s	Hz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). 2: Band-edge measurement calculated from the fundamental field st	AHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 339.93 40.2 V 54.0 -13.8 AVG 118 2.0 339.93 49.5 V 74.0 -24.5 PK 118 2.0 266.04 43.7 V 54.0 -10.3 AVG 120 1.0 266.04 56.8 V 74.0 -17.2 PK 120 1.0 266.04 56.8 V 74.0 -12.6 AVG 108 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 260.68 43.8 H 54.0 -10.2 AVG 148 1.0 260.68 56.0 H 74.0 -18.0 PK 148 1.0 21: For emissions in restricted bands, the limit of 15.209 was used.		T T	d Emissio						
39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	39.93 40.2 V 54.0 -13.8 AVG 118 2.0 39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). 2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	339.93 40.2 V 54.0 -13.8 AVG 118 2.0 339.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 639.89 41.4 H 54.0 -12.6 AVG 108 1.0 639.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 e 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). Band-edge measurement calculated from the fundamental field st					1			Comments	
39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 e.1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). e.1: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	39.93 49.5 V 74.0 -24.5 PK 118 2.0 66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). 2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	339.93 49.5 V 74.0 -24.5 PK 118 2.0 266.04 43.7 V 54.0 -10.3 AVG 120 1.0 266.04 56.8 V 74.0 -17.2 PK 120 1.0 266.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 260.68 43.8 H 54.0 -10.2 AVG 148 1.0 260.68 56.0 H 74.0 -18.0 PK 148 1.0 261.68 56.0 H 74.0 -18.0 PK 148 1.0 261.68 56.0 H 74.0 -18.0 PK 148 1.0 21: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). 22: Band-edge measurement calculated from the	MHz								
66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 61.68 56.0 H 74.0 -18.0 PK 148 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	66.04 43.7 V 54.0 -10.3 AVG 120 1.0 66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). - 2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	066.04 43.7 V 54.0 -10.3 AVG 120 1.0 066.04 56.8 V 74.0 -17.2 PK 120 1.0 039.89 41.4 H 54.0 -12.6 AVG 108 1.0 039.89 50.1 H 74.0 -23.9 PK 108 1.0 060.68 43.8 H 54.0 -10.2 AVG 148 1.0 060.68 56.0 H 74.0 -18.0 PK 148 1.0 060.68 56.0 H 74.0 -18.0 PK 148 1.0 0e1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). 0e2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge									
66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 2/dBm/MHz (-68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	66.04 56.8 V 74.0 -17.2 PK 120 1.0 39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 260.68 43.8 H 54.0 -10.2 AVG 148 1.0 260.68 56.0 H 74.0 -18.0 PK 148 1.0 261. For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge									
39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 2/dBm/MHz (-68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	39.89 41.4 H 54.0 -12.6 AVG 108 1.0 39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge									
39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). 2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). 2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	39.89 50.1 H 74.0 -23.9 PK 108 1.0 60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (-68dBuV/m). 2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge									
60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 e 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). 2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	60.68 43.8 H 54.0 -10.2 AVG 148 1.0 60.68 56.0 H 74.0 -18.0 PK 148 1.0 e 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). a. Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge									
60.68 56.0 H 74.0 -18.0 PK 148 1.0 e 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). e.1: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	60.68 56.0 H 74.0 -18.0 PK 148 1.0 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). 2: Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	260.68 56.0 H 74.0 -18.0 PK 148 1.0 e 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). 2. Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to - 27dBm/MHz (~68dBuV/m). Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge									
				27dBm/MHz Band-edge	z (~68dBu measuren	V/m). nent calcula					
				27dBm/MHz Band-edge	z (~68dBu measuren	V/m). nent calcula					

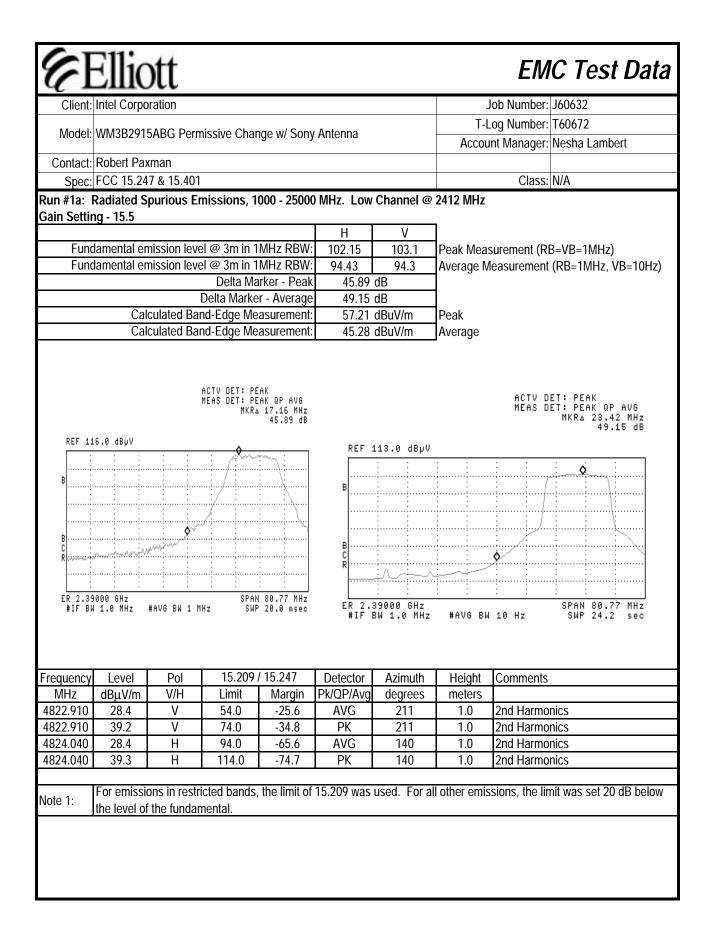
Client: Intel Cor Model: WM3B29	115ABG Permissive Change w/ Sony	Antenna	T-Lo	bb Number: J bg Number: 1	T60672
ontact: Robert P			Accour	nt Manager: N	Nesha Lamb
Spec: FCC 15.				Class: N	N/A
ot Specifics Objective	specification listed above.		Ū	of the EUT w	vith respect to
Date of Tes Test Enginee Test Location		Config. Used Config Change Host Unit Voltage	: None		
	al support equipment were located on			missions test	ling.
EUT and all loca	al support equipment were located on ns testing the measurement antenna			missions test	ling.
EUT and all loca radiated emissio bient Condit	al support equipment were located on ns testing the measurement antenna ions: Temperature: Rel. Humidity:	was located 3 meters fr 18 °C 48 %	om the EUT.		
EUT and all loca radiated emissio	al support equipment were located on ns testing the measurement antenna ions: Temperature: Rel. Humidity: Test Performed	was located 3 meters fr 18 °C 48 % Limit	om the EUT.	Result /	Margin
EUT and all loca radiated emissio ibient Condit Run#	al support equipment were located on ns testing the measurement antenna ions: Temperature: Rel. Humidity:	was located 3 meters fr 18 °C 48 %	om the EUT.		Margin to run BuV/m 1) @ 11651 3.1dB)



