

TEST REPORT

EUT Description	WLAN and BT, 2x2 PCIe M.2 2230 adapter card
Brand Name	Intel®
Model Name	BE201NGW
FCC/IC ID	PD9BE201NG ; 1000M-BE201NG
Date of Test Start/End	2023-11-09 / 2023-11-23
Features	2x2 WiFi - Bluetooth® (see section 4)
Applicant	Intel Corporation SAS
Address	425 Rue de Goa – Le Cargo B6 – 06600 Antibes, FRANCE
Contact Person	Benjamin Lavenant
Telephone/Fax/ Email	Benjamin.lavenant@intel.com
Reference Standards	FCC Title 47 CFR part 15 - Subpart C RSS-247 issue 3, RSS-Gen A1 issue 5 - A1 (see section 0)
Test Report identification	231109-03.TR06
Revision Control	Rev. 00 This test report revision replaces any previous test report revision (see section 7)

The test results relate only to the samples tested. Reference to accreditation shall be used only by full reproduction of test report.

Issued by

Reviewed by

Cedric REQUIN (Test Engineer Lead) Zayd OUACHICHA (Technical Manager)

Intel Corporation S.A.S – WRF Lab 425 rue de Goa – Le Cargo B6 - 06600, Antibes, France Tel. +33493001400 / Fax +33493001401

Table of Contents

1.	Genera	al conditions, competences and guarantees	3
2.	Enviro	nmental Conditions	
3.	Test sa	amples	4
		eatures	
	_		-
		ks and comments	
6.	Test V	erdicts summary	6
7.	Docum	nent Revision History	6
Ann	ex A.	Test & System Description	7
A.	1 Me	ASUREMENT SYSTEM	7
A.	2 TE	ST EQUIPMENT LIST	9
A.	3 Me	ASUREMENT UNCERTAINTY EVALUATION	
Ann	ex B.	Test Results	
B.	1 20	DB BANDWIDTH AND CARRIER FREQUENCY SEPARATION	11
	B.1.1	Test limits	
	B.1.2	Results tables	
	B.1.3	Results screenshot	
В.	2 NL	IMBER OF HOPPING CHANNELS	
	B.2.1	Test limits	
	B.2.2	Test procedure	
	B.2.3	Results tables	
В.	3 TIN	IE OF OCCUPANCY (DWELL TIME)	
	B.3.1	Test procedure	
	B.3.2	Results tables	
	B.3.3	Results Screenshot	
В.	4 M/	XIMUM PEAK OUTPUT POWER ANTENNA GAIN	
	B.4.1	Test Limits	
	B.4.2	Test procedure	
	B.4.3	Results tables	
	B.4.4	Results Screenshot	
		JT-OF-BAND EMISSION (CONDUCTED)	
	B.5.1	Test limits	
	B.5.2	Test procedure	
	B.5.3		
В.	6 КА <i>В.6.1</i>	DIATED SPURIOUS EMISSION	
	в.ө.т В.6.2	Test procedure	
	ex C.	-	
		Photographs	
C.			
C.	.2 TE	ST SAMPLE	

Standards, reference documents and applicable test methods

- 1. FCC Title 47 CFR part 15 Subpart C §15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. 2021-10-01 Edition
- FCC Title 47 CFR part 15 Subpart C §15.209 Radiated emission limits; general requirements. 2021-10-01
 Edition
- FCC 3. FCC OET KDB 558074 D01 v05r02 Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.
 - 4. FCC OET KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
 - 5. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
 - 1. RSS-247 Issue 3 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices.
 - 2. RSS-Gen Issue 5 A1- General Requirements for Compliance of Radio Apparatus.
- FCC OET KDB 558074 D01 v05r02 Guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.
 - 4. FCC OET KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
 - 5. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1. General conditions, competences and guarantees

- ✓ Tests performed under FCC standards identified in section 1 are covered by A2LA accreditation.
- Tests performed under ISED standards identified in section 1 are covered by Cofrac accreditation.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 testing laboratory accredited by the French Committee for Accreditation (Cofrac) with the certificate number 1-6736.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by ISED, with ISED company number 1000Y and CAB identifier FR0005.
- Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- \checkmark This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

2. Environmental Conditions

At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	23.3+/-2.5°C
Humidity	35.4+/-10.6%

3. Test samples

Sample	Control #	Description	Model	Serial #	Date of receipt	Note
	231109-03.S04	WiFi 7 Module	BE201NGW	A002A5B1A56C	2023-11-10	
#01	200203-01.S10	Laptop	HP (HSN-I38C)	000951007L	2023-04-24	Used for RF conducted tests
	231109-03.S31	CRF DB 2230 BNJ Extender Board	PCB00862-00_A	ASS00862-01-0A	2023-11-10	
	231109-03.S09	WiFi 7 Module	BE201NGW	A002A5B1A61B	2023-11-13	
	220225-03.S07	Microwave Absorber	Eccosorb BSR-1	-	2022-03-14	
	231109-03.S48	Adaptor	PCB00866-00_A	124627	2023-11-24	
#02	200611-03.S31	Extender	ADEXELEC	-	2020-08-19	Used for Radiated Spurious Emissions tests
	200504-04.S07	Laptop	Latitude 5401	BVHLK13	2020-06-02	16313
	230223-02.S47	Triband Antenna	-	005	2023-04-20	
	230223-02.S48	Triband Antenna	-	006	2023-04-20	
	231109-03.S01	WiFi 7 Module	BE201NGW	A002A5B1A620	2023-11-24	
	220225-03.S07	Microwave Absorber	Eccosorb BSR-1	-	2022-03-14	
	231109-03.S47	Adaptor	PCB00866-00_A	124727	2023-11-24	
#3	220915-09.S01	Extender	ADEXELEC	-	2022-04-06	Used for Radiated Spurious Emissions tests
	200611-03.S30	Laptop	Latitude 5401	6DJLK13	2020-08-19	10010
	230223-02.S49 Triband Antenna		-	007	2023-04-20	
	230223-02.S50	Triband Antenna	-	008	2023-04-20	

4. EUT Features

The herein information is provided by the customer

Intel WRF Lab declines any responsibility for the accuracy of the stated customer provided information, especially if it has any impact on the correctness of test results presented in this report.

Brand Name	Intel®						
Model Name	BE201NGW	BE201NGW					
Software Version	DRTU.05312.99.0.84						
Driver Version	23.10.23361.24681						
Prototype / Production	Production						
	802.11b/g/n/ac/ax/be	2.4GHz					
	802.11a/n/ac/ax/be	5.2GHz					
Supported Radios		5.6GHz 5.8GHz					
	802.11ax/be	6.0GHz					
	Bluetooth	2.4GHz					
	Transmitter	Chain A(1)	Chain B(2)				
	Manufacturer	Intel WRF Lab	Intel WRF Lab				
Antenna Information	PIFA						
	Part number	WRF-Tri Band-Antenna	WRF-Tri Band-Antenna				
	Antenna peak gain (dBi)	+3	+3				

5. Remarks and comments

- 1. No deviations were made from the test methods listed in section 1 of this report
- 2. Bluetooth tests have been performed on Chain A (1)

6. Test Verdicts summary

The statement of conformity to applicable standards in the table below are based on the measured values, without taking into account the measurement uncertainties.

FCC part	RSS part	Test name	Verdict
15.247 (a) (1)	RSS-247 Clause 5.1 (a) and (b)	20dB Bandwidth and Carrier frequency separation	Р
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	Number of hopping channels	Р
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	Р
15.247 (b) (1)	RSS-247 Clause 5.4 (b)	Maximum Peak Output Power and antenna gain	Р
15.247 (d)	RSS-247 Clause 5.5	Out-of-band Emissions (conducted)	Р
15.247 (d) 15.209	RSS-247 Clause 5.5 RSS-Gen A1 Clause 8.9	Spurious Emissions (radiated)	Р

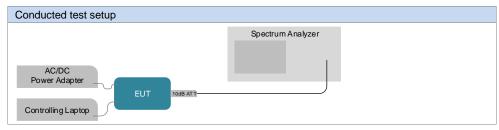
P: Pass F: Fail

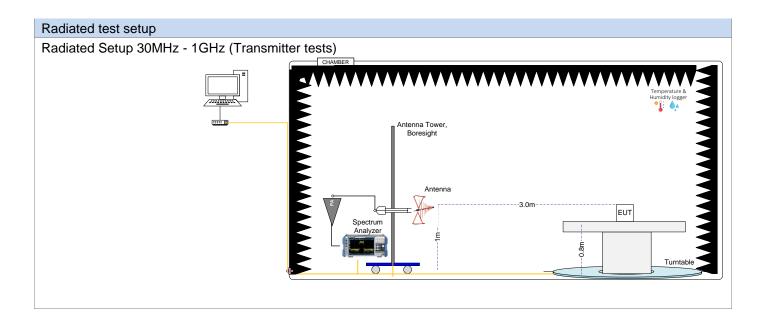
NM: Not Measured

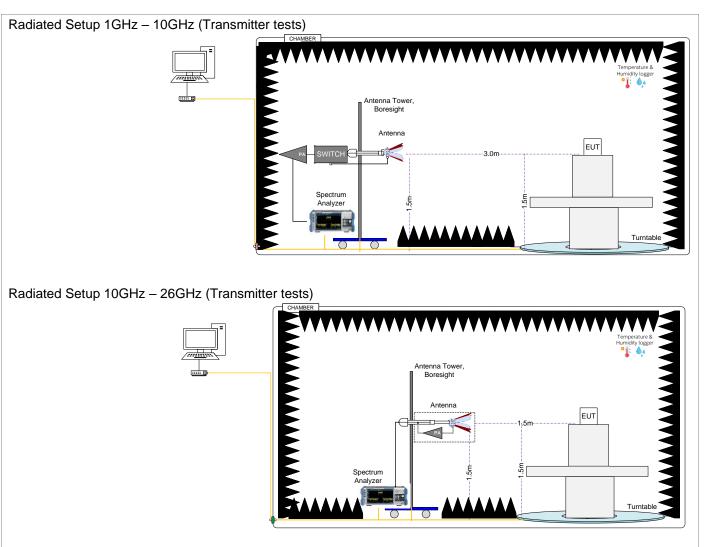
NA: Not Applicable

7. Document Revision History

Revision #	Modified by	Revision Details
Rev. 00	T.MATHIEU R.SIMONINI	First Issue




Annex A. Test & System Description


A.1 Measurement System

Measurements were performed using the following setups.

