TEST REPORT EUT Description Wireless Module installed in Notebook PC Brand Name Intel® Wi-Fi 6E AX411 Model Name AX411NGW FCC ID PD9AX411NG Date of Test Start/End 2022-09-19 / 2022-09-21 Features 802.11ax, Dual Band, 2x2 Wi-Fi 6E + Bluetooth® 5.2 (see section 5) Description Platform: Dell, P125F + AWAN antenna Applicant Intel Mobile Communications Address 100 Center Point Circle, Suite 200 / Columbia, SC 29210 / United States Contact Person Steven Hackett Telephone/Fax/ Email steven.c.hackett@intel.com Reference Standards FCC 47 CFR Part §2.1093 (see section 1) RF Exposure Environment Portable devices - General population/uncontrolled exposure Testing Result Limit Maximum Power Density Result & Limit 3.01 W/m² (4cm²) 10 W/m² (4cm²) Maximum SAR Result & Limit 0.67 W/kg (1g) 1.6 W/kg (1g) Min. test separation distance 0mm to phantom, 2.03mm to antenna edge (SAR), 2.5mm to probe tip (PD) Test Report identification 220906-01.TR02 **Rev. 00** Revision Control This test report revision replaces any previous test report revision (see section 8) The test results relate only to the samples tested. Issued by Reviewed by Yamine HADDAD (Test Engineer) Adel LOUNES (SAR Test Lead Engineer) Intel Corporation S.A.S – WRF Lab 425 rue de Goa – Le Cargo B6 - 06600 Antibes, France Tel. +33493001400 / Fax +33493001401 # **Table of Contents** | 1. | Standards, reference documents and applicable test methods | 4 | |----------|--|----| | 1.
2. | General conditions, competences and guarantees | | | | | | | 3. | Environmental Conditions | | | 4. | Test samples | 5 | | 5. | EUT Features | 6 | | 6. | Remarks and comments | 9 | | 7. | Test Verdicts summary | 9 | | 8. | Document Revision History | | | | nnex A. PD Test & System Description | | | Д | A.1 Power Density Definition | 10 | | А | A.2 Free space Measurement System | 10 | | | A.2.1 Measurement Setup | | | | A.2.2 E-Field Measurement Probe | | | | A.2.3 Worst Case Linearization Error | | | | A.2.4 Data Evaluation | 12 | | Α | A.3 System Check | 13 | | А | A.4 TEST EQUIPMENT LIST | 14 | | | A.5 MEASUREMENT UNCERTAINTY EVALUATION | | | | A.6 RF Exposure Limits | | | | | | | | · | | | | B.1 SAR DEFINITION | | | В | B.2 SAR MEASUREMENT SYSTEM | | | | B.2.1 SAR Measurement Setup | | | | B.2.2 E-Field Measurement Probe | | | | B.2.3 Flat Phantom | | | _ | B.2.4 Device Positioner | | | | B.3 DATA EVALUATION | | | В | B.4 SYSTEM AND LIQUID CHECK | | | | B.4.1 System Check | | | | B.4.2 Liquid Check | | | В | B.5 TEST EQUIPMENT LIST | | | | B.5.1 Tissue Simulant Liquid | | | | B.6 MEASUREMENT UNCERTAINTY EVALUATION | | | В | B.7 RF Exposure Limits | 27 | | Anı | nnex C. Test Results | 28 | | C | C.1 Test Conditions | 28 | | | C.1.1 Test positions relative to the phantom | 28 | | | C.1.2 Test signal, Output power and Test Frequencies | 28 | | | C.1.3 Evaluation Exclusion and Test Reductions | | | C | C.2 CONDUCTED POWER MEASUREMENTS | 30 | | | C.2.1 WLAN 6-7GHz (U-NII) | 30 | | C | C.3 TISSUE PARAMETERS MEASUREMENT | | | C | C.4 System Check Measurements | 32 | | | C.4.1 E-Field | | | | C.4.2 H-Field | | | | C.4.3 Local Power Density | | | | C.4.4 Averaged Power Density | 33 | | | C.4.5 SAR | 33 | | C.5 TEST | RESULTS | 34 | |-----------|---|----| | C.5.1 S | AR - 802.11ax – 6.2 GHz – U-NII-5 | 34 | | SAR - 8 | 302.11ax – 6.5 GHz – U-NII-6 | 34 | | SAR - 8 | 302.11ax – 6.7 GHz – U-NII-7 | 34 | | SAR - 8 | 302.11ax – 7.0 GHz – U-NII-8 | 34 | | Power | Density - 802.11ax – U-NII-5, UNII-6, UNII-7, UNII-8 | 35 | | | Power Density - 802.11ax – U-NII-6 | | | C.5.3 F | Power Density - 802.11ax – U-NII-7 | 35 | | C.5.4 F | Power Density - 802.11ax – U-NII-8 | 35 | | | Measurement Variability | | | D.1.1 S | Simultaneous Transmission Evaluation – SAR | | | Annex E. | Test System Plots | 38 | | Annex F. | TSL Dielectric Parameters | 51 | | F.1 HEAD | LIQUID WIFI 6E | 51 | | Annex G. | Calibration Certificates | 52 | | Annex H. | Photographs | 53 | | H.1 TEST | Sample | 53 | | H.2 SAR | TEST POSITION | 54 | | H.3 PD T | EST POSITION | 55 | | H.4 ANTE | NNA HOST PLATFORM LOCATION AND ADJACENT EDGE POSITIONS RELATIVE TO THE BODY | 56 | | LI E DUAN | ITOM LIQUID LEVEL DURING MEASUREMENTS | 57 | ### 1. Standards, reference documents and applicable test methods FCC 47 CFR Part §2.1093 - Radiofrequency radiation exposure evaluation: portable devices. Edition October 2019 FCC 47 CFR Part §1.1310 - Radiofrequency radiation exposure limits. Edition October 2019 FCC OET KDB 248227 D01 v02r02 - SAR guidance for IEEE 802.11 (Wi-Fi) transmitters. FCC OET KDB 447498 D04 v01 - RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices. FCC OET KDB 616217 D04 v01r02 - SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers. FCC OET KDB 865664 D01 v01r04 - SAR Measurement Requirements for 100 MHz to 6 GHz. FCC OET KDB 865664 D02 v01r02 - RF Exposure Compliance Reporting and Documentation **FCC** Considerations. IEEE Std 1528-2013 - IEEE Recommended Practice Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques... RF Exposure Policies and Procedures: TCB Workshop – October 2020 IEC/IEEE 62209-1528:2020 Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz) SPEAG Application Note – 5G Compliance Testing with DASY6 (5GModule V1.0Beta) ### 2. General conditions, competences and guarantees - ✓ Intel Corporation SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011. - ✓ Intel WRF Lab declines any responsibility with respect to the identified information provided by the customer and that may affect the validity of results. - ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations. - ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test. - ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers. - ✓ This report is only referred to the item that has undergone the test. - ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authoritie. # 3. Environmental Conditions ✓ At the site where the measurements were performed the following limits were not exceeded during the tests: | Temperature | 22.7°C ± 1.2°C | |--------------------|----------------| | Humidity | 40.8% ± 10% | | Liquid Temperature | 21.3°C ± 2°C | # 4. Test samples | Sample | Control # | Description | Model | Serial # | Date of receipt | Note | |--------|---------------|---|-------------|---------------|-----------------|--------------| | #01 | 220906-01.S01 | Wireless
Module
installed in
Notebook PC | Dell, P125F | 2022081016785 | 2022-09-08 | AWAN Antenna | # 5. EUT Features The herein information is provided by the customer Intel WRF Lab declines any responsibility for the accuracy of the stated customer provided information, especially if it has any impact on the correctness of test results presented in this report. | Brand Name | Intel® Wi-Fi 6E AX411 | | | | | |---|---|--|--|--|--| | Model Name | AX411NGW | | | | | | Software Version | DRTU.01987.22.150.0 | | | | | | Driver Version | 22.150.1.1 | | | | | | Prototype / Production | Production | | | | | | Host Identification | Dell, P125F | | | | | | Supported Radios | 802.11b/g/n/ax | 2.4GHz (2400.0 – 2 | 2483.5 MHz) | | | | | 802.11a/n/ac/ax 5.2GHz (5150.0 – 5250.0 MHz) 5.3GHz (5250.0 – 5350.0 MHz) 5.6GHz (5470.0 – 5725.0 MHz) 5.8GHz (5725.0 – 5850.0 MHz) | | | | | | | Bluetooth | 2.4GHz (2400.0 – 2 | 2483.5 MHz) | | | | | 802.11ax | 6.0GHz (5925.0 – 1 | 7125.0 MHz)* | | | | | Transmitter | Main / Tx2 | Aux / Tx1 | | | | | Manufacturer | AWAN | AWAN | | | | Antenna Information | Antenna type | PIFA | PIFA | | | | | Part number | Antenna P/N: AYF6Y-100214
Wistron P/N: 025.9025N.0011 | Antenna P/N: AYF6Y-100215
Wistron P/N: 025.9025O.0011 | | | | | See Annex <i>H</i> for more details on antennas location. | | | | | | | Mode | Chain B | Chain A | | | | | Single Band Mode 2. | 4GHz | | | | | | 2.4GHz MIMO | WLAN 2.4GHz | WLAN 2.4GHz | | | | | 2.4GHz SISO / Co-run | WLAN 2.4GHz | ВТ | | | | | Single Band Mode 6GHz* | | | | | | O're Breeze Turners's also | 6GHz MIMO | WLAN 6GHz | WLAN 6GHz | | | | Simultaneous Transmission | 6GHz + BT Co-run | WLAN 6GHz | ВТ | | | | Configurations | 5GHz MIMO + BT Co-rur | WLAN 6GHz | WLAN 6GHz + BT Co-run | | | | | CDB Mode* | | | | | | | BT Co-run – CDB SISO | WLAN 2.4GHz + WLAN 6GHz | ВТ | | | | | CDB only SISO | WLAN 2.4GHz + WLAN 6GHz | - | | | | | CDB only SISO | - | WLAN 2.4GHz + WLAN 6GHz | | | | | CDB only MIMO | WLAN 2.4GHz + WLAN 6GHz | WLAN 2.4GHz + WLAN 6GHz | | | | | BT Co-run (CDB SISO) | WLAN 2.4GHz | WLAN 6GHz + BT | | | | | No WWAN transmitte | r is considered in this report | | | | | Additional Information 5.60-5.65 GHz band (TDWR) is supported by the device | | | ee | | | | | Band gap is supported by the device | | | | | ^{*}Only these bands are treated on this document since this report is limited to WiFi 6E
capabilities # **Radios** | Mode | Duty Cycle | Modulation | Band | UL Freq Range
(MHz) | Measured Max.
