





## **TEST REPORT**

EUT Description WLAN and BT, 2x2 PCle M.2 1216 adapter card

Brand Name Intel®

Model Name BE201D2W

FCC/IC ID PD9BE201D2; 1000M-BE201D2

Date of Test Start/End 2024-01-10 / 2024-02-16

Features 2x2 WiFi - Bluetooth®

(see section 5)

Applicant Intel Corporation SAS

Address 425 Rue de Goa – Le Cargo B6 – 06600 Antibes, FRANCE

Contact Person Benjamin Lavenant

Telephone/Fax/ Email Benjamin.lavenant@intel.com

FCC Title 47 CFR part 15 - Subpart C
Reference Standards RSS-247 issue 3 RSS-Gen A1 issue 5 - A1

(see section 1)

Test Report identification 231120-06.TR05

Rev. 00

Revision Control This test report revision replaces any previous test report revision

(see section 8)

The test results relate only to the samples tested.

Reference to accreditation shall be used only by full reproduction of test report.

Issued by Reviewed by

Robin Luciani (Test Engineer Lead) Zayd OUACHICHA (Technical Manager)

Intel Corporation S.A.S – WRF Lab 425 rue de Goa – Le Cargo B6 - 06600, Antibes, France Tel. +33493001400 / Fax +33493001401



# **Table of Contents**

| 1. Standards, reference documents and applic | able test methods3 |
|----------------------------------------------|--------------------|
| 2. General conditions, competences and guar- | antees3            |
| 3. Environmental Conditions                  | 3                  |
| 4. Test samples                              | 4                  |
|                                              | 5                  |
|                                              | 5                  |
|                                              | 6                  |
| •                                            | 6                  |
| 8. Document Revision History                 | 6                  |
| •                                            | 7                  |
| A.1 MEASUREMENT SYSTEM                       | 7                  |
| A.2 TEST EQUIPMENT LIST                      | 9                  |
| A.3 MEASUREMENT UNCERTAINTY EVALUATION       | 10                 |
| Annex B. Test Results                        | 11                 |
| B.1 TEST RESULTS BLE                         | 11                 |
| B.1.1 6dB & 99% Bandwidth                    | 11                 |
| B.1.2 Maximum Output Power and antenna gair  | ı 15               |
| B.1.3 Power Spectral Density                 |                    |
| B.1.4 Out-of-band emission (Conducted)       | 23                 |
| B.1.5 Radiated spurious emission             |                    |
| Annex C. Photographs                         | 29                 |
| C.1 TEST SETUP                               | 29                 |
| C.2 TEST SAMPLE                              | 31                 |

#### 1. Standards, reference documents and applicable test methods

|      | <ol> <li>FCC Title 47 CFR part 15 - Subpart C – §15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. 2021-10-01 Edition</li> <li>FCC Title 47 CFR part 15 - Subpart C – §15.209 Radiated emission limits; general requirements. 2021-10-01 Edition</li> </ol> |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC  | <ol> <li>FCC OET KDB 558074 D01 v05r02 - Guidance for compliance measurements on digital transmission system,<br/>frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC<br/>rules.</li> </ol>                                        |
|      | 4. FCC OET KDB 662911 D01 v02r01 - Emissions Testing of Transmitters with Multiple Outputs in the Same Band.                                                                                                                                                                                 |
|      | 5. ANSI C63.10-2013 - American National Standard of Procedures for Compliance Testing of Unlicensed Wireless                                                                                                                                                                                 |
|      | Devices                                                                                                                                                                                                                                                                                      |
|      | 1. RSS-247 Issue 3 - Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices.                                                                                                                                           |
|      | 2. RSS-Gen Issue 5 A1- General Requirements for Compliance of Radio Apparatus.                                                                                                                                                                                                               |
|      | 3. FCC OET KDB 558074 D01 v05r02 - Guidance for compliance measurements on digital transmission system,                                                                                                                                                                                      |
| ISED | frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.                                                                                                                                                                         |
|      | 4. FCC OET KDB 662911 D01 v02r01 - Emissions Testing of Transmitters with Multiple Outputs in the Same Band.                                                                                                                                                                                 |
|      | 5. ANSI C63.10-2013 - American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                                                                                                                                                                         |

#### 2. General conditions, competences and guarantees

- ✓ Tests performed under FCC standards identified in section 1 are covered by A2LA accreditation.
- ✓ Tests performed under ISED standards identified in section 1 are covered by Cofrac accreditation.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2017 testing laboratory accredited by the French Committee for Accreditation (Cofrac) with the certificate number 1-6736.
- ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by ISED, with ISED company number 1000Y and CAB identifier FR0005.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

#### 3. Environmental Conditions

At the site where the measurements were performed the following limits were not exceeded during the tests:

| Temperature | 23.4+/-0.5°C |
|-------------|--------------|
| Humidity    | 36.4+/-3.2%  |