The DUT was installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes.

Sample Calculation

The spurious received voltage V(dB μ V) in the spectrum Analyzer is converted to Electric field strength using the transducer factor F corresponding to the Rx path Loss:

F (dB/m)= Rx Antenna Factor (dB/m) + Cable losses (dB) – Amplifiers Gain (dBi) **E (dBμV) =** V(dBμV) + F (dB/m)

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

$E_{SpecLimit} = E_{Meas} + 20*log(D_{Meas}/D_{SpecLimit})$

where

 $E_{SpecLimit}$ is the field strength of the emission at the distance specified by the limit, in $dB\mu V/m$ E_{Meas} is the field strength of the emission at the measurement distance, in $dB\mu V/m$ D_{Meas} is the measurement distance, in m $D_{SpecLimit}$ is the distance specified by the limit, in m

A.2 Test Equipment List

Conducted setup

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
273-000	Spectrum Analyzer	FSV30	103309	Rohde & Schwarz	2023-01-02	2025-01-02
018-003	RF cable 50cm	PE360-50CM	N/A	PASTERNACK	2023-03-03	2024-03-03
018-001	10dB Attenuator + MH4	N/A	N/A	N/A	2023-03-03	2024-03-03
407-000	Temp & Humidity Logger	RA12E-TH1- RAS	RA12- E16EDA	AVITECH	2023-07-12	2025-07-12
413-000	Measurement SW v1.5.4.2	Octopi	N/A	Step AT	N/A	N/A

Radiated Setup #1

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
006-000	Anechoic Chamber	FACT3	5720	ETS-Lindgren	2022-01-21	2024-01-21
006-008	Measurement SW, v11.30	EMC32	100623	Rohde & Schwarz	N/A	N/A
259-000	Temp & Humidity Logger	RA12E-TH- RAS	RA12-B9BD70	Avtech	2022-06-27	2024-06-27
006-001	Turn Table	ETS	-	ETS-Lindgren	N/A	N/A
006-011	Boresight antenna mast	BAM 4.0-P	P/278/2890.01	Maturo	N/A	N/A
007-008	Double Horn Ridged antenna +PA	3116C-PA	00169308bis + 00196308	ETS-Lindgren	2023-0-30	2025-05-30
057-000	Double Horn Ridged antenna	3117	167062	ETS-Lindgren	2022-07-08	2024-07-08
006-061	Bi-Log Periodic antenna	CBL6143A	61382	Teseq	2022-10-24	2024-10-24
147-000	Spectrum analyzer	FSW43	101847	Rohde & Schwarz	2022-11-30	2024-11-30
301-000	Amplifier 9kHz-1300MHz	8447F	3113A07440	HP	2023-03-03	2024-03-03
261-000	Amplifier 1GHz-18GHz	3117-PA	00157993	ETS-Lindgren	2023-02-20	2024-02-20
006-068	RF Switch	RC-2SP6T-40	02112090061	Micro-Circuits	2023-08-22	2024-08-22
006-059	Cable 7m – 25MHz to 40GHz	R286304174	20.46.369	Radiall	2023-02-20	2024-02-20
006-063	Cable 30cm – 1GHz to 40GHz	PE371-12	-	Pasternack	2023-02-27	2024-02-27
006-064	Cable 30cm – 1GHz to 40GHz	PE371-12	-	Pasternack	2023-02-27	2024-02-27
006-065	Cable 60cm – 25MHz to 1GHz	PE300-24	-	Pasternack	2023-06-02	2024-06-02

N/A: Not Applicable

Radiated Setup #2

Naulaleu Se						
ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
127-000	Spectrum Analyzer	FSV40	101358	Rohde & Schwarz	2023-01-27	2025-01-27
007-007	Double Ridge Horn (1- 18GHz)	3117	00152266	ETS Lindgren	2022-03-29	2024-03-29
007-006	Switch & Positioner	EMCenter	00151232	ETS Lindgren	N/A	N/A
007-011	RF Cable 1-18GHz - 6.5m	140-8500-11-51	001	Atem	2023-02-15	2024-02-15
007-005	Measurement SW, v11.20.00	EMC32	100401	Rohde & Schwarz	N/A	N/A
007-000	Anechoic chamber	RFD-FA-100	5996	ETS Lindgren	2021-09-14	2024-03-14
007-003	Antenna Tower	2171B-3.0M	00150123	ETS Lindgren	N/A	N/A
007-002	Turntable	-	-	ETS Lindgren	N/A	N/A
007-014	RF Cable 18-40 GHz 6m	R286304009	1747364	Radiall	2023-02-16	2024-02-16
007-022	RF Cable 1-18GHz, 1.5m	0501050991200GX	19.23.493	Radiall	2023-02-13	2024-02-13
007-015	RF Cable 1GHz-18GHz 1.5m	-	-	Spirent	2023-02-13	2024-02-13
007-018	RF Cable 1-9.5GHz 1.2m	0500990991200KE	-	Radiall	2023-02-13	2024-02-13
007-020	RF Cable 1-18GHz, 1.2 m	2301761761200PJ	12.22.1104	Radiall	2023-02-15	2024-02-15
325-000	Temp & Humidity Logger	RA12E-TH1-RAS	RA12-B9B7C6	Avtech	2022-01-17	2024-01-17

N/A: Not Applicable

Shared Radiated Equipment

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
412-000	DRTU Power finder V2.1	-	-	Intel	NA	NA
139-000	Power Sensor	NRP-Z81	104383	Rohde & Schwarz	2023-04-21	2025-04-21
061-000	Power Sensor	NRP-Z81	104386	Rohde & Schwarz	2022-03-25	2024-03-25
140-000	Power Sensor	NRP-Z81	104382	Rohde & Schwarz	2022-03-25	2024-03-25
423-000	Power Sensor	NRP-Z81	101152	Rohde & Schwarz	2022-05-18	2024-05-18

N/A: Not Applicable

A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the table below with a coverage factor of k = 2 to indicate a 95% level of confidence:

Measurement type	Uncertainty	Unit
Timing	±0.12	%
Power Spectral density	±1.47	dB
Occupied bandwidth	±2.07	%
Conducted Power	±1.03	dB
Conducted Spurious Emission <26.5 GHz	±2.93	dB
Radiated tests <1GHz	±6.40	dB
Radiated tests 1GHz – 26.5 GHz	±5.92	dB

Annex B. Test Results

The herein test results were performed by:

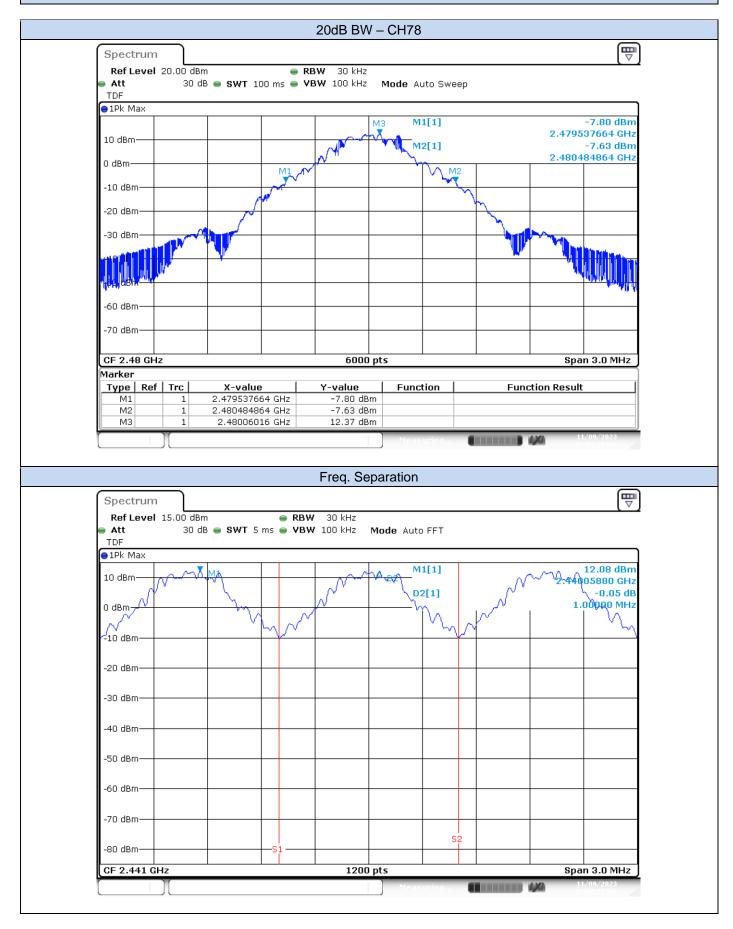
Test case measurement	Test Personnel
20dB Bandwidth and Carrier frequency separation	T.MATHIEU
Number of hopping channels	T.MATHIEU
Time of Occupancy (Dwell Time)	T.MATHIEU
Maximum Peak Output Power and antenna gain	T.MATHIEU
Out-of-band Emissions (conducted)	T.MATHIEU
Spuirous Emissions (radiated)	K.KHATIB, R.SIMONINI