Conducted
Power (dBm) | |----------|------------|--|--------|------------------------|---| | 802.11ax | 100% | BPSK
QPSK
16QAM
64QAM
256QAM | 6.2GHz | 5955-6415 | 11.82 | | 802.11ax | 100% | BPSK
QPSK
16QAM
64QAM
256QAM | 6.5GHz | 6435-6515 | 11.97 | | 802.11ax | 100% | BPSK
QPSK
16QAM
64QAM
256QAM | 6.7GHz | 6535-6855 | 11.97 | | 802.11ax | 100% | BPSK
QPSK
16QAM
64QAM
256QAM | 7.0GHz | 6875-7125 | 11.93 | | Maximum Output pov | SISO mode | | | | |--------------------|-----------|----------|---------------|----------------| | Equipment Class | Mode | BW (MHz) | Aux/Tx1 (dBm) | Main/Tx2 (dBm) | | | | 20 | 5.25 | 5.25 | | U-NII-5 | 902 11ov | 40 | 8.50 | 8.50 | | C-IIVI-D | 802.11ax | 80 | 10.50 | 10.50 | | | | 160 | 12.00 | 12.00 | | | 802.11ax | 20 | 5.25 | 5.25 | | U-NII-6 | | 40 | 8.50 | 8.50 | | U-INII-0 | | 80 | 11.00 | 11.00 | | | | 160 | 12.00 | 12.00 | | | | 20 | 5.25 | 5.25 | | U-NII-7 | 802.11ax | 40 | 8.50 | 8.50 | | O-INII-7 | 602.11ax | 80 | 10.50 | 10.50 | | | | 160 | 12.00 | 12.00 | | | | 20 | 5.25 | 5.25 | | U-NII-8 | 000.44 | 40 | 8.50 | 8.50 | | U-INII-0 | 802.11ax | 80 | 10.75 | 10.75 | | | | 160 | 12.00 | 12.00 | ### 6. Remarks and comments - 1. This report is limited to WiFi 6E capabilities. For all the modes, DTS, UNII-1, UNII-2A, UNII-2C, UNII-3 and BT refer to: [1] 220906-01.TR01-FCC-IC_WLAN_SAR_Dell P125F_AX411NGW - 2. The conducted values are obtained by applying the available power table identified in this report to the AX411NGW Intel module installed in the Dell, P125F, as requested by the customer - 3. Only the plots for the test positions with the highest measured SAR/PD per band/mode are included in Annex C # 7. Test Verdicts summary The statement of conformity to applicable standards in the table below are based on the measured values, without taking into account the measurement uncertainties. | Standard | Band | Highest Reported SAR [W/kg] 1g | Verdict | |----------|--------|--------------------------------|---------| | 802.11ax | 6.2GHz | 0.67 | Р | | 802.11ax | 6.5GHz | 0.50 | Р | | 802.11ax | 6.7GHz | 0.48 | Р | | 802.11ax | 7.0GHz | 0.60 | Р | | Standard | Band | Highest Reported PStot avg [W/m²] 4cm² | Verdict | |----------|--------|--|---------| | 802.11ax | 6.2GHz | 3.01 | Р | | 802.11ax | 6.5GHz | 2.84 | Р | | 802.11ax | 6.7GHz | 2.84 | Р | | 802.11ax | 7.0GHz | 2.67 | Р | P: Pass F: Fail NM: Not Measured NA: Not Applicable According to the FCC OET KDB 690783 D01, this is the summary of the values for the Grant Listing: | Highest Reported SAR (1g) (W/kg) | | | | | |----------------------------------|-----------------|--------------|--------------|--| | Exposure Condition | Equipment Class | | | | | Exposure Condition | DSS | DTS | U-NII | | | Body Worn | 0.31 | 0.69 | 0.67 | | | Simultaneous Tx | Sum-SAR:1.64 | Sum-SAR:2.46 | Sum-SAR:2.46 | | | Simultaneous 1x | SPLSR:0.01 | SPLSR:0.01 | SPLSR:0.01 | | Considering the results of the performed test according to FCC 47CFR Part 2.1093 the item under test is IN COMPLIANCE with the requested specifications specified in Section1. Standards, reference documents and applicable test methods # 8. Document Revision History | Revision # | Modified by | Revision Details | |------------|-------------|------------------| | Rev. 00 | Y HADDAD | First Issue | # Annex A. PD Test & System Description ### A.1 Power Density Definition The power density for an electromagnetic field represents the rate of energy transfer per unit area. The local power density (i.e. Poynting vector) at a given spatial point is deduced from electromagnetic fields by the following formula: $$\overrightarrow{P_{local}} = \frac{1}{2} \operatorname{Re} \left(\overrightarrow{E} \times \overrightarrow{H}^* \right)$$ Where \vec{E} is the complex electric field peak phasor and \vec{H}^* is the complex conjugate magnetic field peak phasor. This power density is also called "single-point" or "spot power density". Considering that the FCC's Maximum Permissible Exposure (MPE) limit is applicable on the average power density inside 1cm² area, the single point power densities in the evaluation plane should be averaged inside the 1cm² area. ### A.2 Free space Measurement System ### A.2.1 Measurement Setup The DASY6 system for performing compliance tests consists of the following items: - ✓ A standard high precision 6-axis robot (Staübli TX/RX family) with controller, teach pendant and software. It includes an arm extension for accommodating the data acquisition electronics (DAE) - ✓ An mm-wave E-field probe optimized and calibrated for the targeted measurements. - ✓ A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - ✓ The Electro-optical Converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. The EOC signal is transmitted to the measurement server. - ✓ The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movements interrupts. - ✓ The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - ✓ A computer running Win7 professional operating system and the cDASY6 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. ### A.2.2 E-Field Measurement Probe The probe consists of two dipoles (0.8 mm length) optimally arranged with different angles (γ_1 and γ_2) to obtain pseudovector information, printed on glass substrate protected by high density foam that allows low perturbation of the measured field. Three or more measurements are taken for different probe rotational angles, deriving the amplitude and polarization information. The probe's characteristics are: | Frequency Range | 750 MHz – 110 GHz | |---|--------------------------| | Length | 320 mm | | Probe tip external diameter | 8 mm | | Probe's two dipoles length | 0.9mm - Diode loaded | | Probe's substrate | Quartz 0.9 x 20 x 0.18mm | | Probe's substrate | (εr=3.8) | | Distance between diode sensors and probe's tip | 1.5 mm | | | . O. C. d.D. | | Axial Isotropy | ±0.6 dB | | Maximum operating E-field | 3000 V/m | | Lower E-field detection threshold | 5 V/m @ 60 GHz | | Minimum Mechanical separation between probe tip and a Surface | 0.5mm | | Calibration reference point | Diode Sensor | ### A.2.3 Worst Case Linearization Error For continuously transmitting signals (100% duty cycle), the worst case linearization error is given by the difference between non linearized voltage and linearized voltage using CW parameters. The error is increasing with the voltage levels. In our particular case, the measured voltages averaged over the signal period are below 1mV. We use 1mV in the below calculation to have the worst case condition. The signal PAR (Peak to Average Ratio) is 6dB and the diode compression point 100mV. The maximum voltage through the diode is given by: vpeak = vmeas avg × PARlinear $$vpeak=1*4=4 mV$$ The linearized voltage using CW parameter is given by: vlin peak = vpeak + $$\frac{v_{peak}^2}{diode\ compression\ point}$$ vlin peak = 4 + $\frac{4^2}{100}$ = 4.16 mV The worst case linearization error is: $$lin error = \frac{vlin peak}{v peak} = \frac{4.16}{4} = 1.04 = 4\%$$ ### A.2.4 Data Evaluation ### (i) Scan The scan involves the measurement of two planes with three different probe rotations. The grid steps are optimized by the software based on the test frequency. The location of the lowest measurement plane is defined by the distance of first measurement layer from device under test (DUT) entered by the user. The DUT location settings can be used to offset the center of the grid. # (ii) Total Field and Power Flux Density Reconstruction Computation of the power density in general requires knowledge of the electric (E-) and magnetic (H-) field amplitudes and phases in the plane of incidence. Reconstruction of these quantities from pseudo-vector E-field measurements is feasible, as they are constrained by Maxwell's equations. The reconstruction algorithm developed by the system manufacturer, together with the ability of the probe to measure extremely close to the source without perturbing the field, permits reconstruction of the E- and H-fields, as well as of the power density, on measurement planes located as near as 0.5mm away in the frequency band of 60 GHz. The average of the reconstructed power density is evaluated over a circular area in each measurement plane. The area of the circle is defined by the user; the default is 1 cm². ### A.3 System Check The system performance check verifies that the system operates within its specifications. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal E-field measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. In the simplified setup for system check, the EUT is replaced by a calibrated source and the power source is replaced by a controlled continuous wave generated by a signal generator.
The calibrated source must be placed at the correct distance from the E-field probe according to the calibration certificate. First, the power meter is connected to the output of the signal generator to measure the forward power at the location of the connector to the system check source. The signal generator is adjusted for the desired forward power to match the system check source calibration setup at the connector as read by power meter. Then the power meter is replaced by the system check source. The output power on the reference source is set to 10.0 dBm (10 mW) and the measurement results E, H and Avg PD are compared with the Numerical modeling. # A.4 Test Equipment List # SAR system #4 | ID# | Device | Type/Model | Serial Number | Manufacturer | Cal. Date | Cal. Due Date | |---------|---------------------------------|-----------------------------|-----------------|--------------|------------|---------------| | 443-000 | E-Field probe
750MHz-110GHz | EUmmWV3 | 9538 | SPEAG | 2022-05-18 | 2023-05-18 | | 004-014 | Data Acquisition
Electronics | DAE4 | 1704 | SPEAG | 2022-04-29 | 2023-04-29 | | 004-000 | 6-axis Robot | TX90 XL | F11/5JL2A1/A/01 | STAÜBLI | n/a | n/a | | 004-001 | Robot Controller | CS8C | F11/5JL2A1/C/01 | STAÜBLI | n/a | n/a | | 004-005 | Measurement Server | DASY6
P/N: SE UMS 028 BB | - | SPEAG | n/a | n/a | | 004-004 | Light Beam Unit | SE UKS 030 AA | 1030 | Di-soric | n/a | n/a | | 003-002 | 5G Phantom | mmWave | NA | SPEAG | NA | NA | | 003-006 | Measurement
Software | DASY mmWave
V3.0.0.841 | 9-5ED1AC01 | SPEAG | NA | NA | | 004-010 | Laptop Holder | P/N SM LH1 001 CD | - | SPEAG | n/a | n/a | # Shared equipment | ID# | Device | Type/Model | Serial
Number | Manufacturer | Cal. Date | Cal. Due Date | |---------|----------------------------|--------------------|------------------|-------------------|------------|---------------| | 123-000 | USB Power Sensor | NRP-Z81 | 102278 | R&S | 2021-04-13 | 2023-04-13 | | 124-000 | USB Power Sensor | NRP-Z81 | 102279 | R&S | 2021-04-13 | 2023-04-13 | | 078-000 | RF Cable | ST-18/SMAm/SMAm/48 | - | Huber &
Suhner | 2022-08-26 | 2023-01-26 | | 079-000 | RF Cable | ST-18/SMAm/SMAm/48 | - | Huber &
Suhner | 2022-08-26 | 2023-01-26 | | 141-000 | USB Power Sensor | NRP-Z81 | 104381 | R&S | 2022-05-18 | 2024-05-18 | | 327-000 | Temp & Humidity
Logger | RA32E-TH1-RAS | RA32-
F0DED9 | AVTECH | 2021-03-09 | 2023-03-09 | | 130-000 | Vector Signal
Generator | SMB100A | 178217 | R&S | 2021-07-20 | 2023-07-20 | | 198-000 | 0.8-21GHz RF
amplifier | TVA-82-213A+ | 2004003 | Mini-Circuits | 2022-08-26 | 2023-01-26 | | 014-023 | Horn reference source | PE9859/SF-15 | | Pasternack | NA | NA | # A.5 Measurement Uncertainty Evaluation The system uncertainty evaluation is shown in the table below with a coverage factor of k = 2 to indicate a 95% level of confidence: | DASY6 Uncertainty Budget Evaluation Distances to the Antennas < λ/5 in Compliance with IEC/IEEE 63195 | | | | | | | |---|---|-----------------------------|------|-------------------|--------------------|---------------------------------------| | Error Description | Uncertainty
Value
(±dB) | Probability
Distribution | Div. | (C _i) | Std. Unc.