## 4. Test samples

| Sample | Control #     | Description           | Model           | Serial #     | Date of receipt | Note                                             |  |
|--------|---------------|-----------------------|-----------------|--------------|-----------------|--------------------------------------------------|--|
|        | 231120-05.S13 | WiFi 7 Module         | BE201D2W        | F8FE5ECDCA67 | 2024-02-06      |                                                  |  |
| #01    | 200904-01.S10 | Laptop                | HP Opel         | 000075059C   | 2023-04-24      | Used for RF conducted tests                      |  |
|        | 231109-03.S46 | Extender Board        | CRF DB 2230 BNJ | 2202227961   | 2023-11-16      | conducted total                                  |  |
|        | 231120-05.S03 | WiFi 7 Module         | BE201D2W        | 60452EB8A3BC | 2024-01-05      |                                                  |  |
|        | 220225-03.S07 | Microwave<br>Absorber | Eccosorb BSR-1  | -            | 2022-03-14      |                                                  |  |
|        | 231109-03.S48 | Adaptor               | PCB00866-00_A   | 124627       | 2023-11-24      |                                                  |  |
|        | 200611-03.S31 | Extender              | ADEXELEC        | -            | 2020-08-19      | Used for Radiated                                |  |
| #02    | 200504-04.S07 | Laptop                | Latitude 5401   | BVHLK13      | 2020-06-02      | Spurious Emissions tests                         |  |
|        | 230223-02.S47 | Triband Antenna       | -               | 005          | 2023-04-20      | 10313                                            |  |
|        | 230223-02.S48 | Triband Antenna       | -               | 006          | 2023-04-20      |                                                  |  |
|        | 231120-05.S21 | WiFi 7 Module         | BE201D2W        | F8FE5CDCA49  | 2024-02-07      |                                                  |  |
|        | 180001-01.S21 | Socket                | 1216SD to M.2   | -            | 2021-06-07      |                                                  |  |
|        | 231120-05.S02 | WiFi 7 Module         | BE201D2W        | 60452EB8A407 | 2024-01-05      |                                                  |  |
|        | 220225-03.S07 | Microwave<br>Absorber | Eccosorb BSR-1  | -            | 2022-03-14      |                                                  |  |
|        | 231109-03.S47 | Adaptor               | PCB00866-00_A   | 124727       | 2023-11-24      |                                                  |  |
|        | 220915-09.S01 | Extender              | ADEXELEC        | -            | 2022-04-06      | Lland for Dadietad                               |  |
| #03    | 200611-03.S30 | Laptop                | Latitude 5401   | 6DJLK13      | 2020-08-19      | Used for Radiated<br>Spurious Emissions<br>tests |  |
|        | 230223-02.S49 | Triband Antenna       | -               | 007          | 2023-04-20      | 10313                                            |  |
|        | 230223-02.S50 | Triband Antenna       | -               | 008          | 2023-04-20      |                                                  |  |
|        | 231120-05.S20 | WiFi 7 Module         | BE201D2W        | F8FE5ECDCB43 | 2024-02-07      |                                                  |  |
|        | 180001-01.S21 | Socket                | 1216SD to M.2   | -            | 2021-06-07      |                                                  |  |



#### 5. EUT Features

The herein information is provided by the customer

Intel WRF Lab declines any responsibility for the accuracy of the stated customer provided information, especially if it has any impact on the correctness of test results presented in this report

| Brand Name                           | Intel®                                 |                            |                      |  |  |  |
|--------------------------------------|----------------------------------------|----------------------------|----------------------|--|--|--|
| Model Name                           | BE201D2W                               | BE201D2W                   |                      |  |  |  |
| Software Version                     | DRTU.05312.99.0.85 / RFC               | : DRTU.05726.99.0.86       |                      |  |  |  |
| Driver Version                       | 99.0.86.3 / RFC : 23.10.233            | 861.24681                  |                      |  |  |  |
| Prototype / Production               | Production                             |                            |                      |  |  |  |
|                                      | 802.11b/g/n/ac/ax/be                   | 2.4GHz                     |                      |  |  |  |
| Supported Radios                     | 802.11a/n/ac/ax/be                     | 5.2GHz<br>5.6GHz<br>5.8GHz |                      |  |  |  |
|                                      | 802.11ax/be                            | 6.0GHz                     |                      |  |  |  |
|                                      | Bluetooth 2.4GHz                       |                            |                      |  |  |  |
|                                      | Transmitter                            | Chain A(1)                 | Chain B(2)           |  |  |  |
|                                      | Manufacturer Intel WRF Lab Intel WRF L |                            | Intel WRF Lab        |  |  |  |
| Antenna Information Antenna type PIF |                                        | PIFA                       | PIFA                 |  |  |  |
|                                      | Part number                            | WRF-Tri Band-Antenna       | WRF-Tri Band-Antenna |  |  |  |
|                                      | Antenna peak gain (dBi)                | +3                         | +3                   |  |  |  |

#### 6. Remarks and comments

1. No deviations were made from the test methods listed in section 1 of this report



## 7. Test Verdicts summary

The statement of conformity to applicable standards in the table below are based on the measured values, without taking into account the measurement uncertainties.

#### 7.1. BLE

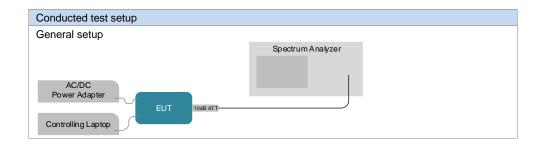
| FCC part             | RSS part                                    | Test name                         | Verdict |
|----------------------|---------------------------------------------|-----------------------------------|---------|
| 15.247 (a) (2)       | RSS-247 Clause 5.2 (a)                      | 6dB Bandwidth                     | Р       |
| 15.247 (b) (3)       | RSS-247 Clause 5.4 (d)                      | Maximum output power and E.I.R.P. | Р       |
| 15.247 (e)           | RSS-247 Clause 5.2 (b)                      | Power spectral density            | Р       |
| 15.247 (d)<br>15.209 | RSS-247 Clause 5.5<br>RSS-Gen A1 Clause 8.9 | Out-of-band Emissions (conducted) | Р       |
| 15.247 (d)<br>15.209 | RSS-247 Clause 5.5<br>RSS-Gen A1 Clause 8.9 | Spurious Emissions (radiated)     | Р       |