B.1 20dB Bandwidth and carrier frequency separation

B.1.1 Test limits

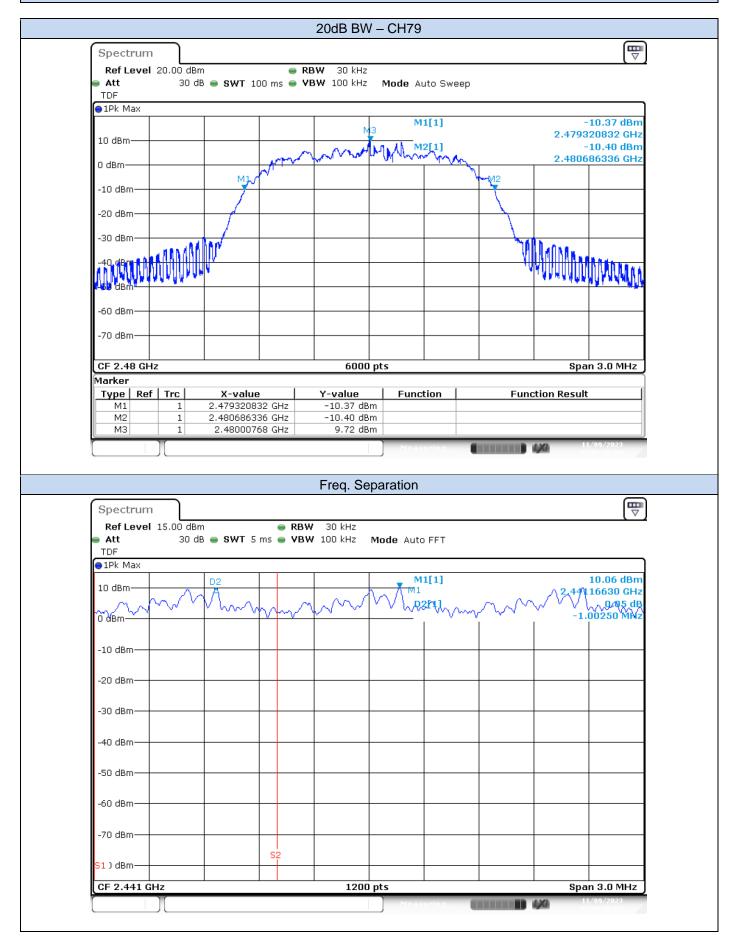
FCC part	RSS part	Limits
15.247 (a) (1)	RSS-247 Clause 5.1 (a) and (b)	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

B.1.2 Results tables

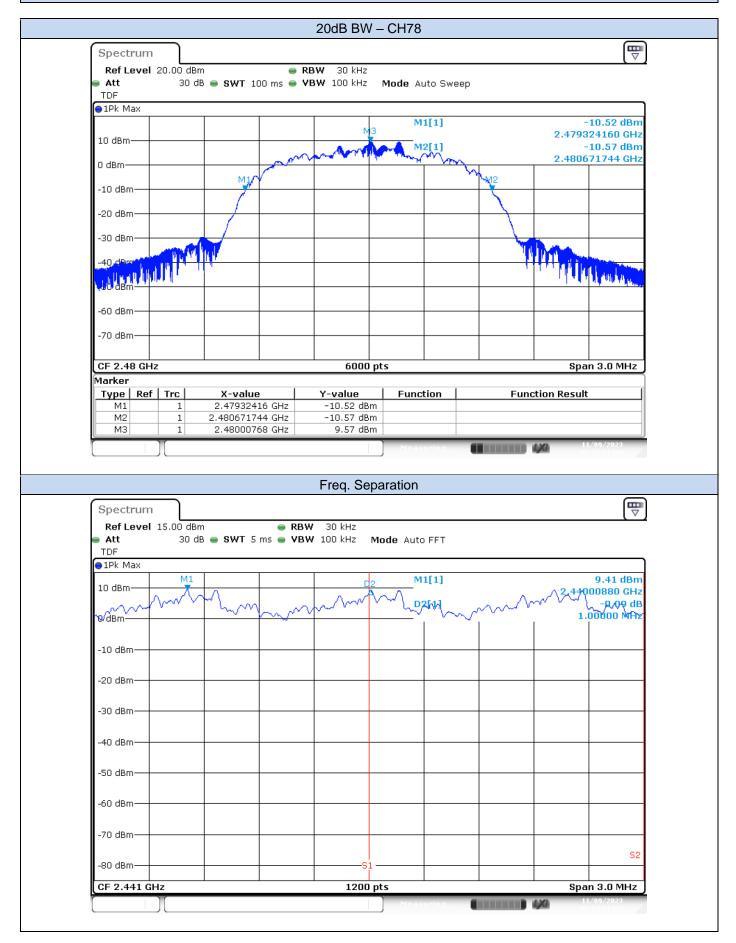

Mode	Packet Type	Channel Number	Frequency [MHz]	20dB BW [MHz]	Freq. Separation [kHz]		
		0	2402	0.950			
Basic Rate GFSK	DH5	39	2441	0.950	1000.0		
		78	2480	0.950			
	2DH5	0	2402	1.360			
EDR π/4-DQPSK		39	2441	1.360	1002.5		
		78	2480	1.370			
		0	2402	1.350			
EDR 8-DPSK	3DH5	39	2441	1.350	1000.0		
		78	2480	1.350			