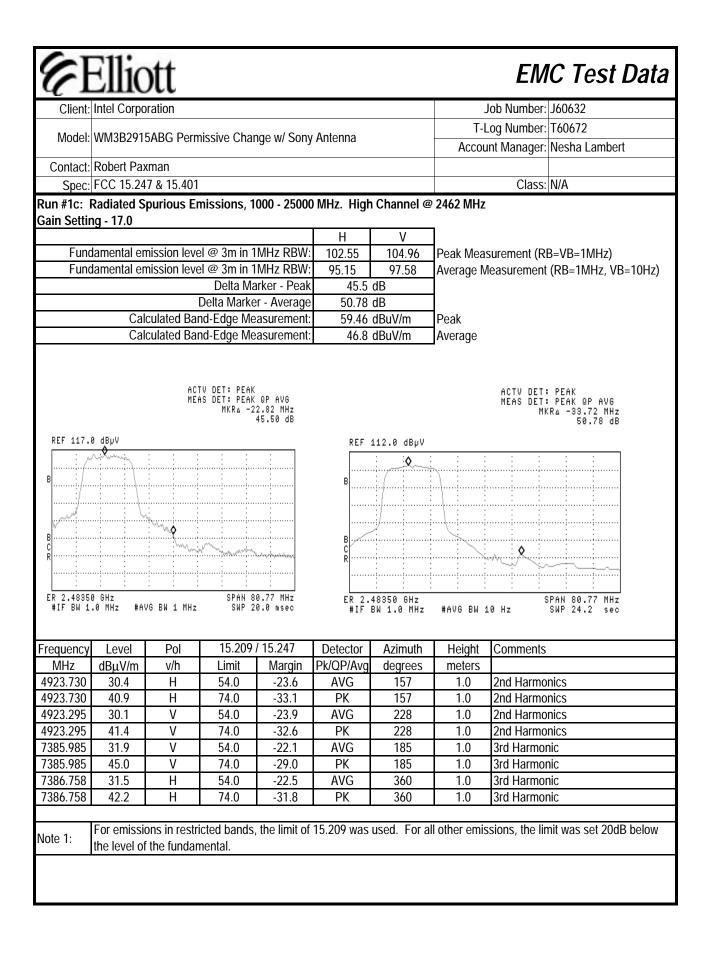

Client: Intel Corporation Job Number: J60632 Model: WM3B2915ABG Permissive Change w/ Sony Antenna T-Log Number: T60672 Contact: Robert Paxman	Client: Intel Corporation Job Number: J60632 Model: WM3B2915ABG Permissive Change w/ Sony Antenna T-Log Number: T60672 Contact: Robert Paxman	Client: Intel Corporation Job Number: J60632 Model: WM3B2915ABG Permissive Change w/ Sony Antenna T-Log Number: T60672 Contact: Robert Paxman	Client: Intel Corporation Job Number: J60632 Model: WM3B2915ABG Permissive Change w/ Sony Antenna T-Log Number: T60672 Contact: Robert Paxman	61	Ellic	ott						EM	IC Test Da
Model: WM3B2915ABG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A Run #2a: Radiated Spurious Emissions, 30 - 26500 MHz. Low Channel @ 5745 MHz Other Spurious Radiated Emissions:	Model: WM3B2915ABG Permissive Change w/ Sony Antenna Account Manager. Nesha Lambert Contact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A Run #2a: Radiated Spurious Emissions, 30 - 26500 MHz. Low Channel @ 5745 MHz Other Spurious Radiated Emissions:	Model: WM3B2915ABG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A Run #2a: Radiated Spurious Emissions, 30 - 26500 MHz. Low Channel @ 5745 MHz Other Spurious Radiated Emissions:	Model: WM3B2915ABG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A Run #2a: Radiated Spurious Emissions, 30 - 26500 MHz. Low Channel @ 5745 MHz Other Spurious Radiated Emissions:									Job Number:	J60632
Model: WM3B2915ABG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A Run #2a: Radiated Spurious Emissions, 30 - 26500 MHz. Low Channel @ 5745 MHz Wher Spurious Radiated Emissions: requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµU/m V/h Limit Margin PK/OP/Avg degrees meters 11493.59 43.9 V 54.0 -10.1 AVG 139 1.0 17237.18 50.2 V 68.3 -18.1 AVG 259 1.0 11494.04 49.2 H 54.0 -4.8 AVG 85 1.0 11494.04 1.1 H 74.0 -12.9 PK 85 1.0 11494.04 61.1 H 74.0 -12.9 PK 85 1.0 11494.04 61.1 H 68.3 -13.8 AVG	Model: WM3B2915ABG Permissive Change w/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A Run #2a: Radiated Spurious Emissions, 30 - 26500 MHz. Low Channel @ 5745 MHz Wher Spurious Radiated Emissions: requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin PK/OP/Avg degrees meters 11493.59 56.0 V 74.0 -18.0 PK 139 1.0 17237.18 50.2 V 68.3 -18.1 AVG 259 1.0 11494.04 49.2 H 54.0 -4.8 AVG 85 1.0 11494.04 49.2 H 54.0 -4.8 AVG 88 1.2 11494.04 61.1 H 74.0 -12.9 PK 85 1.0 11494.04 61.1 H 68.3 -1	Model: WM3B2915ABG Permissive Change W/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A Run #2a: Radiated Spurious Emissions, 30 - 26500 MHz. Low Channel @ 5745 MHz Wher Spurious Radiated Emissions: requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµU/m V/h Limit Margin PK/OP/Avg degrees meters 11493.59 56.0 V 74.0 -18.0 PK 139 1.0 17237.18 50.2 V 68.3 -18.1 AVG 259 1.0 11494.04 49.2 H 54.0 -4.8 AVG 85 1.0 11494.04 49.2 H 54.0 -4.8 AVG 88 1.2 11494.04 49.2 H 68.3 -13.8 AVG 88 1.2 1129 PK 85 1.0 11494.0	Model: WM3B2915ABG Permissive Change W/ Sony Antenna Account Manager: Nesha Lambert Contact: Robert Paxman Class: N/A Spec: FCC 15.247 & 15.401 Class: N/A Run #2a: Radiated Spurious Emissions, 30 - 26500 MHz. Low Channel @ 5745 MHz Wher Spurious Radiated Emissions: requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµU/m V/h Limit Margin PK/OP/Avg degrees meters 11493.59 56.0 V 74.0 -18.0 PK 139 1.0 17237.18 50.2 V 68.3 -18.1 AVG 259 1.0 11494.04 49.2 H 54.0 -4.8 AVG 85 1.0 11494.04 49.2 H 54.0 -4.8 AVG 88 1.2 11494.04 49.2 H 68.3 -13.8 AVG 88 1.2 1129 PK 85 1.0 11494.0		•						T-I	oa Number:	T60672
Contact: Robert Paxman Spec: FCC 15.247 & 15.401 Class: N/A Class: N/A Radiated Spurious Emissions, 30 - 26500 MHz. Low Channel @ 5745 MHz Data and the missions: requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBu//m w/h Limit Margin PK/OP/Avg degrees meters 11493.59 43.9 V 54.0 - 10.1 AVG 10 11493.59 56.0 V 74.0 - 18.0 11493.59 56.0 V 74.0 - 10.0 11493.50 V 68.3 - 13.8 AVG 85 1.0 11494.04 61.1 74.0 74.2 Integreget													