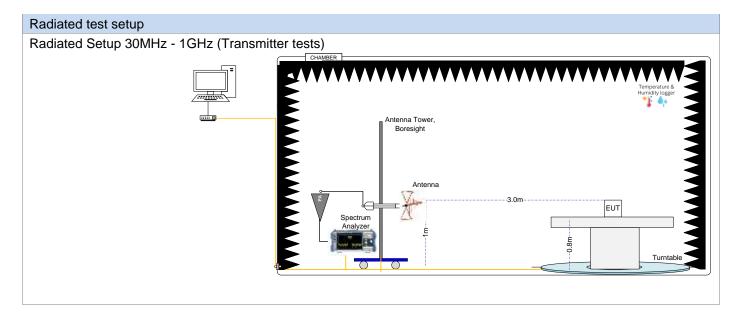
P: Pass F: Fail

NM: Not Measured NA: Not Applicable

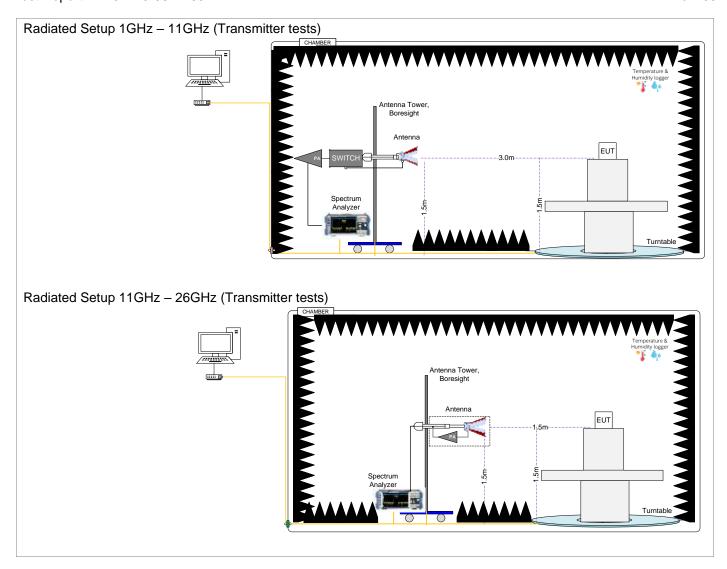
## 8. Document Revision History

| Revision # | Modified by           | Revision Details |
|------------|-----------------------|------------------|
| Rev. 00    | K.KHATIB<br>T.MATHIEU | First Issue      |





# Annex A. Test & System Description

#### A.1 Measurement System


Measurements were performed using the following setups, made in accordance to the general provisions of FCC OET KDB 558074 D01 DTS Meas Guidance.

The DUT was installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes, using the Intel proprietary tool DRTU.









#### Sample Calculation

The spurious received voltage  $V(dB\mu V)$  in the spectrum Analyzer is converted to Electric field strength using the transducer factor F corresponding to the Rx path Loss:

**F (dB/m)=** Rx Antenna Factor (dB/m) + Cable losses (dB) – Amplifiers Gain (dBi)   
**E (dB
$$\mu$$
V) =** V(dB $\mu$ V) + F (dB/m)

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

$$E_{SpecLimit} = E_{Meas} + 20*log(D_{Meas}/D_{SpecLimit})$$

where

EspecLimit is the field strength of the emission at the distance specified by the limit, in dBμV/m Emeas is the field strength of the emission at the measurement distance, in dBμV/m Dmeas is the measurement distance, in m DspecLimit is the distance specified by the limit, in m

Test Report N° 231120-06.TR05 Rev. 00

#### **A.2 Test Equipment List**

Conducted setup

| ID#     | Device                  | Type/Model        | Serial #    | Manufacturer       | Cal. Date  | Cal. Due Date |
|---------|-------------------------|-------------------|-------------|--------------------|------------|---------------|
| 159-000 | Spectrum Analyzer       | FSV40             | 101072      | Rohde &<br>Schwarz | 2023-03-23 | 2025-03-23    |
| 019-000 | RF cable 100cm          | PE360-100         | N/A         | PASTERNACK         | 2023-03-03 | 2024-03-03    |
| 019-002 | 10dB Attenuator + MH4   | PE7395-10         | N/A         | PASTERNACK         | 2023-03-03 | 2024-03-03    |
| 363-000 | Temp & Humidity Logger  | RA12E-TH1-<br>RAS | RA12-D0EB1A | AVITECH            | 2023-09-28 | 2025-09-28    |
| 413-000 | Measurement SW v1.5.4.2 | Octopi            | N/A         | Step AT            | N/A        | N/A           |

Radiated Setup #1

| ID#      | Device                         | Type/Model       | Serial #               | Manufacturer        | Cal. Date  | Cal. Due Date |
|----------|--------------------------------|------------------|------------------------|---------------------|------------|---------------|
| 006-000* | Anechoic Chamber               | FACT3            | 5720                   | ETS-Lindgren        | 2022-01-21 | 2024-02-21    |
| 006-008  | Measurement SW, v11.30         | EMC32            | 100623                 | Rohde & Schwarz     | N/A        | N/A           |
| 259-000  | Temp & Humidity Logger         | RA12E-TH-<br>RAS | RA12-B9BD70            | Avtech              | 2022-06-27 | 2024-06-27    |
| 006-001  | Turn Table                     | ETS              | -                      | ETS-Lindgren        | N/A        | N/A           |
| 006-011  | Boresight antenna mast         | BAM 4.0-P        | P/278/2890.01          | Maturo              | N/A        | N/A           |
| 007-008  | Double Horn Ridged antenna +PA | 3116C-PA         | 00169308bis + 00196308 | ETS-Lindgren        | 2023-0-30  | 2025-05-30    |
| 057-000  | Double Horn Ridged antenna     | 3117             | 167062                 | ETS-Lindgren        | 2022-07-08 | 2024-07-08    |
| 058-000  | Double Horn Ridged antenna     | 3116C            | 157511                 | ETS-Lindgren        | 2022-10-21 | 2024-10-21    |
| 006-061  | Bi-Log Periodic antenna        | CBL6143A         | 61382                  | Teseq               | 2022-10-24 | 2024-10-24    |
| 147-000  | Spectrum analyzer              | FSW43            | 101847                 | Rohde & Schwarz     | 2022-11-30 | 2024-11-30    |
| 301-000  | Amplifier 9kHz-1300MHz         | 8447F            | 3113A07440             | HP                  | 2023-03-03 | 2024-03-03    |
| 261-000  | Amplifier 1GHz-18GHz           | 3117-PA          | 00157993               | ETS-Lindgren        | 2023-02-20 | 2024-02-20    |
| 502-006  | Amplifier 0.5GHz-40GHz         | DEPA0540-43      | 2023A05                | Diamond Engineering | 2023-06-09 | 2024-06-09    |
| 009-007  | RF Filter                      | ZHSS-k11G+       | 8493 1831830           | Mini-Circuits       | 2023-06-09 | 2024-06-09    |
| 006-068  | RF Switch                      | RC-2SP6T-40      | 02112090061            | Micro-Circuits      | 2023-08-22 | 2024-08-22    |
| 006-066  | Cable 7m – 25MHz to 40GHz      | R286304174       | 20.46.370              | Radiall             | 2023-08-16 | 2024-08-16    |
| 006-063  | Cable 30cm – 1GHz to 40GHz     | PE371-12         | -                      | Pasternack          | 2023-02-27 | 2024-02-27    |
| 006-064  | Cable 30cm – 1GHz to 40GHz     | PE371-12         | -                      | Pasternack          | 2023-02-27 | 2024-02-27    |
| 006-065  | Cable 60cm – 25MHz to 1GHz     | PE300-24         | -                      | Pasternack          | 2023-06-02 | 2024-06-02    |