Largest value per mode

B.1.3 Results screenshot


Basic Rate - GFSK

Rev. 00

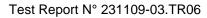

EDR – $\pi/4$ -DQPSK

Rev. 00

EDR – 8-DPSK

B.2 Number of hopping channels

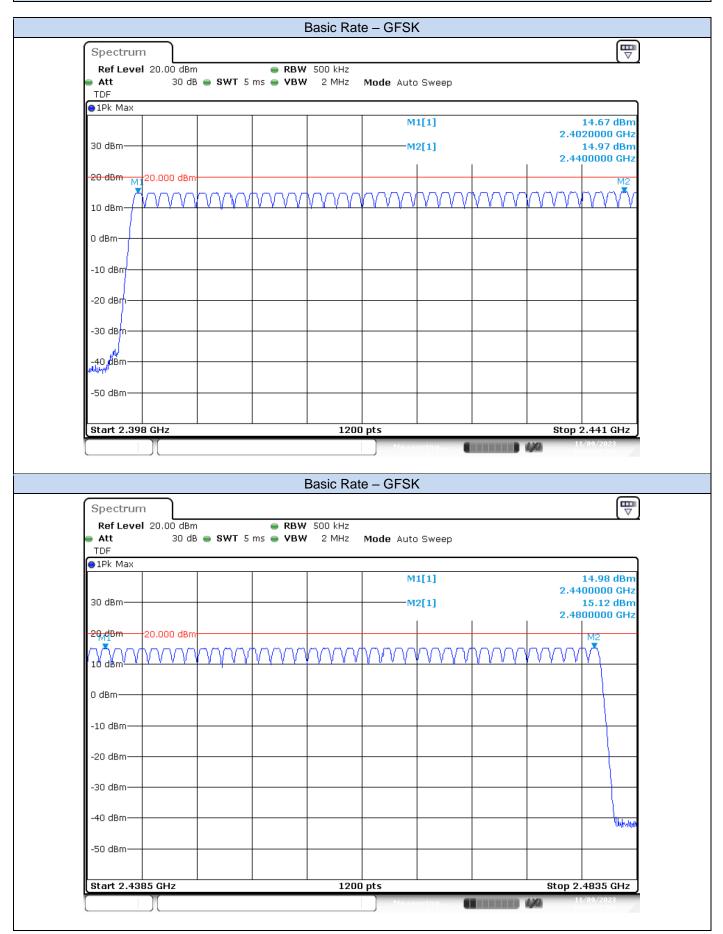
B.2.1 Test limits

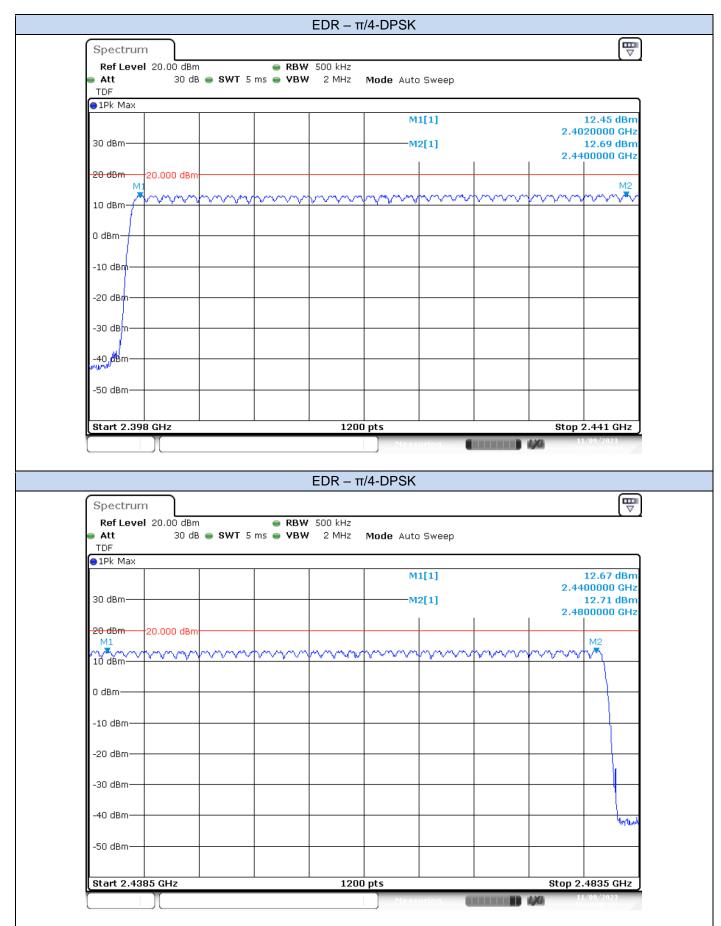

FCC part	RSS part	Limits
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

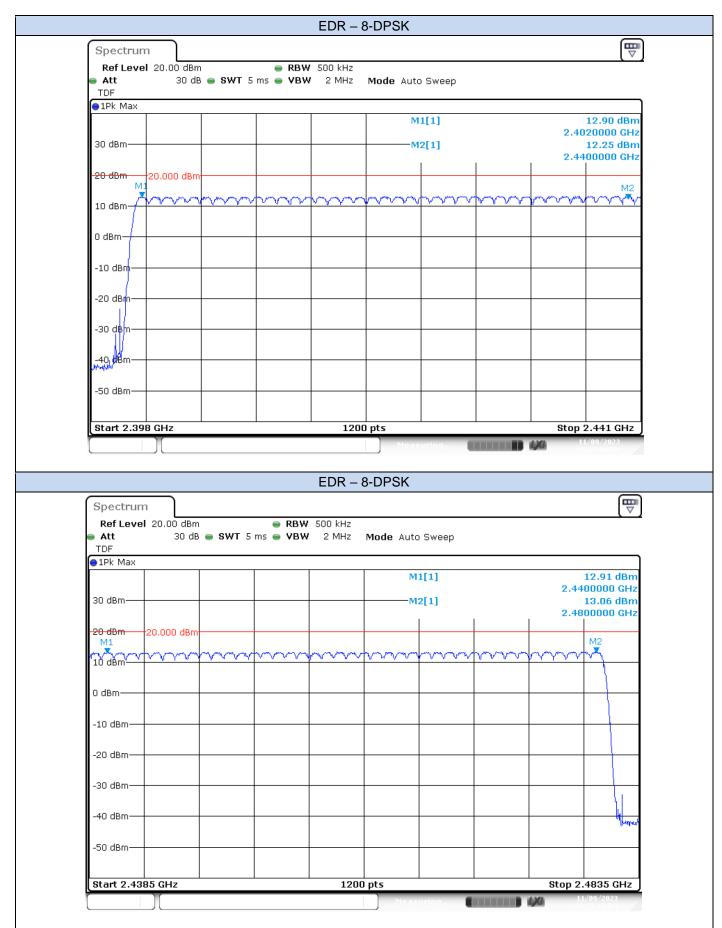
B.2.2 Test procedure

The conducted setup shown in section *Test & System Description* was used to measure the number of hopping channels. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

B.2.3 Results tables


Mode	Packet Type	Number of hopping channels
Basic Rate GFSK	DH5	79
EDR π/4-DQPSK	2DH5	79
EDR 8-DPSK	3DH5	79




Rev. 00

Number of hopping channels

Rev. 00

B.3 <u>Time of Occupancy (Dwell Time)</u>

FCC part	RSS part	Limits
15.247 (a) (1) (iii)	RSS-247 Clause 5.1 (d)	The average time of occupancy (Dwell Time) on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

B.3.1 Test procedure

The conducted setup shown in section *Test & System Description* was used to measure the dwell time. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

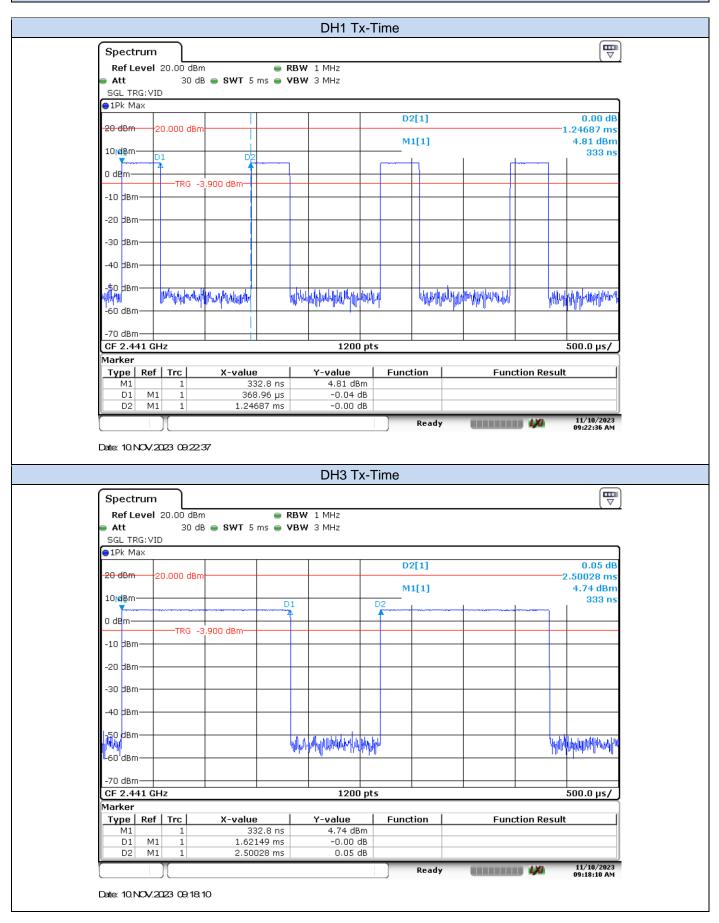
In the worst case, the system makes 1600 hops per second with 79 channels, providing a 1 timeslot length of 625µs.

A DH1 packet, with independence of the modulation, needs 1 time slot for transmitting and 1 time slot for receiving. Then, the system makes in the worst case 1600/2 = 800 hops per second with 79 channels. So each channel appears 800/79 = 10.13 times per second and, for a period of $0.4 \times 79 = 31.6$ seconds, each channel appears $10.13 \times 31.6 = 320.11$ times.

A DH3 packet, with independence of the modulation, needs 3 time slots for transmitting and 1 time slot for receiving. Then, the system makes in the worst case 1600/4 = 400 hops per second with 79 channels. So each channel appears 400/79 = 5.1 times per second and, for a period of $0.4 \times 79 = 31.6$ seconds, each channel appears $5.1 \times 31.6 = 161.16$ times.

A DH5 packet, with independence of the modulation, needs 5 time slots for transmitting and 1 time slot for receiving. Then, the system makes in the worst case 1600/6 = 266.67 hops per second with 79 channels. So each channel appears 166.67/79 = 3.37 times per second and, for a period of $0.4 \times 79 = 31.6$ seconds, each channel appears $3.37 \times 31.6 = 106.49$ times.

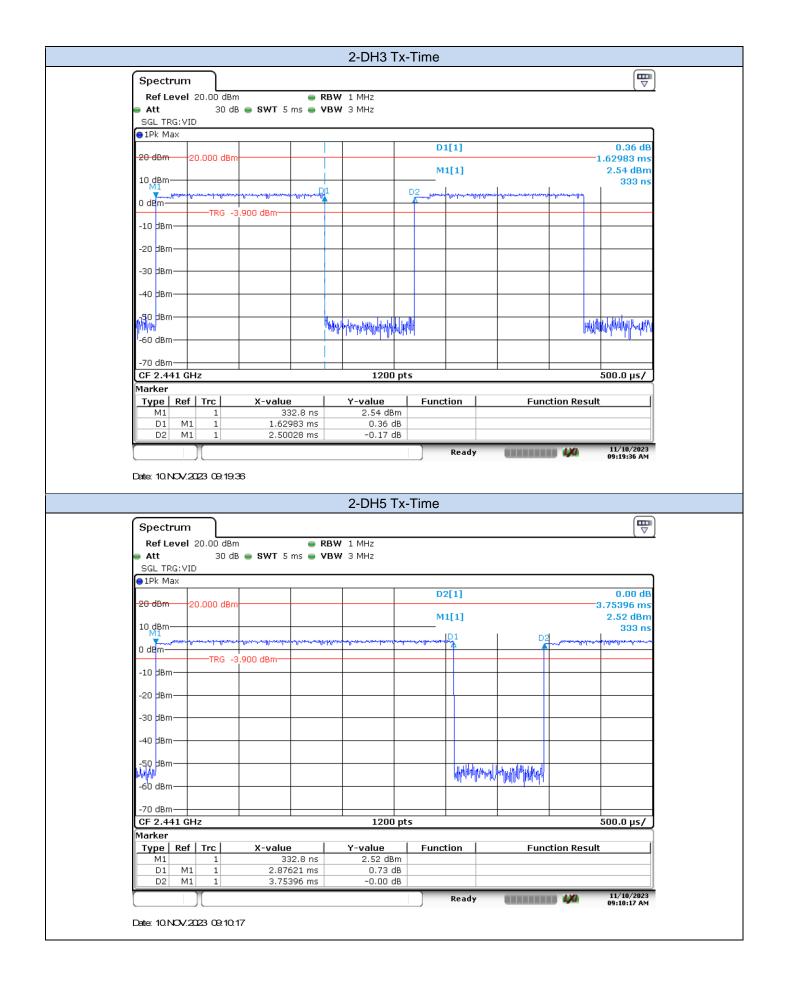
Thus, the total time of occupancy is obtained by multiplying the calculated maximum number of appearances per packet type and the measured Tx-time, as shown in the results screenshots.