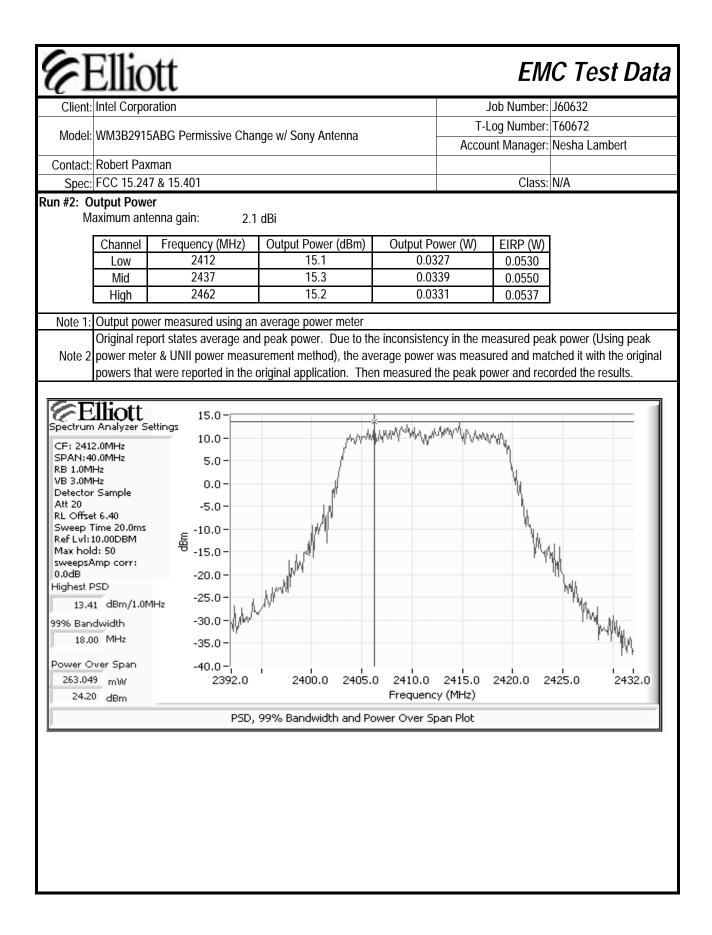
61	Ellic	ott						EM	IC Test Dat
	Intel Corpo						J	lob Number:	J60632
							T-L	og Number:	T60672
Model:	WM3B2915	5ABG Perm	nissive Chan	ige w/ Sony	/ Antenna			0	Nesha Lambert
Contact	Robert Pax	man							
	FCC 15.24							Class:	N/A
			Emission	s 20 26	500 MHz. H	ligh Chann	ما <i>@</i> 5975		
un #20.	Naulateu	Spurious	LIIISSIOII	5, 30 - 20	JUU IVII 12. 11	ligh Chann			
ther Spur	ious Radiate	ed Emission	ns [.]						
requency		Pol	15.209 /	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1650.68	44.4	V	54.0	-9.6	AVG	136	1.0		
1650.68	56.8	V	74.0	-17.2	PK	136	1.0		
7471.09	48.3	V	68.3	-20.0	AVG	114	1.0		
1651.33	50.9	Н	54.0	-3.1	AVG	118	1.5		
1651.33	62.9	Н	74.0	-11.1	PK	118	1.5		
7471.94	50.0	Н	68.3	-18.3	AVG	148	1.0		
un #3: I	Radi	Rx Spurio	us Emissio	ons, 1000	- 18000 MH Hz. Rx Mode	łz. Middle			łz
un #3: 1 80 70	Radiated F Radi).0 -	Rx Spurio	us Emissio	ons, 1000	- 18000 MH	łz. Middle			łz
un #3: 1 80 70	Radiated F Radi).0 -	Rx Spurio	us Emissio	ons, 1000	- 18000 MH	łz. Middle			lz
80	Radiated F Radi).0 -	Rx Spurio	us Emissio	ons, 1000	- 18000 MH	łz. Middle	annel @ 52	:60 MHz	
un #3: 1 80 70	Radiated F Radi).0 -	Rx Spurio	us Emissio	ons, 1000	- 18000 MH	łz. Middle	annel @ 52	:60 MHz	
un #3: 1 80 70	Radiated F Radi).0 -	Rx Spurio	us Emissio	ons, 1000	- 18000 MH	łz. Middle	annel @ 52	:60 MHz	1z
un #3: 1 80 70 (w/\ngp) 50 50 40	Radiated F Radi).0 -).0 -).0 -).0 -	Rx Spurio	us Emissio	ons, 1000	- 18000 MH	łz. Middle	annel @ 52	:60 MHz	
un #3: 1 80 70 (w/\ngp) 50 50 40	Radiated F Radi).0 -	Rx Spurio	us Emissio	ons, 1000	- 18000 MH	łz. Middle	annel @ 52	:60 MHz	
un #3: 1 80 70 (W/\ngp 50 50 30	Radiated F Radi).0 -).0 -).0 -).0 -	Rx Spurio	us Emissio	ons, 1000 - 18000 MH	12. Rx Mode	Iz. Middle , Center Cha	annel @ 52	260 MHz	Mar der alle de constante
un #3: 1 80 70 (W/\mp) 50 50 40 30	Radiated F Radi).0 -).0 -).0 -).0 -).0 -	Rx Spurio	us Emissio	ons, 1000 - 18000 MH	12. Rx Mode	Iz. Middle	annel @ 52	260 MHz	
un #3: 1 80 70 (W/Ange 950 50 50 30	Radiated F Radi 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -	Rx Spurio	us Emissio	ons, 1000 - 18000 MH	12. Rx Mode	Iz. Middle , Center Cha	annel @ 52	260 MHz	Mary Mary Mary Market