(±dB) | (v _i)
V _{eff} | | Measurement System | | | | | | | | Probe calibration | 0.49 | N | 1 | 1 | 0.49 | ∞ | | Hemispherical Isotropy | 0.50 | R | √3 | 1 | 0.29 | ∞ | | Linearity | 0.20 | R | √3 | 1 | 0.12 | ∞ | | System Detection Limits | 0.04 | R | √3 | 1 | 0.02 | ∞ | | Data acquisition | 0.03 | N | 1 | 1 | 0.03 | ∞ | | Field reconstruction ¹ | 2 | R | √3 | 1 | 1.15 | ∞ | | Probe Positioning
Repeatabiility | 0.04 | R | √3 | 1 | 0.02 | ∞ | | Probe Positioning offset | 0.30 | R | √3 | 1 | 0.17 | ∞ | | Amplitude and Phase
Noise | 0.04 | R | √3 | 1 | 0.02 | ∞ | | Spatial Averaging | 0.1 | R | √3 | 1 | 0.06 | ∞ | | Frequency Response | 0.2 | R | √3 | 1 | 0.12 | ∞ | | Test Sample Related | | | | | | | | Power Drift | 0.21 | R | √3 | 1 | 0.12 | ∞ | | Modulation response | 0.40 | R | √3 | 1 | 0.23 | ∞ | | Device holder influence | 0.1 | R | √3 | 1 | 0.06 | ∞ | | RF Ambient Noise | 0.04 | R | √3 | 1 | 0.02 | ∞ | | RF Ambient Reflections | 0.04 | R | √3 | 1 | 0.02 | ∞ | | | Combined Std. Uncertainty Expanded Std. Uncertainty 95% | | | | | | The REC at distance d must be modified as follows: $$unc_{\text{REC}}dB = \begin{cases} 2.35 - 8.75d/\lambda & \text{for } d = 0.04...0.2\lambda \\ 0.6 & \text{for } d \geq 0.2\lambda \end{cases}$$ The minimal distance is 2mm, and the minimal frequency tested is 6 GHz. This corresponds to an MU value of (2.35-8.75*0.04 =2 dB) -- Ref: Speag, DASY6 Module mmWave Manual, February 2022. # **A.6 RF Exposure Limits** Power density assessments have been made in line with the requirements of FCC 47CFR Part 2.1093, in particular chapter 1.1310 specifying the MPE limits, on the limitation of exposure of the general population / uncontrolled exposure for portable devices. | Exposure Type | Power density (S) | |--|-------------------| | Limits for Occupational/Controlled Exposure. 1.5GHz – 100GHz | 50.0 W/m² | | Limits for General Population/ Uncontrolled Exposure. 1.5GHz – 100GHz | 10.0 W/m² | # Annex B. SAR Test & System Description ### **B.1 SAR Definition** Specific Absorption rate is defined as the time derivative of the incremental energy (dW) absorbed by (dissipated in) and incremental mass (dm) contained in a volume element (dV) of a given density (p). $$SAR = \frac{d}{dt} \cdot \left(\frac{dW}{dm}\right) = \frac{d}{dt} \cdot \left(\frac{dW}{\rho \cdot dV}\right)$$ SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: $\sigma = \text{Conductivity of the tissue (S/m)}$ ρ = Mass density of the tissue (kg/m3) E = RMS electric field strength (V/m) ### **B.2 SAR Measurement System** ### **B.2.1 SAR Measurement Setup** The DASY6 system for performing compliance tests consists of the following items: - ✓ A standard high precision 6-axis robot (Staübli TX/RX family) with controller, teach pendant and software. It includes an arm extension for accommodating the data acquisition electronics (DAE) - ✓ An isotropic field probe optimized and calibrated for the targeted measurements. - ✓ A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - ✓ The Electro-optical Converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. The EOC signal is transmitted to the measurement server. - ✓ The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movements interrupts. - ✓ The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - ✓ A computer running Win7 professional operating system and the DASY6 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - ✓ The phantom, the device holder and other accessories according to the targeted measurement. - ✓ MAIA is a hardware interface (Antenna) used to evaluate the modulation and audio interference characteristics of RF signals. - ✓ ANT is an ultra-wideband antenna for use with the base station simulators over 698 MHz to 6GHz for SAR cellular testing (not used for WLAN testing). - ✓ The base station simulator is an equipment used for SAR cellular tests in order to emulate the cellular signals characteristics and behavior between a regular base station and the equipment under test. - ✓ Tissue simulating liquid. - System Validation dipoles. - ✓ Network emulator or RF test tool ### **B.2.2 E-Field Measurement Probe** The probe is constructed using three orthogonal dipole sensors arranged on an interlocking, triangular prism core. The probe has built-in shielding against static charges and is contained within a PEEK cylindrical enclosure material at the tip. The probe's characteristics are: | Frequency Range | 30MHz – 10GHz | | | |--|---------------|--|--| | Length | 337 mm | | | | Probe tip external diameter | 2.5 mm | | | | Typical distance between dipoles and the probe tip | 1 mm | | | | Axial Isotropy (in human-equivalent liquids) | ±0.3 dB | | | | Hemispherical Isotropy (in human-equivalent liquids) | ±0.5 dB | | | | Linearity | ±0.2 dB | | | | Maximum operating SAR | 100 W/kg | | | | Lower SAR detection threshold | 0.001 W/kg | | | ### **B.2.3 Flat Phantom** Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. The phantom's characteristics are: | Material | Vinylester, glass fiber reinforced (VE-GF) | |-----------------|--| | Shell thickness | 2 mm ± 0.2 mm | | Filling volume | 30 Liters approx. | | Dimensions | Major axis: 600mm / Minor axis: 400mm | ### **B.2.4** Device Positioner The
SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of 0.5 mm would produce a SAR uncertainty of 20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. A simple but effective and easy-to-use extension for the Mounting Device; facilitates testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.); lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI and other Flat Phantoms. ### **B.3** Data Evaluation #### **Power Reference measurement** The robot measures the E field in a specified reference position that can be either the selected section's grid reference point or a user point in this section at 4mm of the inner surface of the phantom, 2mm for frequencies above 3GHz. #### Area Scan Measurement procedures for evaluating SAR from wireless handsets typically start with a coarse measurement grid to determine the approximate location of the local peak SAR values. This is known as the area-scan procedure. The SAR distribution is scanned along the inside surface of one side of the phantom head, at least for an area larger than the projection of the handset and antenna. The distance between the measured points and phantom surface should be less than 8 mm, and should remain constant (with variation less than ± 1 mm) during the entire scan in order to determine the locations of the local peak SAR with sufficient accuracy. The angle between the probe axis and the surface normal line is recommended but not required to be less than 30°. If this angle is larger than 30° and the closest point on the probe-tip housing to the phantom surface is closer than a probe diameter, the boundary effect may become larger and polarization dependent. This additional uncertainty needs to be analyzed and accounted for. To achieve this, modified test procedures and additional uncertainty analyses not described in this recommended practice may be required. The measurement and interpolation point spacing should be chosen such as to allow identification of the local peak locations to within one-half of the linear dimension of a side of the zoom-scan volume. Because a local peak having specific amplitude and steep gradients may produce a lower peak spatial-average SAR compared to peaks with slightly lower amplitude and less steep gradients, it is necessary to evaluate these other peaks as well. However, since the spatial gradients of local SAR peaks are a function of the wavelength inside the tissue-equivalent liquid and the incident magnetic field strength, it is not necessary to evaluate local peaks that are less than 2 dB or more below the global maximum peak. Two-dimensional spline algorithms (Brishoual et al. 2001; Press et al., 1996) are typically used to determine the peaks and gradients within the scanned area. If a peak is found at a distance from the scan border of less than one-half the edge dimension of the desired 1 g or 10 g cube, the measurement area should be enlarged if possible. #### **Zoom Scan** To evaluate the peak spatial-average SAR values for 1 g or 10 g cubes, fine resolution volume scans, called zoom scans, are performed at the peak SAR locations identified during the area scan. The minimum zoom scan volume size should extend at least 1.5 times the edge dimension of a 1 g cube in all directions from the center of the scan volume, for both 1 g and 10 g peak spatial-average SAR evaluations. Along the phantom curved surfaces, the front face of the volume facing the tissue/liquid interface conforms to the curved boundary, to ensure that all SAR peaks are captured. The back face should be equally distorted to maintain the correct averaging mass. The flatness and orientation of the four side faces are unchanged from that of a cube whose orientation is within \pm 30° of the line normal to the phantom at the center of the cube face next to the phantom surface. The peak local SAR locations that were determined in the area scan (interpolated values) should be used for the centers of the zoom scans. If a scan volume cannot be centered due to proximity of a phantom shape feature, the probe should be tilted to allow scan volume enlargement. If probe tilt is not feasible, the zoom-scan origin may be shifted, but not by more than half of the 1 g or 10 g cube edge dimension. After the zoom-scan measurement, extrapolations from the closest measured points to the surface, for example along lines parallel to the zoom-scan centerline, and interpolations to a finer resolution between all measured and extrapolated points are performed. Extrapolation algorithm considerations are described in 6.5.3, and 3-D spline methods (Brishoual et al., 2001; Kreyszig, 1983; Press et al., 1996) can be used for interpolation. The peak spatial-average SAR is finally determined by a numerical averaging of the local SAR values in the interpolation grid, using for example a trapezoidal algorithm for the integration (averaging). In some areas of the phantom, such as the jaw and upper head regions, the angle of the probe with respect to the line normal to the surface may be relatively large, e.g., greater than \pm 30°, which could increase the boundary effect error to a larger level. In these cases, during the zoom scan a change in the orientation of the probe, the phantom, or both is recommended but not required for the duration of the zoom scan, so that the angle between the probe axis and the line normal to the surface is within 30° for all measurement points. ### **Power Drift measurement** The robot re-measures the E-Field in the same reference location measured at the Power Reference. The drift measurement gives the field difference in dB from the first to the last reference reading. This allows a user to monitor the power drift of the device under test that must remain within a maximum variation of ±5%. ### Post-processing The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528 and IEC 62209-1/2 standards. It can be conducted for 1g and 10g. The software allows evaluations that combine measured data and robot positions, such as: - ✓ Maximum search - ✓ Extrapolation - ✓ Boundary correction - ✓ Peak search for averaged SAR Interpolation between the measured points is performed when the resolution of the grid is not fine enough to compute the average SAR over a given mass. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. ### **B.4 System and Liquid Check** ### **B.4.1 System Check** The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. In the simplified setup for system check, the EUT is replaced by a calibrated dipole and the power source is replaced by a controlled continuous wave generated by a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the phantom at the correct distance. The equipment setup is shown below: - ✓ Signal Generator - ✓ Amplifier - ✓ Directional coupler - ✓ Power meter - ✓ Calibrated dipole First, the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the connector (x) to the system check source. The signal generator is adjusted for the desired forward power at the connector as read by power meter PM1 after attenuation Att1 and also as coupled through Att2 to PM2. After connecting the cable to the source, the signal generator is readjusted for the same reading at power meter PM2. SAR results are normalized to a forward power of 1W to compare the values with the calibration reports results as described at IEEE 1528 and IEC 62209 standards. ### **B.4.2 Liquid Check** The dielectric parameters check is done prior to the use of the tissue simulating liquid. The verification is made by comparing the relative permittivity and conductivity to the values recommended by the applicable standards. The liquid verification was performed using the following test setup: - ✓ VNA (Vector Network Analyzer) - ✓ Open-Short-Load calibration kit - ✓ RF Cable - ✓ Open-Ended Coaxial probe - ✓ DAK software tool - ✓ SAR Liquid - ✓
De-ionized water - ✓ Thermometer These are the target dielectric properties of the tissue-equivalent liquid material according to the manufacturer's datasheet: | Frequency | Head Tissue Simulating Medium | | | | |-----------|-------------------------------|---------|--|--| | (MHz) | ε _r (F/m) | σ (S/m) | | | | 6000 | 35.07 | 5.48 | | | | 6500 | 34.46 | 6.07 | | | | 7000 | 33.88 | 6.65 | | | (ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m3) The measurement system implement a SAR error compensation algorithm as documented in IEEE Std 1528-2013 (equivalent to draft standard IEEE P1528-2011) to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters (applied to only scale up the measured SAR, and not downward) so, according to FCC OET KDB 865664 D01, the tolerance for ϵ_r and σ may be relaxed to \pm 10%. # **B.5** Test Equipment List SAR system #5 | ID# | Device | Type/Model | Serial Number | Manufacturer | Cal. Date | Cal. Due Date | |---------|---------------------------------|----------------|--------------------|--------------|------------|---------------| | 489-000 | 6-Axis Robot | TX260L Speag | F/22/0038104/A/001 | STAÜBLI | NA | NA | | 489-001 | Robot
Controller | CSE9spe-TX2-60 | F/22/0038104/C/001 | STAÜBLI | NA | NA | | 489-004 | Measurement
Server | DASY8 MS | 10079 | SPEAG | NA | NA | | 489-009 | Electro Optical
Converter | EOC8-60 | 1033 | SPEAG | NA | NA | | 489-005 | Light Beam Unit | LB-85 | 2068 | Di-soric | NA | NA | | 004-002 | Oval Flat
Phantom | ELI V8.0 | 2124 | SPEAG | NA | NA | | 489-010 | Measurement
Software | DASY8 | 9-457E974A_D8 | SPEAG | NA | NA | | 489-007 | Data Acquisition
Electronics | DAEip | 1706 | SPEAG | 2022-07-11 | 2023-07-11 | | 003-007 | Dosimetric E-
Field probe | EX3DV4 | 7465 | SPEAG | 2022-07-18 | 2023-07-18 | | 003-009 | Laptop Holder | N/A | N/A | SPEAG | NA | NA | | 458-000 | Automation SW | SARA v2.3 | - | Intel | n/a | n/a | # Shared equipment | ID# | Device | Type/Model | Serial Number | Manufacturer | Cal. Date | Cal. Due Date | |---------|----------------------------------|--------------------------------|-----------------|----------------------------------|------------|---------------| | 123-000 | USB Power Sensor | NRP-Z81 | 102278 | R&S | 2021-04-13 | 2023-04-13 | | 124-000 | USB Power Sensor | NRP-Z81 | 102279 | R&S | 2021-04-13 | 2023-04-13 | | 099-000 | Liquid measurement
SW | DAK-3.5
V3.0.2.3 | 9-2687B491 | SPEAG | n/a | n/a | | 069-000 | Dielectric Probe Kit | DAK-3.5 | 1309 | SPEAG | 2021-03-10 | 2023-03-10 | | 078-000 | RF Cable | ST-
18/SMAm/SMAm/48 | 1158830 | Huber &
Suhner | 2022-08-26 | 2023-01-26 | | 079-000 | RF Cable | ST-
18/SMAm/SMAm/48 | 1158831 | Huber &
Suhner | 2022-08-26 | 2023-01-26 | | 077-000 | Coupler | CD0.5-8-20-30 | 1251-002 | Amd-group | 2022-08-26 | 2023-01-26 | | 384-000 | 0.1-6GHz RF
amplifier | AMT-A0328 | 1818 | Agile
Microwave
Technology | 2022-08-26 | 2023-01-26 | | 097-000 | 7GHz System
Validation Dipole | 7GHzv2 | 1008 | SPEAG | 2022-08-24 | 2024-08-24 | | 398-000 | Thermometer | TESTO 922 | 33622932/208 | TESTO | 2021-11-09 | 2023-11-09 | | 327-000 | Temp & Humidity
Logger | RA32E-TH1-RAS | RA32-
F0DEF9 | AVTECH | 2021-03-09 | 2023-03-09 | | 089-000 | Vector Reflectometer | R140 1-Port 14 GHz
Analyzer | 0190616 | Copper
Mountain
tech | 2021-09-02 | 2023-09-02 | # **B.5.1 Tissue Simulant Liquid** | TSL | Manufacturer / Model | Freq Range
(MHz) | Main Ingredients | |---------------|---|---------------------|---| | Head WideBand | SPEAG HBBL600-10000V6
Batch 220721-1 | 600-10000 | Ethanediol, Sodium petroleum sulfonate,
Hexylene Glycol / 2-Methyl-pentane-2.4-
diol, Alkoxylated alcohol | # **B.6 Measurement Uncertainty Evaluation** The system uncertainty evaluation is shown in the table below with a coverage factor of k=2 to indicate a 95% level of confidence: | | SPEAG DASY6 Uncertainty Budget According to IEC/IEEE 62209-1528 (6 GHz - 10 GHz) | | | | | | | | |----------------------|--|------------------|---------------|------|------------|-------------|------------------|-------------------| | Symbol | Error Description | Uncert.
Value | Prob
Dist. | Div. | (ci)
1g | (ci)
10g | Std Unc.
(1g) | Std Unc.
(10g) | | Measure | Measurement System Errors | | | | | | | | | CF | Probe Calibration | ±18.6 % | N | 2 | 1 | 1 | ±9.3 % | ±9.3 % | | CF _{drif} t | Probe Calibration Drift | ±1.0 % | N | 1 | 1 | 1 | ±1.0 % | ±1.0 % | | LIN | Probe Linearity | ±4.7 % | R | √3 | 1 | 1 | ±2.7 % | ±2.7 % | | BBS | Broadband Signal | ±3.0 % | N | 2 | 1 | 1 | ±1.5 % | ±1.5 % | | ISO | Axial Isotropy | ±4.7 % | R | √3 | 0.5 | 0.5 | ±1.4 % | ±1.4 % | | ISO | Hemspherical Isotropy | ±9.6 % | R | √3 | 0.5 | 0.5 | ±2.8 % | ±2.8 % | | DAE | Data Acquisition | ±0.3 % | N | 1 | 1 | 1 | ±0.3 % | ±0.3 % | | AMB | RF Ambient | ±1.8 % | N | 1 | 1 | 1 | ±1.8 % | ±1.8 % | | Δ
sys | Probe Positioning | ±0.2 % | N | 1 | 0.33 | 0.33 | ±0.1 % | ±0.1 % | | DAT | Data Processing | ±3.5 % | N | 1 | 1 | 1 | ±3.5 % | ±3.5 % | | Phanton | n and Device Errors | | | | • | | | | | LIQ(σ) | Conductivity (meas.)DAK | ±2.5 % | N | 1 | 0.78 | 0.71 | ±2.0 % | ±1.8 % | | LIQ(Tσ) | Conductivity (temp.) _{BB} | ±2.4 % | R | √3 | 0.78 | 0.71 | ±1.1 % | ±1.0 % | | EPS | Phantom Permittivity | ±14.0 % | R | √3 | 0.5 | 0.5 | ±4.0 % | ±4.0 % | | DAS | Distance DUT - TSL | ±2.0 % | N | 1 | 2 | 2 | ±4.0 % | ±4.0 % | | Н | Device Holder | ±3.6 % | N | 1 | 1 | 1 | ±3.6 % | ±3.6 % | | MOD | DUT Modulation _m | ±2.4 % | R | √3 | 1 | 1 | ±1.4 % | ±1.4 % | | TAS | Time-average SAR | ±2.6 % | R | √3 | 1 | 1 | ±1.5 % | ±1.5 % | | RFdrift | DUT drift | ±5.0 % | N | 1 | 1 | 1 | ±2.9 % | ±2.9 % | | Correcti | on to the SAR results | | | | | | | | | C(ε, σ) | Deviation to Target | ±1.9 % | N | 1 | 1 | 0.84 | ±1.9 % | ±1.6 % | | C(R) | SAR scaling _p | ±0 % | R | √3 | 1 | 1 | ±0 % | ±0 % | | Comb | oined Std. Uncertainty | | | | | | ±13.7 % | ±13.7 % | | Expan | ded STD Uncertainty | | | | | | ±27.5 % | ±27.3 % | # **B.7 RF Exposure Limits** SAR assessments have been made in line with the requirements of FCC 47CFR Part 2.1093 on the limitation of exposure of the general population / uncontrolled exposure for portable devices. | Exposure Type | General Population / Uncontrolled Environment | |---|---| | Peak spatial-average SAR (averaged over any 1 gram of tissue) | 1.6 W/kg | | Whole body average SAR | 0.08 W/kg | | Peak spatial-average SAR (extremities) (averaged over any 10 grams of tissue) | 4.0 W/kg | # Annex C. Test Results The herein test results were performed by: | Test case measurement | Test Personnel | |--------------------------------|----------------| | Conducted measurement | F. Heurtematte | | SAR measurement PD measurement | Y.Haddad | ### C.1 Test Conditions ### C.1.1 Test positions relative to the phantom The device under test was an Intel® Wi-Fi 6E AX411 card inside a regular host convertible PC (Dell, P125F) using a set of PIFA antenna. The card was operated utilizing proprietary software (DRTU version DRTU.01987.22.150.0) and each channel was measured using a broadband power meter to determine the maximum average power. According to FCC OET KDB 616217 D04, laptop position should be tested for SAR compliance with the display screen opened at an angle of 90 to the keyboard compartment and the notebook bottom surface must be touching the phantom. Considering the antenna location diagrams in Annex H and the test exclusions described before, the surfaces/edges to be measured for each antenna are: | Antenna | Main | Aux | |----------|----------------------------|----------| | Position | Laptop | - Laptop | As per the Interim Procedures for UNII 6-7GHz RF Exposure, explained in *RF Exposure Policies and Procedures: TCB Workshop – October 2020*, the testing has been performed on SAR following IEC/IEEE 62209-1528:2020 and then on Power Density for the highest SAR test configurations. After completing the SAR testing it resulted that the main antenna has the higher 1g reported SAR values. Thus, the power density was tested in the correspondent highest SAR test position. Due to constraints on the power density method of testing, the testing at 0mm distance from the DUT could not be performed. The closest distance, without damaging the test system, was chosen to be 2.5mm See Section G.2 for more information on the tested positions ### C.1.2 Test signal, Output power and Test Frequencies For 802.11 transmission modes the device was put into operation by using an own control software to program the test mode required to select the continuous transmission with 100% duty cycle. The output power of the device was set to transmit at maximum power for all tests. ### C.1.3 Evaluation Exclusion and Test Reductions ### (i) SAR evaluation exclusion The SAR Test Exclusion Threshold in FCC OET KDB 447498 can be applied to determine SAR test exclusion for adjacent edge configurations. For 100MHz to 6GHz and test separation distances ≤50mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following formula: [(max. power of channel, including tune – up tolerance, mW)/(min. test separation distance, mm)] $$\cdot \left[\sqrt{f_{(GHz)}} \right]$$ (1) $\leq 3.0 \ for \ 1g \ SAR, \ and \ \leq 7.5 \ for \ 10g \ extremity \ SAR$ Where: f(GHz) is the RF channel transmit frequency in GHz Power and distance are rounded to the nearest mW and mm before calculation The result is rounded to one decimal