B.3.2 Results tables

Mode	Packet Type	Times of appearance	Tx-time [ms]	Dwell Time [ms]
	DH1	320.11	0.369	118.11
Basic Rate GFSK	DH3	161.16	1.621	261.32
OFOR	DH5	106.49	2.872	305.84
	2-DH1	320.11	0.377	120.78
EDR π/4-DQPSK	2-DH3	161.16	1.630	262.66
	2-DH5	106.49	2.876	306.29
	3-DH1	320.11	0.381	122.11
EDR 8-DPSK	3-DH3	161.16	1.629	262.52
0 01 01	3-DH5	106.49	2.880	306.73

B.3.3 Results Screenshot

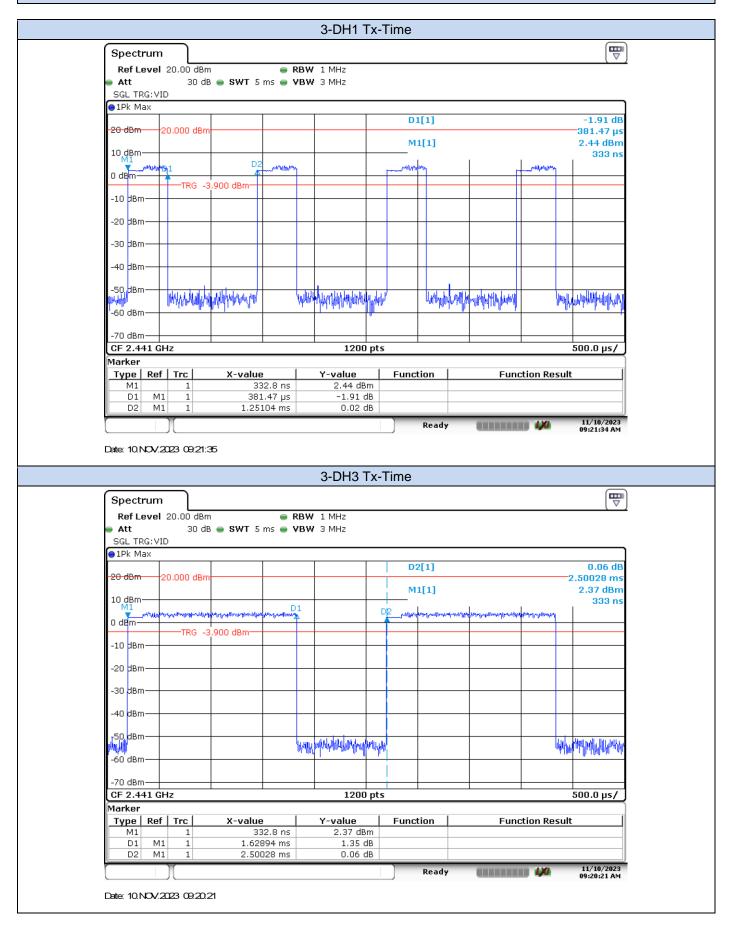
BDR – GFSK

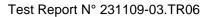


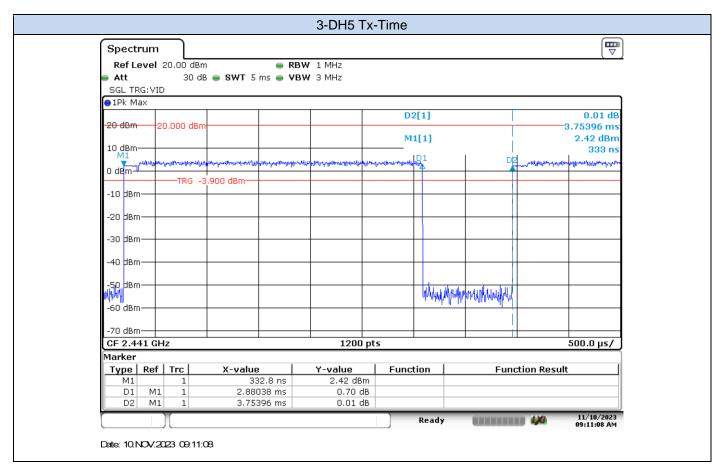
					DH5 Tx-	·IIme				
Spectr	um									
Ref Le	evel 2	20.00 dBm	1	😑 RE	W 1 MHz					
🗕 Att	_		5 👄 SWT 5 m:	5 👄 VE	SW 3 MHz					
SGL TR										
О ТРК Ма	=×					D	1[1]			-0.04 dB
20 dBm		0.000 dBm			_					-2.87204 ms
						M	1[1]			4.78 dBm
10 <mark> d</mark> Bm-								, D	2	333 ns
0 dBm—									1	
	-	TRG -3	.900 dBm							
-10 dBm	-									
-20 dBm										
-30 dBm										
-40 dBm										
-50 dBm	·+-						Uniteday	lalladeletation to the second second		
-60 dBm							WLMM	tal and a school of the state		
00 00.										
-70 dBm										
CF 2.44	+1 GH	z			1200 p	ots				500.0 µs/
Marker Type	Def	Tral	X-value	1	Y-value	Func	tion		iction Resi	.1+
M1	Rei	1		8 ns	4.78 dBm			Fui	ICTION REST	
D1	M1	1	2.8720	4 ms	-0.04 dB					
D2	M1	1	3.7539	6 ms	0.01 dB					
							Ready		100	11/10/2023 09:09:24 AM

EDR – $\pi/4$ -DQPSK

	2-DH1 Tx-Time												
s	pect	trum											
		.evel	20.00 dBr			W 1 MHz							
	Att GLT	RG: VIE		8 👄 SWT 5	ms 🖷 VB	W 3 MHz							
	.Pk M		/										
			In					D2	[1]			0.01 dB	
-21	dBn	- 2	0.000 dBr					M1	[1]			1.25104 ms ⁻ 2.56 dBm	
10			1				<u> </u>			1		333 ns	
0	dBm-	-montrage	ŧ		- Jurmer you		F	proven	6		Harter-mage		
	-		TRG -3	3.900 dBm									
-1	o dBr	m-+-											
-2	о дві	m					\vdash						
	o dBr												
-3		"											
-4	o dBr	m-+-											
-5	о дві	m	16	W1 . 14 . 4		and the set of the						lu da de	
	JI.		Villingiya	Anna Mara Malak	h)	and the second	MMM.		YANAMAA	h Manageran Manguan	(ARA)	holy strong a public the	
-6	0 dBr	m				-							
	0 dBr												
<u> </u>	_	41 GF	lz			1200) pts					500.0 µs/	
	rker vne	Ref		X-value	•	Y-value		Funct	ion	Fun	ction Result	t 1	
	M1		1	33	32.8 ns	2.56 dB	3m						
	D1 D2				77.3 µs 104 ms	1.44 0.01							
	Ready 09:22:06 AM												
Date	e: 10.	NOV.2	23 09.22	06									







Rev. 00

EDR – 8-DPSK

Rev. 00

B.4 Maximum Peak Output Power antenna gain

B.4.1 Test Limits

FCC part	RSS part	Limits
15.247 (b) (1)	RSS-247 Clause 5.4 (b)	 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. () (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

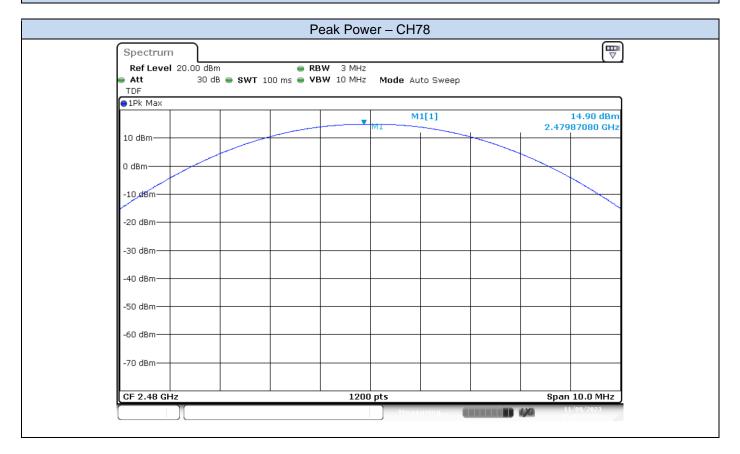
B.4.2 Test procedure

The conducted setup shown in section *Test & System Description* was used to measure the maximum peak output power. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