IN #3: 1 80 70 (@Ange 9pnjidue 40 30 20	Radiated F Radi 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -	Rx Spurio	us Emissio ions, 1000 -	ons, 1000 - 18000 MH	- 18000 MH	Iz. Middle	annel @ 52	260 MHz	16000.0 18000.
IN #3: 1 80 70 (W/Angp) 900 10 10 10 10 10 10 10 10 10 10 10 10 1	Radiated F Radii 0.0 - 0.0 -	Rx Spurio ated Emissi	us Emissio ions, 1000 -	ons, 1000 - 18000 MH	- 18000 MH	I Center Cha	annel @ 52	260 MHz	16000.0 18000.
IN #3: 1 80 70 (W/Angp) 900 10 10 10 10 10 10 10 10 10 10 10 10 1	Radiated F Radii 0.0 - 0.0 -	Rx Spuriou ated Emissi	us Emissio ions, 1000 -	ons, 1000 - 18000 MH -	I - 18000 MH Iz. R× Mode, S000.0 J Frequer Detector Pk/QP/Avg	I Center Cha	annel @ 52	260 MHz	16000.0 18000.
In #3: 1 80 70 (W/ABP) 900 900 900 900 900 900 900 900 900 900	Radiated F Radi 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 1000.0 Level dBµV/m 50.7	Rx Spurio ated Emissi	us Emissio ions, 1000 -	ons, 1000 - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 9.3	 18000 MH Rx Mode Rx Mode 8000.0 frequer Detector Pk/QP/Avg AVG 	Icenter Cha , Center Cha 10000.0 10000.0 hcy (MHz) Azimuth degrees 152	annel @ 52	260 MHz	16000.0 18000.
un #3: 1 80 70 (@Angp) 90 90 90 90 90 90 90 90 90 90 90 90 90	Radiated F Radi .0 - .0 -	Rx Spurio ated Emissi ated Emissi 40 Pol V/h H H	us Emissio ions, 1000 - 	ons, 1000 - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 9.3 - 18.7	12. Rx Mode 12. Rx Mode 12. Rx Mode 12. Rx Mode 13. Rx Mode 14. Rx Mode 15. R	Iz. Middle , Center Cha , Cente	annel @ 52	260 MHz	16000.0 18000.
un #3: 1 80 70 (W/\ngp) 50 100 40 30 20 20	Radiated F Radi 0.0 - 0.0 - 0.	Rx Spurior ated Emissi	us Emissio ions, 1000 -	ons, 1000 - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 9.3 - 18.7 - 18.9	 18000 MH Rx Mode Rx Mode 8000.0 frequer Detector Pk/QP/Avg AVG 	Icenter Cha , Center Cha 10000.0 10000.0 hcy (MHz) Azimuth degrees 152	annel @ 52	260 MHz	16000.0 18000.
un #3: 1 80 70 (W)/Ngp) = 50 (W)/Ngp) = 50 30 30 20 20 20 20 20 20 20 20 20 20 20 20 20	Radiated F Radi .0 - .0 -	Rx Spurio ated Emissi ated Emissi 40 Pol V/h H H	us Emissio ions, 1000 - 	ons, 1000 - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 18000 MH - 9.3 - 18.7	- 18000 MH	Iz. Middle , Center Cha , Center Cha March Cha Azimuth degrees 152 152 188	annel @ 52	260 MHz	16000.0 18000.