Radiated Setup #2

| ID#      | Device                       | Type/Model      | Serial #        | Manufacturer    | Cal. Date  | Cal. Due Date |
|----------|------------------------------|-----------------|-----------------|-----------------|------------|---------------|
| 007-000  | Anechoic chamber             | RFD-FA-100      | 5996            | ETS Lindgren    | 2021-09-14 | 2024-03-14    |
| 127-000  | Spectrum Analyzer            | FSV40           | 101358          | Rohde & Schwarz | 2023-01-27 | 2025-01-27    |
| 007-007  | Double Ridge Horn (1- 18GHz) | 3117            | 00152266        | ETS Lindgren    | 2022-03-29 | 2024-03-29    |
| 007-006  | Switch & Positioner          | EMCenter        | 00151232        | ETS Lindgren    | N/A        | N/A           |
| 059-000  | Double Ridge Horn (1- 18GHz) | 3117            | 201542          | ETS-Lindgren    | 2023-09-26 | 2025-09-26    |
| 264-000  | Amplifier 1GHz-18GHz         | 3117-PA         | 00169546        | ETS-Lindgren    | 2023-02-20 | 2024-02-20    |
| 007-011  | RF Cable 1-18GHz - 6.5m      | 140-8500-11-51  | 001             | Atem            | 2023-02-15 | 2024-02-15    |
| 007-005  | Measurement SW, v11.20.00    | EMC32           | 100401          | Rohde & Schwarz | N/A        | N/A           |
| 007-003  | Antenna Tower                | 2171B-3.0M      | 00150123        | ETS Lindgren    | N/A        | N/A           |
| 007-002  | Turntable                    | -               | -               | ETS Lindgren    | N/A        | N/A           |
| 007-014* | RF Cable 18-40 GHz 6m        | R286304009      | 1747364         | Radiall         | 2023-02-16 | 2024-03-16    |
| 007-022* | RF Cable 1-18GHz, 1.5m       | 0501050991200GX | 19.23.493       | Radiall         | 2023-02-13 | 2024-03-13    |
| 007-015* | RF Cable 1GHz-18GHz 1.5m     | -               | -               | Spirent         | 2023-02-13 | 2024-03-13    |
| 007-018* | RF Cable 1-9.5GHz 1.2m       | 0500990991200KE | -               | Radiall         | 2023-02-13 | 2024-03-13    |
| 007-020* | RF Cable 1-18GHz, 1.2 m      | 2301761761200PJ | 12.22.1104      | Radiall         | 2023-02-15 | 2024-03-15    |
| 349-000  | Temp & Humidity Logger       | RA12E-TH1-RAS   | RA12-<br>D4F8C3 | Avtech          | 2023-11-30 | 2025-11-30    |

N/A: Not Applicable
\*Within a grace period of 30 days

N/A: Not Applicable
\*Within a grace period of 30 days

## Test Report N° 231120-06.TR05

Shared Radiated Equipment

|         | endred redukted Equipment |            |          |                 |            |               |
|---------|---------------------------|------------|----------|-----------------|------------|---------------|
| ID#     | Device                    | Type/Model | Serial # | Manufacturer    | Cal. Date  | Cal. Due Date |
| 412-000 | DRTU Power finder V2.1    | •          | -        | Intel           | NA         | NA            |
| 139-000 | Power Sensor              | NRP-Z81    | 104383   | Rohde & Schwarz | 2023-04-21 | 2025-04-21    |
| 061-000 | Power Sensor              | NRP-Z81    | 104386   | Rohde & Schwarz | 2022-03-25 | 2024-03-25    |
| 140-000 | Power Sensor              | NRP-Z81    | 104382   | Rohde & Schwarz | 2022-03-25 | 2024-03-25    |
| 423-000 | Power Sensor              | NRP-Z81    | 101152   | Rohde & Schwarz | 2022-05-18 | 2024-05-18    |

N/A: Not Applicable

## A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the table below with a coverage factor of k = 2 to indicate a 95% level of confidence:

| Measurement type                      | Uncertainty | Unit |
|---------------------------------------|-------------|------|
| Timing                                | ±0.12       | %    |
| Power Spectral density                | ±1.47       | dB   |
| Occupied bandwidth                    | ±2.07       | %    |
| Conducted Power                       | ±1.03       | dB   |
| Conducted Spurious Emission <26.5 GHz | ±2.93       | dB   |
| Radiated tests <1GHz                  | ±6.40       | dB   |
| Radiated tests 1GHz – 26.5 GHz        | ±5.92       | dB   |