place for comparison The values 3.0 and 7.5 are referred to as numeric thresholds The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. For test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined using the following formulas: $$\langle (Power \ allowed \ at \ numeric \ threshold \ for \ 50 \ mm \ in \ (1)) + (test \ separation \ distance - 50 \ mm) \cdot (f_{MHz}/150) \rangle mW,$$ (2) $$\langle (Power \ allowed \ at \ numeric \ threshold \ for \ 50 \ mm \ in \ (1)) + (test \ separation \ distance - 50 \ mm) \cdot 10) \rangle mW,$$ for $1500MHz \ and \leq 6GHz$ (3) | | | Output | power | | |----------------|--------------|--------|-------|--------| | LAN
Antenna | Band
Name | dBm | mW | Laptop | | | U-NII-5 | 12.00 | 15.85 | <50 | | WLAN | U-NII-6 | 12.00 | 15.85 | <50 | | Main | U-NII-7 | 12.00 | 15.85 | <50 | | | U-NII-8 | 12.00 | 15.85 | <50 | | | U-NII-5 | 12.00 | 15.85 | <50 | | WLAN | U-NII-6 | 12.00 | 15.85 | <50 | | Aux | U-NII-7 | 12.00 | 15.85 | <50 | | | U-NII-8 | 12.00 | 15.85 | <50 | | Laptop | |--------| | Т | | Т | | Т | | Т | | Т | | Т | | Т | | Т | T: Tested position R: Reduced See Annex H for a more detailed explanation of the separation distance related to the platform. # **C.2** Conducted Power Measurements # C.2.1 WLAN 6-7GHz (U-NII) # (i) 6.2GHz (U-NII-5) | | | | | | Main | | | Aux | SAR | |------------|-------------------|-----|--------|---------------|-------|----------------------|-------|----------------------|-----------| | Band | Mode
Data Rate | BW | Ch# | Freq
(MHz) | AWAN | Tune-up Pwr
(dBm) | AWAN | Tune-up Pwr
(dBm) | Test
? | | | 802.11ax
HE0 | | 1 5955 | | 5.25 | | 5.25 | | | | | 802.11ax
HE0 | 20 | 45 | 6175 | | 5.25 | | 5.25 | | | | 802.11ax
HE0 | | 93 | 6415 | | 5.25 | | 5.25 | | | | 802.11ax
HE0 | | 3 | 5965 | | 8.50 | | 8.50 | | | | 802.11ax
HE0 | 40 | 43 | 6165 | NR | 8.50 | NR | 8.50 | No | | U-NII-5 | 802.11ax
HE0 | | 91 | 6405 | | 8.50 | 8.50 | | | | <u></u> -5 | 802.11ax
HE0 | | 7 | 5985 | | 10.50 | | 10.50 | | | | 802.11ax
HE0 | 80 | 39 | 6145 | | 10.50 | | 10.50 | | | | 802.11ax
HE0 | | 87 | 6385 | | 10.50 | | 10.50 | | | | 802.11ax
HE0 | | 15 | 6025 | 11.81 | 12.00 | 11.82 | 12.00 | Yes | | | 802.11ax
HE0 | 160 | 160 47 | 6185 | 11.63 | 12.00 | 11.42 | 12.00 | No | | | 802.11ax
HE0 | | 79 | 6345 | 11.68 | 12.00 | 11.78 | 12.00 | Yes | Initial test configuration 1. NR: Not Required # (ii) 6.5GHz (U-NII-6) | | | | | | M | ain | P | Nux | | |---------|---|-----|-----|-------------------|-------|----------------------|-------|----------------------|--------------| | Band | Mode
Data Rate | BW | Ch# | Freq
(MH
z) | AWAN | Tune-up Pwr
(dBm) | AWAN | Tune-up Pwr
(dBm) | SAR
Test? | | | | 20 | 97 | 6435 | NR | 5.25 | NR | 5.25 | | | | 802.11ax
HE0 20
802.11ax 40
HE0 40 | 20 | 105 | 6475 | | 5.25 | | 5.25 | No | | | | 20 | 113 | 6515 | | 5.25 | | 5.25 | | | 드 | | 40 | 99 | 6445 | | 8.50 | | 8.50 | | | U-NII-6 | | 40 | 107 | 6485 | | 8.50 | | 8.50 | | | တ | 802.11ax | 80 | 103 | 6465 | | 11.00 | | 11.00 | | | | HE0 | 80 | 119 | 6545 | | 11.00 | | 11.00 | | | | 802.11ax
HE0 | 160 | 111 | 6505 | 11.97 | 12.00 | 11.86 | 12.00 | Yes | Initial test configuration 1. NR: Not Required # (iii) 6.7GHz (U-NII-7) | | | | | | М | ain | Αι | ıx | | |------|-------------------|-----|-----|-------------------|-------|----------------------|-------|----------------------|--------------| | Band | Mode
Data Rate | BW | Ch# | Freq
(MH
z) | AWAN | Tune-up Pwr
(dBm) | AWAN | Tune-up Pwr
(dBm) | SAR
Test? | | | 802.11ax
HE0 | 20 | 117 | 6535 | | 5.25 | | 5.25 | | | | | 20 | 149 | 6695 | | 5.25 | NR | 5.25 | | | | | 20 | 181 | 6855 | NR | 5.25 | | 5.25 | No | | | | 40 | 115 | 6525 | | 8.50 | | 8.50 | | | Ç | | 40 | 147 | 6685 | | 8.50 | | 8.50 | | | Ė | | 40 | 179 | 6845 | | 8.50 | | 8.50 | | | -7 | 000.44 | 80 | 135 | 6625 | | 10.50 | | 10.50 | | | | 802.11ax
HE0 | 80 | 151 | 6705 | | 10.50 | | 10.50 | | | | 1120 | 80 | 167 | 6785 | | 10.50 | | 10.50 | | | | 802.11ax | 160 | 143 | 6665 | 11.79 | 12.00 | 11.69 | 12.00 | Yes | | | HE0 | 160 | 175 | 6825 | 11.97 | 12.00 | 11.86 | 12.00 | No | Initial test configuration 1. NR: Not Required # (iv) 7.0GHz (U-NII-8) | | | | | | М | lain | Aux | | | |-------------|-----------------|--------------|-----|-------------------|-------|----------------------|-------|----------------------|--------------| | Band | Mode | Data
Rate | Ch# | Freq
(MH
z) | AWAN | Tune-up Pwr
(dBm) | AWAN | Tune-up Pwr
(dBm) | SAR
Test? | | | | 20 | 185 | 6875 | NR | 5.25 | | 5.25 | | | | 802.11ax
HE0 | 20 | 209 | 6995 | | 5.25 | NR | 5.25 | No | | | TILO | 20 | 233 | 7115 | | 1.00 | | 1.00 | | | _ | 802.11ax
HE0 | 40 | 187 | 6885 | | 8.50 | | 8.50 | | | U-NII-8 | | 40 | 227 | 7085 | | 8.50 | | 8.50 | | | = -8 | | 80 | 183 | 6865 | | 10.75 | | 10.75 | | | | 802.11ax
HE0 | 80 | 199 | 6945 | | 10.75 | | 10.75 | | | | TILO | 80 | 215 | 7025 | | 10.75 | | 10.75 | | | | 802.11ax
HE0 | 160 | 207 | 6985 | 11.68 | 12.00 | 11.93 | 12.00 | Yes | Initial test configuration 1. NR: Not Required ### **C.3** Tissue Parameters Measurement ### **Head TSL** | Freq. | • | | Measur
Paran | red TSL
neters | Devia | Date | | |--------|----------|---------|-----------------|-------------------|-------|------|------------| | (MHz) | ε' (F/m) | σ (S/m) | ε' (F/m) | σ (S/m) | ε' | σ | | | 7000.0 | 33.88 | 6.65 | 31.2 | 6.55 | -7.91 | -1.5 | 2022-09-19 | See Annex F for more details. # **C.4** System Check Measurements ### C.4.1 E-Field | Frequency | Signal Type | Target
E-field
(V/m) | Measured
E-field
(V/m) | Deviation
(%) | Date | |-----------|--------------------|----------------------------|------------------------------|------------------|------------| | 6.5GHz | Continuous
Wave | 60.60 | 59.86 | -1.22 | 2022-09-20 | The E-fields presented in the System Check Measurements table are Peak values. The target E-field value is obtained by simulation. The maximum target E-field value at 10 mm with 10 dBm (10 mW) source power is 60.60 V/m. The maximum measured E-field value at 10 mm with 10 dBm (10 mW) is 59.86 V/m. ### C.4.2 H-Field | Frequency | Signal Type | Signal Type H-field (A/m) | | Deviation
(%) | Date | |-----------|--------------------|---------------------------|------|------------------|------------| | 6.5 GHz | Continuous
Wave | 0.17 | 0.16 | -5.88 | 2022-09-20 | The H-fields presented in the System Check Measurements table are Peak values. The target H-field value is obtained by simulation. The maximum target H-field value at 10 mm with 10 dBm (10 mW) source power is 0.17 A/m. The maximum measured E-field value at 10 mm with 10 dBm (10 mW) is 0.16A/m. ### C.4.3 Local Power Density | Frequency | Signal Type | Target Local
Power Density
(W/m2) | Measured Local
Power Density
(W/m2) | Deviation
(%) | Date | |-----------|--------------------|---|---|------------------|------------| | 6.5 GHz | Continuous
Wave | 5.12 | 4.83 | -5.66 | 2022-09-20 | The Local Power Density presented in the System Check Measurements table are Peak values. The target Local Power Density value is obtained by simulation. The maximum target Local Power Density value at 10 mm with 10 dBm (10 mW) source power is 5.12 W/m². The maximum measured E-field value at 10 mm with 10 dBm (10 mW) is 4.83 W/m². # C.4.4 Averaged Power Density | Frequency | Signal Type | Target Spatially
Averaged Power
Density
(W/m2) | Measured Spatially
Averaged Power
Density
(W/m2) | Deviation
(%) | Date | |-----------|--------------------|---|---|------------------|------------| | 6.5 GHz | Continuous
Wave | 4.93 | 4.64 | -5.88 | 2022-09-20 | The Spatially Averaged Power Density presented in the System Check Measurements table are Peak values. The target Spatially Averaged Power Density value is obtained by simulation. The maximum target Spatially Averaged Power Density value at 10 mm with 10 dBm (10 mW) source power is 4.93 W/m². The maximum measured Spatially Averaged Power Density value at 10 mm with 10 dBm (10 mW) is 4.64W/m². See Annex E for more details. ### **C.4.5 SAR** ### **Head Measurements** | Frequency
(MHz) | Average | Target SAR
(W/Kg) | Measured
SAR
(W/Kg) | Forwarded power (mW) | Deviation to target (%) | Limit (%) | Date | |--------------------|---------|----------------------|---------------------------|----------------------|-------------------------|-----------|------------| | 7000 | 1g | 278.0 | 277.69 | 25.40 | -0.11 | 10 | 2022 00 40 | | 7000 | 10g | 48.70 | 49.40 | 25.10 | 1.44 | 10 | 2022-09-19 | ### **C.5** Test Results ### C.5.1 SAR - 802.11ax - 6.2 GHz - U-NII-5 | Antenna
Manufactu | Mod
e
Dat | BW
(MHz | Chan
nel | Freq | Test
positio | Ant | Scalin
g | Meas
ured
SAR | Reported
SAR 1g | SAR 10g
(W/kg) | epithe | nated
lial PD
m²)* | No | |----------------------|-----------------|------------|-------------|-------|-----------------|------|--------------|---------------------|--------------------|-------------------|------------------|--------------------------|------| | rer | a
Rat
e |) | Num
ber | (MHz) | n
mode | Alit | Factor (dB). | 1g.