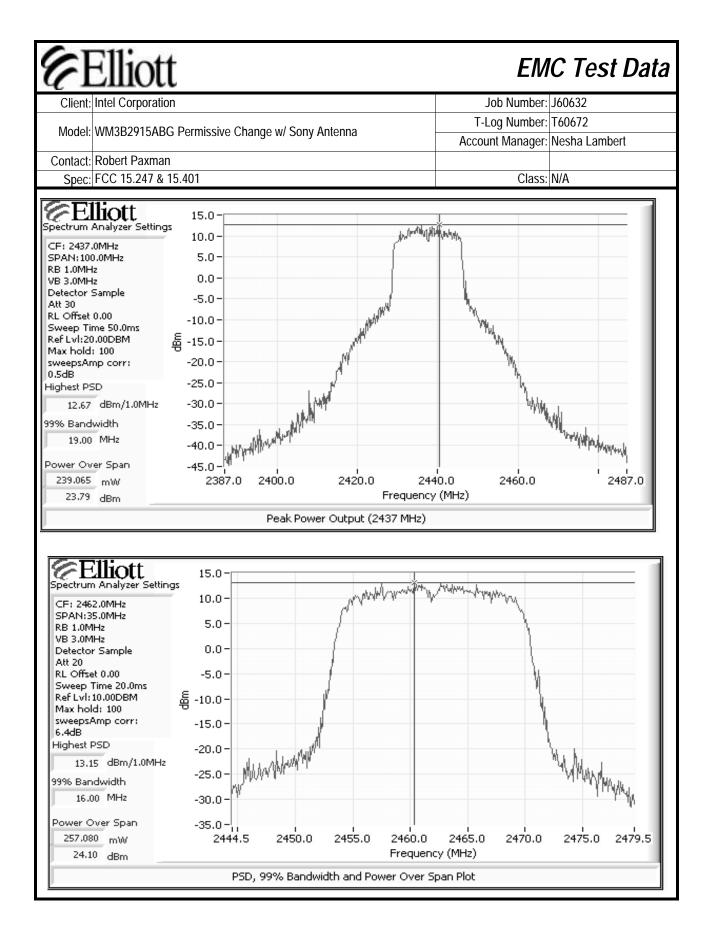
	ration		J	ob Number:	J60632
		A 1		og Number:	
Model: WM3B291	5ABG Permissive Change w/ Sony	Antenna	Accour	nt Manager:	Nesha Lamber
Contact: Robert Pay					
Spec: FCC 15.24	7 & 15.401			Class:	N/A
I	FCC 15.247 DTS - S	purious Emis	ssions	(802.11	b)
est Specifics					
- Ohiective	The objective of this test session is specification listed above.	to perform final qualific	ation testing	of the EUT \	with respect to t
Date of Test: Test Engineer:		Config. Used Config Change			
Test Location: General Test Con The EUT and all local st for radiated emissions	Fremont Chamber #4 figuration support equipment were located on s testing the measurement antenna	Host Unit Voltage the turntable for radiate was located 3 meters fr	e 120V/60Hz ed spurious e		sting.
Test Location: General Test Con he EUT and all local s for radiated emissions	Fremont Chamber #4 figuration support equipment were located on s testing the measurement antenna	Host Unit Voltage	e 120V/60Hz ed spurious e		sting.
Test Location: General Test Con The EUT and all local s	Fremont Chamber #4 figuration support equipment were located on testing the measurement antenna ns: Temperature:	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C	e 120V/60Hz ed spurious e		sting.
Test Location: General Test Con The EUT and all local st for radiated emissions	Fremont Chamber #4 figuration support equipment were located on s testing the measurement antenna ms: Temperature: Rel. Humidity: Test Performed	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C	e 120V/60Hz ed spurious e	missions tes	/ Margin
Test Location: General Test Con he EUT and all local s or radiated emissions Ambient Conditio	Fremont Chamber #4 figuration support equipment were located on s testing the measurement antenna ns: Temperature: Rel. Humidity: Test Performed RE, 1000 - 25000 MHz	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C 48 %	e 120V/60Hz ed spurious e rom the EUT. Pass / Fail	missions tes Result 44.3d	/ Margin IBµ V/m
Test Location: General Test Con he EUT and all local s or radiated emissions	Fremont Chamber #4 figuration support equipment were located on s testing the measurement antenna v ns: Temperature: Rel. Humidity: Test Performed RE, 1000 - 25000 MHz Spurious Emissions in Restricted	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C 48 % Limit	e 120V/60Hz ed spurious e rom the EUT.	missions tes Result 44.3d (163.1µ	/ Margin ΙΒμ V/m μ V/m) @
Test Location: General Test Con he EUT and all local s or radiated emissions Ambient Conditio	Fremont Chamber #4 figuration support equipment were located on stesting the measurement antenna ns: Temperature: Rel. Humidity: Test Performed RE, 1000 - 25000 MHz Spurious Emissions in Restricted Bands	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C 48 % Limit FCC Part 15.209 /	e 120V/60Hz ed spurious e rom the EUT. Pass / Fail	missions tes Result 44.3d (163.1µ 4924.0M	/ Margin IBµ V/m
Test Location: General Test Con the EUT and all local s for radiated emissions Ambient Conditio	Fremont Chamber #4 figuration support equipment were located on stesting the measurement antenna of ns: Temperature: Rel. Humidity: Test Performed RE, 1000 - 25000 MHz Spurious Emissions in Restricted Bands Output Power	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C 48 % Limit FCC Part 15.209 / 15.247(c) 15.247(b)	e 120V/60Hz ed spurious e rom the EUT. Pass / Fail Pass	missions tes Result 44.3d (163.1µ 4924.0Mł Refer 53.9dBuV/r	/ Margin IBµ V/m µ V/m) @ Hz (-9.8dB) r to run n (496 uV/m)
Test Location: General Test Con he EUT and all local s or radiated emissions Ambient Conditio	Fremont Chamber #4 figuration support equipment were located on stesting the measurement antenna ns: Temperature: Rel. Humidity: Test Performed RE, 1000 - 25000 MHz Spurious Emissions in Restricted Bands	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C 48 % Limit FCC Part 15.209 / 15.247(c)	e 120V/60Hz ed spurious e rom the EUT. Pass / Fail Pass	Result 44.3d (163.1µ 4924.0MI Refer 53.9dBuV/r @ 6498	/ Margin IBµ V/m u V/m) @ Hz (-9.8dB) r to run