## Annex B. Test Results

The herein test results were performed by:

| Test case measurement             | Test Peronnel        |
|-----------------------------------|----------------------|
| 6dB Bandwidth                     | T.MATHIEU            |
| Maximum output power and E.I.R.P  | T.MATHIEU            |
| Power spectral density            | T.MATHIEU            |
| Out-of-band Emissions (conducted) | T.MATHIEU            |
| Spuirous Emissions (radiated)     | K.KHATIB, R.SIMONINI |

#### B.1 Test Results BLE

#### B.1.1 6dB & 99% Bandwidth

#### Test limits

| FCC part       | RSS part                  | Limits                                                                                                                                                                      |
|----------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.247 (a) (2) | RSS-247<br>Clause 5.2 (a) | Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. |

#### Test procedure

The conducted setup shown in section *Test & System Description* was used to measure the 6dB & 99% Bandwidth. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

#### Results tables

| Mode | de Frequency 99% BW [MHz] [MHz] |      | 6dB BW<br>[MHz] |
|------|---------------------------------|------|-----------------|
| BLE  | 2402                            | 2.07 | 1.23            |
|      | 2440                            | 2.04 | 1.17            |
|      | 2480                            | 2.05 | 1.18            |


#### Results screenshot













#### B.1.2 Maximum Output Power and antenna gain

#### **Test limits**

|                            | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC Part 15.247<br>(b) (3) | <ul> <li>(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:</li> <li>(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level.</li> <li>(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.</li> </ul> |
| RSS-247 Clause<br>5.4 (d)  | For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).  As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode                                                                  |

#### **Test procedure:**

The Maximum peak conducted output power was measured using the *RBW* ≥ *DTS bandwidth* method defined in paragraph 11.9.1.1 of ANSI C63.10-2013.

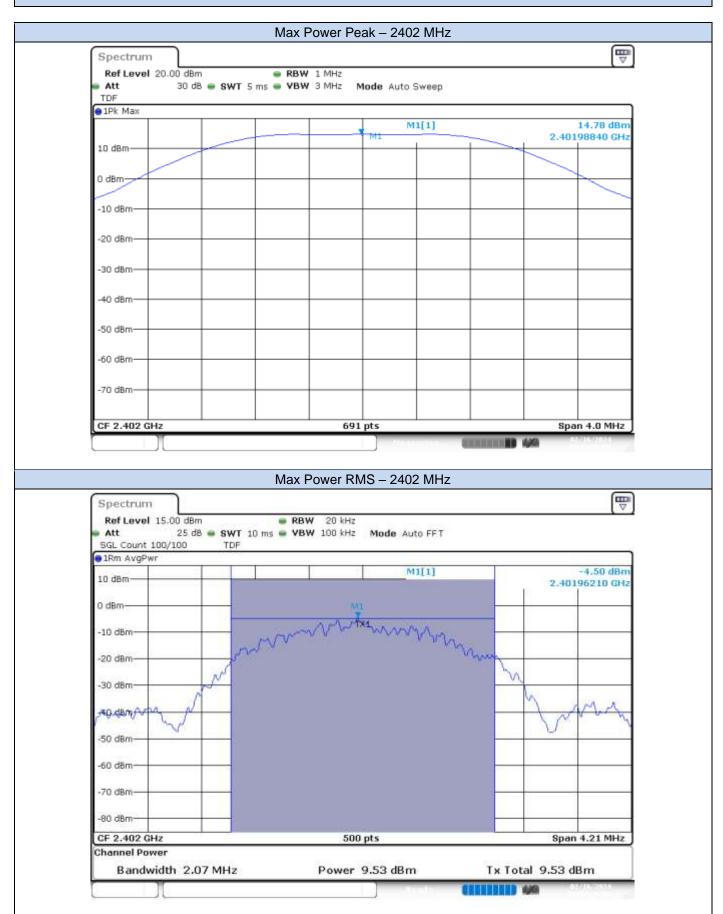
The Maximum conducted average output power was measured using the channel integration method according to Method AVGSA-2, defined in paragraph 11.9.2.2.4 of ANSI C63.10-2013.

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power.

The conducted setup shown in section *Test & System Description* was used to measure the maximum conducted output power. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