(W/kg) | (W/Kg) | Measured | 1cm ² | 4cm ² | Plot | | | | | 15 | 6025 | Lanton | MAIN | 0.19 | 0.64 | 0.67 | 0.14 | 6.38 | 3.24 | 1 | | A 14/A NI | 802.
11a | 12 | 79 | 6345 | Laptop | | 0.32 | 0.45 | 0.49 | 0.10 | | | |
| AWAN | x
HE0 | 160 | 15 | 6025 | Lonton | | 0.18 | 0.42 | 0.44 | 0.09 | | | | | | | | 79 | 6345 | Laptop | | 0.22 | 0.18 | 0.17 | 0.04 | | | | ^{*} For reference purposes only, not specifically for compliance, the estimated absorbed (epithelial) power density derived from the measured SAR is shown ### **SAR - 802.11ax - 6.5 GHz - U-NII-6** | Antenna
Manufactur
er | Mode
Data
Rate | BW
(MHz) | Chann
el
Numb | Freq
(MH
z) | Test
positio
n mode | Ant | Scaling
Factor
(dB). | Measure
d SAR
1g. | Reported
SAR 1g
(W/Kg) | SAR 10g
(W/kg) | | nated
lial PD
'm²)
4cm² | No
Plo
t | |-----------------------------|----------------------|-------------|---------------------|-------------------|---------------------------|------|----------------------------|-------------------------|------------------------------|-------------------|------|----------------------------------|----------------| | A 14/ A B I | 802.11 | 400 | er
111 | 650
5 | Laptop | MAIN | 0.03 | (W/kg)
0.49 | 0.50 | 0.12 | 2.89 | 3.01 | 2 | | AWAN | ax
HE0 | 160 | 111 | 650
5 | Laptop | AUX | 0.14 | 0.18 | 0.18 | 0.05 | | | | ^{*} For reference purposes only, not specifically for compliance, the estimated absorbed (epithelial) power density derived from the measured SAR is shown ### SAR - 802.11ax - 6.7 GHz - U-NII-7 | Antenna | | BW | Chan
nel | Freq | Test | | Scali
ng | Measu
red | Reporte
d SAR | SAR 10g
(W/kg) | Estimated
PD (W | | No | | |------------------|-----------|-------|-------------|-----------|------------------|------|---------------------|----------------------|------------------|-------------------|--------------------|------------------|------|--| | Manufactur
er | Mode | (MHz) | Numb
er | (MH
z) | position
mode | Ant | Facto
r
(dB). | SAR
1g.
(W/kg) | 1g
(W/Kg) | Measured | 1cm ² | 4cm ² | Plot | | | AWAN | 802.11 | 160 | 175 | 6825 | Laptop | MAIN | 0.03 | 0.48 | 0.48 | 0.12 | 2.83 | 3.10 | 3 | | | AWAN | ax
HE0 | 100 | 175 | 6825 | Laptop | AUX | 0.14 | 0.26 | 0.27 | 0.07 | | | | | ^{*} For reference purposes only, not specifically for compliance, the estimated absorbed (epithelial) power density derived from the measured SAR is shown ### SAR - 802.11ax - 7.0 GHz - U-NII-8 | Antenna | | BW | Chann
el | Freq | Test | | Scaling | Measure
d SAR | Reporte
d SAR | SAR 10g
(W/kg) | Estimated e | | No | |------------------|------------|-------|-------------|-----------|-------------------|----------|--------------|------------------|------------------|-------------------|------------------|------------------|----------| | Manufactu
rer | Mode | (MHz) | Numb
er | (MHz
) | positio
n mode | Ant | Factor (dB). | 1g.
(W/kg) | 1g
(W/Kg) | Measure
d | 1cm ² | 4cm ² | Plo
t | | A 14/ A NI | 802.1
1 | 160 | 207 | 6985 | Laptop | MAI
N | 0.32 | 0.56 | 0.60 | 0.13 | 3.02 | 3.66 | 4 | | AWAN | ax
HE0 | 160 | 207 | 6985 | Laptop | AUX | 0.07 | 0.36 | 0.37 | 0.09 | | | | ^{*} For reference purposes only, not specifically for compliance, the estimated absorbed (epithelial) power density derived from the measured SAR is shown # Power Density - 802.11ax - U-NII-5, UNII-6, UNII-7, UNII-8 | Ant. | Mode
Data
rate | BW
(MHz) | Ch # | Freq
(MHz) | Positio
n | *Uncertaint
y Cor.
Factor | PStot
avg
[W/m²]
1cm² | **C-PStot
avg
[W/m²]
1cm² | PStot
avg
[W/m²]
4cm² | C-PStot
avg
[W/m²]
4cm² | EM E
[V/m] | EM H
[A/m] | Plot
| |------------|----------------------|-------------|------|---------------|--------------|---------------------------------|--------------------------------|------------------------------------|--------------------------------|----------------------------------|---------------|---------------|-----------| | Chain | 802.11 | 160 | 15 | 6025 | Lanton | 1.55 | 2.12 | 3.29 | 1.60 | 2.48 | 55.70 | 0.14 | | | B-
AWAN | ax | 160 | 79 | 6345 | Laptop | 1.55 | 2.32 | 3.60 | 1.94 | 3.01 | 56.80 | 0.19 | 5 | ^{*} The correction factor uncertainty in dB corresponds to the difference between the actual uncertainty and the 30% target value, as per the TCB Workshop Oct 20 # C.5.2 Power Density - 802.11ax - U-NII-6 | Ant. | Mode
Data
rate | BW
(MHz) | Ch# | Freq
(MHz) | Positio
n | Uncertai
nty Cor.
Factor | PStot
avg
[W/m²]
1cm² | C-PStot
avg
[W/m²]
1cm² | PStot
avg
[W/m²]
4cm² | C-PStot
avg
[W/m²]
4cm² | EM E
[V/m] | EM H
[A/m] | Plot
| |--------------------|----------------------|-------------|-----|---------------|--------------|--------------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|---------------|---------------|-----------| | Chain
B-
WAN | 802.11
ax | 160 | 111 | 6505 | Laptop | 1.55 | 2.50 | 3.88 | 1.83 | 2.84 | 55.10 | 0.18 | 6 | # **C.5.3** Power Density - 802.11ax – U-NII-7 | Ant. | Mode
Data
rate | BW
(MHz) | Ch # | Freq
(MHz) | Positi
on | Uncertain
ty Cor.
Factor | PStot
avg
[W/m²]
1cm² | C-PStot
avg
[W/m²]
1cm² | PStot
avg
[W/m²]
4cm² | C-PStot
avg
[W/m²]
4cm² | EM E
[V/m] | EM H
[A/m] | Plot
| |------------------|----------------------|-------------|------|---------------|--------------|--------------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|---------------|---------------|-----------| | Chain B-
AWAN | 802.11
ax | 160 | 175 | 6825 | Laptop | 1.55 | 2.63 | 4.08 | 1.83 | 2.84 | 39.50 | 0.16 | 7 | # C.5.4 Power Density - 802.11ax - U-NII-8 | Ant. | Mode
Data
rate | BW
(MHz) | Ch# | Freq
(MHz) | Positio
n | Uncertain
ty Cor.