B.4.3 Results tables

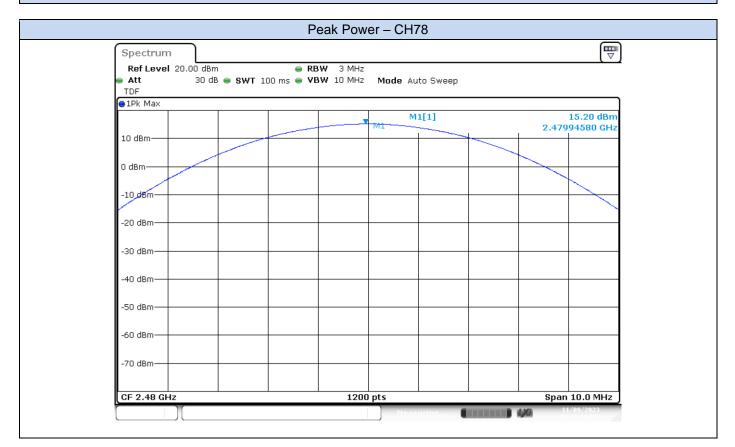
Mode	Packet Type	Channel Number	Frequency [MHz]	Peak Power [dBm]	Peak Power [mW]	Peak Power EIRP [dBm]	Peak Power EIRP [mW]		
		0	2402	14.79	30.13	17.79	60.12		
Basic Rate GFSK	DH5	39	2441	14.96	31.33	17.96	62.52		
		78	2480	15.20	33.11	18.20	66.07		
	2DH5	2DH5		0	2402	14.50	28.18	17.50	56.23
EDR π/4-DQPSK			39	2441	14.68	29.38	17.68	58.61	
		78	2480	14.90	30.90	17.90	61.66		
			0	2402	14.79	30.13	17.79	60.12	
EDR 8-DPSK	3DH5	39	2441	14.97	31.41	17.97	62.66		
		78	2480	15.20	33.11	18.20	66.07		

Highest/Lowest power per mode



B.4.4 Results Screenshot

Basic Rate - GFSK


EDR – $\pi/4$ -DQPSK

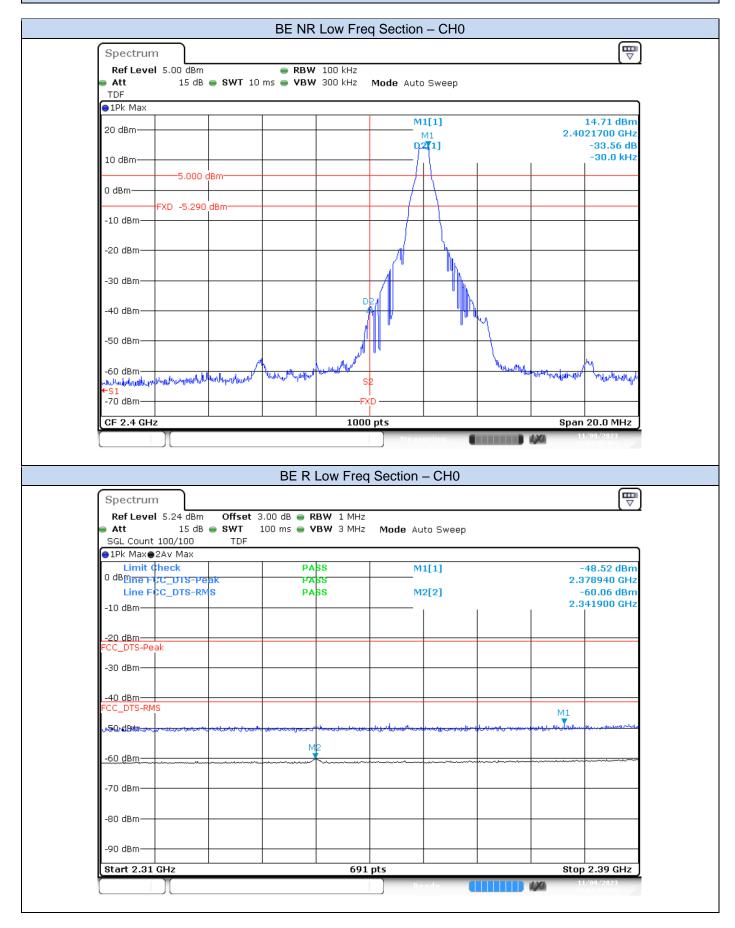
Rev. 00

EDR – 8-DPSK

B.5 Out-of-band emission (conducted)

B.5.1 Test limits

FCC part	RSS part	Limits
15.247 (d)	RSS-247 Clause 5.5	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.


B.5.2 Test procedure

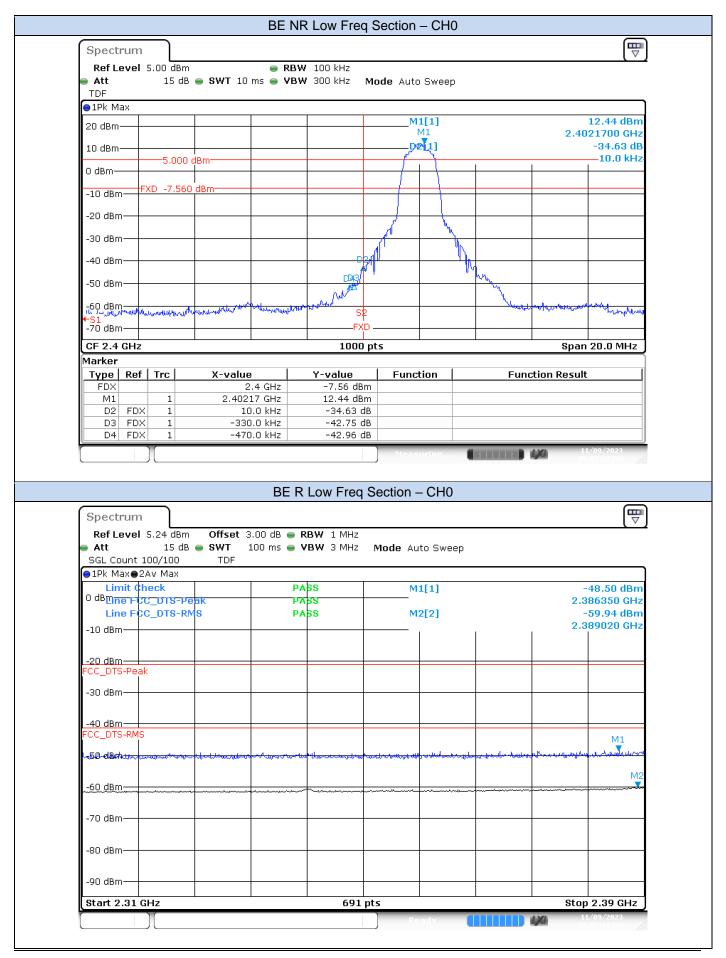
The conducted setup shown in section *Test & System Description* was used to measure the out-of-band emissions (conducted). The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

B.5.3 Test results

Basic Rate - GFSK

Spectrum								[₩
Ref Level 6.24 dBm			BW 1 MHz					
● Att 15 dB SGL Count 100/100	SWT 10 TDF	JU ms 🖷 V	BW 3 MHz	Mode Au	to Sweep			
●1Pk Max●2Av Max	TDI							
Limit Check		∥PA	ss 1	M	1[1]			38.70 dBm
0 dBki ne Limit_PEAK			6 6		-[-]			96510 GHz
Line Limit_RMS_2	.4835GHz	// ра	ss {}	M:	2[2]		-	50.90 dBm
-10 dBm							2.49	97550 GHz
10 0.0111								
-20 dBm								
-20 ubiii			Limit	PEAK				
-30 dBm								
								M1
-40 dBm	11 July march 1 March 14		Limit RMS	2.4925647.				- Au
-40 dBm	No			2.4835GHz _{.M}	and man with the	menontabilition	when apprende	W M2 4
-50 dBm		/						
	and the second s	*	~	man a				$ / \chi$
-60'dBm						~~~~~~~ <u>~~~~</u>	-11-11- <u>11-11-11-11-1</u> 1-11-1	
-70 dBm								
-80 dBm								
								S2
-90 dBm			S	1				
CF 2.4835 GHz			691	nts			Snan	36.0 MHz

RefLevel 5.24 dBm Offse Att 15 dB SWT	t 3.00 dB 👄 RBW 100 ms 👄 VBV		Auto Curen		
SGL Count 100/100 TDF		o moue	Auto Sweep		
●1Pk Max●2Av Max					
Limit Check	PASS		M1[1]		-46.41 dBn
O dBCine FCC_DIS-Peak	PASS		-		2.387860 GH
Line FCC_DTS-RMS	PASS		M2[2]		-56.33 dBn
-10 dBm			- 1	1	2.350000 GH
-20 dBm					
FCC_DTS-Peak					
-30 dBm					
-40 dBm					
FCC_DTS-RMS					M1
150.BBmoton Untraction and a general de	man in which in m	بوالمليط ومستعاد والمسالية	mal dia dia	Lux Sue 14 marine	
		M2			
And Munter	mm m h	$\mathcal{M}_{\mathbf{M}}$	~ 10		
			- produce	when whe when the	an a
-70 dBm					
-80 dBm					
-90 dBm					
Start 2.31 GHz		691 pts			Stop 2.39 GHz