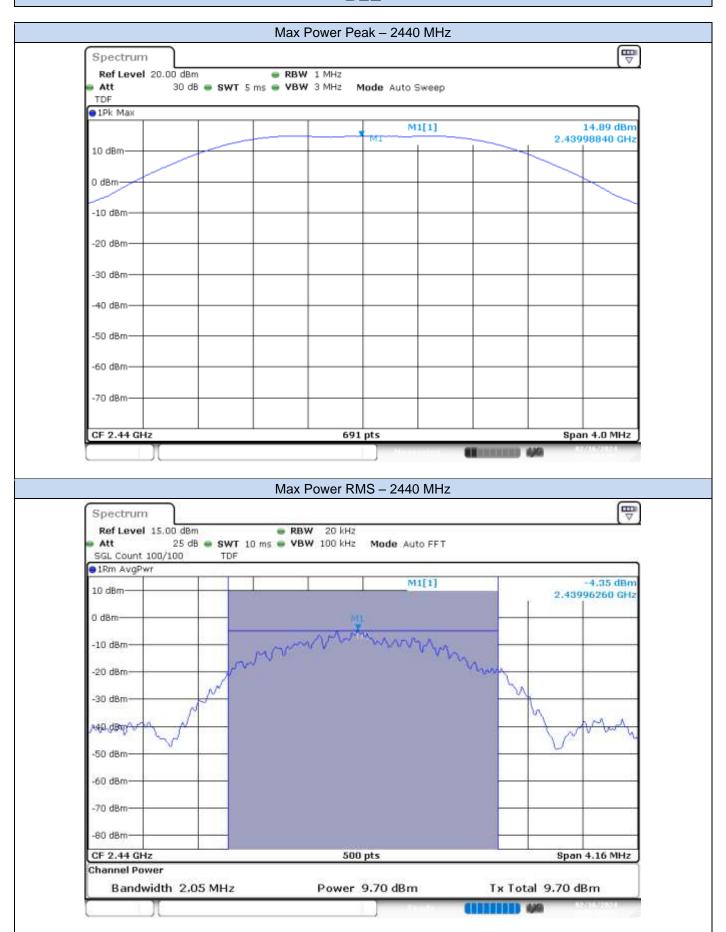


## Results tables


|      |                                |                    | Peak Pow                           |       |                              |
|------|--------------------------------|--------------------|------------------------------------|-------|------------------------------|
| Mode | Measured.<br>Duty Cycle<br>[%] | Frequency<br>[MHz] | Measured Conducted Output<br>Power | EIRP  | Peak Output<br>Power<br>[mW] |
|      |                                | 2402               | 14.78                              | 17.78 | 30.06                        |
| BLE  | 30.22                          | 2440               | 14.89                              | 17.89 | 30.83                        |
|      |                                | 2480               | 15.14                              | 18.14 | 32.66                        |

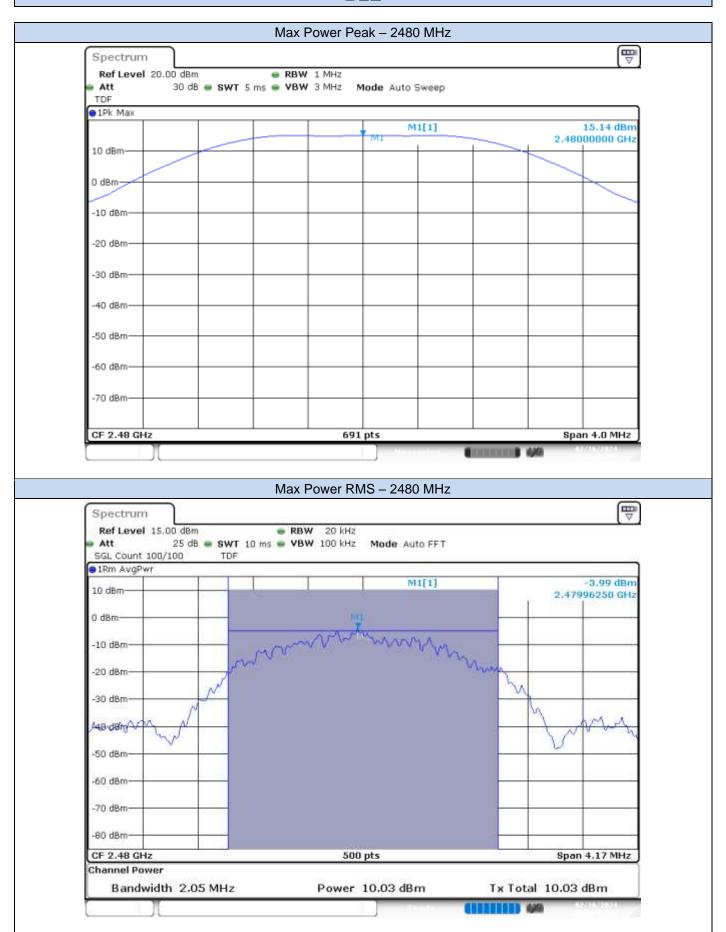
Max Value Min Value

|      |                                |                    | Average Output                      |                                |       |                                 |
|------|--------------------------------|--------------------|-------------------------------------|--------------------------------|-------|---------------------------------|
| Mode | Measured.<br>Duty Cycle<br>[%] | Frequency<br>[MHz] | Measured Maximum Conducted<br>Power | Compensated<br>Conducted Power | EIRP  | Average Output<br>Power<br>[mW] |
|      |                                | 2402               | 9.53                                | 14.73                          | 17.97 | 29.70                           |
| BLE  | 30.22                          | 2440               | 9.70                                | 14.90                          | 18.14 | 30.89                           |
|      | 2480                           | 10.03              | 15.23                               | 18.47                          | 33.32 |                                 |