Factor | PStot
avg
[W/m²]
1cm² | C-PStot
avg
[W/m²]
1cm² | PStot
avg
[W/m²]
4cm² | C-PStot
avg
[W/m²]
4cm² | EM E
[V/m] | EM H
[A/m] | Plot
| |----------|----------------------|-------------|-----|---------------|--------------|--------------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------------|---------------|---------------|-----------| | Chain B- | 802.11
ax | 160 | 207 | 6985 | Laptop | 1.55 | 1.97 | 3.05 | 1.72 | 2.67 | 58.50 | 0.16 | 8 | ^{**}C-PStot = Compensated PStot # **C.5.5 Measurement Variability** Annex D. According to FCC OET KDB 865664, SAR Measurement variability is assessed when the maximum initial measured SAR is >=0.8 W/kg for a certain band/mode. Since all the results are < 0.8W/Kg, no variability measurement is needed. #### D.1.1 Simultaneous Transmission Evaluation - SAR According to FCC OET KDB 447498, when the sum of 1g SAR for all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration. All the values stated in the table below are the worst case found for standalone measurement with disregard of the transmission mode or channel where the worst case was found | | 5 | Hiç | //Kg) | | |---------|----------|-------------|-------------|------------| | Antenna | Position | WLAN 2.4GHz | WLAN 6.0GHz | Bluetooth* | | Aux | Laptop | 0.69 | 0.44 | 0.31 | | Main | Laptop | 0.66 | 0.67 | | ^{*} For Bluetooth and WLAN 2.4GHz values refer to test report : 220906-01.TR01-FCC-IC_WLAN_SAR_Dell P125F_AX411NGW | Position | Simultaneous Tx Ar | ntenna Combination | Σ SAR 1g (W/kg) | Limit (W/kg) | |----------|--------------------|--------------------|-----------------|--------------| | | Chain A | Chain B | | | | | WLAN 6.0GHz | WLAN 6.0GHz | 1.11 | | | | WLAN 6.0GHz + BT | WLAN 6.0GHz | 1.42 | | | | ВТ | WLAN 6.0GHz | 0.98 | | | Lonton | WLAN 6GHz + BT | WLAN 2.4GHz | 1.41 | 1.6 | | Laptop | ВТ | WLAN 2.4GHz + 6GHz | 1.64 | 1.6 | | | - | WLAN 2.4GHz + 6GHz | 1.33 | | | | WLAN 2.4GHz + 6GHz | - | 1.13 | | | | WLAN 2.4GHz + 6GHz | WLAN 2.4GHz + 6GHz | 2.46 | | In case the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio: | Position | Antenna | Reported
SAR 1g
(W/kg) | Σ SAR
1g
(W/Kg) | Peak Location
(mm)
(x,y,z) | SAR to peak
location
separation
ratio | Limit | |----------|---------------------------|------------------------------|-----------------------|----------------------------------|--|-------| | | Aux BT | 0.31 | 4.04 | (7.5 ;168.2 ; -177.0) | 0.01 | | | Lanton | Main WLAN 2.4GHz + 6GHz | 1.33 | 1.64 | (-12.4 ; -162.9 ; -177.0) | 0.01 | 0.04 | | Laptop | Aux WLAN 2.4GHz +
6GHz | 1.13 | 2.46 | (7.5 ;168.2 ; -177.0) | 0.01 | | | | Main WLAN 2.4GHz + 6GHz | 1.33 | 2.40 | (-12.4 ; -162.9 ; -177.0) | 0.01 | | Considering the results described above and according to the simultaneous transmission evaluation exclusions described in FCC OET KDB 447498, no enlarged zoom scan measurements are required # Annex E. Test System Plots | 1. | U-NII-5 - 802.11ax, CH15, AWAN Antenna, Main Transmitter -Laptop (SAR) | 39 | |-----|---|----| | 2. | U-NII-6 - 802.11ax, CH111, AWAN Antenna, Main Transmitter –Laptop (SAR) | 40 | | 3. | U-NII-7 - 802.11ax, CH175, AWAN Antenna, Main Transmitter –Laptop (SAR) | 41 | | 4. | U-NII-8 - 802.11ax, CH207, AWAN Antenna, Main Transmitter –Laptop (SAR) | 42 | | 5. | U-NII-5 - 802.11ax, CH79, AWAN Antenna, MainTransmitter –Laptop (PD) | 43 | | 6. | U-NII-6 - 802.11ax, CH111, AWAN Antenna, MainTransmitter –Laptop (PD) | 44 | | 7. | U-NII-7 - 802.11ax, CH175, AWAN Antenna, MainTransmitter –Laptop (PD) | 45 | | 8. | U-NII-8 - 802.11ax, CH207, AWAN Antenna, MainTransmitter –Laptop
(PD) | 46 | | 9. | Power Density System Check 6500MHz | 47 | | 10. | SAR System Check 7000MHz – 2022-09-19 | 50 | # 1. U-NII-5 - 802.11ax, CH15, AWAN Antenna, Main Transmitter -Laptop (SAR) #### **Device under Test Properties** | Model, Manufac | | nensions [r | | IMEI | DUT Ty | ре | | |-------------------------|------------------------------|-------------|--------------------|--------------------------------|----------------------|------------------------------|---------------------| | Dell, P125F, | 25 | 0.0 x 350.0 | X 15.0 | 2022081016785 | Laptop | | | | Exposure Con | nditions | | | | | | | | Phantom
Section, TSL | Position, Test Distance [mm] | Band | Group,
UID | Frequency
[MHz],
Channel | Conversion
Factor | TSL
Conductivity
[S/m] | TSL
Permittivity | | | | | | Number | | | | | Flat,
HSL | FRONT,
0.00 | U-NII-5 | WLAN,
10755-AAC | 6025.0,
15 | 5.65 | 5.34 | 32.8 | #### H | Hardware Setup | | | | | | | |-------------------------------|-----------------------------|-----------------------------|---------------------------|--|--|--| | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | | | | ELI V8.0 (20deg probe tilt) - | HBBL-600-10000, 2022-Sep-19 | EX3DV4 - SN7465, 2022-07-18 | DAE4ip Sn1706, 2022-07-11 | | | | ## Scan Setup | | Area Scan | Zoom Scan | |-------------------|-------------------|--------------------| | Grid Extents [mm] | 120.0 x 180.0 | 22.0 x 22.0 x 22.0 | | Grid Steps [mm] | 10.0 x 10.0 | 3.4 x 3.4 x 1.4 | | Sensor Surface | 3.0 | 1.4 | | [mm] | | | | Graded Grid | Yes | Yes | | Grading Ratio | 1.5 | 1.4 | | MAIA | Confirmed by MAIA | Confirmed by MAIA | | Surface Detection | VMS + 6p | VMS + 6p | | Scan Method | Measured | Measured | | | | | ### **Measurement Results** | | Area Scan | Zoom Scan | |------------------|-------------------|-------------------| | Date | 2022-09-19, 14:16 | 2022-09-19, 14:24 | | psSAR1g [W/Kg] | 0.796 | 0.638 | | psSAR10g | 0.286 | 0.137 | | [W/Kg] | | | | APD | | | | Power Drift [dB] | -0.17 | 0.07 | | Power Scaling | Disabled | Disabled | | Scaling Factor | | | | [dB] | | | | TSL Correction | Positive only | Positive only | | M2/M1 [%] | | 55.1 | | Dist 3dB Peak | | 6.7 | | [mm] | | | # 2. U-NII-6 - 802.11ax, CH111, AWAN Antenna, Main Transmitter -Laptop (SAR) #### **Device under Test Properties** | Model, Manufac | cturer Dir | mensions [ı | nm] | IMEI | DUT Ty | ре | | |---|---------------------------------------|-------------|--------------------|--|----------------------|------------------------------|---------------------| | Dell, P125F | 25 | 0.0 x 350.0 | x 15.0 | 2022081016785 | Laptop | | | | Exposure Cor
Phantom
Section, TSL | nditions Position, Test Distance [mm] | Band | Group,
UID | Frequency
[MHz],
Channel
Number | Conversion
Factor | TSL
Conductivity
[S/m] | TSL
Permittivity | | Flat,
HSL | FRONT,
0.00 | U-NII-6 | WLAN,
10755-AAC | 6505.0,
111 | 5.65 | 6.01 | 32.1 | #### H | Hardware Setup | | | | | | | |-------------------------------|-----------------------------|-----------------------------|---------------------------|--|--|--| | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | | | | ELI V8.0 (20deg probe tilt) - | HBBL-600-10000, 2022-Sep-19 | EX3DV4 - SN7465, 2022-07-18 | DAE4ip Sn1706, 2022-07-11 | | | | ## **Scan Setup** | | Area Scan | Zoom Scan | |-------------------|-------------------|--------------------| | Grid Extents [mm] | 120.0 x 180.0 | 22.0 x 22.0 x 22.0 | | Grid Steps [mm] | 10.0 x 10.0 | 3.4 x 3.4 x 1.4 | | Sensor Surface | 3.0 | 1.4 | | [mm] | | | | Graded Grid | Yes | Yes | | Grading Ratio | 1.5 | 1.4 | | MAIA | Confirmed by MAIA | Confirmed by MAIA | | Surface Detection | VMS + 6p | VMS + 6p | | Scan Method | Measured | Measured | | | | | ### **Measurement Results** | | Area Scan | Zoom Scan | |------------------|-------------------|-------------------| | Date | 2022-09-19, 14:47 | 2022-09-19, 15:04 | | psSAR1g [W/Kg] | 0.701 | 0.492 | | psSAR10g | 0.271 | 0.120 | | [W/Kg] | | | | Power Drift [dB] | 0.05 | 0.11 | | Power Scaling | Disabled | Disabled | | Scaling Factor | | | | [dB] | | | | TSL Correction | Positive only | Positive only | | M2/M1 [%] | | 53.9 | | Dist 3dB Peak | | 6.8 | | [mm] | | | # 3. U-NII-7 - 802.11ax, CH175, AWAN Antenna, Main Transmitter -Laptop (SAR) ## **Device under Test Properties** | Model, Manufacturer | Dimensions [mm] | IMEI | DUT Type | |---------------------|----------------------|---------------|----------| | Dell, P125F | 250.0 x 350.0 x 15.0 | 2022081016785 | Laptop | **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance [mm] | Band | Group,
UID | Frequency
[MHz],
Channel
Number | Conversion
Factor | TSL
Conductivity
[S/m] | TSL
Permittivity | |-------------------------|---------------------------------|---------|---------------|--|----------------------|------------------------------|---------------------| | Flat, | FRONT, | U-NII-7 | WLAN, | 6825.0, | 5.65 | 6.37 | 31.5 | | HSI | 0.00 | | 10755-AAC | 175 | | | | **Hardware Setup** | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | |-------------------------------|-----------------------------|-----------------------------|---------------------------|--| | ELI V8.0 (20deg probe tilt) - | HBBL-600-10000, 2022-Sep-19 | EX3DV4 - SN7465, 2022-07-18 | DAE4ip Sn1706, 2022-07-11 | | | XXXX | | | | | **Scan Setup** | | Area Scan | Zoom Scan | |-------------------|-------------------|--------------------| | Grid Extents [mm] | 120.0 x 180.0 | 22.0 x 22.0 x 22.0 | | Grid Steps [mm] | 10.0 x 10.0 | 3.4 x 3.4 x 1.4 | | Sensor Surface | 3.0 | 1.4 | | [mm] | | | | Graded Grid | Yes | Yes | | Grading Ratio | 1.5 | 1.4 | | MAIA | Confirmed by MAIA | Confirmed by MAIA | | Surface Detection | VMS + 6p | VMS + 6p | | Scan Method | Measured | Measured | | | | | #### **Measurement Results** | | Area Scan | Zoom Scan | |------------------|-------------------|-------------------| | Date | 2022-09-19, 15:12 | 2022-09-19, 15:29 | | psSAR1g [W/Kg] | 1.31 | 0.480 | | psSAR10g | 0.538 | 0.110 | | [W/Kg] | | | | Power Drift [dB] | -0.16 | -0.21 | | Power Scaling | Disabled | Disabled | | Scaling Factor | | | | [dB] | | | | TSL Correction | Positive only | Positive only | | M2/M1 [%] | • | 51.6 | | Dist 3dB Peak | | 7.3 | | [mm] | | | # 4. U-NII-8 - 802.11ax, CH207, AWAN Antenna, Main Transmitter -Laptop (SAR) ## **Device under Test Properties** | Model, Manufacturer | Dimensions [mm] | IMEI | DUT Type | |---------------------|----------------------|---------------|----------| | Dell, P125F | 250.0 x 350.0 x 15.0 | 2022081016785 | Laptop | **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance [mm] | Band | Group,