Spectrum					
RefLevel 6.24 dBn Att 15 dB		dB 👄 RBW 1 MHz ns 👄 VBW 3 MHz	Mode Auto Sweep		
SGL Count 100/100	TDF		Mode Adto Smoop		
●1Pk Max●2Av Max					
Limit Check		PASS	M1[1]	-39.80 2.484698	
0 dBi <mark>lling Limit_PEAM</mark> Line Limit_RMS	8.4885GHz	PASS	M2[2]	-51.23	
-10 dBm				2.484646	
-10 UBIII					
-20 dBm	9				
-20 00111		Limit	_PEAK		
-30 dBm		[]			
30 dbiii					
-40 dBm	M		M1 X		
		Limit_RMS	2.4835GHz		
-50 dBm		<mark> </mark> \	M2 Whypellourshallour	way an age the age of the age of the second	لاكتسباها
		m 4	mothing in		
-60 dBm			Low Samaly	har	لمورجع
-70 dBm					
-80 dBm					
					S2
-90 dBm		×	51		

Rev. 00

EDR – $\pi/4$ -DQPSK

Spectrum										[₩
Ref Level 6.24		3.00 dB								
Att : SGL Count 100/1	15 dB 👄 SWT .00 TDF	100 ms	Θ Υ	BW 3	3 MHz	Mode Au	ito Sweep			
SGE COUNT 100/1 ●1Pk Max●2Av M										
Limit Check			//PA	ss \l		м	1[1]			42.56 dBm
0 dBbi ne Limit_ F		_					-[-]			35000 GHz
Line Limit_F	MS_2.4835GHz		PA	ss \		M	2[2]			53.96 dBm
-10 dBm		(,	[<u>\</u>		1	1	2.48	35000 GHz
		//			$\ $					
-20 dBm					11					
					Limit_	PEAK				
-30 dBm		$\perp \mu$								
-40 dBm						1				
-40 ubiii	dustud by	where I		Limit	_RMS_	2.4835GHz				
ussingallinurhundh	multiplit						munumu	munum	hundruhl	monthematic
SO GDIN		\downarrow			L.	Ĺ.				
		-				· · · · · · · · · · · · · · · · · · ·	menne			<u></u>
-00 0011										
-70 dBm										
-70 0.011										
-80 dBm										
										S2
-90 dBm					S	1				52
-50 ubiii-					691					36.0 MHz

RefLevel 5.24 dBm Offset Att 15 dB SWT	3.00 dB RBW 1 MH 100 ms VBW 3 MH		
SGL Count 100/100 TDF	100 ms 🖶 YBW 3 MH	z Mode Auto Sweep	
●1Pk Max●2Av Max			
Limit Check	PASS	M1[1]	-47.36 dBn
O dBEine FCC_DIS-Peak	PASS		2.349540 GH
Line FCC_DTS-RMS	PASS	M2[2]	-58.17 dBr 2.353130 GH
-10 dBm			2.353130 GH
-20 dBm			
FCC_DTS-Peak			
-30 dBm			
-40 dBm			
FCC_DTS-RMS	1	M1	
W50.0Bpamagedgramethypethypethypethypethypethypethypethyp	ten the ward and the second de la		ومحت والمستعاد والمستعد والمعرف والمعرف والمعرفين والمستعد والمستعد والمعالية والمستعد والمعالية والمستعد والمستع
		M2	
ᢣ᠍᠖ᢩᢍ᠋᠋ᡥᡐᡒᠯᠧᢞᢦᠣᢦᢦᠯᡧᠧᠵᡟᢍ	where have been and the second	month par	
-70 dBm			
-80 dBm			
-90 dBm			
-90 dBill			

Rev. 00

I

Spectrum			
	00 dB 👄 RBW 1 M 00 ms 👄 VBW 3 M		
SGL Count 100/100 TDF		inte intolde Adio Sweep	
●1Pk Max●2Av Max			
Limit Chesky V 0 dBh ine Limit PEAK Line Limit RMS_2.4835GHz		M1[1]	-44.37 d
	PASS	 M2[2]	2.4835000 (-54.65 d
	r no s	mz[z]	2.4835520 (
-10 dB			
-20 dBm /	L	.imit_PEAK	
-30 dBm			
-30 UBIII			
-40 dBm			
	Limit_F	MS_2.4835GHz	
-50 dBm		Mululululululululululululululululululul	- mouth a dar man with much per and and and and and a second
	v		
-60 dBm		Warming	www.www.www.
-70 dBm			
-80 dBm			
-90 dBm			
CF 2.4835 GHz		691 pts	Span 36.0 M

Rev. 00

EDR – 8-DPSK

Cur e etimore				Ē
Spectrum				
RefLevel 5.00 dBm ● Att 15 dB ● SWT 10	RBW 100 kHz Ims VBW 300 kHz	Mode Auto Sweep		
TDF		Mode Mate encop		
●1Pk Max	1 1			
20 dBm		M1[1] M1		12.26 dBm 2.4021700 GHz
10 dBm		D2[1]		-34.73 dE
5.000 dBm			II	
0 dBm				
-10 dBm FXD -7.740 dBm				
-20 dBm				
		1 🖉 🛛 🖒		
-30 dBm			h.	
-40 dBm		₽ <mark>₽</mark> ₽ <mark>₽</mark> ₽		
-50 dBm			"Man	
60 dPm	Lake and an and a star of the owner of the		hermon	Statutes, is a margine and an Andrews
-60 dBm		52		and and a contraction
-70 dBm	F	XD		
CF 2.4 GHz	100	0 pts		Span 20.0 MHz
Marker _Type Ref Trc X-valu	e Y-value	Function	Fund	tion Result
FDX :	2.4 GHz -7.74 c		T dife	tion Result
	217 GHz 12.26 c 0.0 kHz -34.73			
	0.0 kHz -34.73 0.0 kHz -41.52			
	0.0 kHz -41.69	dB		
	· · · · · · · · · · · · · · · · · · ·	Measuring	•••••••	11/09/2023 //
	· · · · · · · · · · · · · · · · · · ·	q Section – CH0	••••••	
Spectrum	BE R Low Fre	q Section – CH0	•	11/09/2023 //
Spectrum Ref Level 5.24 dBm Offset	· · · · · · · · · · · · · · · · · · ·	q Section – CH0		
Spectrum Ref Level 5.24 dBm Offset 15 dB SWT SGL Count 100/100 TDF	BE R Low Fre	q Section – CH0		
Spectrum Ref Level 5.24 dBm Offset 15 Att 15 dB SWT SGL Count 100/100 TDF 1Pk Max 2Av Max	BE R Low Fre	q Section – CH0 Mode Auto Swee		
Spectrum Ref Level 5.24 dBm Offset 15 dB SWT SGL Count 100/100 TDF 1Pk Max 2Av Max Limit check	BE R Low Fre	q Section – CH0		
Spectrum Ref Level 5.24 dBm Offset 15 Att 15 dB SWT SGL Count 100/100 TDF 1Pk Max 2Av Max	BE R Low Fre	q Section – CH0 Mode Auto Swee		-46.50 dBm 2.389020 GHz -60.04 dBm
Spectrum Ref Level 5.24 dBm Offset 3 Att 15 dB SWT SGL Count 100/100 TDF 1Pk Max 2Av Max Limit Check 0 dBmne - C_UIS-Vepk	BE R Low Fre	Measuring w q Section – CH0 Mode Auto Swee M1[1]		-46.50 dBm 2.389020 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF 1Pk Max 224v Max Limit Check 0 dBpine FCC_DTS-Peak Line FCC_DTS-RMS -10 dBm	BE R Low Fre	Measuring w q Section – CH0 Mode Auto Swee M1[1]		-46.50 dBm 2.389020 GHz -60.04 dBm
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF 1Pk Max 02Av Max Limit Check 0 dBmne FCC_DTS-Peak Line FCC_DTS-RMS -10 dBm	BE R Low Fre	Measuring w q Section – CH0 Mode Auto Swee M1[1]		-46.50 dBm 2.389020 GHz -60.04 dBm
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max @2Av Max Limit Check 0 dBm C_DTS-Peak Line FCC_DTS-RMS -10 dBm -20 dBm FCC_DTS-Peak	BE R Low Fre	Measuring w q Section – CH0 Mode Auto Swee M1[1]		-46.50 dBm 2.389020 GHz -60.04 dBm
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF 1Pk Max 02Av Max Limit Check 0 dBmne FCC_DTS-Peak Line FCC_DTS-RMS -10 dBm	BE R Low Fre	Measuring w q Section – CH0 Mode Auto Swee M1[1]		-46.50 dBm 2.389020 GHz -60.04 dBm
Spectrum Ref Level 5.24 dBm Offset 3 Att 15 dB SWT SGL Count 100/100 TDF IPk Max 2Av Max Limit Check 0 dBm FCC_DTS-Peak Line FCC_DTS-RMS -10 dBm -20 dBm FCC_DTS-Peak -30 dBm	BE R Low Fre	Measuring w q Section – CH0 Mode Auto Swee M1[1]		-46.50 dBm 2.389020 GHz -60.04 dBm
Spectrum Ref Level 5.24 dBm Offset : Att 15 dB SWT SGL Count 100/100 TDF IPk Max @2Av Max Limit Check 0 dBm C_DTS-Peak Line FCC_DTS-RMS -10 dBm	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max 2Av Max Limit Check 0 dB 0 dB C_DTS-Peak -10 dBm -20 dBm -20 dBm -40 dBm	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max 22v Max Limit Check 0 dB@Ine FCC_DTS-Peak Line FCC_DTS-RMS -10 dBm -20 dBm -20 dBm -40	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max 22v Max Limit Check 0 dB@Ine FCC_DTS-Peak Line FCC_DTS-RMS -10 dBm -20 dBm -20 dBm -40	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max 2Av Max Limit Check 0 dBm FCC_DTS-Peak Line FCC_DTS-RMS -10 dBm FCC_DTS-Peak -30 dBm FCC_DTS-RMS -60 dBm	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max @2Av Max Uninit Check O dBUINE FCC_DTS-RMS -10 dBm -20 dBm FCC_DTS-Peak -30 dBm -40 dBm FCC_DTS-RMS -50 dBm	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max 2Av Max Imit Check OdB O dB C_DTS-PEak Ine FCC_DTS-RMS -10 dBm -20 dBm FCC_DTS-Peak -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max 2Av Max Limit Check 0 dBm FCC_DTS-Peak Line FCC_DTS-RMS -10 dBm FCC_DTS-Peak -30 dBm FCC_DTS-RMS -60 dBm	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max 22v Max Limit Check O dBDine FCC_DTS-Peak Line FCC_DTS-RMS -10 dBm -20	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz
Spectrum Ref Level 5.24 dBm Offset Att 15 dB SWT SGL Count 100/100 TDF IPk Max 2Av Max Imit Check OdB O dB C_DTS-PEak Ine FCC_DTS-RMS -10 dBm -20 dBm FCC_DTS-Peak -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm	BE R Low Fre	Measuring	p	-46.50 dBm 2.389020 GHz -60.04 dBm 2.389130 GHz