<sup>\*</sup> Output Power RMS values are shown for indicative purpose only

#### Results screenshot






Rev. 00









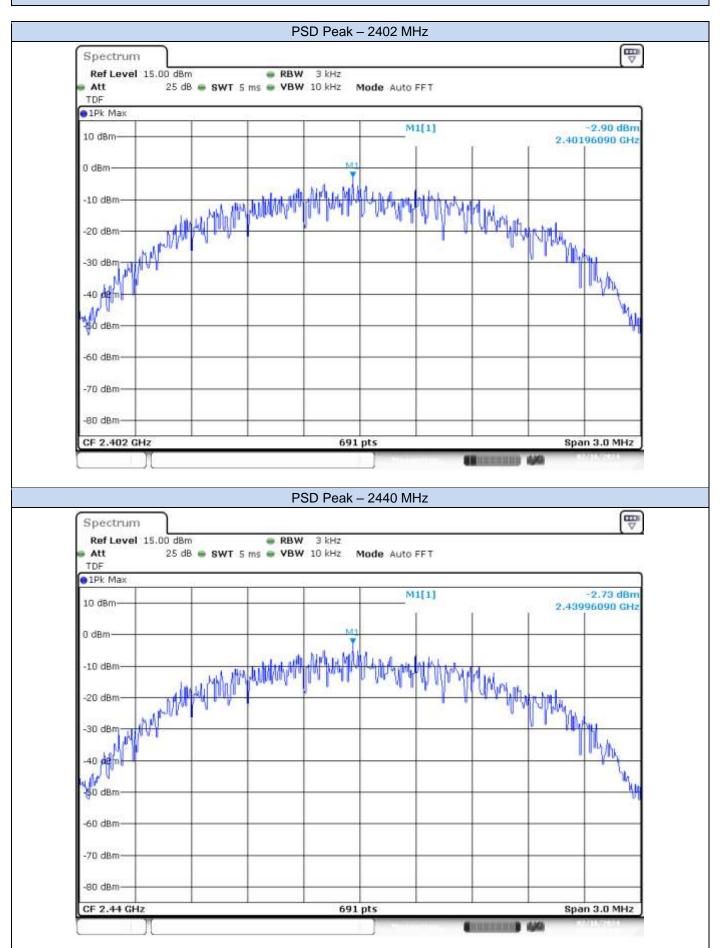
#### **B.1.3** Power Spectral Density

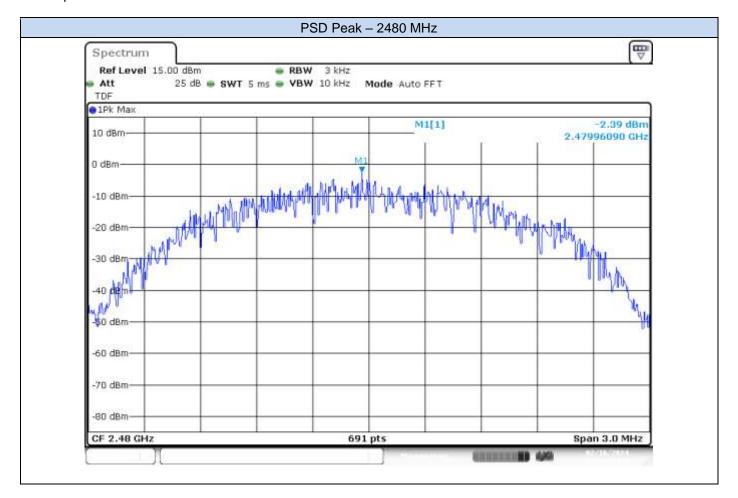
#### **Test limits**

| FCC part   | RSS part                  | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.247 (e) | RSS-247<br>Clause 5.2 (b) | For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. |

#### Test procedure

The maximum peak power spectral density level of the fundamental emission was measured using the method PKPSD, defined in paragraph 11.10.2 of ANSI C63.10-2013.


The conducted setup shown in section *Test & System Description* was used to measure the power spectral density. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.


#### Results tables

| Mode | Mode Channel |      | PSD Peak<br>[dBm/3kHz] |
|------|--------------|------|------------------------|
|      | 0            | 2402 | -2.90                  |
| BLE  | 19           | 2440 | -2.73                  |
|      | 39           | 2480 | -2.39                  |

<sup>\*</sup>Note: these PSD<sub>Peak</sub> values are shown just as a reference for the compliance of the Out-of-band Measurements. Thus the RBW used for these measurements was 100kHz.







#### **B.1.4** Out-of-band emission (Conducted)

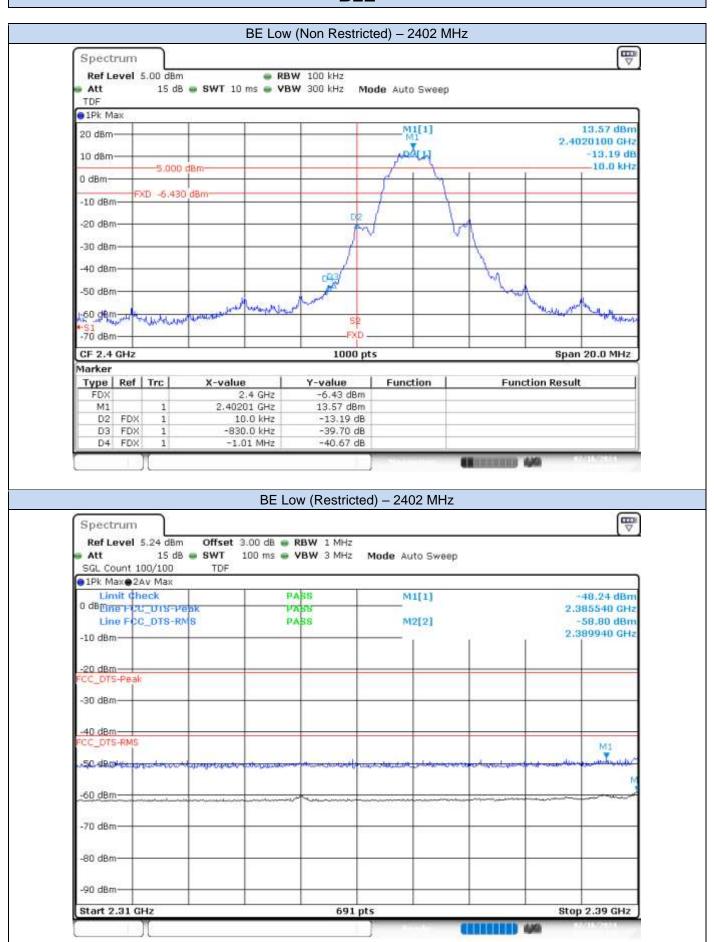
#### **Test Limits**

| FCC part   | RSS part                 |                                                 | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |                                           |
|------------|--------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|-------------------------------------------|
| 15.247 (d) | RSS-247<br>Clause 5.5    | spectro<br>freque<br>20 dB<br>highes<br>radiate | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. |  |  |  |                                           |
| 15.209     | RSS-Gen A1<br>Clause 8.9 | · · · · · · · · · · · · · · · · · · ·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  | ments<br>s 9-90<br>these<br>or.<br>s also |

#### Test procedure

In case of band edge measurements falling in restricted bands, the declared Antenna Gain is also compensated in the graph.