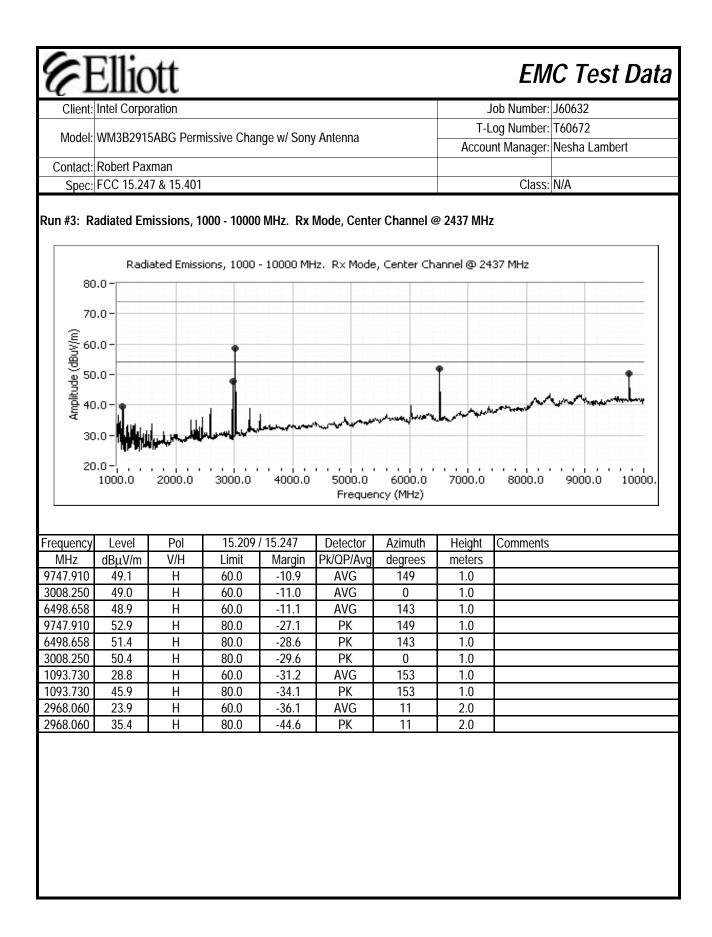


Client:	Intel Corpor	ation						Job Number:	J60632
Model	WM3B2915		niccivo Char	an w/ Son	Antonno		T-I	Log Number:	T60672
wouer.	VVIVI3DZ913	ADG Pelli		ige w/ Sun	y Antenna		Αссоι	unt Manager:	Nesha Lambert
	Robert Paxr								
Spec:	FCC 15.247	& 15.401						Class:	N/A
		ourious Er	nissions, 1	000 - 2500	0 MHz. Cent	er Channel	@ 2437 MI	Hz	
ain Setti		D.I	15 200	115 047	Detector	A!	11.2.1.1	0	
requency MHz		Pol v/h	Limit	/ 15.247	Detector Pk/QP/Avg	Azimuth	Height meters	Comments	
873.939	dBµV/m 40.0	V	54.0	Margin -14.1	AVG	degrees 267	1.0		
873.939	40.0	V	74.0	-29.0	PK	267	1.0	1	
309.740	39.7	V	54.0	-14.3	AVG	210	1.1	1	
309.740	47.1	V	74.0	-26.9	PK	210	1.1		
873.962	37.9	Н	54.0	-16.1	AVG	78	1.3		
873.962	43.1	Н	74.0	-30.9	PK	78	1.3		
310.180	35.8	Н	54.0	-18.2	AVG	78	1.0		
310.180	44.6	Н	74.0	-29.4	PK	78	1.0		
lote 1:	For emissio the level of			, the limit of	f 15.209 was i	used. For all	other emis	ssions, the lir	nit was set 20dB belo
ote 1:				, the limit of	f 15.209 was i	used. For all	other emis	ssions, the lir	nit was set 20dB belo
ote 1:				, the limit of	f 15.209 was i	used. For all	other emis	ssions, the lir	nit was set 20dB belo
ote 1:				, the limit of	f 15.209 was i	used. For all	other emis	ssions, the lir	nit was set 20dB belo




Client:	Intel Corpo	ration						Job Number:	J60632
Madal	10/0420201		alaaliya Cha		Antonno		T-I	Log Number:	T60672
wodel:	WM3B2915	DABG Pern	hissive Cha	nge w/ Son	y Antenna		Αссоι	unt Manager:	Nesha Lamber
Contact:	Robert Pax	man							
Spec:	FCC 15.24	7 & 15.401						Class:	N/A
	utput Powe aximum ant		2.1	dBi					
	Channel	Frequen	icy (MHz)	Output P	ower (dBm)	Output Po	ower (W)	EIRP (W)	
	Low	•	112	1	5.3	0.03	39	0.0550	
		2/	107	1	6.8	0.04	170	0.077/	i
	Mid	Z	137		0.0	0.0-	19	0.0776	
Note 2	High Output pow Original rep power mete powers tha	22 ver measur port states er and UNI t were repo	l62 ed using a average an I power mea orted in the	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.3 meter er. Due to the nethod), the a lication. The	0.05 e inconsister average pow n measured	i37 acy in the m er was mea the peak po	0.0871 neasured pea asured and n ower and rec	k power (Using hatched it with th orded the result
Note 2 Run #3: F	High Output pow Original rep power mete powers tha Radiated F	22 ver measur port states er and UNI t were repo Rx Spurio	l62 ed using a j average an l power mea orted in the us Emissi	1 beak power d peak pow asurement r original app fions, 1000	7.3 meter er. Due to the nethod), the a lication. The - 12500 M	0.05 e inconsister average pow n measured Iz. Middle	i37 Incy in the m er was mea the peak po Channel	0.0871 neasured pea asured and n ower and rec @ 2347 MH	natched it with the orded the result