I

Test Report N° 231109-03.TR06

Spectrum	1										[₩
	l 6.24 dBm	Offset 3									
Att			100 ms	Θ Υ	BW	3 MHz	Mode Au	ito Sweep			
SGL Count		TDF									
Limit C			1	//PA	be II			1[1]			39.65 dBm
0 dBbi ne Li							IVI	1[1]			·39.65 aBm 37080 GHz
	mit_RMS_2	.4835GHz			ss \		м	2[2]			53.42 dBm
			<i> </i>			//					35000 GHz
-10 dBm—						11					
						//					
-20 dBm—						Limit	PEAK				
						$\{ \}$					
-30 dBm			$ \uparrow $								
-40 dBm							И1 ▼				
-+0 abiii					Limit	_RMS_	2.4835GHz				
-40 aBm— Խևստակոչութ -50 dBm—	about the manual	analas					- where	monorphy	monuture	Mununum	hunnahunde
-50 aBm						1					
		- market and the second									
~ 60 d8m∽~~									·······		
-70 dBm—											
-80 dBm—											
											S2
-90 dBm						S	1				
CF 2.4835	GH7	1	I			691	nts	1	1	l Snan	36.0 MHz

Ref Level 5.24 dBm Offset	3.00 dB 🔵 RBW 1 MH	łz	
🛢 Att 15 dB 🖷 SWT	100 ms 👄 VBW 3 MH	Iz Mode Auto Sweep	
SGL Count 100/100 TDF			
●1Pk Max●2Av Max			
Limit Check	PASS	M1[1]	-47.69 dBn
O dB <u>mne FCC_DTS-Peak</u>	PASS		2.386470 GH
Line FCC_DTS-RMS	PASS	M2[2]	-58.05 dBn
-10 dBm		I I	2.352890 GH:
-20 dBm			
FCC_DTS-Peak			
-30 dBm			
-30 uBill			
-40 dBm			
FCC_DTS-RMS			M1
vt50.dBm ^h andplatation and produced have descent	And the war and the second and the s	white and the second of the second	www.weindeweinderender deht twww.w.b.
		M2	
Leong Boot to have a free free free free free free free f	An when he have	ny Jug ng hang hang hang hang hang hang hang	
-70 dBm			
-80 dBm			
-90 dBm			
Start 2.31 GHz		91 pts	Stop 2.39 GHz

Spectrum				
	3.00 dB 🔵 RBW 1 MHz			
Att 15 dB 👄 SWT	100 ms 👄 VBW 3 MHz	Mode Auto Sweep		
SGL Count 100/100 TDF				
●1Pk Max●2Av Max // Limit Check				10.00.10
0 dBbi ne Limit_PEAK		M1[1]	9.4	-42.08 dBn 839690 GH:
Line Limit_RMS_2.4835GH		M2[2]	2.4	-53.81 dBn
		(iz[z]	2.4	836040 GH
-10 dBm				
-20 dBm				
		PEAK		
-30 dBm				
-40 dBm		M1		
	Limit_RMS	_2.4835GHz	. Mh	
-50 dBm		and "more more more thank	undown der wolfen al Miller	munohan
		w t		
-60 dBm		mounder management	u uma	
-60 aBm			- the second sec	
-70 dBm				
-80 dBm				
				S2
-90 dBm		51		
CF 2.4835 GHz	601	1 pts	ena	n 36.0 MHz

B.6 Radiated spurious emission

B.6.1 Standards references

FCC part	RSS part		Lir	nits								
		Radiated emissions w must also comply with			-	· · ·						
		Freq Range (MHz)	Field Stregth (µV/m)	Field Stregth (dBµV/m)	Meas. Distance (m)							
	RSS-247 Clause 5.5	DSS 247	DSS 247	30-88	100	40	3					
										88-216	150	43.5
		216-960	200	46	3							
15.247 (d)		Above 960	500	54	3							
15.209 (a)	RSS GEN A1 Clause 8.9	The emission limits s employing CISPR qu 1000 MHz. Radiated measurements emplo For average radiated a limit specified when to 20 dB above the in	asi-peak detector d emission limits bying an average emission measu n measuring with	r except for the fi in these three detector. rements above 1 peak detector fu	requency bands a bands are base 000 MHz, there is	above ed on s also						

B.6.2 Test procedure

The radiated setups shown in section *Test & System Description* were used to measure the radiated spurious emissions.

Depending of the frequency range and bands being tested, different antennas and filters were used. The final measurement is done by varying the antenna height from 1 m to 4 m, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

The radiated spurious emission was measured on the worst case configuration found.

Test Results

Radiated spurious - 30 MHz to 1 GHz

All modes

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
32.6	34.7	Quasi-Peak	40.0	5.4	V
47.8	35.6	Quasi-Peak	40.0	4.4	V
87.5	36.0	Quasi-Peak	40.0	4.0	V

Note 1: The spurious signals detected do not depend on either the operating channel or the modulation mode.

1 GHz – 26 GHz, BR – GFSK

Radiated Spurious – CH0 DH5

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
3369.5	40.5	Average	54.0	13.5	V
3395.5	52.8	Peak	74.0	21.2	н
10499.5	50.1	Peak	74.0	23.9	V
10500.0	43.4	Average	54.0	10.6	V

Radiated Spurious – CH39 DH5

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
3379.0	53.4	Peak	74.0	20.6	V
3389.0	40.8	Average	54.0	13.2	V
10500.0	49.3	Peak	74.0	24.7	V
10500.0	42.8	Average	54.0	11.2	V

Radiated Spurious – CH78 DH5

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
3388.5	52.6	Peak	74.0	21.4	н
3389.5	40.8	Average	54.0	13.2	V
10500.0	49.5	Peak	74.0	24.5	V
10500.0	43.3	Average	54.0	10.7	V

1 GHz – 26 GHz, EDR – $\pi/4$ -DQPSK

Radiated Spurious – CH0 2DH5

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
3396.0	53.2	Peak	74.0	20.8	V
3399.5	40.8	Average	54.0	13.2	V
10500.0	49.0	Peak	74.0	25.0	V
10500.0	42.1	Average	54.0	11.9	V

Radiated Spurious – CH39 2DH5

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
3388.5	40.8	Average	54.0	13.2	V
3391.5	53.2	Peak	74.0	20.8	н
10500.0	50.0	Peak	74.0	24.0	V
10500.0	42.9	Average	54.0	11.1	V

Radiated Spurious – CH78 2DH5

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
3389.5	40.8	Average	54.0	13.2	V
3397.5	53.0	Peak	74.0	21.0	н
10500.0	49.8	Peak	74.0	24.2	н
10500.0	42.3	Average	54.0	11.7	V

1 GHz – 26 GHz, EDR – 8-DPSK

Radiated Spurious – CH0 3DH5

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
3391.0	40.8	Average	54.0	13.2	V
3394.5	52.9	Peak	74.0	21.1	V
10500.0	42.8	Average	54.0	11.2	V
10500.0	49.5	Peak	74.0	24.5	V

Radiated Spurious – CH39 3DH5

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
3397.0	40.8	Average	54.0	13.2	V
3397.5	53.0	Peak	74.0	21.0	н
10499.5	49.7	Peak	74.0	24.3	V
10500.0	42.9	Average	54.0	11.1	V

Radiated Spurious – CH78 3DH5

Frequency	Level	Detector	Limit	Margin	Polar
MHz	dBµV/m		dBµV/m	dB	
3387.5	54.2	Peak	74.0	19.8	н
3388.0	40.8	Average	54.0	13.2	V
10500.0	49.6	Peak	74.0	24.4	V
10500.0	42.5	Average	54.0	11.5	V