UID | Frequency
[MHz],
Channel
Number | Conversion
Factor | TSL
Conductivity
[S/m] | TSL
Permittivity | |-------------------------|---------------------------------|---------|---------------|--|----------------------|------------------------------|---------------------| | Flat, | FRONT, | U-NII-8 | WLAN, | 6985.0, | 5.65 | 6.53 | 31.2 | | HSL | 0.00 | | 10755-AAC | 207 | | | | **Hardware Setup** | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | | |-------------------------------|-----------------------------|-----------------------------|---------------------------|--|--| | ELI V8.0 (20deg probe tilt) - | HBBL-600-10000, 2022-Sep-19 | EX3DV4 - SN7465, 2022-07-18 | DAE4ip Sn1706, 2022-07-11 | | | | XXXX | | | | | | **Scan Setup** | | Area Scan | Zoom Scan | |-------------------|-------------------|--------------------| | Grid Extents [mm] | 120.0 x 180.0 | 22.0 x 22.0 x 22.0 | | Grid Steps [mm] | 10.0 x 10.0 | 3.4 x 3.4 x 1.4 | | Sensor Surface | 3.0 | 1.4 | | [mm] | | | | Graded Grid | Yes | Yes | | Grading Ratio | 1.5 | 1.4 | | MAIA | Confirmed by MAIA | Confirmed by MAIA | | Surface Detection | VMS + 6p | VMS + 6p | | Scan Method | Measured | Measured | | | | | #### **Measurement Results** | | Area Scan | Zoom Scan | |---|-------------------|-------------------| | Date | 2022-09-19, 15:36 | 2022-09-19, 15:45 | | psSAR1g [W/Kg] | 1.16 | 0.556 | | psSAR10g
[W/Kg] | 0.452 | 0.130 | | Power Drift [dB] | 0.21 | -0.10 | | Power Scaling
Scaling Factor
[dB] | Disabled | Disabled | | TSL Correction | Positive only | Positive only | | M2/M1 [%] | | 49.6 | | Dist 3dB Peak
[mm] | | 6.8 | ## 5. U-NII-5 - 802.11ax, CH79, AWAN Antenna, MainTransmitter -Laptop (PD) DUT: Dell, P125F w AX411NGW; Type: AWAN AYF6Y-100214 / 025.9025N.0011 Signal Source: modulation Custom Channel for 802.11ax, level 12.00dBm. Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: Table Section Measurement Standard: DASY6 (IEEE/IEC/ANSI C63.19-2011) **DASY Configuration:** Probe: EUmmW – SN9538; ConvF(1, 1, 1); Calibrated: 2022-05-18; Modulation Compensation: Sensor-Surface : 0mm (Fix Surface), z = 2.5 mm • Electronics: DAE4 Sn1704; Calibrated: 2022-04-29; • Phantom: Cover; Type: SPEAG Phantom Cover; cDASY6 5G Module v3.0.0.841 Test Date: 2022-09-20 #### Distance-2.5mm: Measurement Resolution = $\lambda/20$ mm Measurement Scan area = 120 mm x 120 mm The plots below show the average PStot (1cm²), PStot (4cm²) the E-field and the H Field ## 6. U-NII-6 - 802.11ax, CH111, AWAN Antenna, MainTransmitter -Laptop (PD) DUT: Dell, P125F; AX411NGW; Type: AWAN AYF6Y-100214 / 025.9025N.0011 Signal Source: modulation Custom Channel for 802.11ax, level 12.00dBm. Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 0 kg/m³ Phantom section: Table Section Measurement Standard: DASY6 (IEEE/IEC/ANSI C63.19-2011) **DASY
Configuration:** Probe: EUmmW – SN9538; ConvF(1, 1, 1); Calibrated: 2022-05-18; o Modulation Compensation: Sensor-Surface : 0mm (Fix Surface), z = 2.5 mm • Electronics: DAE4 Sn1704; Calibrated: 2022-04-29; Phantom: Cover; Type: SPEAG Phantom Cover; cDASY6 5G Module v3.0.0.841 Test Date: 2022-09-20 #### Distance-2.5mm: Measurement Resolution = $\lambda/20$ mm Measurement Scan area = 120 mm x 120 mm The plots below show the average PStot (1cm²), PStot (4cm²) the E-field and the H Field ## 7. U-NII-7 - 802.11ax, CH175, AWAN Antenna, MainTransmitter -Laptop (PD) DUT: Dell, P125F; AX411NGW; Type: AWAN AYF6Y-100214 / 025.9025N.0011 Signal Source: modulation Custom Channel for 802.11ax, level 12.00dBm Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: Table Section Measurement Standard: DASY6 (IEEE/IEC/ANSI C63.19-2011) **DASY Configuration:** Probe: EUmmW – SN9538; ConvF(1, 1, 1); Calibrated: 2022-05-18; Modulation Compensation: Sensor-Surface : 0mm (Fix Surface), z = 2.5 mm Electronics: DAE4 Sn1704; Calibrated: 2022-04-29; • Phantom: Cover; Type: SPEAG Phantom Cover; cDASY6 5G Module v3.0.0.841 • Test Date: 2022-09-20 #### Distance-2.5mm: Measurement Resolution = $\lambda/20$ mm Measurement Scan area = 120 mm x 120 mm The plots below show the average PStot (1cm²), PStot (4cm²) the E-field and the H Field ## 8. U-NII-8 - 802.11ax, CH207, AWAN Antenna, MainTransmitter -Laptop (PD) DUT: Dell, P125F; AX411NGW; Type: AWAN AYF6Y-100214 / 025.9025N.0011 Signal Source: modulation Custom Channel for 802.11ax, level 12.00dBm Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 0 kg/m³ Phantom section: Table Section Measurement Standard: DASY6 (IEEE/IEC/ANSI C63.19-2011) **DASY Configuration:** Probe: EUmmW – SN9538; ConvF(1, 1, 1); Calibrated: 2022-05-18; o Modulation Compensation: • Sensor-Surface : 0mm (Fix Surface), z = 2.5 mm • Electronics: DAE4 Sn1704; Calibrated: 2022-04-29; • Phantom: Cover; Type: SPEAG Phantom Cover; cDASY6 5G Module v3.0.0.841 • Test Date: 2022-09-21 #### Distance-2.5mm: Measurement Resolution = $\lambda/20$ mm Measurement Scan area = 120 mm x 120 mm The plots below show the average PStot (1cm²), PStot (4cm²) the E-field and the H Field ## 9. Power Density System Check 6500MHz DUT: Horn reference source; Type: PE9859/SF-15; Signal Source: modulation CW, level 10 dBm. Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: Table Section Measurement Standard: DASY6 (IEEE/IEC/ANSI C63.19-2011) **DASY Configuration:** Probe: EUmmW – SN9538; ConvF(1, 1, 1); Calibrated: 2022-05-18; o Modulation Compensation: Sensor-Surface : 0mm (Fix Surface), z = 2.5 mm Electronics: DAE4 Sn1704; Calibrated: 2022-04-29; Phantom: Cover; Type: SPEAG Phantom Cover; cDASY6 5G Module v3.0.0.841 • Test Date: 2022-09-20 #### Distance-10mm/Measure Horn reference source (86.9x63.5): Measurement Resolution = $\lambda/4$ mm Measurement Scan area = 200 mm x 200 mm The plots below show the comparison between the Numerical Modeling results and the system check measurement results in terms of E-field, H Field, single point power density and Avg Power density 1cm². The plots below show the comparison between the numerical modeling and the system check results in terms of normalized E-field distribution and the 1D variation along the two axis of the maximum. # 10. SAR System Check 7000MHz - 2022-09-19 ## **Device under Test Properties** | Model, Manufacturer | Dimensions [mm] | IMEI | DUT Type | |---------------------|--------------------|------|-------------------| | D7GHzV2, Speag | 50.0 x 10.0 x 20.0 | 1008 | Validation Dipole | ## **Exposure Conditions** | Phantom
Section, TSL | Position, Test Ba
Distance [mm] | and Group,
UID | Frequency
[MHz],
Channel
Number | Conversion
Factor | TSL
Conductivity
[S/m] | TSL
Permittivity | |-------------------------|------------------------------------|-------------------|--|----------------------|------------------------------|---------------------| | Flat, | , | , | 7000.0, | 5.65 | 6.55 | 31.2 | | HSI | | 0 | 0 | | | | ## **Hardware Setup** | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | |-------------------------------|-----------------------------|-----------------------------|---------------------------| | ELI V8.0 (20dea probe tilt) - | HBBL-600-10000, 2022-Sep-19 | EX3DV4 - SN7465, 2022-07-18 | DAE4ip Sn1706, 2022-07-11 | ## Scan Setup | | Area Scan | Zoom Scan | |---------------------|-------------------|--------------------| | Grid Extents [mm] | 51.0 x 85.0 | 22.0 x 22.0 x 22.0 | | Grid Steps [mm] | 8.5 x 8.5 | 3.4 x 3.4 x 1.4 | | Sensor Surface [mm] | 3.0 | 1.4 | | Graded Grid | Yes | Yes | | Grading Ratio | 1.5 | 1.4 | | MAIA | Confirmed by MAIA | Confirmed by MAIA | | Surface Detection | VMS + 6p | VMS + 6p | | Scan Method | Measured | Measured | #### **Measurement Results** | | Area Scan | Zoom Scan | |------------------|-------------------|-------------------| | Date | 2022-09-19, 10:18 | 2022-09-19, 10:26 | | psSAR1g [W/Kg] | 5.73 | 6.97 | | psSAR10g | 1.22 | 1.24 | | [W/Kg] | | | | Power Drift [dB] | -0.17 | -0.00 | | Power Scaling | Disabled | Disabled | | Scaling Factor | | | | [dB] | | | | TSL Correction | Positive only | Positive only | | M2/M1 [%] | - | 51.0 | | Dist 3dB Peak | | 4.6 | | [mm] | | | # Annex F. TSL Dielectric Parameters # F.1 Head Liquid WiFi 6E | | | | 2022-09-19 | | |------------|---------|--------|------------|---------| | Freq.(MHz) | Target | | Measured | | | | ε'(F/m) | σ(S/m) | ε'1(F/m) | σ1(S/m) | | 6000.0 | 35.07 | 5.48 | 32.77 | 5.30 | | 6050.0 | 35.01 | 5.54 | 32.75 | 5.38 | | 6100.0 | 34.95 | 5.59 | 32.73 | 5.46 | | 6150.0 | 34.89 | 5.65 | 32.69 | 5.53 | | 6200.0 | 34.83 | 5.71 | 32.63 | 5.59 | | 6250.0 | 34.77 | 5.77 | 32.56 | 5.66 | | 6300.0 | 34.70 | 5.83 | 32.48 | 5.72 | | 6350.0 | 34.64 | 5.89 | 32.41 | 5.79 | | 6400.0 | 34.58 | 5.95 | 32.32 | 5.86 | | 6450.0 | 34.52 | 6.01 | 32.20 | 5.93 | | 6500.0 | 34.46 | 6.07 | 32.07 | 6.00 | | 6550.0 | 34.40 | 6.13 | 31.94 | 6.07 | | 6600.0 | 34.34 | 6.19 | 31.82 | 6.13 | | 6650.0 | 34.29 | 6.25 | 31.74 | 6.19 | | 6700.0 | 34.23 | 6.30 | 31.67 | 6.24 | | 6750.0 | 34.17 | 6.36 | 31.61 | 6.29 | | 6800.0 | 34.11 | 6.42 | 31.53 | 6.34 | | 6850.0 | 34.05 | 6.48 | 31.44 | 6.40 | | 6900.0 | 33.99 | 6.53 | 31.36 | 6.45 | | 6950.0 | 33.94 | 6.59 | 31.28 | 6.50 | | 7000.0 | 33.88 | 6.65 | 31.20 | 6.55 | | 7050.0 | 33.82 | 6.71 | 31.13 | 6.6 | | 7100.0 | 33.76 | 6.77 | 31.05 | 6.64 |