Note 2 Run #3: F	High Output pow Original rep power mete powers tha Radiated F	24 ver measur port states er and UNI t were repo Rx Spurio Pol	I62 ed using a average an I power mea orted in the us Emiss i	1 peak power d peak pow asurement r original app fons, 1000	7.3 meter er. Due to th nethod), the a lication. The - 12500 MH	0.05 e inconsister average pow n measured Iz. Middle Azimuth	i37 acy in the rr er was mea the peak po Channel Height	0.0871 neasured pea asured and n ower and rec	natched it with the orded the result
Note 2 2 un #3: F requency MHz	High Output pow Original rep power mete powers tha Radiated F Level dBµV/m	24 ver measur port states er and UNI t were repo Rx Spurio Pol v/h	l62 ed using a average an I power mea orted in the us Emissi RSS- Limit	1 beak power d peak pow asurement r original app fons, 1000 210 Rx Margin	7.3 meter er. Due to the nethod), the a lication. The 0 - 12500 MH Detector Pk/QP/Avg	0.05 e inconsister average pow n measured Iz. Middle Azimuth degrees	acy in the mer er was mea the peak po Channel Height meters	0.0871 neasured pea asured and n ower and rec @ 2347 MH	natched it with the orded the result
Note 2 un #3: F requency MHz 498.518	High Output pow Original rep power mete powers tha Radiated F Level dBµV/m 42.5	24 ver measur port states er and UNI t were repo Rx Spurio Pol	ed using a average an power mea orted in the us Emissi RSS- Limit 60.0	1 beak power d peak pow asurement r original app ions, 1000 210 Rx 210 Rx -17.5	7.3 meter er. Due to th nethod), the a lication. The - 12500 MH	0.05 e inconsister average pow n measured Iz. Middle Azimuth	is and the peak point of the p	0.0871 neasured pea asured and n ower and rec @ 2347 MH	natched it with the result
Note 2 Run #3: F	High Output pow Original rep power mete powers tha Radiated F Level dBµV/m	24 ver measur port states er and UNI t were repo Rx Spurio Rx Spurio Pol v/h V	l62 ed using a average an I power mea orted in the us Emissi RSS- Limit	1 beak power d peak pow asurement r original app fons, 1000 210 Rx Margin	7.3 meter er. Due to the nethod), the a lication. The 12500 MH Detector Pk/QP/Avg AVG	0.05 e inconsister average pow n measured Iz. Middle Azimuth degrees 128	acy in the mer er was mea the peak po Channel Height meters	0.0871 neasured pea asured and n ower and rec @ 2347 MH	natched it with the result