For band edge measurements falling in restricted bands, the following limits in dBm were applied for the average detector after the conversion from the limits detailed above in dB $\mu$ V/m, according to FCC 47 CFR part 15 - Subpart C – §15.209(a). The limits in dBm for peak detector are 20dB above the indicated values in the table.


|                  | §15.209(a)                                 |     | Converted values                                 |       |  |
|------------------|--------------------------------------------|-----|--------------------------------------------------|-------|--|
| Freq Range (MHz) | Distance Field strength (microvolts/meter) |     | Field strength Power (dB microvolts/meter) (dBm) |       |  |
| Above 960        | 3                                          | 500 | 54.0                                             | -41.2 |  |

The conducted setup shown in section *Test & System Description* was used to measure the out-of-band emissions. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

Note: For the compliance of the out-of-band Measurements, PSD<sub>Peak</sub> were measured with 100kHz RBW and values are shown just as a reference in section B.1.3.









#### **B.1.5** Radiated spurious emission

#### Standards references

| FCC part   | RSS part                 |                                          | Limits                                                                                        |                                                                            |                                                                                         |                                                                                                 |                          |  |
|------------|--------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|--|
|            |                          |                                          |                                                                                               |                                                                            | · ·                                                                                     | defined in §15.20<br>cified in §15.209(a                                                        | , , .                    |  |
|            |                          |                                          | Freq Range<br>(MHz)                                                                           | Field Stregth<br>(μV/m)                                                    | Field Stregth<br>(dBμV/m)                                                               | Meas. Distance (m)                                                                              |                          |  |
|            |                          |                                          | 30-88                                                                                         | 100                                                                        | 40                                                                                      | 3                                                                                               |                          |  |
|            |                          |                                          | 88-216                                                                                        | 150                                                                        | 43.5                                                                                    | 3                                                                                               |                          |  |
|            | RSS-247<br>Clause 5.5    |                                          | 216-960                                                                                       | 200                                                                        | 46                                                                                      | 3                                                                                               |                          |  |
| 15.247 (d) |                          |                                          | Above 960                                                                                     | 500                                                                        | 54                                                                                      | 3                                                                                               |                          |  |
| 15.209     | RSS-Gen A1<br>Clause 8.9 | emplo<br>1000<br>meas<br>For a<br>a limi | oying CISPR qua<br>MHz. Radiated<br>urements employ<br>verage radiated of<br>t specified when | asi-peak detector<br>emission limits<br>ying an average<br>emission measur | except for the fr<br>in these three<br>detector.<br>ements above 10<br>peak detector fu | sed on measurer<br>requency bands a<br>bands are base<br>000 MHz, there is<br>unction, correspo | above<br>ed on<br>s also |  |

#### Test procedure

The radiated setups shown in section *Test & System Description* were used to measure the radiated spurious emissions.

Depending of the frequency range and bands being tested, different antennas and filters were used.

The final measurement is done by varying the antenna height from 1 m to 4 m, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

The radiated spurious emission was measured on the worst case configuration found.

#### Test Results

## Radiated spurious - 30 MHz to 1 GHz

#### All modes

| Frequency | Level  | Detector   | Limit  | Margin | Polar |
|-----------|--------|------------|--------|--------|-------|
| MHz       | dBμV/m |            | dBµV/m | dB     |       |
| 51.4      | 36.2   | Quasi-Peak | 40.0   | 3.8    | V     |

Note 1: The spurious signals detected do not depend on either the operating channel or the modulation mode.

## 1 GHz - 26 GHz, BLE

## Radiated Spurious – 2402 MHz

| Frequency | Level  | Detector | Limit  | Margin | Polar |
|-----------|--------|----------|--------|--------|-------|
| MHz       | dBµV/m |          | dBµV/m | dB     |       |
| 10039.8   | 59.5   | Peak     | 74.0   | 14.4   | V     |
| 10039.8   | 47.8   | Average  | 54.0   | 6.2    | V     |
| 12045.9   | 49.0   | Peak     | 74.0   | 25.0   | V     |
| 12047.8   | 35.5   | Average  | 54.0   | 18.5   | V     |
| 25900.0   | 51.1   | Peak     | 74.0   | 22.9   | V     |
| 25900.0   | 39.2   | Average  | 54.0   | 14.8   | V     |

## Radiated Spurious – 2440 MHz

| Frequency | Level  | Detector | Limit  | Margin | Polar |
|-----------|--------|----------|--------|--------|-------|
| MHz       | dBµV/m |          | dBµV/m | dB     |       |
| 10035.0   | 59.2   | Peak     | 74.0   | 14.8   | V     |
| 10035.0   | 47.7   | Average  | 54.0   | 6.3    | V     |
| 12046.2   | 49.7   | Peak     | 74.0   | 24.3   | V     |
| 12047.0   | 35.6   | Average  | 54.0   | 18.4   | V     |
| 25930.0   | 39.3   | Average  | 54.0   | 14.7   | Н     |
| 25931.0   | 50.6   | Peak     | 74.0   | 23.4   | V     |



## Radiated Spurious – 2480 MHz

| Frequency | Level  | Detector | Limit  | Margin | Polar |
|-----------|--------|----------|--------|--------|-------|
| MHz       | dBµV/m |          | dBµV/m | dB     |       |
| 10023.5   | 59.3   | Peak     | 74.0   | 14.7   | Н     |
| 10023.5   | 47.9   | Average  | 54.0   | 6.1    | V     |
| 12038.8   | 47.1   | Peak     | 74.0   | 26.9   | V     |
| 12039.1   | 35.9   | Average  | 54.0   | 18.1   | V     |
| 25602.0   | 51.6   | Peak     | 74.0   | 22.4   | V     |
| 25602.0   | 39.3   | Average  | 54.0   | 14.7   | V     |