	oration			JC	ob Number:	J60632
					og Number:	
Model: WM3B29	15ABG Permiss	ive Change w/ Sony	Antenna		0	Nesha Lambert
Contact: Robert Pa	ixman				-	
Spec: FCC 15.2	47 & 15.401				Class:	N/A
	FCC 15.2	247 DTS - S	purious Emis	ssions ((802.11	g)
est Specifics						
Objective	The objective specification li		to perform final qualific	ation testing (of the EUT v	with respect to th
Data of Tost	: 7/30/2005		Config. Used			
Test Engineer Test Location General Test Co he EUT and all loca	: Fremont Char nfiguration I support equipn	nent were located on	Config Change Host Unit Voltage the turntable for radiate was located 3 meters fr	e 120V/60Hz ed spurious er	missions tes	sting.
Test Engineer Test Location General Test Co he EUT and all loca	: Fremont Char nfiguration I support equipn ns testing the me	nent were located on	Host Unit Voltage	e 120V/60Hz ed spurious er	missions tes	sting.
Test Engineer Test Location General Test Co he EUT and all loca or radiated emissior	: Fremont Char nfiguration I support equipn ns testing the me	nent were located on easurement antenna Temperature:	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C	e 120V/60Hz ed spurious er	missions tes	sting.
Test Engineer Test Location General Test Co he EUT and all loca or radiated emissior	: Fremont Char nfiguration I support equipn as testing the mo ons: Test	nent were located on easurement antenna Temperature: Rel. Humidity: Performed	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C	e 120V/60Hz ed spurious er	Result	/ Margin
Test Engineer Test Location General Test Coo he EUT and all loca or radiated emissior	: Fremont Char nfiguration I support equipn is testing the mo ons: Test RE, 1000 Spurious Emi	nent were located on easurement antenna Temperature: Rel. Humidity: Performed 0 - 25000 MHz ssions in Restricted	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C 48 %	e 120V/60Hz ed spurious er	Result 46.80 (218.81	/ Margin IBuV/m uV/m) @
Test Engineer Test Location General Test Con he EUT and all locat or radiated emission Ambient Condition	: Fremont Char nfiguration I support equipn is testing the me ons: Test RE, 1000 Spurious Emi	nent were located on easurement antenna Temperature: Rel. Humidity: Performed) - 25000 MHz	Host Unit Voltage the turntable for radiate was located 3 meters fr 18 °C 48 % Limit FCC Part 15.209 /	e 120V/60Hz ed spurious er om the EUT. Pass / Fail	Result 46.80 (218.81 7386.87M	/ Margin IBuV/m



	Ellio Intel Corpor						J	Job Number:	J60632
Madal			alacius Cha	an wil Com	Antonno		T-L	og Number:	T60672
wodel	WM3B2915	adg Pern	IISSIVE CITAL	iye wi Son	y Antenna			-	Nesha Lambert
Contact	Robert Paxr	man							
Spec:	FCC 15.247	& 15.401						Class:	N/A
	Radiated Sp ng - 16.0	ourious Ei	missions, 1	000 - 2500	0 MHz. Cent	er Channel	@ 2437 Mł	łz	
requency	- ¥	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	o o miniorito	
873.890	29.3	Н	54.0	-24.7	AVG	181	1.0	2nd Harmo	nics
373.890	40.9	Н	74.0	-33.1	РК	181	1.0	2nd Harmo	
373.920	29.8	V	54.0	-24.2	AVG	230	1.0	2nd Harmo	
373.920	40.1	V	74.0	-33.9	PK	230	1.0	2nd Harmo	
810.670	31.8	V	54.0	-22.2	AVG	360	1.0	3rd Harmor	
310.670	42.7	V	74.0	-31.3	PK	360	1.0	3rd Harmor	
311.465	31.8	Н	54.0	-22.2	AVG	220	1.0	3rd Harmor	
311.465	43.4	Н	74.0	-30.6	PK	220	1.0	3rd Harmon	nics
ote 1:	For emissio the level of t			, the limit of	15.209 was u	used. For all	other emis	sions, the lir	nit was set 20dB belo
ote 1:				, the limit of	15.209 was t	used. For all	other emis	sions, the lir	nit was set 20dB belo
ote 1:				, the limit of	15.209 was i	used. For all	other emis	sions, the lir	nit was set 20dB belo
te 1:				, the limit of	15.209 was t	used. For all	other emis	isions, the lir	nit was set 20dB belo
te 1:				, the limit of	15.209 was t	used. For all	other emis	isions, the lir	nit was set 20dB belo
ote 1:				, the limit of	15.209 was t	used. For all	other emis	isions, the lir	nit was set 20dB belo

EXHIBIT 3: Test Configuration Photographs

2 Pages

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Intel Corporation Model WM3B2915ABGConstruction

EXHIBIT 6: Operator's Manual for Intel Corporation Model WM3B2915ABG

EXHIBIT 7: Block Diagram of Intel Corporation Model WM3B2915ABG

EXHIBIT 8: Schematic Diagrams for Intel Corporation Model WM3B2915ABG

EXHIBIT 9: Theory of Operation for Intel Corporation Model WM3B2915ABG

EXHIBIT 10: Advertising Literature

EXHIBIT 11: RF Exposure Information

2 Pages